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SUMMARY

In this brief paper, we honor the contributions of the late Prof. Manny Lehman to the study of software
evolution. We do so by means of a kind of evolutionary case study: First, we discuss his background in
engineering and explore how this helped to shape his views on software systems and their development;
next, we discuss the laws of software evolution that he postulated based on his industrial experiences; and
finally, we examine how the nature of software systems and their development are undergoing radical
change, and we consider what this means for future evolutionary studies of software. Copyright © 2013
John Wiley & Sons, Ltd.
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1. LEHMAN’S INTELLECTUAL JOURNEY

Meir ‘Manny’ Lehman did not follow a traditional career path for an academic. His father died when he

was young, and Lehman had to enter the workforce to help support his family instead of attending a

university. He got his first job in 1941 ‘performing maintenance on’ (i.e., repairing) civilian radios

in England at the height of the World War II, this was a job of real importance. For the most part,

his work involved replacing the components that the ‘tester’ (or ‘debugger’, in software engineering

parlance) had determined to be problematic. He found the work repetitive and dull. He decided that

he really wanted to be a tester. One day, his foreman called in sick and Lehman was allowed to do

testing, but when the foreman returned, Lehman was told to go back to maintenance. When Lehman

protested that he thought he had been promoted, the foreman replied ‘Well, you’re not paid to think’

[1]. Lehman would later dedicate a large portion of his life to demonstrate that those who do

‘maintenance’ of software should be paid to think, too. Lehman later attended Imperial College

London where he received a PhD in 1957.

Like many other pioneers of computer science, Lehman lived the computer revolution from its

inception; his early work was dedicated to building some of the first modern computers, and by the

end of his life, he was witnessing the ubiquity of mobile computing. It is likely that he would have

spent his life working on hardware, had it not been for the few years he spent at IBM between 1964

and 1972. IBM had originally hired him to help build physical computers, but in 1968, in a radical

change of direction, he was asked to investigate programming practices within the company. This

project took him to study the development of the landmark operating system IBM S/360 and its

successor, IBM S/370. Lehman discovered that programmers were becoming increasingly interested

in assessing their productivity, which they measured in terms of daily source lines of code and
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passing unit-tests. He noticed that productivity was indeed increasing according to these measures, but

at the same time the developers appeared to be losing sight of the overall product. In his words, ‘the

gross productivity for the project as a whole, and particularly the gross productivity as measured

over the lifetime of the software product had probably gone down’ [1]. It was during this period that

he developed a close friendship with fellow IBM employee, Laszlo Belady. Together, they would

challenge the prevailing models and assumptions of software maintenance processes, and champion

the study of software evolution as a field in its own right.

In 1972, Lehman left IBM to join Imperial College London, where he would continue his work in

software engineering research. Lehman was also instrumental in creating, at Imperial College, one the

first academic programs in software engineering. Although he did not consider himself a programmer,

his work at IBM had allowed him to study and understand programmers and their products better than

most. He had witnessed first-hand the challenges of producing industrial programs for a real-world

environment. And, most importantly, he noticed that the processes involved in developing and

maintaining software appeared to form a kind of feedback system, where the environment provided

a signal that had profound impact upon the continued evolution of the system.

Lehman’s engineering-influenced views on software systems and their development were in stark

contrast to some other well known computer scientists of the time, such as Edsger Dijkstra. For

Dijkstra, a program was essentially a passive, mathematical entity that should be derived, iteratively,

from a formal statement of what it was supposed to do. In this model, the software developer starts

with a precise specification of the desired functionality, and then implements a series of formal

‘step-wise’ refinements, gradually making it more concrete, and ultimately executable; Dijkstra thus

championed the view that teaching programming should emphasize creating a correct specification

first, and then progressively transforming it through correctness-preserving transformations into a

program that satisfies the specification [2]. Although Lehman recognized the value of Dijkstra’s

position, at the same time, he felt that it was an impractical model for the problem space of

industrial software and for the style of development he had observed at IBM. Lehman postulated

that programs could be divided into two main categories: S-type programs, which are derived from a

rigorous specification that can be stated up-front, and can be proven correct if required; and E-type

(evolutionary) programs, whose requirements are strongly affected by their environment and must be

adaptable to changing needs [3]. In his view, E-type systems are those that are embedded in the real

world, implicitly suggesting that S-type programs were less common—and thus less important—

outside of the research world.

2. LEHMAN’S LAWS OF EVOLUTION

Lehman’s best known work concerns his laws of software evolution, which he devised and refined

with several collaborators—most notably, Laszlo Belady—over many years. In Lehman’s view,

‘The moment you install that program, the environment changes.’ Hence, a program that is expected

to operate in the real world cannot be fully specified for two reasons: it is impossible to anticipate

all of the complexities of the real world environment in which it will run; and, equally importantly,

the program will affect the environment the moment it starts being used. As time passes, the

environment in which the software system is embedded will inevitably evolve, often in unexpected

directions; the environment of a program—including its users—thus becomes input to a feedback

loop that drives further evolution. A program might, at some point, perfectly satisfy the

requirements of its users, but as its environment changes, the program will have to be explicitly

adapted to continue doing so. In the words of Lehman, ‘Evolution is an essential property of real-

world software’ and ‘As your needs change, your criteria for satisfaction change’.

Lehman observed that successfully evolving an existing software system was a surprisingly difficult

task. He summarized his observations about E-type software systems in what we today call Lehman’s

Laws of Software Evolution (adapted from [11, 3, 5])‡:

‡Herraiz et al. have performed a recent in-depth analysis of Lehman’s Laws and modern evidence [7].
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L1) Continuing change—A software will become progressively less satisfying to its users over time,

unless it is continually adapted to meet new needs.

L2) Increasing complexity—A software system will become progressively more complex over time,

unless explicit work is done to reduce its complexity.

L3) Self-regulation—The process of software evolution is self-regulating, with close to normal distri-

bution of the product and process artifacts that are produced.

L4) Conservation of organizational stability—The average effective global activity rate on an evolving software

system does not change over time; that is, the amount of work that goes into each release is about the same.

L5) Conservation of familiarity—The amount of new content in each successive release of a software

system tends to stay constant or decrease over time.

L6) Continuing growth—The amount of functionality in a software system will increase over time, in

order to please its users.

L7) Declining quality—A software system will be perceived as declining in quality over time, unless

its design is carefully maintained and adapted to new operational constraints.

L8) Feedback System—Successfully evolving a software system requires recognition that the develop-

ment process is a multi-loop, multiagent, multilevel feedback system; thus, for example, as a soft-

ware system ages, it tends to become increasingly difficult to change because of the complexity of

both the artifacts as well as the processes involved in effecting change. This law also implicitly

recognizes the role of user feedback in providing impetus for future evolution.

While L8 (feedback system) was the last to be formulated, arguably, it should have been the first to

be stated, as its themes pervade all of the others. As discussed earlier, Lehman based his observations

on the notion that once a real-world software system has been deployed, its continued development

creates a set of complex feedback loops whose effects must be considered carefully. The feedback

can come from many sources including users (who may press for new features), the application

domain (if changes in tax law require changes in the way a point-of-sale system calculates taxes),

the technical environment in which the system runs (if changes to the operating system require

changes to how some of the functionality is implemented), and the system itself (when defects are

identified and need to be fixed). Developers must be keenly aware that if their software system does

not respond positively to these pressures, then over time, the system will be seen as increasingly less

appealing by its user base (L1: continuing change).

L2 (increasing complexity) and L7 (declining quality) imply that the changes required to evolve the system

to respond to these pressures tend tomake the systemmore complex and lower its quality, as perceived by the

various stakeholders. Additional effort will be required tomanage this growth in complexity and keep it under

control, and development resources will have to be explicitly allocated to achieve this.

According to L3 (self regulation), over time, any measurements of the system or its process will

follow a well-defined trend, with ripples in either direction that follow a normal distribution. In a

way, L4 (conservation of organizational stability), is a corollary of L3: over the life of a system, the

amount of work that goes into the evolution of a system remains fixed. Likewise, L6 (continuing

growth) can be seen at least in part to be a corollary of L1, because change often means adding new

code. Finally, L5 (Conservation of familiarity) states that to properly evolve a system, the team

should do so in fixed increments, or it risks losing its understanding of the system.

Lehman’s Laws have sometimes been criticized for lacking a solid empirical foundation;

additionally, subsequent empirical studies have found important cases where the evidence does not

support some of the laws [8, 9]. Lehman and his coauthors later clarified that their use of the word

‘law’ should be interpreted within the domain of the social sciences, and therefore, the laws are not

expected to represent precise invariant relationships of measurable observations [5].

Despite these criticisms, the laws call attention to the difficulties of maintaining a deployed software

system. Lehman challenged the commonly held view that software maintenance was simply the

process of fixing defects found in the field, and helped explain why maintenance was becoming so

costly, risky, and time consuming, and why well-designed systems often evolved into unmanageable

beasts. He also popularized the view that software systems are not maintained in the traditional

mechanical sense of fixing worn out pieces [10], but rather their essential properties are adapted and

reshaped to meet changing expectations.
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Lehman’s Laws not only help to explain the risks of the future evolution of a system, but can also be

seen as prescriptive advice. We know that the environment will put evolutionary pressures on any

deployed software system; if we cannot predict this pressure, we can at least prepare for it.

Consequently, it becomes more important to build a system that is amenable to change than to build

a system that perfectly satisfies the requirements at deployment time. And once the system is

deployed, we need to worry about managing and reducing the continuously growing complexity of

the system. As we have learned over and over again through the years, software design is not a task

that can be done entirely up-front before coding starts; instead, it needs to be done continuously and

iteratively, and in response to changing needs.

3. SOME OBSERVATIONS ON MODERN SOFTWARE EVOLUTION AND LEHMAN’S LAWS

As noted earlier, Lehman’s observations on software evolution—that he later deemed his ‘laws’—were

first developed during the 1960s and 1970s based on his experiences at IBM and the development of

large systems such as OS/360, and he continued to refine and add to them into the 1990s [11].

However, his direct experiences—and later, the data he examined from other industrial projects—

were mostly of large, systems-oriented applications written in tightly organized teams using old

school management styles, programming languages, and development tools. The software world has

changed a lot since then, and in the age of agile development, cloud-based services, and powerful

run-time environments with comprehensive infrastructures, it is worth considering how the technical

ground has shifted and how this might affect his laws. With this in mind, we now discuss some of

the major recent trends of software systems and their development, and how Lehman’s Laws may

need to evolve to accommodate them [6].

First, we note that some recent studies cast new doubt on the likely truth of L3, L4, and L5 (for

example, [9, 12]). Software development, and open source software development in particular, seems

now much more ad hoc in its approach to release planning. In earlier times, software systems were

developed in-house by relatively stable sets of engineers working to regular and well-defined

schedules. Creating a major release of a software system was expensive, and required significant

planning and budgeting. By comparison, open source systems tend not to be driven by these kinds of

time and personnel pressures, and increasingly, industrial software development is echoing the style of

release planning. Releases are created when a project manager decides that it is worthwhile to do so—

such as when an important feature is available—rather aiming toward some largely artificial deadline.

Consequently, the regularity of releases as well as the number of development artifacts created and

features implemented per release tends to vary widely even within a single system [9].

The studies that Lehman and his colleagues performed to support his arguments used the metrics of

the day—such as LOC, number of files touched, and number of features implemented—to measure a

system’s growth and complexity. However, the evolution of the very nature of software systems

themselves require that we rethink how—or if—we should perform similar measurements within a

modern context. We now discuss some of these concerns.

3.1. The emergence of software architecture

When a large system is being developed for the first time, devising a workable software architecture is

the hardest and most important design task that must be done early on. As work proceeds and

understanding of the problem space improves, internal boundaries within the system begin to

emerge as developers form a communal high-level mental model of the design. As these boundaries

mature, their interfaces begin to harden; if they are well conceived, these interfaces can hide much

of the complexity of the major components from each other. In time, some components may become

more loosely coupled from the system; for example, device drivers for the Linux kernel have

become less tightly coupled with the rest of the system as various simplified internal interfaces have

emerged together with a facility for loading kernel modules at run-time. Overall, this has reduced

the amount of knowledge about the rest of the kernel that device driver developers must understand,

and so greatly simplified the task of creating new device drivers. Of course, over time, inflexible
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interfaces may become a problem if they are poorly thought out, and significant effort may be required

to work around their flaws; Brooks would call this adding to the accidental complexity of the system

[13]. But well designed interfaces can greatly lessen the amount of knowledge that developers must

understand about other parts of the system.

However, the emergence of internal interfaces and subsystem boundaries means that the complexity

of a large software system is probably not best judged as a simple sum (or product) of the size of the

components; rather, a more nuanced view is needed that takes into account the complexity of those

details that must be understood to interact with the various subcomponents of a software system. For

example, device drivers now comprise more than 60% of the source code in the Linux kernel source

distribution; yet because drivers communicate with the rest of the system via a relatively narrow

interface, it is not clear that their internal complexity has much bearing on the complexity of the rest

of the system and vice versa [9]. Additionally, drivers are mostly independent of each other, yet

they exist in large numbers and so inflate the naive model of the size of the kernel source. Much of

Lehman’s empirical models use absolute numbers (the size of the system as a whole, the number

and size of changes, etc.) to measure effort, complexity, and system size; we lack smarter, more

sensitive models that are better tuned to the internal design of software systems.

3.2. The demonolithization of software systems

Until fairly recently, large software systems were often designed as monoliths; such a system had to

implement almost all of its own functionality with relatively limited help from the underlying

operating system and general purpose software libraries. The current era of software development is

a very different landscape: systems are embedded within an ecosphere of peer components including

libraries, frameworks, run-time environments, virtual machines, and services, which in turn may be

local, mobile, distributed, and location dependent [14]. Developing such a system is less about

writing source code than understanding available services, evaluating security concerns,

investigating distributed performance, and specifying deployment details. Thus, much of the

complexity of modern development does not show up in traditional software metrics: one must

evaluate possible components and services, configure their use, and deploy their systems within an

appropriate run-time environment. And so, we have some thinking to do: empirical models of the

size, complexity, and development effort of software systems need to explicitly recognize that not

every important factor can be measured easily.

3.3. Open source development and agile processes

Modern software is developed in many ways, most of which do not resemble the old school model of

Big Design Up Front with waterfall-like supporting processes. Increasingly, industrial software

development has been embracing the use of open source components, often contributing significant

resources and implementing core functionality for such projects. Industrial developers may also take

existing open source codebases, and create specializations suited to their particular needs, which are

then also released to the community. For example, the Android platform is based on the Linux

operating system, and both the Chrome and Safari web browsers make use of the WebKit browser

engine as a core component; this means that some developers who work at Google and Apple create

a significant amount of source code that is only indirectly related to their company’s own

proprietary products. One must therefore ask how can we evaluate a developer’s contributions to an

industrial project when their primary efforts are only indirectly related to it? And how can we

measure characteristics of a product whose base includes a significant amount of source code that

has been adapted for use rather than developed from scratch? If we are to study topics such as

project evolution and developer productivity, we need new empirical models that can account for

these new approaches to software development and reuse.

3.4. Emergent uses of software

Lehman’s eighth law (L8: feedback system) recognized that software systems are embedded within

various environments that can and do provide feedback into new development. Software systems are
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created by a changing development team within an evolving social and technical environment;

furthermore, when systems are delivered and deployed, the user community comprises another

environment whose reactions can influence future development. Lehman’s implicit advice is that it

is better to think of software and its development as a system in the engineering sense of the term

than as a passive mathematical theorem that can be manipulated formally to achieve desired goals.

Although a software system is, of course, a mathematical entity in some sense, its evolution is not

simply a matter of manipulating it until it performs a set of desired functionality; rather, the realities

of software development processes owe much to pressures that lie outside of the formal

development artifacts.

It is a truism that the Internet has changed the world forever, acting as an enabling technology for

some phenomena and as a catalyst for others. The speed and volume of the feedback loop from user

to developer is much stronger than anyone could have foreseen in the 1960s. But perhaps even more

surprising is the number and variety of emergent uses some software systems have exhibited. For

example, the original design goal for virtual machine platforms such as VMware and VirtualBox

was simply to be able to run software written for multiple operating systems on a single computer;

however, these systems are now widely used for many other purposes, including as generic

deployment platforms, for malware research, and even for reproducibility of scientific experiments

that require specialized software setups. Although Lehman’s eighth law recognized the feedback

loop from users back to developers to, for example, feed ideas for new features, these fundamentally

new uses of software systems would not have been possible without the accompanying

infrastructure of the internet; this represents a fundamental shift in the way that software systems

may evolve.

4. SUMMARY

Lehman’s Laws of Software Evolution were devised over a period of many years, and continue to be

influential in the study of how and why software systems change over time. Despite being conceived

mostly during an era when development practices were fairly rigid and tightly planned, they continue

to have meaning to us today in an era of rapid change, ad hoc development practices, and wholesale

reuse and adaption of third-party software assets. However, as new models of software development

emerge, we must reconsider some of the original assumptions, and seek to devise new models that

will continue to hold utility as we study software creation and evolution in this new era. Because

Lehman’s Laws concern a design space—that of software development—perhaps it is appropriate

that the laws themselves seem beholden to Lehman’s first law. That is, as researchers, we must seek

to continually adapt Lehman’s Laws over time or they will be seen as progressively less useful. This

ongoing challenge is a key part of Manny Lehman’s legacy.
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