
Int J Software Informatics, Volume 7, Issue 3 (2013), pp. 469–481 Tel: +86-10-62661040

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2013 by ISCAS. All rights reserved. Email: ijsi@iscas.ac.cn, ijsi2007@gmail.com

An Empirical Study of Lehman’s Law on Software

Quality Evolution

Liguo Yu1 and Alok Mishra2

1 (Computer Science and Informatics, Indiana University South Bend, South Bend, IN, USA)
2 (Department of Computer & Software Engineering, Atilim University, Incek, Ankara, Turkey)

Abstract Software systems must change to adapt to new functional requirements and

nonfunctional requirements. According to Lehman’s laws of software evolution, on the one

side, the size and the complexity of a software system will continually increase in its life

time; on the other side, the quality of a software system will decrease unless it is rigorously

maintained and adapted. Lehman’s laws of software evolution, especially of those on software

size and complexity, have been widely validated. However, there are few empirical studies of

Lehman’s law on software quality evolution, despite the fact that quality is one of the most

important measurements of a software product. This paper defines a metric—accumulated

defect density—to measure the quality of evolving software systems. We mine the bug reports

and measure the size and complexity growth of four evolution lines of Apache Tomcat and

Apache Ant projects. Based on these studies, Lehman’s law on software quality evolution is

examined and evaluated.

Key words: software evolution; software quality evolution; Lehman’s laws of software

evolution; mining bug reports; empirical study

Yu L, Mishra A. An empirical study of Lehman’s law on software quality evolution.

Int J Software Informatics, Vol.7, No.3 (2013): 469–481. http://www.ijsi.org/1673-7288/

7/i152.htm

1 Introduction

Software systems must continually evolve to adapt to new requirements or new
environments. In their series studies, Lehman et al. presented eight laws of software
evolution[1–7]. Three of them are related with the evolution of the complexity/size
and quality of a software system, which can be summarized as follows: the
functional capability of a software system must be continually enhanced to maintain
user satisfaction; and as a result (1) both the system’s size and complexity will be
increasing with time; (2) the system’s quality will be declining with time unless the
system is rigorously monitored and adapted to these changes.

Lehman’s laws of software evolution have been examined and validated in many
systems and many applications. For example, Israeli and Feitelson studied 810
versions of the Linux kernel and characterized the system’s evolution patterns[8].
They investigated different possible interpretations of Lehman’s laws, as reflected by
different metrics. Barry and Kemerer presented an empirical study of commercial
software applications to test and understand how software evolves over time[9].

Corresponding author: Liguo Yu, Email: ligyu@iusb.edu

Received 2011-12-09; Revised 2013-04-09; Accepted 2013-04-22.



470 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

Their results support most of the Lehman’s laws of software evolution. Herraiz et al.
studied the evolution of a large sample of programs, where they found the evolution
patterns in both the number of lines of code and the number of files are same, and
some patterns do not conform to Lehman’s laws of invariant growth rate of software
systems[10]. Godfrey and Tu studied the evolution of open source software systems
and found that several open-source software systems appear not to obey some of
Lehman’s laws of software evolution, and that Linux in particular is continuing to
grow at a geometric rate[11,12]. Similar results are also reported by other studies to
indicate some open-source systems grow at a super-linear rate[13,14]. Simmons et al.
presented a case study of Nethack, an open source game product[15]. Their results
demonstrated that the evolution patterns observed in Nethack do not consistently
conform to Lehman’s laws of size and complexity growth.

Quality is undoubtedly one of the most important measurements of a software
product. However, little research has been done to empirically study the evolution of
software quality, especially the continually evolving and frequently releasing software
systems. The only studies we could find are performed by Eick et al.[16] and Lee et
al.[17]. In Eick et al.’s study, they defined the concept of code decay (code quality
decreasing) and found that in general software maintenance becomes more time and
effort consuming, which is the evidence of code decay. In a more recent study, Lee et al.
investigated the evolution of JFreeChart, an open source software system. They used
fan-in coupling and fan-out coupling to measure software quality and found added
class group has higher fan-in coupling and lower fan-out coupling than removed class
group, which indicates software quality is increasing with time. They concluded their
observation is against Lehman’s law of quality evolution.

Despite the fact that Lehman’s laws of software evolution have been widely
accepted and become the basic knowledge of software engineers, there has been no
systematic work to validate its law on software quality evolution. The objective of
this study is to re-examine Lehman’s law on software quality evolution on two
different open-source software systems using different quality metrics. To achieve
this goal, a series of studies have been performed to determine the accurate software
quality measurement[18]. In this paper, we first define a generic quality metric for
continually evolving and frequently releasing software systems. We then mine the
bug reports and measure the size and complexity of four evolution lines of
open-source Apache Tomcat and Apache Ant projects. Finally, Lehman’s law on
software quality evolution is examined and evaluated.

The remaining of the paper is organized as follows. Section 2 describes the
background knowledge of this study. Section 3 presents the generic software quality
metric—accumulated defect density. Section 4 describes the data source and data
mining process. Section 5 presents the results and the analysis of the case studies.
Conclusions are in Section 6.

2 Background

Lehman’s laws of software evolution state that software systems must
continually grow. This is represented as the regular addition of new features, which
can satisfy either new functional requirements or new nonfunctional requirements.
In open-source software systems, this phenomenon is represented as the frequent



Liguo Yu, et al.: An empirical study of Lehman’s law on ... 471

release of new versions of one product. Each release results in the increase of system
size and complexity. As has been stated by Lehman and widely observed by others,
in the software evolution process, both the complexity and the size of the product
will increase with time. However, the quality change of a software product is
unknown, or at least not conclusive. Lehman’s law No 7 states “Unless rigorously
adapted and evolved to take into account changes in the operational environment, the
quality of an E-type system will appear to be declining”[3]. If this statement is
carefully examined, it can be seen that the software quality decreasing with time is
under certain circumstance, i.e., the software product is not rigorously adapted to
changes. However, in real world software systems, adapting to changes is almost
always the first priority in software maintenance. We do not know whether the
quality of a software product will decline or improve even if adaption to changes is
performed.

On the other hand, there are so many different definitions and metrics of
software quality, i.e., software quality could mean many different aspects of a
software product. For example, structure quality could be measured with couplings
and cohesions between software components; code quality could be measured with
readability and reusability; nonfunctional quality could be measured with its
reliability, efficiency, security, and maintainability, and so on. Therefore, the major
obstacle to universally validating Lehman’s law on software quality evolution is the
lack of a generic definition and measurement of software quality.

It is interesting to notice that Lehman did not specify what kind of software
quality his law is applicable to, which could be the reason why Lehman’s law on
software quality evolution has not been widely validated yet. Therefore, a generic
software quality measurement across domains and applications should be defined first
in order to broadly validate Lehman’s laws of software quality evolution.

3 A Generic Software Quality Metric

As described before, there are many different ways to defining software quality.
For example, readability, reusability and maintainability are measures of design
quality; usability and portability are measures of user satisfaction; and reliability
and security are measures of software performance. In this paper, software quality is
measured with the number of bugs detected/reported in a software product.
Software bugs have been long considered the most important issue in software
quality. Quality metrics based on the measurement of software bugs are universal
and generic, because they are measurable in and applicable to all software products,
independent of domains, applications, architectures, and implementations. In
contrast, quality measurements based on design, user satisfaction, maintenance, or
performance are dependent on specific products and the availability of specific
documents.

To measure the evolution of software quality is to measure the quality changes of
evolving software products. Continually evolving software systems, especially open-
source software systems, are frequently changed and released. On the one side, a
change could fix a bug or add a new feature to the system. On the other side,
a change might introduce new bugs to the system. Consider a software evolution
branch with six releases as shown in Fig. 1, where bugs are reported to each of the



472 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

six versions.
First, we use the number of bugs (bug reports) to represent the product quality

of each release and give the following definition.
Definition 1. For a continually evolving software product that has released n versions
(v1, v2, . . . , vn), where each new release is based on its previous release, the product
quality of version v i (16 i 6n) can be measured with the number of bugs reported to
version v i.

Based on Definition 1, the quality measures of Versions V1 through V6 of the
product in Fig. 1 are 2, 1, 1, 3, 4, and 2, respectively. Definition 1 is based on two
assumptions: (1) all the bugs reported in current version Vi are introduced during
the modification to its previous version Vi−1; (2) all the bugs introduced in modifying
current version Vi will be detected, reported, and fixed in next release Vi+1. In other
words, we need to assume that most bugs can only live for one version and will not
be carried for two or more versions. These two assumptions are unrealistic for most
software products and accordingly, the number of bugs or bug reports cannot be used
to represent the quality of a specific software version. This observation has been
reported in our previous study[18].

Figure 1. Number of bugs reported to each release of a software system

Next, we consider using the total number of bugs (bug reports) to represent the
product quality of each release and give the following definition.
Definition 2. For a continually evolving software product that has released n versions
(v1, v2, . . . , vn), where each new release is based on its previous release, the product
quality of version v i (16 i 6n) can be measured with the accumulated number of bugs
reported to versions v1 through v i.

Based on Definition 2, the quality measures of Versions V1 through V6 of the
product shown in Fig. 1 are 2, 3, 4, 7, 11, and 13, respectively. The basic idea under
Definition 2 is that each version (say Vi) of a software product has a development
history starting from the same origin, i.e., the beginning development of first version
V1. All the previous releases (V1 through Vi−1) are considered preliminary releases
of Vi. All the bugs reported so far are used to improve the quality of the current
version Vi. In other words, according to Definition 2, when we examine the quality
of one specific version, we collect all the bugs reported since the beginning and ignore
all the previous releases, because they are considered premature versions of current
release.



Liguo Yu, et al.: An empirical study of Lehman’s law on ... 473

However, Definition 2 also suffers two drawbacks: (1) software quality always
decreases with time as bugs will be continually detected and reported; and (2)
product size or product complexity, which are important factors of software quality,
are ignored in the definition; two products with the same number of bugs but
different size/complexity should certainly be considered having different qualities.

To overcome these two drawbacks of Definition 2, product size and complexity
factor are incorporated in this study. Conventionally, software quality has been
measured with the number of faults per thousand lines of code. We adapt this idea
and make the following definition.

Definition 3. For a continually evolving software product that has released n
versions (v1, v2, . . . , vn), where each new release is based on its previous release,
the accumulated defect density of version v i (16 i 6n) is the accumulated number of
bugs reported to versions v1 through v i divided by the size or complexity of the
product.

The basic idea of Definition 3 is the incorporation of the growth of product size
and complexity with the growth of number of detected bugs in order to measure
software quality. In other words, Lehman’s laws on software size and complexity
evolution are combined with the law on quality evolution. In this paper, we will use
accumulated defect density (ADD) to measure the quality of an evolving software
product. A lower value of accumulated defect density (ADD) indicates a higher
quality; a higher value of accumulated defect density (ADD) indicates a lower
quality.

It is worth noting (1) in Definition 3, size and complexity of the product could be
any measures, such as number of lines of code, fan-in, fan-out, number of functions,
number classes, and so on; and (2) Definition 3 provides a generic measurement of
software quality for continually evolving and frequently releasing software products.

4 Data Source and Data Mining Process

In this study, two open-source products are analyzed. They are Apache Tomcat
and Apache Ant. The source code of these products is downloaded from their source
code repositories[19]. The bug reports are mined from their Bugzilla web sites[20].

Software version system is a tree structure. There could be a trunk and zero or
more branches. A trunk or a branch represents one line of evolution. In this study,
it is called an evolution line. Four evolution lines are studied in this paper. They
are Tomcat branch 5.5, Tomcat branch 6.0, Tomcat trunk, and Ant trunk, which are
illustrated in Fig. 2. Because Apache Ant only has one branch of evolution (Fig.
2b), it is also a trunk. Table 1 describes the release information of these four lines of
product evolution. It should be noted that only the releases with bug reports data
are included in this study. Early releases without bug reports, such as Tomcat 3.0
are not included in this study.



474 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

Figure 2. The four evolution lines studied in this paper

Table 1 Descriptions of the four evolution lines studied in this paper

Evolution line Number of releases First release (date) Latest release (date)

Tomcat branch 5.5 27 5.5.0 (8/31/2004) 5.5.31 (9/16/2010)

Tomcat branch 6.0 18 6.0.0 (10/21/2006) 6.0.29 (7/22/2010)

Tomcat trunk 9 3.1 (4/18/2000) 7.0.0 (6/29/2010)

Ant trunk 20 1.1 (7/19/2000) 1.8.1 (5/7/2010)

In measuring the size and the complexity of each product, CASE tool LocMetric
is used[21]. Because both the two products are written in Java, only “.java” files
are considered as the source code files. Three measurements of each version of four
evolution lines are recorded. They are physical lines of code, which includes comment
lines but no blank lines; logical lines of code, which only includes statement lines; and
McCabe Cyclomatic complexity.

In mining bug reports, only confirmed and fixed bug reports are mined.
Unconfirmed and duplicated bug reports are not included. The bugs reported to
each release are collected since the release date of that version until September 29,
2010.

5 Analysis and Results

Figure 3 through Fig. 6 illustrate the growth of the size and complexity of
Tomcat branch 5.5, Tomcat branch 6.0, Tomcat trunk, and Ant trunk, respectively.
It can be seen that all these four lines of evolution obey Lehman’s law Number 6
(continuing growth) and Number 2 (increasing complexity). More specifically, we
can see (1) both the physical line of code (LOC) and the logical line of code (LOC)
are increasing with time, which indicates that the size of the products is growing
during the software evolution process; (2) the McCabe Cyclomatic measurement is
also increasing with time, which indicates the increasing of system complexity during
the software evolution process.



Liguo Yu, et al.: An empirical study of Lehman’s law on ... 475

(a) (b)

Figure 3. The growth of (a) size and (b) complexity of Tomcat branch 5.5

(a) (b)

Figure 4. The growth of (a) size and (b) complexity of Tomcat branch 6.0

(a) (b)

Figure 5. The growth of (a) size and (b) complexity of entire Tomcat trunk

(a) (b)

Figure 6. The growth of (a) size and (b) complexity of entire Ant trunk



476 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

The size and complexity of a product can be represented as physical line of
code, logical lines of code, or McCabe Cyclomatic Complexity. To determine if these
measurements are equally in calculating defect density, Spearman’s correlation tests
are performed on these three measurements. The results are listed in Table 2. It can
be seen that for all 12 tests in four evolution lines, the correlation coefficients are near
1 and at the 0.001 significance level, which means physical lines of code, logical lines
of code, and McCabe Cyclomatic Complexity have nearly perfect positive relations.
Therefore, the evolution of any of these three metrics can represent the evolution of
the other two metrics. In the following analysis, we will use physical line of code to
represent product size and McCabe Cyclomatic Measurement to represent product
complexity.

Figure 7 shows the number of bug reports mined from each version of these two
branches and two trunks. It can be seen that the distribution of number of bugs
are irregular in each version. It should be noted that the number of bugs reported
for each version of a product does not represent the quality of that version of the
product, as briefly discussed in Section 3. To recapitulate: (1) each version is based
on a previous release and some of these bugs have been removed; (2) the bug reported
in one version might be introduced in previous releases and has no relation with the
work done in current version[18]. Therefore, we need to use accumulated bugs to study
the evolution of software quality.

(a) (b)

(c) (d)

Figure 7. The number of bugs reported in each version of (a) Tomcat branch 5.5; (b)

Tomcat branch 6.0; (c) Tomcat trunk; and (d) Ant trunk



Liguo Yu, et al.: An empirical study of Lehman’s law on ... 477

Table 2 Spearman’s correlation coefficients (All correlations are significant at

the 0.001) level

Tomcat 5.0 Tomcat 6.0 Tomcat trunk Ant trunk

Physical LOC & Logical LOC 1.000 1.000 1.000 1.000

Physical LOC & Complexity 0.999 1.000 0.997 0.999

Logical LOC & Complexity 0.999 0.997 0.998 0.999

Figure 7 also shows a similar pattern of the number of bugs (bug reports) of
each release: fewer bugs are reported for the first several releases; the number of bug
reports gradually increases with new releases; it then decreases for the most recent
releases. Based on previous study[18], this pattern is not only related to version
quality. Instead, it is also related to the popularity of the product: the more users a
product has, the more bugs it could be reported.

The accumulated number of bugs of a continually releasing software product
will increase with no doubt. But, the slope of the increase might be different
between systems and between branches of the same system. Figure 8 shows the
growth of accumulated number of bugs in these two branches and two trunks. It can
be seen that the growth slope of Ant trunk are lower than other three evolution
lines, which indicates the quality of Ant truck might be improving. To further
validate this speculation, we need to study their evolution of accumulated defect
density (ADD), which is a generic and more accurate indicator of product quality.

(a) (b)

(c) (d)

Figure 8. The accumulated number of bugs reported in each version of (a) Tomcat branch

5.5; (b) Tomcat branch 6.0; (c) Tomcat trunk; and (d) Ant trunk



478 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

Figure 9 shows the evolution of accumulated defect density based on product size
(accumulated number of bugs divided by thousand physical lines of code) of the two
branches of Tomcat and two trunks of Tomcat and Ant. Figure 10 shows the evolution
of accumulated defect density based on product complexity (accumulated number of
bugs divided by McCabe Cyclomatic Complexity) of the two branches of Tomcat
and two trunks of Tomcat and Ant. In all these four lines of evolution, generally
speaking, accumulated defect density (ADD) values increases with the release of new
versions, which means, the software qualities are generally in declining trend. These
observations support Lehman’s Law Number 7: the quality of a software product
decreases with time unless it is restructured.

In Fig. 9 and Fig. 10, we can also see some different behaviors. First, the
two branches (Fig. 9a, Fig. 9b, Fig. 10a, and Fig. 10b) have higher slopes of the
evolution of ADD values. Tomcat Version 5.5.0 and Version 6.6.0 are based on based
on previous branches, whose defects are not included in this study, because there is no
such long history data available. Second, the ADD values of the two trunks (Tomcat
and Ant) are approaching stable trend, which means their qualities are approaching
stabilized state and might begin to increase. For Ant trunk, we can even see some
indications of declining of ADD value, which means, its quality is improving in recent
releases. This behavior could be due to the system restructuring of Ant.

(a) (b)

(c) (d)

Figure 9. The evolution of accumulated defect densities based on product size of (a)

Tomcat branch 5.5; (b) Tomcat branch 6.0; (c) Tomcat trunk; and (d) Ant trunk



Liguo Yu, et al.: An empirical study of Lehman’s law on ... 479

(a) (b)

(c) (d)

Figure 10. The evolution of accumulated defect densities based on product complexity of

(a) Tomcat branch 5.5; (b) Tomcat branch 6.0; (c) Tomcat trunk; and (d) Ant trunk

Further examining Fig. 9 and Fig. 10, we can see they present similar
information: (1) The quality of a continually evolving software product tends to
decrease with the release of new versions; (2) As the bugs are reported and
corrected, the product’s quality becomes stable, which is the case of Tomcat; (3) If
restructuring is performed, the product quality could even be improved, which is
demonstrated by the latest releases of Ant.

Combining Fig. 7 through Fig. 10, we can also see the different behavior of
quality evolution of Tomcat and Ant: the quality of Ant is better managed than
Tomcat, at least for the recent releases (Version 1.51 to Version 1.80). Also, the
quality evolution of three lines of Tomcat is consistent, i.e. the branches have the
same behavior as trunk.

Although similar information is provided in Fig. 7 through Fig. 10, we can
see that Fig. 9 and Fig. 10 are more clear than Fig. 7 and Fig. 8 to illustrate
the evolution of product quality. That is the benefit of defining accumulated defect
density (ADD).

Based on the above observations and discussions, we can state that our study
supports Lehman’s law on software quality evolution: the quality of evolving software
products will be declining unless restructuring is performed. Specifically, we found
the quality of initial releases of a product tends to decrease and the quality could be
improved if restructuring is performed on later releases.

6 Conclusions



480 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

In this paper, we defined a generic software quality metric called accumulated
defect density for continually evolving software systems. Using this metric, we
validated Lehman’s law of software quality evolution. In particular, we mined the
bug history of two open-source systems, Apache Tomcat and Apache Ant and
studied the growth of size, complexity, and quality of two trunks and two branches
of these two software systems. Our results support Lehman’s laws of software
evolution, especially, Law Number 7—declining quality.

Because quality is such an important issue in software development, measuring
software quality is thereby an important task in any software project. We hope this
study can provide software engineers with a generic metric to measuring the quality
and monitor the evolution of continually evolving and frequently releasing products.

Acknowledgement

This study is supported in part by the Faculty Research Grant of Indiana
University South Bend.

References

[1] Lehman MM. Programs, life cycles, and laws of software evolution. Proc. of IEEE, 1980, 68(9):

1060–1076.

[2] Lehman MM. On understanding laws, evolution, and conservation in the large-program life

cycle. Journal of Systems and Software, 1980, 1(3): 213–221.

[3] Lehman MM. Laws of software evolution revisited. Proceedings of the 5th European Workshop

on Software Process Technology. Springer Verlag. 1996. 108–124.

[4] Lehman MM, Perry DE, Ramil JF. Implications of evolution metrics on software maintenance.

Proc. of the 14th International Conference on Software Maintenance. November 1998. 208–217.

[5] Lehman MM, Perry DE, Ramil JF. On evidence supporting the FEAST hypothesis and the

laws of software evolution. Proceedings of the 5th International Software Metrics Symposium,

November 1998. 84–88.

[6] Lehman MM, Ramil JF. The impact of feedback in the global software process. Journal of

Systems and Software, 1999, 46 (2–3): 123–134.

[7] Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM. Metrics and laws of software

evolution – the nineties view. Proceedings of the 4th International Software Metrics Symposium.

November 1997. 20–32.

[8] Israeli A, Feitelson DG. The Linux kernel as a case study in software evolution. Journal of

Systems and Software, 2010, 83(3): 485–501.

[9] Barry EJ, Kemerer CF, Slaughter SA. How software process automation affects software

evolution: a longitudinal empirical analysis. Journal of Software Maintenance and Evolution:

Research and Practice, 2007, 19(1): 1–31.

[10] Herraiz I, Robles G, Gonzalez-Barahon JM. Comparison between SLOCs and number of files as

size metrics for software evolution analysis. Proc. of the Conference on Software Maintenance

and Reengineering. 2006. 206–213.

[11] Godfrey MW, Tu Q. Evolution in Open Source software: A case study. Proc. of the International

Conference on Software Maintenance. October 2000. 131–142.

[12] Godfrey M, Tu Q. Growth, evolution, and structural change in open source software. Proc. of

the 4th International Workshop on Principles of Software Evolution. September 2001. 103–106.

[13] Robles G, Amor JJ, Gonzalez-Barahona JM, Herraiz I. Evolution and growth in large libre

software projects. Proc. of the 8th International Workshop on Principles of Software Evolution.

September 2005. 165–174.

[14] Succi G, Paulson J, Eberlein A. Preliminary results from an empirical study on the growth of

open source and commercial software products. Proc. of the 3rd International Workshop on



Liguo Yu, et al.: An empirical study of Lehman’s law on ... 481

Economics-Driven Software Engineering Research. May 2001.

[15] Simmons MM, Vercellone-Smith P, Laplante PA. Understanding open source software through

software archaeology: the case of Nethack. Proc. of the 30th Annual IEEE/NASA Software

Engineering Workshop. April 2006. 47–58.

[16] Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. Does code decay? assessing the evidence

from change management data. IEEE Transactions on Software Engineering, 2001, 27(1): 1–12.

[17] Lee Y, Yang J, Chang KH. Metrics and evolution in open source software. Proc. of the 7th

International Conference on Quality Software. October 2007. 191–197.

[18] Yu L, Ramaswamy S, Nair A. Using bug reports as a software quality measure. Proc. of the

16th International Conference on Information Quality. November 2011. 277–286.

[19] Apache Archive. http://archive.apache.org/dist.

[20] ASF Bugzilla. https://issues.apache.org/bugzilla/.

[21] LocMetrics. http://www.locmetrics.com/.


