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A Parallel Algorithm for the Efficient Solution
of a General Class of Recurrence Equations

PETER M. KOGGE AND HAROLD S. STONE

Abstract-An mnth-order recurrence problem is defined as the compu- rirst order, all linear mth-order recurrence equations can be cast into
tation of the series xI, x2, ** , XN, where xi =fh(x_j,. *. ',Xjim) for this form. Suitable applications indude linear recurrence equations,
some function f1. This paper uses a technique called recursive doubling polynomial evaluation, several nonlinear problems, the determination
in an algorithm for solving a large class of recurrence problems on paral- of the maximum or minimum of N numbers, and the solution of tri-
lel computers such as the lIliac IV. diagonal linear equations. The resulting algorithm computes the entire
Recursive doubling involves the splitting of the computation of a series x1, * * *, XN in time proportional to [log2 NJ on a computer with

function into two equally complex subfunctions whose evaluation can N-fold parallelism. On a serial computer, computation time is propor-
be performed simultaneously in two separate processors. Successive tional to N.
splitting of each of these subfunctions spreads the computation over
more processors. Index Terms-Parallel algorithms, parallel computation, recurrence
This algorithm can be appled to any recurrence equation of the form problems, recursive doubling.

xi = f(b1, g(a1, xi-, )) where f and g are functions that satisfy certain
distributive and associative4ike properties. Although this recurrence is
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x1 = B1 Assumption 3: Each processor has a distinct index by which

X2= A2 X1 + B2 it is referenced.

x3= A3 x2 + B3 Assumption 4: All processors obtain their instructions simul-
taneously from a single instruction stream. Thus all processors
execute the same instruction, but they operate on data stored
in their own memories.
Assumption 5: Any processor may be "blocked" or"masked" from performing some instruction. This mask may

be set by an explicit instruction directed to that processor via
its index, or by the result of some test instruction such as "set
mask if accumulator = O."

XN= ANXN-1 + BN (1) Assumption 6: Elementary arithmetic operations have two

where Ai and Bi represent the internal dynamics of the system. P
It is assumed throughout this paper that the numberjof pro-

Ai and Bi can be real or complex numbers, constant or time-' ~~~~cessors p iS greater than N, the maximum number of elements
varying matrices, etc., depending on the problem. to be computed. In reality when p is less than N, this algo-
The equation used to compute xi is called a recurrence equa- rithm can be used [Nip] times to calculate p elements of the

tion and, together with some initial values for some of the xi, series at a time.
represents a complete problem description. Formally, a recur-
rence problem consists of a set of recurrence equations: II. GENERAL FIRST-ORDER RECURRENCE EQUATION

xi =f1(x-1,, ,xi-m), i=m + 1 ,N (2) A. Example
In this section we develop a parallel solution to a simple

and some boundary values, which may consist of the following. first-order recurrence problem. The solution is a special case
of the general algorithm, but its development is not obscured

1) x1, x, Xm. This is an initial value problem. by the notation needed to describe the general algorithm.
2) XNm+l, * * *, XN. This is a final value problem. Given xl = b1, find X2,... , XN, where
3) A mixture of m initial and final values.

xi= aixi-I +bi. (3)
This paper discusses an algorithm for solving a particular

class of initial value recurrence problems on parallel computing Befiors.
systems such as the Illiac IV. This class of problems includes Definition.
the computation of the sequence x1, * * *, xN when the expres-
sionforxiisalinear recurrence equation of the form of (l), the m m
calculation of the maximum or minimum of N numbers, the A E / 4
evaluation of Nth-degree polynomials, and several nonlinear j=n ir=j+l /
problems. Such problems as these can be solved in a very
straightforward manner on serial processors in time propor- where the vacuous product (Hrm+i ar) is given the value 1.
tional to N. Some have also been solved on parallel computers Stone [4] first used this notation in the derivation of this
with special-purpose algorithms tailored to those problems, algorithm. The basic algorithm involves a concept called re-
e.g., polynomial evaluation (Munro and Paterson [3]). With a cursive doubling, which consists of breaking the calculation of
computer having N-fold parallelism, the algorithm in this paper one term into two equally complex subterms.
solves all these problems and others in time proportional to Now we can write the solution to (3) as follows:
[log2 N!1.A

Xi = b1 = Q(, l)
B. Computer Model X2 =a2xl + b2 = a2 b + b2 = Q(2, 1)
The algorithm to be described in this paper is designed for a X3 = a3X2 + b3 = a3a2 b1 + a3 b2 + b3 = Q(3, 1)

computer of the Illiac IV class. The major assumptions about
the computer's architecture are as follows.
Assumption]: There are p identical processors, each able to

execute the usual arithmetic and logical operations, and each xi = aixi l + bi = Q(i, 1)
with its own memory.
Assumption 2: Each processor can communicate with every

other processor. The exact method of data exchange between
processors can affect the algorithm's computational complex- XN = aNxN.l + bN = Q(N, 1). (4)
ity and will be discussed in a future report.

We can also write this solution as
1 [x] is the ceiling function and represents the smallest integer not A

smaller than x. Q(l, 1 ) = x1 = b1
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Q(2,1)=x2 =a2x1 +b2 =a2Q(1,1)+Q(2,2) T3 =,1) A A

Q(4, 1)-x4 a4X3 + b4 Q(8,5) Q(4,1)=x4
-a4a3x2 +a4b3 + b4 T 8a07Q(6,5)+0(8,7) o43 0(2,1)+Q(4,3)

-a4a3(a2 b, + b2) + (a4 b3 + b4)

-a4a3Q(2, 1) + Q(4, 3) AA(87) A A(43) X 2,1)x2
* T=lZ =a8~~~~~~~~~~~~~Q(8,7)=aQ(6,5) =aQ(4.3) =(2Q(,1)xT I ~o as(7,7) 06 Q-7, 040Q(3,3) -020(1, 1)

Q+(8,8) +8(6,6) Q+(4,4) +8(2,2)

In general

A2 i b8 b7 b6 b5 b4 b3 b2 b,
Q(2i, 1) = x2 n a Q(i, 1) + Q(2i, i + 1). (5) Q(8,8) Q(7,7) Q(6,6) 0(5,5) 0(4,4) 0(3,3) 0(2,2) 0(1,1)

\r=i+l / Fig. I. Parallel computation of x8 in the sequence xi =aixi- + bi.

Equation (5) gives us our recursive doubling. Both Q(i, 1)
and Q(2i, i + 1) are identical in structure since they both re- X8=(83a706o&)'(04o3o2a)
quire the same number and sequence of multiplications and
additions. Also, each of these terms involves i a's and i b's,
exactly one-half the number of a's and b's used in Q(2i, 1).
Thus if at the kth step we want to compute x2i, then at the
k - 1st step we should have one processor compute Q(i, 1) T=2 (0807)'(0605) (O4o3)'(0201)-x4
and another compute Q(2i, i + 1). We then continue this split-
ting operation recursively. The resulting computation graph
for the case N = 8 is given in Fig. 1.
Note that when we compute A(2i, 1) from the two equally T 0I 8.07 06'05 04.03320X2

complex subterms (i, 1) and Q(2i, i + 1), we also need the
additional product (H2 +1 ar). This is not a serious hindrance
since we can compute the products using the scheme shown in
Fig. 2. We see that in all cases the correction products needed T-0' ,
at one level of the tree in Fig. 1 are always available just after 08 07 06 05 04 a3 02 01a-X
the previous level in Fig. 2. Figs. 1 and 2 show the computa- Fig. 2. Parallel computation of xg = ni= a1.
tion of Q(8, 1). However, it is straightforward to extend the
computation to eight processors, and compute Q(i, 1) for 1 . Restriction 2: g distributes over f. g(x, f(y, z)) f(g(x, y),
i S 8 in parallel. The algorithm solves (3) in a time propor- g(x, z)).
tional to [log2 Ni.
An example of the complete solution of (3) for the case Restriction 3: g is semiassociative, that is, there exists some

N = 8 is given in detail in Table I. function h such that g(x, g(y, z)) = g(h (x, y), z).
The previous restrictions on f and g are the only ones neces-

B. A General Class ofFirst-Order Recurrence Equations sary to prove the correctness of the general parallel algorithm.
In this section we define a general class of first-order recur- However, these restrictions may also limit the domains from

which a and bi and the variables xi can be chosen. For mostrence equations for which we develop a parallel algorithm. hral andtbmeand thevatriales x ca be sen. Forlmo
The limitation to first-order equations is not as restrictive as it n or rithmtic operatios like + for r,eiisno poble
might first appear, since it is often the case that we can very butimore extic operain uhe asflo ceiling odu
easily reformulate a more general mth-order problem as a first- dsion,betc.,cma cora t p sl i n
order problem. Section III-B describes such a reformulation. should be checked carefully.
Thdergneap arallm.Setionalgor developed i Section. The semiassociative property of g forces h to behave as if itThe general narallel Algorithrn cleveloned in Section II-C

solves all recurrence equations that can be placed in the follow- were associative. In particular, we have
ing form: g(h(h(a, b), c), d) =g(h(a, b),g(c, d))

xl1 b 1 =g(a,g(b, g(c, d)))

where bi and ai are arbitrary constants and f and g are index- = g(h (a, h (b, c)), d).
independent functions that satisfy the following restrictions. Hence, iterated compositions of h when used as the first
Restriction 1: f is associative. f(x,f(y, z)) =f(f(x,y), z). argument of the function g can be evaluated as if h were as-
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TABLE I

T=O T= 1 T= 2 T=3
Processor A(i) B(i) A(i) B(i) A(i) B(i) A(i) B(i)

1 ** b, =X1 =Q(1, 1) ** X1 =Q(1, 1) ** X1 =Q(1, 1) ** X

2 a2 b2 = Q(2, 2) a2 a2x1 + b2 =x2= Q(2, 1) a2 X2 = Q(2, 1) a2 X2
3 a3 b3 = Q(3, 3) a3a2 a3b2 + b3= Q(3, 2) a3a2 (a3a2)Xl + (a3b2 + b3) = X3=Q(3, 1) a3a2 X3
4 a4 b4 = Q(4, 4) a4a3 a4b3 + b4 = Q(4, 3) a4a3a2 (a4a3)X2 + (a4b3 + b4) = X4 = Q(4, 1) a4a3a2 X4

a5 a4(a3 b2 + b3) + a5 b4 + b5 = Q (5, 2)

5 a5 b5 =Q(5, 5) a5a4 a5b4 + b5 = Q(5, 4) a5a4a3a2 a(b al Xs
w=2 m=w+i M=2

6 a6 b6 = Q(6, 6) a6a5 a6b5 +b = Q(6,5) a6a5a4a3 Z ( H am b= Q(6, 3) H a; X6
W=3 m=w+1 m=2

7 a7 b7 = Q(7, 7) a7a6 a7b6 + = Q(7, 6) a7a6a5a4 E (fn am)bw=Q(7 4) fT at X7

8 as b8 = Q(8, 8) a8a7 a8b7 + b8 =Q(8, 7) a8a7a6a5 ambw= Q(, 5) ii at X8
w-s m=w+l M=2

* Not really needed to compute X1, ,X.
** Arbitrary.

sociative without altering the output value of g. In all interest- are scalar multiplication, then the Q(m, n) defined previously
ing practical problems discovered thus far, the function h is is exactly the same as the Q(m, n) defined for the example in
associative. Section II-A.

The similarities between Q and Q carry even further. The
C. Parallel Algorithm function Q(i, 1) is the solution of the general recurrence equa-
The principle of recursive doubling can be applied in a tion (6), that is,

natural way to any recurrence equation that satisfies the re-
Xi

= Q(i, 1, V 1
< i N. (7)

strictions of Section II-B. In fact, the resulting general algo-
rithm bears a very strong resemblance to the example of Sec- Also, as in the example, we can derive a formula computing
tion II-A. Before giving the algorithm, however, we first give Q(2i, 1) strictly in terms of two equally complex subterms,
two definitions. namely,
Definition: For any function q of two arguments define the Q(2i, 1) f(Q(2i, i + 1), g(h Q(i, 1))). (8)

generalized composition of q as qg=) (a1), where Q(2i,I'

q(n) (aB)= a for n > I Both (7) and a more general version of (8) are proved in the
q1J=n ) an, fonlAppendix.
q5r,) (a1) = q=(aq(nm) (a)), for m > n=' 1 . Equation (8) is a perfect candidate for recursive doubling.

= q(am, q(am-1 , q(an+2, q (an+l, an))... Q(2i, i + 1) and Q(i, 1) are identical in terms of the number of
unique a's and b's referenced and require the same sequence of

If we let q(a, b) = a + b (scalar addition), then f, g, and h function calls to evaluate them. As with the second

q(m) (a) = (a + (am + + (an+2 + (an+1 + an)) .) example, the only hindrance in implementing (8) directly as a
qj=n 1 m m-l n+2 nal n recursive doubling algorithm is the correction term, the h com-

m position. However, since h can be treated as an associative
= £ a1 function, we can use a scheme similar to Fig. 2 to compute

l =n
these correction terms exactly as they are needed.

Likewise, if q (a, b) = a b (scalar multiplication), then Fig. 3 is a computation graph using (8) and the h composi-
m tion algorithm to compute x8. Despite its increased com-

q(mn) (aj) = [l a1. plexity, the general structure of this graph is identical to Figs.
j=n ~~~~~~1and 2 and can be extended to solve for all elements of the

Definition: Define Q(m, n) as sequence x1,.. , Xy in parallel.

.,n)=(m) rzh(m.)I a)b] E We can now state the complete algorithm for solving our
Q(,)-j ( I9=+1 (a) b ') general recurrence equations. The detailed proof of the cor-

where we define rectness of this algorithm is given in the Appendix.
g(J4m) + (ar),bj)=b,. Algorithm A-Genleral Algorithm: This algorithm solves for

'~~ ~ ~~~~~ X,X2, * * *,XN where xi = f(b1, g(aj, X 1)) and f and g satisfy
If we consider the case where / is scalar addition, and g and h the restrictions of Section lI-B.
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Q(8,1) =Xs number of available processors is greater than about 3N/2, an-
T=3> -f[Q(85)g9(h(8)(o.)Q0(4I1)] other method can avoid these extra instructions. The N pro-

\
=5

cessors with the highest indices are allocated to the solving of
Xl , XN, and the next N/2 processors are initialized so that
when one of the top N processors references their data, the

7=2 f[Q(8,7),g(h(ao87),Q(6,5))] =f [Q(4,3),g(h(a403),Q(2, ))] values returned cause no change in the higher processor's
values for A(i) and B(i). These bottom N/2 processors are
completely masked off initially so that these initial values

Q(8,7) Q(6,5) Q(4,3) Q(2,1) never change. These initial values are
IQ1f[(8,8)0 fQ66)i[(,) =f[Q(2,2), A(i) =I, for -N/2 . i .< 1

uge,Q(7,7))] g(a60(5,5))] g(o4,Q(3,3))] g(o2,Q(I,I))]=x1 B(i) = Z, for -N/2 . i . 0

where for all a and b, h (a, I) =a and f(b, g(a, Z)) b. For the
T=bO b b b b4 b b b, example of Section II-A, I is simply 1, and Z is 0.b, b7 b6 b5 b4 b3 b2 b, xi
Q(8,8) Q(7,7) Q(6,6) Q(5,5) 0(4,4) Q(3,3) Q(22) Q(1,1)=xl LI. APPLICATIONS

Fig. 3. Parallel computation ofx8 from the general recurrence equation.
A. Various First-Order Problems
As has been mentioned before, Algorithm A is applicable to

The algorithm requires two vectors A and B of N elements a rather wide class of problems. Table II gives a collection of
The ith component of each vector, namely A(i) and B(i), is such problems that satisfy the functional constraints stated in
stored in the memory of processor (i). The actual data struc- earlier sections.
ture required to represent A(i) and B(i) depends on the defini- An interesting case occurs when we constrain all the as of
tion of the domain of the entities as and bi in the basic equa- Example 1 in Table II to be the same number z as indicated in
tion (8) and may be scalars, matrices, lists, etc., depending on Example 5 in Table II. We then get the recursion
the problem.
Let A(k)(i) and B(k)(i) represent respectively, the contents Xi=zxi 1 +b

of A(i) and B(i) after the kth step of the following algorithm, which, if we solve for XN, yields
Initialization Step (k = 0J.N-i +'+

B(0)(i)=bifor 1 .i <N. XN = b1z + b2ZN2 + +bN-tz+bN
A(O)(i)=ai for 1 <i.N. But this is simply the evaluation of the polynomial
A(l) is never referenced and may be initialized arbitrarily. blxNl +- + bN at x = z. In fact, Algorithm A in this case

is simply the parallel evaluation of polynomials (Munro and
Recursion Steps: For k = 1, 2, rlog2 N] do each of the Paterson [3])

following assignment statements:

B(k) (i) = f(B(k-) (i), g(A(k-1) (i), B (k-1) (i - 2k-,))) B. Extension to mth-Order Equations

for 2k- 1 < i <N. (9) The algorithm given in the previous sections is applicable to
a class of first-order recurrence equations. However, a little

A(k) (i) = h(A(kl) (i),A(k) (i - 2k1)) manipulation of the description of a problem can often con-
for 2k-i + 1 <iA N. (10) vert an mth-order recurrence equation into a first-order equa-

dto be evaluated simultaneously tion with a slightly more complicated data structure. TheEach statement is assumed clu to howuteths smon cn e oudinthotirueamlei
by all processors whose indices lie in the specified interval. clue to how this is done can be found in the third example in
After the [log2 Nth] step, B(i) contains xi for 1 < i < N. Table II, a matrix or "state variable" problem.
End ofAlgorithm A. As an example, consider the problem
Several things should be noted about any implementation xi = ai,1 xi-1 + +ai,mxi-m + bi. (1 1)

of Algorithm A. First, when the ith processor executes (9) and
(10) in that order, it must have the old values of B(i - 2k-1 We wish to reformulate it in a form amenable to Algorithm A.

2k-i can be obtained from The first step is to see that we can collapse the m x's that are
and A(i-2k,), which can only be obtained from processor -. ...an ,A(

T atwhi only pkrsioses needed in (11) into a single new "variable" by using state varn-(i - 2k1i-' ). Thus at the beginning of the kth recursion step, all able n as fllows.
processors must shift their values ofA and B to the processors Let
with index 2k-1 greater than their own. Exactly how this data
routing is performed depends on the processor interconnection x
pattern available in a given computer system.
Another problem with implementing Algorithm A lies in Z= . .(12)

limiting the processors that execute (9) and (10) to just those.
with the proper indices. The masking feature (Section I-B) is -+
the most direct way. This, however, requires executing ex-
plicit mask instructions during each recurrence step. If the Now we can rewrite (11) as
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TABLE II
APPLICATIONS OF ALGORITHM A

Example Domain of b Domain of a Domain of x f(a, b) g(a, b) h (a, b) Comments

1) realnumbers a + b a * b a * b xi+, bi I +ai+Ixi
2) real numbers a b b t a a b xi+, =bi+ (xit ai+1), "t"is exponentiation
3) m X 1 matrix m X m matrix m X 1 matrix vector mult. of matrix matrix xi+, = Bi+I + Ai+xi where A is m X m and

addition by vector mult. x,B are m X 1
4) real numbers b min (a, b) min (a, b) xi is the smallest of a1, ai.,
5) real numbers b max (a, b) max (a, b) xi is the largest of a,, *, ai
6) real number any real real number a + b a * b a * b xi = xi-, * z + bi, polynomial evaluation

number z XN = P(Z) = b, ZN-I + b2ZN-2 + . . +

bN.1 z + bN

bi ~~~~~~~X(k+l)m
xi-1~~~~~~~~~~~~~~

[ i...am Xk+l ((k+l)m

zioI o o + (13)Xk+

o..o 1 oj L jkm+i
(k+i)m A (k+i)m f(k+l)m A

Ak+l=( Aj) Bk+i = E f( Ai)Br. (16)
=AiZi-l +Bi (14) j=km+l r=km+l j=r+l /

A A Now (15) becomes
where Ai and Bi are the m X m matrix and m X 1 vector re-
spectively. The first row ofAi represents the original ( 1) and Xk+l = Ak+lXk + Bk+l, k = I ,N/m (17)
the remaining rows simply select the proper xj to make Zi be which again is our familiar first-order linear matrix recurrence
consistent. equation.
Equation (14), however, is in exactly the right format for Now to compute all N elements of (11), we need only com-

Example 3 of Table IL to be applied. The variables in the re- pute N/m elements of the series XI, * Nl
, m using (17).

cursion are rn-element vectors, the Ai are m X m matrices, and Using Algorithm A we can compute these N/m elements with
the Bi are m-element vectors. The function f is vector addi- 1log2 N/ml applications of the recurrence step, plus some
tion, g is multiplication of a matrix by a vector, and h is initial time to compute the initial A's and B's given by (16).
matrix multiplication. Thus if we rewrite (11) into (14) we Further, since there are only N/m elements to compute, Algo-
can apply Algorithm A to get a parallel solution to the original rithm A also calls for only N/r processors.
problem (11). The important aspect of this reformulation is not that the
This particular formulation, however, is not very efficient in number of steps has been reduced, but that the number of

its use of the parallel processors. At the end of the calculation processors has dropped. Equation (17) takes log2 nml fewer
we have N m-element vectors Z1, * , ZN Only one mth of recurrence iterations to evaluate than does (14), but about
each Zi, namely its first component xi, represents new calcula- log2 ren additional iterations are required to set up (17) from
tions not available from previous Z's. Most of the matrix (14) with Naprocessors. Thus wae eqnotreduced the time to
calculations done in the recurrence steps are redundant. solve the problem, but we have reduced redundant computa-
We can increase the amount of parallelism in the problem by tions to the point where we nee only N/r processors after

propagating (14) forward m steps before using Algorithm A. the initial setup.
This results in a new formulation of the problem, which yields
Z(k+l)m =(X(k+l)m, .*,Xkm+l)' directly from Zkm = IV. SUMMARY AND CONCLUSION

(Xkm -. ,X(k-i)m+i)'. Various researchers have developed parallel algorithms for
It is easy to show by induction that Zkm+m can be com- specific problems, such as polynomial evaluation (Munro and

puted as follows: Paterson [3]), and the solution of tridiagonal systems of equa-
tions (Buneman [1], Buzbee et al. [2], and Stone [4]). As

/ km+m ^ km+m / km+m A A with Algorithm A, these algorithms typically require execu-
Zkm+m iH Il jL+m EI H A1) Br, tion times proportional to [log2 N]. None of them, however,

\j=km+l / r=km+l j=r+l I
is applicable to any wider class of problems than the particular

k=l1 ** ,N/rn- 1. (15) ones they were designed to solve. Algorithm A, on the other
hand, solves any problem for which the solution can be stated

This equation can be restated in a form directly usable by in terms of a recurrence equation satisfying a few simple re-
Algorithm A as follows. strictions. It is worthwhile mentioning that the running time
Let for Algorithm A can vary widely from problem to problem
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even though the time is always proportional to [log2 Ni. The End of proof.
constant of proportionality depends on the time it takes to We can now state a theorem that demonstrates the validity
evaluate f, g, and h. These functions can be as simple as a mag- of Algorithm A.
nitude comparison or floating-point addition and can be as Theorem 3: For all I 6 i 6 N, 0 6 k 6 [10g2 Ni,
complex as a matrix multiplication, with very large differences rh() (r), I < ki 2k +
in their respective constants of proportionality. a) A(k) (i) = r= r,

The power of Algorithm A comes from the generalization of ah(lDi2 k+I (ar), 2k + I <i6N
the technique of recursive doubling. This technique seems to Q(i, 1), I <i<2k
hold an important key to understanding exactly how parallel- b) B(k) (i) =
ism can be extracted from what appear to be highly serial 1Q(i i - 2" + 1), 2k <i6N.
problems. The major results of this paper indicate that the Proof: Directly by induction and Theorems 1 and 2. The
class of serially stated problems that are amenable to parallel proof of Theorem 3 is direct but tedious; we omit it here.
solutions is a large one, and includes some problems that have Using part b) of Theorem 3 we get the immediate result.
been thought to be poorly suited to parallel processors. Corollary: After the [log2 NIth iteration of Algorithm A,

APPENDIX B(i) contains xi for 1 6 i 6 N.

VALIDITY OF ALGORITHm A Thus we have shown that not only does Algorithm A com-
pute the solution x1,

* * *, XN to (6), but also that it termi-
This Appendix contains some basic theorems that establish nates in exactly [log2 NJ iterations.

the validity of Algorithm A. We assume we are solving equa-
tions of the form of (6), where the functions f, g, and h all ACKNOWLEDGMENT
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f(Q(i, i - + gh i(ar), Q(i - , i - k)))
that the h function need not be associative.
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A Fast Poisson Solver Amenable to Parallel
Computation

BILLY L. BUZBEE

Abstract-The matrix decomposition Poisson solver is developed for
the five-point difference approximation to Poisson's equation on a rec- Mk _
tangle. This algorithm's suitability for parallel computation, its sim-
plicity, its performance relative to successive overrelaxation, and its 2k
generality are then discussed.

Index Terms-Linear algebra, numerical solution of PDE's, Poisson
equation. h 2h Nh

Fig. 1. N X M uniform rectangular mesh.

FAST Poisson solvers have evolved during the last ten
years [1]-[3], and they consist of noniterative tech- Letu=u(th,ik) andapproximate()bythefive-pointdif-

niques for solving finite difference approximations to Poisson's ference equation, that S,
equation on a rectangle. These techniques are significant be-1 1
cause of their efficiency. For example, the Buneman-Poisson vu)ij [2uij - (ui+i, j + Ui-1, )] + [2uij
solver will usually solve the discrete equation in ' th to jl th
of the time required by successive overrelaxation (SOR). In - (uj,j+1 +ui,j-1)]. (2)
this paper we will show that one of these techniques, the ma-
trix~ ~deopsto Poso sovr(D,ofesteedu The difference equations for the points along the line x = htrix decomaposition Poisson solver (MD), offers tremendous myb rte

opportunity for parallel computation. Although the MD algo- y
rithm is quite general, we will only develop it for the five-point 2-p2U12
difference approximation to Poisson's equation on a rectangle 2 2
with a uniform mesh. This approach will exhibit the program- p U11 + 6U12 P U13
ming details of the algorithm and emphasize its simplicity.
However, a summary of the various generalizations of MD and . . .

a machine comparison of MD with SOR are included.
Consider a finite difference approximation to P-2UU,M-1 +Sui,MM

-V2U=f (1) r-u2 h2f11 +p2gO +g0
-

in arectanlgle Rwith u g(x,y) on the boundary 3R. We will | 22 | h2f12 +go2l
assume N discretizations in the horizontal direction and M + _.(3)
discretizations in the vertical direction. See Fig. 1..
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