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ALGORITHMS FOR LOOP MATCHINGS*

RUTH NUSSINOV,t GEORGE PIECZENIK,$ JERROLD R. GRIGGS
AND DANIEL J. KLEITMAN

Abstract. A simplified (two-base) version of the problem of planar folding of long chains (e.g., RNA
and DNA biomolecules) is formulated as a matching problem. The chain is prescribed as a loop or circular

sequence of letters A and B, n units long. A matching here means a set of A-B base pairings or matches

obeying a planarity condition: no two matches may cross each other if drawn on the interior of the loop.

Also, no two adjacent letters may be matched. We present a dynamic programming algorithm requiring

O(n 3) steps and O(n 2) storage which computes the size of the maximum for the given A-B base sequence

and which also allows reconstructing a particular folded form of the original string which realizes the

maximum matching size. The algorithm can be adapted to deal with sequences with larger alphabets and

with weighted matchings.
An algorithm is also presented for a modified problem closer to the biochemical problem of interest:

We demand that every match must be adjacent to another match, forcing groups of two or more parallel
matches.

Some results on the expected maximum matching size are presented. As n-, at least 80% of the

vertices can be matched on the average on an A-B string of size n.

We briefly discuss the practical application of the algorithm by using contracted versions of very long

molecules with a preliminary block construction. A maximum matching is presented for the J-gene of the

bX174 DNA virus. We conclude by stating some problems requiring further study.

1o Introduction. The recent advances in sequencing methods have led by now to

the complete determination of the nucleotide sequences of the MS2 RNA [8] and

bX174 single stranded DNA [16] viruses containing 3,569 and 5,473 units (bases)
respectively, and the sequencing of much longer chains seems imminent. Certain

portions of these chains constitute the various "genes". These genes determinemvia

the universal genetic code which assigns to each triplet of bases an amino acidmthe

various proteins necessary for the viral life-cycle.
It is apparent that the nucleotide sequence carries in addition another type of

information which plays a crucial role in the regulation of gene expression. The

sequence of nucleotides determines the actual shape of the biologically active three-

dimensional form (or forms) of the molecule. By folding into a particular shape,
certain "initiation sites" of genes which should be rarely decoded can be shielded, and

conversely, initiation sites of frequently decoded genes maximally exposed.
It is generally believed and tested in the case of small t-RNA molecules, that the

sequence of nucleotides ("primary" structure) determines a shape ("secondary" and

"tertiary" structures) or several folded shapes in such a way that the interactions

minimize the energy.
A simplistic consideration of nucleotide self-interaction is base pairing, like the

classical C-G (cytosine-guanine) and A-T (adenine-thymine, or, in RNA, A-U,
adenine-uracil) pairing in the Watson-Crick model of the double helix. In RNA the
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ALGORITHMS FOR LOOP MATCHING 69

existence of A-U, G-C, and G-U base pairs has been confirmed directly from x-ray
diffraction work by Klug et al. [1] and Kim et al. [2], [3].

The folding of an N nucleotide chain is then specified by a symmetric N xN
matrixM with Mj 1 if the (compatible) bases in the ith and/’th locations along the

chain have been paired in the shape considered and Mij 0 otherwise. An arbitrary
matrix like this is likely to correspond to a shape which is not realizable because of the

spatial hindrance and the stiffness of double helical (paired) regions of bases.

For that reason and for facilitating the visual representation, only (what we

loosely refer to as) secondary structure of long polynucleotide chains has been con-

sidered to date. These structures are topologically equivalent to planar graphs
obtained by closing the nucleotide chain into.a planar loop and (imagining that all

bases are oriented towards the interior of the loop) forming nonintersecting pairings
of (compatible) bases.

Even with these restrictions the combinatorial dimensions of the folding problem
for N---103- 104 are immense, and the simple visual matrix method and existing

computer programs appear inadequate for treating it.

In the first method one draws an N xN matrix P with all potential pairings

(Pij 1 if the bases at locations and ] can pair, and Pij 0 otherwise). Then by
looking for lines of l’s running diagonally across the matrix, one attempts to identify
potential sections which can be matched ("blocks") and piece them together into an

optimal planar folded shape.
While this simple method has been extremely useful for suggesting folded shapes

of small RNA molecules, N 50-100, we found that it is impractical to extend it to

larger N. The other approach known to us, the computer programs of Pipas and

McMahon [17], cannot deal with longer chains either. In fact their approach is quite
elaborate and attempts to identify and weigh energetically with appropriate weights
various types of components in folded shapes such as "hairpin"-like sections and

"bulges".
The main purpose of this paper is to formulate and to solve by an optimizing

dynamic programming matching algorithm the planar folding problem described

above.

While the time requirement of O(n 3) (on the order of n
3
elementary operations)

of the resulting algorithm is reasonable even for values of n of a few thousand, the

O(n 2) memory requirements are somewhat of a practical difficulty.
Another basic shortcoming of the simple algorithm from the biological point of

view is the neglect of "base-stacking" effects. The underlying assumption that base

pairing per se was sufficient to define the actual stability of secondary structure in

RNA was brought into strong question by Crothers et al. [4], who showed the

importance of base stacking. This is the configuration of adjacent bases. This shifted

the emphasis from interaction of independent bases in the polymer to the context of

the adjacent bases as well. Base-stacking interactions allow the stabilization of sin-

gle-stranded elements in nucleic acids as can be seen in the anti-codon region of the

x-ray crystal structure of t-RNA.
In order to correct for this deficiency we have

(a) algorithmically solved a related matching problem in which we allow only
pairings of two (or more) consecutive bases, say (Bi, Bi+l) to, say (Bi, B-I), (see 5),
and,

(b) introduced the blocks approach.
In this blocks approach one identifies at the outset potential perfect matches between

sufficiently long sections of the polynucleotide chain ("blocks"). The original
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70 R. NUSSINOV, G. PIECZENIK, J. R. GRIGGS AND D. J. KLEITMAN

algorithm can then be applied with a large gain in storage time and biological
relevance to the blocks rather than to matchings of single bases. In fact, the blocks

approach has been used in a different more intuitive approach by two of us to fold the

complete bX174 virus [9].
The present work also includes an illustration of the application of the simple

version of the algorithm to fold the J-gene, the smallest (113 nucleotides) among the
nine genes ofthe bX174. Gene J-codes for a small basic protein, whose exact function

is still unknown.

Finally we discuss briefly the question of the expected planar matching fraction

for a random chain.

2. The model. We represent the secondary structure of long polynucleotide
chains by closing the nucleotide chain into a cyclic graph or planar loop in which the
vertices are indentified with the bases in the chain. Suppose that the loop has size n

and that the vertices are numbered consecutively from 1 to n around the loop. Each

vertex is labeled by the base it represents, e.g., "A", "C", "G", or "U". The base

pairings in the folded form of the nucleotide chain correspond to edges (that is,
unordered pairs of vertices of the form {i,j}) which link nonadjacent vertices with

compatible labels, e.g., C-G, in the interior of the loop.
We demand that the folded chain be planar so that the edges in the loop cannot

cross each other. No base may be paired twice, so that each vertex belongs to at most

one of the interior edges. Thus we are really considering a special matching of the
vertices on the loop. With this in mind, we define a planar matching (or matching for

short) as a set of, edges of the loop satisfying the following conditions:

1. Each edge contains vertices whose labels are compatible according to the base

pairing rules.

2. No vertex is in more than one edge in the matching.
3. The edges can all be drawn in the interior of the loop without crossing, i.e.,

{g, h} and {i, j} with g < h and <j cannot both belong to the matching if

< g <j < h or g < < h <j. We also exclude edges {i, + 1}(mod n) connec-

ting neighboring vertices.

We seek folded shapes for given nucleotide chains in which the pairing inter-

actions minimize the energy, where each possible compatible pairing {i, j} is assigned a

negative energy, -Ei,j. That is, we want matchings of maximum weight, where the

edges are assigned weights Ei,j _-> 0.

First we consider a simplified model in which each vertex is labeled "A" or "/3"

and the only compatible pairing is A-/3, so that every edge in a matching contains one

vertex labeled A and one labeled/3. Each such edge is assigned weight one. Thus the

weight of a matching here means the number of edges it contains, which we call its

size. We now look for the maximum size of the matchings on a given loop (the
maximum matching size: M.M.S. for short) and for the matchings which realize this

maximum.

For simple cases with small n, the edges in the maximum matching sets and the
M.M.S. can be easily found by inspection; e.g., for the loop with the labels shown (Fig.
1) M.M.S.--7, and the maximum matchings realizing it are the sets of edges {1, 14},

An example of an earlier interdisciplinary biomathematical effort in a somewhat related area is the

Goel-Bremermann and collaboration work on the codon frequency problem. See, e.g., Bremermann and

King, Determination of codon frequencies and sequence structure of polynucleotides, Lectures on Mathema-

tics in the Life Sciences, no. 5, J. D. Cowan, editor, American Mathematical Society, Providence, RI, 1973.

D
o
w

n
lo

ad
ed

 1
2
/3

1
/1

2
 t

o
 1

5
0
.1

3
5
.1

3
5
.7

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



ALGORITHMS FOR LOOP MATCHING 71

t4

FIc,. 1. An example of a maximum matching on a small chain (n 17). Here M.M.S. 7.

{17, 15}, {2, 13}, {3, 7}, {4, 6}, {8, 12}, {11, 9} and {1, 14}, {17, 15}, {2, 8}, {3, 7}, {4, 6},
{12, 10}, {13, 9}.

However, the main interest is in very large n (---103-104). In the following
we provide an efficient algorithm for computing M.M.S. practical for n =<300.
For larger n some modifications are required, and in particular only approximate
M.M.S. and maximum matchings can be found within the given computational
limits.

This algorithm can be easily adapted to the more general problem
in which the alphabet of labels, the pairing rules, and the edge weights are arbi-

trary.

3. The algorithm. Given a loop of size n, labeled with A’s and B’s, we find the
M.M.S. and a maximum matching by computing it for short strings, building up to

longer strings, and finally to the entire loop. This is similar to the dynamic program-
ming.type algorithm of Wagner and Fischer [12] for the longest common subsequence
problem.

For l=<i<j=<n let Sa be the string of vertices i, i+l,-..,j. Assume the
maximum matching size M.M.S. (i, j) and at least one maximum matching .are known
for all strings S a of length <p, i.e., with j < +p, and 1 =<p < n. Set M.M.S.(i, j) 0
for j =< + 1.

We now form the M.M.S.(i, j) and at least one maximum matching for all strings
with length p as follows: Add the vertex j +p to the string Sia-1. A maximum

matching for S, might be obtained by joining vertex j to a vertex k with -< k =<j- 2
and label (j) label (k) (see Fig. 2). Alternatively, j may belong to no edge in the
maximum matching for S,.
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72 R. NUSSINOV, G. PIECZENIK, J. R. GRIGGS AND D. J. KLEITMAN

Optimizing over all these possibilities, we find M.M.S.(i, j) by

(1) M.M.S.(i, j)= MAX

M.M.S.(i, j- 1);

M.M.S.(i, k 1) + M.M.S.(k + 1, j 1) + 1,

k: i-<k-<j-2 and

label(k) label(j).

We compute through p n -2 and apply

M.M.S.(1, n 1);

M.M.S.(1, k- 1)+ M.M.S.(k + 1, n 1)+ 1,
(2) M.M.S. MAX

k:l <k <n- 1 and

label(k) # label(n)

to obtain the M.M.S. for the whole loop.
Why does this algorithm work? Equation (2) can be justified as follows: LetM be

a maximum matching on a given loop with n vertices. Suppose the edge {k, n} is in M.
So label(k) # label(n), i.e., one is "A" and the other is "B", and the edges ofM on the

string Sl,k-1 are a matching attaining M.M.S.(1, k-1). (Else these edges could be

replaced by a maximum matching on S l,k-1, which would increase the size of M, a

contradiction.) Similarly, the edges ofM on &+,,_ form a maximum matching there.

Note that the planarity condition 3 implies that no edge inM lies between S,_ and

Sk+l,n-1 because such edges would cross {k, n}. Thus, in this case,

M.M.S. M.M.S.(1, k 1)+ M.M.S.(k, n 1)+ 1.

The other possibility is that the vertex n lies in no edges in M. In this case, M is a

maximum matching on Sl,n-1 and

M.M.S. M.M.S.(1, n- 1).

Hence, M.M.S. is no larger than the right side of (2). Conversely, this value for the

M.M.S. is actually attained by matching n to a k attaining this maximum and taking
maximum matchings on S,k-a and &+,n-. Equation (1) is justified by similar

arguments. Equation (2) differs from (1) only because we do not allow the edge {1, n}
in a matching. Equations (1) and (2) compute the M.M.S. on the loop from values of

the M.M.S. on shorter strings, which were previously computed, so the algorithm
works.

To obtain the edges in some maximum matching, we maintain an n x n array A
where A(i, j) stores a value of k which attains the maximum in the equation (1) for

M.M.S.(i, j). We may store 0 if M.M.S.(i, j) M.M.S.(i, j- 1). We can backtrack after

computing the M.M.S. to obtain a maximum matching. We keep a list of string

endpoint pairs, S, and a list of edges, E, both initially empty. First we obtain a k which

attains the maximum in (2). if k > 0, we insert (1, k- 1) and (k + 1, n 1) into S, and

{n, k} into E. Otherwise, we insert (1, n- 1) into S.

We then take the first element out of S, call it (i, j). If A(i, j)= k >0, we insert

(i, k 1) and (k + 1, j 1) into S, and {j, k} into E. If A(i, j) 0, we insert (i, j 1) into

S. If -< + 1, we simply remove the string from S. When S is empty, E is a maximum

matching.
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ALGORITHMS FOR LOOP MATCHING 73

The algorithm requires roughly n2/2 maximizing steps, which each maximize

over no more than n numbers. So the algorithm is O(n 3) with storage O(n2). The

algorithm can be easily adapted to more general alphabets and sets of allowed

matches, e.g., the RNA problem with letters A, C, G, U, and matches A-U, C-G,
G-U.

4. Further comments and improvements. Continuity arguments can be used to

reduce the number of steps in searching the maximum in (1).
Clearly,

(3) 0 _--< M.M.S.(i, j) M.M.S.(i, j 1) =< 1.

Also, shifting the edge {k, j} to {k + 1, j} (or vice versa) can disrupt at most one

other edge so that terms from (1)

Tk M.M.S.(i, k 1) + M.M.S.(k + 1, j 1) + 1

for consecutive k’s differ at most by one.

Hence, if for some k0, < k0< j 1, Tko =< M.M.S.(i,/" 1) h, i.e., it undershoots

the (lower) maximum value by h, then we have to move at least h + 1 steps to right or

left to achieve the maximal Tk. Thus, we can exclude the interval [k0-h, k0+ h] from
our search.

This suggests the following modification of our algorithm for faster running time

in computing M.M.S.(i,j). Initially set k =i. Let h =M.M.S.(i,-I)-T +1

M.M.S.(i,- 1)- M.M.S.(i, k 1)- M.M.S.(k + 1, j- 1).
If h > 0, replace k by k + h and repeat the above computation after first checking

if the new value of k exceeds j-2, in which case we halt with M.M.S.(i,j)=

M.M.S.(i, j- 1). If h 0, compare label(fl with label(k). If label (j) label(k) no edge
is allowed between vertices j and k, so we replace k by k + 1 and repeat the above

steps. Finally, if label(j) label(k) we have found a vertex k such that there exists a

maximum matching of size M.M.S.(i, 1) + 1 containing edge {k, j}, so we halt with

M.M.S.(i, j) M.M.S.(i, j- 1)+ 1.

This modification speeds up the algorithm because it skips over many vertices

on the string and because it stops when it first finds a vertex k such that there exists a

maximum matching on Si,i with edge {k, f}.
We call a small nested fold with parallel edges that contains no other matches a

flower. For example, the matches {15, 17}, {1, 14}, and {2, 13} in Fig. 1 form such a

flower. The match {6, 8} (A-T) in Fig. 6 is another flower. By the nonadjacency
condition on matchings, a flower must contain at least one unmatched vertex (e.g.,
vertex 16 in Fig. 1 and vertex 7 (A) in Fig. 6). Thus we expect maximum matchings to

match long stretches of distant vertices, rather than forming many small flowers, in

order to match more vertices. So we would expect h to get fairly large, speeding up the

algorithm. In those strings Si,i which have several vertices k which can match ] in

maximum matchings, the algorithm selects the k farthest from j so that it should

produce a maximum matching with larger paired areas which are more interesting to

biochemists than matchings with many flowers. In 5 we modify the problem in order

to find matchings with fewer small flowers by not allowing any isolated matches.

In a more general problem in which we have an arbitrary alphabet the possible

edges are all assigned weights (e.g., energy), and we seek the matching of maximum

weight (not necessarily size), the algorithm of 3 applies directly by adding the weight
of the edge {k,j} rather than one in (1) and (2). We have to look at every vertex

between and j, so the continuity argument above does not directly apply. However,
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74 R. NUSSINOV, G. PIECZENIK, J. R. GRIGGS AND D. J. KLEITMAN

in specific applications, the assigned energies may very well have some special struc-

tm-e (such as only taking on a limited range of values) which permits an improvement
in a similar way.

It is interesting to ask what happens if we relax the restriction that no two

adjacent vertices may be matched. In the simple A-B problem the result is clear: if

our given loop contains, say A’s and k B’s, _-> k, then we can find a (maximum)
matching of size k, that is, we can use up all of the B’s. We can find such a matching in

only O(n) steps: Start at vertex 1, say it is an A, and check 2, 3, , until a B is found.

Say it is at i. Then match and i- 1. If 2, we start all over at 3; if > 2, continue to

scan + 1, +2,..., for a B. Always match to the highest scanned unmatched A
vertex, e.g., + 3 would match + 2, and + 2 would match i- 2. The matching we

obtain is clearly planar. So it appears that the adjacency condition is what makes the

problem difficult: We cannot match locally, independent of the rest of the labeling,
and hope to end up with a maximum matching, because the flowers waste too many
vertices.

For more general alphabets and edge weights, removing the adjacency condition

does not appear to help as much. A simple example comes from our RNA problem
with matches A-C, C-G, G-U. Consider a loop of size four, labeled A, C, G, U, in that
order. A local approach might match C to G. But this cannot be extended to the
maximum matching, which has two matches: A-C, and G-U. However, the M.M.S.
algorithm presented in 3 does work for this general case with the modification that
we search up to k =-1 in (1) and use (1) also to compute M.M.S.--M.M.S.(1, n),
ignoring (2).

A different modification of the problem that may be useful in different appli-
cations comes by relaxing the condition that vertices lie in only one edge in the

matching. We allow any number of edges per vertex so long as they do not cross each

other, which would violate the planarity cndition. Our algorithm can be adapted to

this problem by computing M.M.S.(i,) as the maximum of terms of the form

M.M.S.(i, k)+M.M.S.(k,j), i+ 1 _-<k _-<j-1. The same idea works if we also allow

adjacent matches.

/,/ -/
/

\

/

FIG. 2. The search procedure for optimizing k.
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ALGORITHMS FOR LOOP MATCHING 75

5. A related problem. In the real problem the energy is lowered not so much by
the base, say (A-B) pairing, but rather by the helical stacking of consecutive base

pairs. It is clear that a vertex matching configuration realizing the M.M.S. is likely to

include also many neighboring (i, j}, {i + 1, j- 1) edges.
Therefore, a better approximation to the real problem is obtained if we add a

fourth requirement to our definition of matchings.
4. No edge lies alone, i.e., there must be an immediately parallel edge. This

means that if {i, j} is in the matching, then so is {i-1, j + 1} or {i + 1, j-1},
where we consider the vertices here as numbered mod n.

We present an algorithm to calculate the M.M.S. similar to that of 3, except that

we must now compute matchings on strings of three types. As above, the M.M.S. of

each type can be computed from information about shorter strings.
Let M.M.S.(i, j, t) for 1 =< _-< -< n and {1, 2, 3} be the M.M.S. of type on the

string of vertices i, + 1,-.., j, taken from the loop with the same A and B labels,

where the types are defined as follows (see Fig. 3):

TYPE TYPE 2

TYPE 5

FG. 3. The three types of matchings.

Type 1: Every edge has a neighboring edge (satisfying condition 4) and {i, j} is

not in the matching.
Type 2: Every edge has a neighbor and (i, } is in the matching.
Type 3: {i, j} is in the matching and is the only edge without a neighbor.
Initially set M.M.S.(i, j, t) 0 for j or + 1 and all t. For 2 or 3 and any i, j,

M.M.S.(i, j, t)= 0 means no matching of type exists on the string. As the matching
with no edges is type 1, type 1 matchings exist for every string.

Given M.M.S.(i, j, t) for all and for all i, j, with _-<j <i +p for p > 1, calculate
M.M.S.(i, j, t) for j +p as follows:

MAX(M.M.S.(i, j- 1, t)),

t=l, 2;

M.M.S.(i, j, 1) MAX, MAX(M.M.S.(i, k 1, t) + M.M.S.(k, j, 2)),
t= 1,2,

k" <k <j-3 and M.M.S.(k, j, 2)>0;

.0 otherwise.
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MAX(M.M.S.(i + 1, j 1, t)) + 1,

t=2,3,

M.M.S.(i, j, 2)= if M.M.S.(i + 1,- 1, 3) > 0

and label(i) # label(j);

0 otherwise.

M.M.S.(i + 1, ]- 1, 1) + 1,

M.M.S.(i, j, 3)= if label(i) # label(j);

0 otherwise.

Calculate all M.M.S.(i, j, t) through p n 2. Then find M.M.S.:

MAX M.M.S.(1, n- 1, t),

t=l, 2;

MAX(M.M.S.(1, k 1, t)+ M.M.S.(k, n, 2)),

t= 1,2,3,

M.M.S. MAX k" 1 < k < n 2 and M.M.S.(k, n, 2) > 0;

MAX(M.M.S.(1, k 1, t) + M.M.S.(k, n, 3)),

t=2,3,

k" 3<k <n-1 and M.M.S.(k, n, 3)>0

and M.M.S.(1, k 1, 3) >0.

Again we have an O(/13) algorithm requiring O(n 2) storage. A backtracking pro-
cedure will again retrieve a maximum matching.

We now sketch a proof of the validity of the algorithm. Let X be a maximum

matching and look at vertex n. If n belongs to no edge in X, thenX on the string from

1 to n 1 must satisfy all conditions, and hence be of types 1 or 2. Else {n, k} X for

some k 1 < k < n 1. If {n 1, k + 1} X, then the matching on k, k + 1, , n must

be type 3. Edge {1, k 1} must be inX to satisfy condition 4. Hence 1, , n is type 2

and 1,..., k-1 is type 1, 2 or 3. Conversely, maximizing over all of these pos-
sibilities must yield the M.M.S. Conditions like "M.M.S.(k, n, 2)> 0" ensure that a

matching of this type exists for this k. Combining matchings on the string in these

ways gives rise to a matching on the loop satisfying all of the conditions. Similarly

analyzing how we could have obtained matchings on strings of types 1, 2, and 3, we

obtain the equations for them. For example, if a matching on i,...,j of type 1

contains edge {k, j} then {k + 1,/"- 1} must also belong to satisfy condition 4. Hence
the matching on k, , j is type 2. Further, the matching on i, , k 1 must satisfy
all conditions, so it is type 1 or 2.

6. The "blocks" approach. At the cost of slight further complication, we can have

algorithms in which we demand any number of neighboring parallel edges.
An alternative approach is to initially locate matching stretches of vertices no

shorter than some arbitrary minimal length. These objects will be called blocks and

the correct computation of their energies, including stacking effects, can make this a

more realistic approximation to the biochemical problem.
We note that at this stage of preparing the blocks we have to allow intersecting

stretches, i.e., vertices which will simultaneously be assigned to more than one block.

If we want to make the following modification of the algorithm applicable for the

choice of minimal energy planar folding by choosing a consistent set of blocks, we will

have to separate such intersections into four smaller blocks as indicated in Fig. 4.
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/

FIG. 4. A configuration with overlapping stretches and their separation.

The blocks can then be ordered according to the location of the vertices in the

matching stretches in the original string yielding a "contracted" description of the

situation (Fig. 5) in terms of many fewer vertices (-- 10 in the example given). Each
effective edge is now labeled by the energy Ei,j associated with it.

The procedure of selecting the set of nonintersecting edges with the maximal sum

Ei,j is done using an algorithm exactly like the first one with the following modifica-

tions:

(a) Since vertex j is already prefixed to at most one (or some small number,

independent of , if we start from a configuration such as Fig. 4) of the k’s
i_<- k <j, no long k search has to be made, and the algorithm will be only
O(2),

(b) Instead of adding one as in the right-hand side of (1), if some 1 =< k -<]- 1 is

chosen, we have to add Ek,j.
An advantage of this "coarse grained" block description is that storage require-

ments which are O( 2) are substantially reduced to O(r2). In the real problem, n may
be 104, while r may be 300.

Clearly an important element in this approach is an efficient method of block

construction. We will not go into its details here, but rather refer to the work by two of
us [9].
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5
6

8

0

FIG. 5. The contracted representation of matching blocks. One such block is shown: the ABAB string,
contracted to vertex 4, is matched to the BABA string at vertex 10.

In this work the block approach was used extensively (without establishing,
however, a firm algorithmic background) to fold long m-RNA molecules. The method

used there for actual block formation was very simple and fast.

More sophisticated approaches for finding given patterns in a string of symbols
exist in the literature [14] and hopefully can be incorporated in future developments.

An alternative to the above "floating block" formation is a conceptually much

simpler "fixed block formation". In that approach, which is also studied at present, the

original long string is divided into, say, m fixed substrings of length n/m each. One
then finds the best matching of each pair of substrings obtaining an rn rn matrix with

entries the resulting lowest possible energies (that is, maximum matching size)
between the substrings. This contracted version serves as a second stage in which a

maximal planar subset of the matched string is chosen. In either stage the original
algorithm or a simple modification of it can be used.

7. Programming the algorithm and some preliminary results. Given the simple
algorithm of 3, it is very straightforward to program it. In fact, the FOIaRAN

program that we wrote, which incorporated the jump-procedure of 4, consists of

only ---90 cards.

We ran it for different small sections of the recently sequenced (by Sanger and his

group [16]) bX174 single stranded DNA virus, which in total has 5470 nucleotides.

The shape obtained this way for folding separately the J-gene of the bX174 with 113

nucleotides is presented in Fig. 6. It took only 1.3 seconds to generate this folded form
on the IBM 360/91 computer.

While by construction, this shape is guaranteed to have the maximal number of

allowed pairings, it is somewhat deficient from the biological standpoint since quite a

few of the bonds are single.
To have a better idea about the systematics of the time involved, we ran the same

program also on segments 30 nucleotides long (0.15 sec) and 200 nucleotides long
(6.4 sec). While these data are insufficient for an accurate extrapolation of the time
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G.

A.A--T

C-G

G’T’/C" A" i-- "G- T’G-C

’’’ AG" A T--A.A’
G G

A--T.(

G.T-A

G.T-A

T--A

.T--A
C
"T--A.

G
G--C"

T
G’C’G’C C-G

G’C’G" A--T
AT
"A" A-T’C.

T
C-G.G"

G-C
G

G-C
A

.T.A:A--T
C
"A.T.G-C

G C
C .C.

CG

T.G-C"

.c
5O C --G

G-C

A

FIG. 6. A maximum matching for the J-gene of thX174, drawn in its folded form. Here n 113, the

allowed matches are A-T and C-G, and M.M.S. 42.

estimate for very large n (say n---1,000-2,000), they strongly indicate that the

estimate of O(n 3) asymptotic growth is far too conservative. The jump procedure does

in fact shorten significantly the execution time. In any case, the algorithm would take

--1 minute for n =500, and 5-10 minutes for n 1,000--very reasonable time

requirements. This should be contrasted with other folding procedures which exist in

the literature [17], which can be applied only to sections shorter than 200 nucleotides

and which are 10 times slower.

At present we are trying to surmount the two remaining obstacles in the way of

massive applications of the algorithm to very long chains--the need to incorporate
stacking effects and the strong storage requirements. It appears that both objects can
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be obtained by adapting the joint block approach and algorithm described in 6
above.

We do not have as yet completely satisfactory codes for that approach which will

be discussed further in forthcoming works.

8. Expected matching size. We now consider the problem of finding the expected
maximum matching size. The matchings here are simple, satisfying conditions 1, 2,
and 3 of 2. The vertices are each labeled either A or B with a probability of 1/2 each.
Then U(n) is defined to be twice the expected size of a maximum matching of such a

labeling of the loop with n vertices. That is, E(n) is the mean number of vertices

matched in a maximum matching among the 2 labelings of the loop. Thus E(n)/n is

the average proportion of the vertices which are matched. If E(n)/n were known one

would have an idea how successful are algorithms which find large matchings that are

not necessarily maximum. Such algorithms require less time and storage than the
M.M.S. algorithm. As n is often very large (say 102-104), information on the behavior

of E(n)/n as no is useful.

Chvital and Sankoff [10] studied the expected size of the longest common

subsequence (LCS) of two sequences in k-symbols of length n. Just as in their

problem, it is true for loop matchings that E(n) is superadditive, that is, for m, n > O,
E(m + n)>--E(m)+E(n), from which it follows by Fekete’s theorem [11] that

E(n) E(n)
lim sup
n-oo n

Thus E(n)/n has a limit as n-cwcall it f--which it never exceeds. Clearly
6 <-- 1; no better upper bound has been found yet. For a lower bound we may split the

loop into two strings of length n/2 and take the LCS as a matching. Thus _->, using
the lower bound obtained by Chvtal and Sankoff [10] for LCS with k 2. We have

devised a simple algorithm (time and storage O(n)) which finds matchings of expected
size approaching (.8)n as n - o, so that _-> .8, which is the best known lower bound

on 7. The analysis of this algorithm uses Markov chains, in one approach, and

difference equations in another approach. (See [15] for details.)
Similarly, for the RNA problem (A, C, G, U) the mean proportion of vertices

matched has a limit; call it d. Applying the lower bound from [ 10] for LCS with k 4,
we obtain d >= .451. As above the simple algorithm improves the lower bound, to 1/2 for
d. However, we required no G-U bonds to achieve these lower bounds, so d should be

considerably larger than 1/2.

9. Areas requiring further study. Given the present algorithm we can apply it to

the real m-RNA data and also to a randomized string with the same length and the

same base proportions. If we find that the real data tend to yield consistently larger
maximal matching sizes, then it would mean that favoring folding potentialities is one

of the considerations which determines the choice of coding in the higher degenerate

genetic code.

In the present approach the only constraints of the folding process were the base

pairing rules and the assumption of planarity. There is some experimental information

which was not incorporated into the present algorithm and which in principle could

considerably shorten the search time. This information involves cleavage data, i.e., the

facility with which certain enzymes bisect the bond between two consecutive bases at

and i+ 1. If in the folded form the two specific bases i, i+ 1 are paired against say,

j- 1, j, then the original (i, + 1) and (j, j- 1) bonds get strengthened. It may turn out

eventually that the cleavage data will conflict with the planarity rule. An open and
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ALGORITHMS FOR LOOP MATCHING 81

interesting question is to find an algorithmic procedure which will optimally incor-

porate the cleavage data and planarity requirements.
We would certainly like more information about expected matching sizes, parti-

cularly and d. From a mathematical standpoint it would be interesting to learn more

about labeling with larger alphabets, arbitrarily assigned probabilities (i.e., a vertex

has label Ai with probability pi), and arbitrary sets of allowed matchings pairs
(generalizing the A-U, C-G, G-U problem).

The computational complexity of these problems is still open. For the related

problem of finding the longest common subsequence of two sequences over a finite

alphabet of lengths rn and n, respectively, there is an O(mm /log (max (m, n)))
algorithm [13]. It may be that a similar O(n3/log n) algorithm can be found for the

A-B loop matching problem.
We have briefly indicated various generalizations continuing the present work.

We hope that they will lead to more realistic and feasible approaches to the rather
difficult combinatorial problem of RNA folding and to new insights both in bio-

chemistry and in algorithmic approaches to combinatorial problems.
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