
8025191

BUDD, TIMOTHY ALAN

MUTATION ANALYSIS OF PROGRAM TEST DATA

Yale University Pu.D. 1980

University
Microfilms

Internation Al 300 N. Zeeb Read, Ann Arbor, M148106 «18 Bedford Row, London WC1R 4EJ, England

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MO
S

: Mutation Analysis

of Program Test Data

A Dissertation

Presented to the Faculty of the Graduate School

of

Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by

Timothy Alan Budd

May, 1980

“

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

Credit must be given to my advisor, Richard Lipton, who

originated the concept of mutation analysis and encouraged me to

pursue it. The second greatest influence over this work came from

Frederick Sayward, who for the four years I have known him has been a

great friend as well as colleague. The third member of my committee

is Alan Perlis, who I want to thank for his prompt reading and careful

comments, as well as for many lively and enjoyable discussions during

my four years at Yale.

Other researchers on mutation analysis who have helped formulate

many of the concepts used in this thesis include Professor Richard

DeMillo of the Georgia Institute of Technology and Robert Hess of

Yale. In particular I want to thank Bob for running most of the

experiments discussed in section 4.2.3.

I have had several useful conversations with other faculty

members in the department of computer science at Yale, including Larry

Snyder, Dana Angluin, Dave Barstow and Drew McDermott. Their comments

and criticisms have been greatly appreciated. Dana in particular had

several useful comments during the preparation of my thesis

prospectus.

Mary-Claire van Leunen provided detailed editorial comments on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-11i-

chapters one and five, and greatly improved their readability.

The staff of the department, including Rosemary Brown, Polly

Bobroff, and Mary-Claire van Leunen, were always friendly and helped

in solving the many major and minor difficulties involved in a task of

this magnitude.

Research Support for this work was provided in part by the

National Science Foundation, the Office of Naval Research, and the US

Army Institute for Research in Management Information and Computer

Science.

Finally I wish to thank my wife, Beth, who always had a hug when

I needed it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

CHAPTER 1: TESTING AS AN INDUCTIVE PROCESS . 3. «6 « « e

3.1 Testing computer programs .« .« . « «© «© © « e
E.2 Error seeding, circuit theory and other metrics . .
1.3 Literature and related work . . .« © « «© «# -«

CHAPTER 2: THEORETICAL STUDIES 7. 8 «© © © © «© #© @# ©

2.1 General remarks on adequate test sets . .« « « e
2.2 Decision Tables . 2. « «© © © © «© © © © e«

2.2.1 Extensions and restricticns . . .« .« .« «
2.3 LISP programs . .« » «© «© «© © «© © © © @ «

2.3.1 Straight line programs . . .« 2 «© © « «
2.3.2 Recursive programs . .« « «© « «© e« « e

2.3.2.1 Definitions and tools . . .« « « -
2.3.2.2 Bounding the depth of the recursion and

predicate functions . . .« »« « « e
2.3.2.3 Narrowing the form of the recursion

Selectors . .« +6 «6 «© «© «© « «# «© -«
2.3.2.4 the recursion selectors must be the same

as P 2. «© © © © © © © © © -@
2.3.2.5 Testing the ‘Primary Positions of P
2.3.2.6 Main Theorem. . «© «© «© ee © eb

2.3.3 Discussion « 2. .« 2 « 2 «© ce «© « «

CHAPTER 3: A FORTRAN MUTATION TESTING SYSTEM es e« 28

3.1 Mutant operators in the EXPER system
3.1.1 Source operand mutant operators . .« «.« « «
3.1.2 Operator mutations . . . «6 « e« «s « e
3.1.3 Statement mutations «© «© «© « e

3e2 A consideration of the power of the mutant operstors

Trivial errors . .« « e« e
Statement analysise
Branch analysis . .« « «

ol
2
3
4 Data flow analysis .. .
-> Predicate testing . .« » -
6
7
8
9

Error sensitive test cases (ESTCA)
Domain pushing . .« »2« « « e
Special values testing . . « .e
Coincideatzl correctness . . .«

3.2.10 Missing path errors . . .« « -
323 A discussion concerning the number of mutants generated

by EXPER . 2 © «© «© © © © © © © © © «
3-4 A sampling experiment . . «6 « «© © e e« o «
3.5 A discussion of a similar system. . »« e e« e e

CHAPTER 4: EMPIRICAL STUDIES e * a e . ° e * e e e

4.1 An example of the coupling effect . . .« « e« «
4.2 Reliability studies . 2. e« «.« » 5© © © « e@ «

W
W
W

W
W

W
W
W

®
N
N
N
N
N
R
N
N
K

ee

0©«©

©
©

©
©

©
@

6

o
e
s

es
©

©
©

@
@

@

ss

©

o#

oe
8

@
@

- iv-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
48
49
50

53

35
56
57
59
60
60
61
63
65
67
72
74
76
78
79

an
Oa

85
86

90
93
96

4.2.1 An experiment using program fragments from

Kernighan and Plauger . -« «6 « «© e« « «
4.2.2 An experiment using four programs from a study by

Howden « «© © © © © © © © @ + ©

4.2.3 Further reliability studies . .« «6 «6 « «
4.3 Testing large systems . .« « « «© «© © «© «@ -«
4.4 The lifespan of an average mutant .« .« « « « -«
4.5 The problem of equivalent mutants

CHAPTER 5: DIRECTIONS FOR FUTURE RESEARCH °° «© © «© @ @

5.1 Using symbolic execution to generate test cases . .
5.2 Reducing the number of mutants generated by EXPER .
5.3 Using more than input/output behavior in test cases
5.4 New mutant operators . .« »« »« «© »%© »2© © « « -»
5.5 Mutation analysis in other problem domains .. .«
5.6 Summary «© «© «© © © © © © © «© © © © © 8

APPENDIX A: Errors from Kernighan and Plaugers chapter on Common

Blunders . e . e * e« @® «@ e * 6 e * « «

APPENDIX B: Details of the four programs from a study by Howden

APPENDIX C: Programs analyzed in the third reliability study

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-Vv~

100

103
105
lil
113
115

119

119
121
122
122 °
123
125

128

131
136

List of Figures

A typical decision table program . . 2 «© « «
: Example showing completeness is
necessary in theorem 6 . . « «© « © e@ e« «@

An example where equivalence is undecidable if the
conditions interact . 2. « « «© «© e © « «
A case not covered by the mutation test eo +6 e

s An example recursive program scheme . .« e e« e
: Program exhibiting an error

caught by branch analysis . . +. .« « « e« e
3-2: Example program from White [87] . . « « e« e
3-3: Example program from Naur [71] o 8 © © «© «
3-4; A program exhibiting a coincidental

correctness error .« .« »« 6 «© e «© «© ee «@ »
3-5: Program exhibiting a missing path error * «
4-1: Two programs which are close but not equivalent .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

28

3l
31

36

64

70

75

79
80

91

3-1:

3-23

3~33

3-4:

4-13

4-2:

4-3:

4-4:

4-5:

4-6:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Number of mutants generated versus program size

Correlation coefficients for mutants ee

Correlation coefficients by mutant type .
Results of a sampling experiment . . .« e

Howden's data combined with

that for Mutation Analysis . . 2. e« « e«

Number of errors caught versus testing method

Number of errors detected versus error type

Errors detected versus mutant classification

Percentage of equivalent mutants versus mutant type

Percentages of mutants versus level number

-vii-

83
84

84
85

10]

104

108
109
115
117

CHAPTER 1

TESTING AS AN INDUCTIVE PROCESS

Practicing programmers have traditionally increased their

confidence in the correct functioning of a program by running it on a

few test cases. If the test cases are well chosem such confidence is

justified. If, as is more likely, the test cases are poorly chosen

any sense of security can be misleading, since the test cases may

reveal little or no information about whether the program is correct.

It is extremely uncommon, however, for any attempt to be made at

evaluating the effectivness or thoroughness of a set of test cases. A

major reason for this omission is the lack of a generally agreed upon

metric with which test cases can be measured. It is the aim of this

thesis to analyze one such metric: mutation analysis.

Since program testing proceeds from the specific observations of

a program on a small number of test inputs to a general assertion

concerning the programs behavior, it is an inductive, rather than

deductive, process. A programmer thinks his program is correct.

Typically, he then collects confirming evidence for this belief by

executing the program on various test cases. As long as no test case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conclusively contradicts his belief, each additional test case

increases the programmer’s feeling of confidence that the program is

indeed correct. At some point when a sufficient number of test cases

have been run (a point often equivalent to the programmer's becoming

bored with testing) the process stops and the program is deemed

correct.

Inductive arguments of this kind are typical in scientific

research as well as everyday discussion [17, 45]. While in everyday

Situations these arguments may seem quite convincing, on a formal

level there are some serious difficulties. Consider the assertion:

Al: All ravens are black.

Mcst people would agree that observing a black raven gives us evidence

for Al whereas observing a brown shoe does not. This is because the

assertion seems to be somehow about ravens and not about shoes.

Logically, however, Al is equivalent to its contrapositive:

A2: No non-black object is a raven.

Since Al is equivalent to A2 evidence for one must be evidence for the

other. But A2 seems to be making an assertion about non-black objects

just as much as Al was mzking an assertion about ravens. Hence a

brown shoe certainly seems to be evidence for A2. We seem to be

reduced to conceding that by observing a brown shoes, a green vase, a

white swan, or indeed any non-black object we are somehow increasing

our belief in the blackness of ravens.

This paradox is cbviously foolish, but as with most paradoxes the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reason it is foolish is not so obvious. It is not because the white

swans or brown shoes we observe are neither blank nor ravens; Although

an ornithologist might not dream of examining a brown shoe to test Al,

he might think it necessary to examine some non-black birds that look

very much like ravens, although they turn out to actually belong to

some other species.

An initial response to this paradox might be that while the

observation of a brown shoe may logically give some evidence for Al,

the weight of the evidence it conveys is negligible. The notion that

not all confirming observations are alike, that some are more

important than others, was absent from our description of the

inductive paradigm. While seemingly quite trivial, it forces us te

consider the much less obvious question of how one tells the black

ravens from the brown shoes, that is, how one separates the important

test cases from those that are totally uninteresting. This is the

problem that mutation analysis addresses. That is, mutation analysis

is a method for evaluating the effectiveness of a set of test cases

for a given assertion.

The goal of testing should not be merely to force acceptance by

the sheer numbers of confirming examples, but rather to provide

reasons why the particular assertion (program) being proposed is to be

believed. In this respect the observation of a single black raven

gives more evidence for Al than the observation of five thousand brown

shoes,

af

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The method used in mutation analysis to evaluate test cases is to

construct a number of alternative assertions that are semantically

close to the original, and then to ask if the test data distinguishes

the two assertions (in the senze of being confirming evidence for the

original and contradicting evidence for the alternative). Borrowing a

name from biology, we say these alternatives are mutants of the

original assertion.

For example, we may admit that observing a brown shoe does give

evidence for Al, but it also gives evidence for the following two

assertions

A3: All ravens are yellow.

44; All birds are black.

Since on the weight of this evidence alone we therefore do not have

any more confidence in Al than in A3 or A4, our faith in the ability

of this test data to confirm Al is severely weakened.

In order to differentiate Al from A3, we require a test

observation that is a raven and not yellow. Such an observation will

confirm Al (if the raven is indeed black) and contradict A3, thereby

showing how the two assertions differ. Similarly, to differentiate Al

from A4 we require a bird that is not black, and presumably therefore

not a raven. This supports the intuitive feeling that the observation .

of a black raven or a white swan gives greater evidence for Al than

the observation of a brown shoe.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A more serious problem arises when we attempt to differentiate Al

from the assertion

A5: All members of corvus corax are black.

AS is equivalent to Al, but that fact is evident only to those who

happen to know the genus to which ravens belong. The problem of

recognizing those mutants that are equivalent to the original

assertion is the major impediment to the mutation analysis method. In

practice however, as will be demonstrated in chapter four, this is not

as serious a problem as might at first be imagined.

1.1 Testing computer programs

We are given a program P and a set of test cases that the

programmer believes sufficient. As before, we now ask whether these

test cases increase our confidence only in this particular program,

and not some closely related but distinct programs, the so-calied

mutants of P. We generate a set of mutants, forming each by altering

the program P in a simple way. These mutants are then run on the test

data to see whether they receive the same answers as P. If a large

number of mutants produce the same results we assert, as in the case

of the ravens, that this test data gives us no more reason to believe

the original program is correct than that any of the mutants are

correct. A test set that fails to differentiate P from a large number

of mutants is like the observation of a brown shoe, which gave us no

more evidence that all ravens are black than that they are all yellow.

On the other hand, if a majority of the mutants are eliminated, then

the test data closely fits P, and our confidence in the effectiveness

1
uk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aH

of the test cases is increased.

At first blush this might seem an amusing methodology, useful for

catching. misspelled variable names and incorrect operators, but

perhaps not worth all the fuss. To see that this is not the case note

that there has been observed in many problem domains a strong coupling

between simple and complex errors [11, 22, 29]. Test data that

eliminates all non-equivalent mutants can be thought of as insuring

the absence of simple errors (i.e. those errors that exactly match

the mutation). This coupling of errors implies that while one is

directly meeting the mutation goal, one is peripherally achieving a

much stronger goal, that of differentiating P from a larger class of

complex potential errors. This phenomenon has been called the

coupling effect. The name coupling effect comes not only from the

hypothesis that complex errors are coupled to simple ones, but also

from the observation that different sections of one program are often

strongly coupled together. Sayward has elsewhere given a statistical

argument for belief in this coupling [65]. Chapters two and four will

contain various theoretical arguments and empirical studies that

address this belief. What follows will be an intuitive justification.

Programs are highly interrelated objects. Actions taken in one

location will usually have a major effect on the actions taken in

another section. A correct program is one that is consistent, one in

which every action is neatly tailored to fit every other action, much

like a solid wall of bricks. Am incorrect program is like a badly

ee
ae
Fate

3s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formed brick wall: One brick is out of place, and it pushes another

out of place, and that one still another, and so on until the entire

wall is in jumbles. Mutation analysis uniformly exercises every part

of the program, pushing it to its boundary conditions. Even if the

original cause of an error cannot be discovered, its effects often can

be. In this manner complex errors are uncovered by simple means.

What about those programs that are internally consistent, but

consistently wrong? Fortunately we know by numerous .

studies [24, 80, 86, 89] that these degenerate cases are rare. More

specifically, we have an assumption that states:

A competent programmer, after giving the task sufficient

thought and pursuing the normal process of programming and
debugging, has probably written a program that is either
correct or "almost" correct, in that it differs from a correct

program in simple ways [22].

The name competent programmer hypothesis has been given to this

assumption, since one way to interpret it is to say that incompetent

programmers (those who write vastly incorrect programs) are quickly

discovered by running their programs on almost any test data. Most

programmers are neither malicious nor incompetent, and they can be

expected to produce a product that is at least approximately correct.

Our task therefore is reduced to validating a program that is probably

not correct, but is very close.

This is the framework for mutation analysis. We have a program P

written by a competent programmer. We are given a set of test cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which differentiate P from a small set of mutants derived from P. The

coupling effect asserts that this test set in fact differentiates P

from a much larger class of programs, throughout this thesis denoted

$. The competent programmer hypothesis asserts that with high

probability either P is correct or some program in $ is the correct

program. The task placed before the programmer is to try to generate

test cases that distinguish all non-equivalent mutants, The coupling

effect asserts that if the program is indeed incorrect, then the

programmer cannot succeed at this task. That is, there is at least

one non-equivalent mutant that cannot be eliminated without generating

a test case that is incorrectly handled. Conversely, if the

programmer can find test data that differentiates P from all

non-equivalent members of $, this means that the only member of > that

recelves the correct answer on all these test cases is P itself. We

can therefore conclude with high likelihood that P is correct.

There are two very different directions in which one could

proceed from here. The first would be to give very precise

definitions to the terms "close,"" mutants," "competent programmer

hypothesis, “coupling effect," which have been used up to now quite

informally. Using these precise terms, one could then formally prove

that a theorem similar to the coupling effect holds. Several studies

of this nature are developed in chapter two. Unfortunately it becomes

quickly apparent that the range of programs one can deal with in this

manner is severely restricted. This is due not only to the difficulty

ad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in dealing with complex data and control structures, but also to a

plethora of formally undecidable properties [18, 31, 40, 52].

The other direction one can take is to let the more intuitive

definitions of our basic terms suffice and to ask whether in some

empirical or statistical sense the coupling effect holds. Studies of

this nature are developed in chapter four. Given that these studies

deal with the type of programs programmers write every day, they are

in some sense of greater importance to the practitioner of software

testing than the theoretical studies, even though the results derived

are not formal but are only empirical. This schism between

theoretical and empirical studies appears to be unreconcilable, and

this dichotomy is reflected in the arrangement of this thesis.

Although distinctly different, both types of studies are lmportant in

advancing our understanding of the process of program testing.

1.2 Error seeding, circuit theory and other metrics

it has been observed that, in its application, the mutation

analysis method bears a certain superficial resemblance to the error

seeding method of Mills [69] (also called "bebugging' by Glib [36]).

To motivate this method, Mills cites Feller's well known text on

statistics [26]:

Suppose that 1000 fish are caught in a lake and marked by
red spots and released. After a while a new catch of 1000
fish is made, and it is found that 100 among them have red
Spots... We assume naturally that the two catches may be
considered as random samples from the population of all fish
in the lake... These figures would justify a bet that the
true number of fish lies somewhere between 8500 and 12,000.
[pages 43-44]

ie vy:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

In error seeding the red fish correspond to artificially inserted

errors. Given that a certain number of errors are discovered during

testing, the ratio of artificial to natural -rrors that have been

uncovered should (in theory) give some indication of the number of

natural errors that remain in the program.

There are several points that can be raised here. First, note

carefully the range of numbers given in the text from Feller; few

software projects are large enough to contain 10,000 errors. In the

more typical range for software errors the loss of significance will

almost certainly render any estimates meaningless. Second, note the

assumption that the fish (errors) are uniformly distributed. In

software this is almost certainly not the case, since long sections of

code are often simple minded, and interspersed with short bursts of

complex, error prone computation. Since the natural errors are

unknown we also have no assurances that a seeded error will not

interact with a natural error in such a way that the effects of the

Natural error are canceled by those of the seeded error, so that the

seeded error actually disguises the natural one.

Finally, note the assumption that the seeded errors (red fish)

are identical, in terms of their distribution and appearance, with the

more general population. While we have, for large classes of programs

and programmers, some statistical ideas concerning the nature of those

errors most often produced [24, 86], in any single program the errors

are likely to be sporadic, nonuniform, and highly unpredictable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ll

Furthermore it is not clear how this statistical information can be

used to generate artificial errors with the desired properties; if a

large number cf very subtle errors are caused by the programmer's

using a wrong variable name this does not imply the converse, that a

randomly changed variable name will result in a subtle error. In fact

the experiments to be discussed in chapter four would lead us to

believe that most of these errors would be quite obvious. At least

one study in error seeding [23, 47] reached exactly this same

conclusion, namely that the seeded errors were much easier to detect

than the natural ones. It would seem that generating artificial

errors with the same features and likelihood of detection as natural

ones would be an intractable problem.

In mutation analysis we need assume nothing about statistical

distribution of the errors in a program. Mutants are not examples of

potential errors; they merely question whether the test data for a

program is sensitive to changes in the program's structure.

Furthermore, the failure to differentiate the program from a specific

mutant points directly and unambiguously to a weakness in the test

data. In error seeding, even assuming all the seeded errors are

discovered, no such information is available.

It is mentioned by Girard and Rault [35] that the error seeding

technique can be used to "assess the 'detecting power' of test cases

generated randomly." This is similar to the goal of mutation analysis,

but it does not avoid the pitfalls of error seeding described here.

a
2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Mutation analysis is much more closely related to the classical

method for detecting logical faults in digital circuits. Many

physical faults, such as short or open circuits, manifest themselves

on a logical level as circuit lines being stuck either in the high or

the low position. The single fault testing model [8] therefore

considers each mutant formed by assuming a single input line is stuck

and constructing test data to detect this condition. The number of

test inputs required to achieve this goal is usually minuscule in

relation to the exponential number of inputs required to test the

circuit exhaustively. Furthermore there is an assumption analogous to

the coupling effect that states that in practice single fault test

sets are relatively good for the detection of multiple faults. For

the most part, this version of the coupling effect is statistical, or

based on previous experience [1]. However a paper by Ostapko [72]

studies a device known as a programmable logic array (PLA) and shows

that for these objects a very strong coupling effect can be formally

proved.

Where mutation analysis and single fault testing differ is in

their goals. Mutation analysis is concerned with evaluating test data

and validating the initial design of a computer program. Single fault

test sets check circuit deterioration at intermittent times during the

life of a device. Otherwise the analogies between the two methods are

close.

Prior to mutation analysis there were few attempts to formulate

uf
fs
ih

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

M
o
S

metrics to measure the effectiveness of test cases. A method that

gained a certain popularity was merely to count the number of distinct

Statements executed by a collection of test cases and express this as

a percentage of the total number of statements in the

program [68, 82]. This counting technique was later strengthened to

the requirement that every predicate should take on its entire range

of possible outcomes during a test [58]. There exist now several

commercial systems that provide this type cf

information [41, 74, 82, 83]. There are even some systems that

attempt automatically to generate test cases that Satisfy these

requirements [20, 76]. Although eazily computed, the figures derived

by merely counting either statements or branches are now generally

viewed as providing too little information for an accurate judgment to

be made concerning program correctness [34, 47, 52]. As will be shown

in chapter three, mutation analysis subsumes the goals of these and

several other testing techniques.

1.3 Literature and related work

The term "paradoxes of induction" and the example of the ravens

given in section one was first used by Hempel [45]. In response to

Hempel”s paradox various solutions have been proposed in the

literature. One solution, based on Bayesian principles, seems to be

widely accepted [85]. This approach states that since non-black

objects are evidently much more common than ravens, a raven is much

more likely to provide us with a counterexample than a non-black

as

Mi
gr

p
e
e
,

te
t
r
a

:
w
s

t
e

ty

a:

Bs cat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

objects; hence the observation of a raven is more significant. On a

practical level Shortliffe [81] uses this bayesian approach in an

automated system designed to assist physicians in making decisions on

the basis of inconclusive evidence, an induction problem using past

experience as the test observations. In this case the problem is

deciding on an appropriate therapy for patients with infections.

As defined in the first section, the goal of testing is to

differentiate a program from a small set of similar programs.

Howden [51] briefly studied the notion of testing programs in the

context of a small class of alternatives (which he termed the model

set). His framework was much more highly structured than that of the

present work, and his idea still seemed to be that test cases provided

cirect evidence for the program's being correct, rather than giving

reasons for ruling out alternatives in the model. Ina later

work [55] he again approached the testing problem from the point of

view of eliminating alternative programs. This work, although

developed independently and presented in a different manner, is in

many respects quite similar to the ideas developed in this chapter.

Reduced to its simplest form, the coupling effect asserts that

while one is guarding against simple errors, complex errors are also

detected. It has already been mentioned that a similar type of

observation is made with respect to logical devices [8, 72]. Fosdick

and Osterweil [29] have noted that the detection of data flow

anomalies (which are one form of simple error) is often a powerful

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Le
be

n

15

tool in detecting other types of errors.

Richard Hamlet has also explored the notion of testing as a

process of differentiating the given program from a set of

alternatives [42], and in fact has constructed a system to perform

this analysis [40, 41]. His framework is similar to mutation

analysis, but lacks the coupling effect; hence his system must examine

significantly more alternatives than the mutation analysis system.

Hamlet's system will be described in more detail in section 3.5.

One way to view the goal of testing is that one is attempting to

find test data that characterizes a given program. If it is possible

to construct such data, them it should be possible to go the other

way, that is, to automatically construct the program given

characteristic examples of its input/output behavior. This problem of

automatic programming has been extensively studied [4, 78, 84], but

researchers seem to devote little attention to the question of when

such characterizing data exists. Thus there seems to be little of

help here for work on program testing.

Finally, there is a large body of literature concerned with

characterizing the types of sequences that are recognizable by

machines of different complexity classes. This work typically deals

with more abstract types of machines, such as Turing machines or total

recursive programs. A second feature of this work is that it deals

with identification in the limit, that is, it assumes the presentation

3
a8 i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

of an infinite number of inputs. Although using both computers and

induction, these two assumptions prevent us from directly applying the

results developed in this manner to the problem of program testing...

Examples of this work are: Blum and Blum [5], Angluin [2], and

Kugel [62].

A
M
E

Wi
cc

an

le

Me

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

THEORETICAL STUDIES

In chapter one a metric for evaluating test cases was proposed

which, if applicable, makes an assertion which is valid only ina

statistical sense concerning the likelihood of the program being

correct. This chapter will demonstrate that in some abstract models

of computation one can use test data which satisfies the mutation

analysis metric to formally prove the correctness of programs.

To do so we must first give slightly more formal definitions to

the basic concepts introduced in chapter one: Assume we have a large

class of programs P which is our universe of discourse (examples might

be finite state acceptors, partial recursive functions, deterministic

push down automata). We are given a specific program P which is a

member of P. We will use {P} to denote the function computed by P,

but use P(X) (rather than the more verbose {P}(x)) to denote the

result of evaluating the function {P} on the input X. (The {P}

notation is due to Kleene [61]).

To ask if P is correct is equivalent to asking whether P realizes

an intended (but unknown) function F. We must of course have some

17

a
k ¥

aa nd
ws

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ee

ch

fr
at
eh

18

limited knowledge of F for the problem to be feasible. There seem to

be two general forms that this knowledge could take:

1. We have F in some inefficient or non procedural language
and the question is to decide the equivalence of the
program P and the representation of F.

2. The only knowledge we have of F is the ability to compute
F(x) for any finite number of values.

Option one seems to be too strongly tied to the form of the

representation of F, therefore this thesis will only consider option

two.

We will formalize the competent programmer hypothesis by having a

subset of P, denoted >, of programs "close" to P and assuming that P

is a member of $ and furthermore there is some member of > (though

perhaps not P) which realizes F. The mutants of P (denoted w) are a

subset of 9. In each example cited in this chapter there will be an

obvious recursive procedure which generates the mutants from the

program P. Both the sets > and w may depend upon P.

The purpose of testing is to find a finite set of test inputs,

which we shall denote D, which possess the property that if P executes

correctly on these inputs then P is "correct", that is, realizes F.

But we must also do this using only the limited knowledge of F which

has been outlined. In order to remove any extraneous details from the

problem, we define the following two notions:

Given a finite set of test cases D and a set of programs S, we say

that D differentiates P from S$ if for any program Q in S, if for each

ul
a
e

i
oe

HM
A

Sv
ea
s

pe
g

a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19 h
a
a
t

Js

ST

A
E

value x in D P(x) = Q(x) this implies {P}={Q}.

(formally, ¥QeS (¥xeD P(x) = Q(x)) => {P} = {Q})

We say that a finite set of test cases Dis adequate if it

differentiates P from $.

Given the formalization of the competent programmer hypothesis

which we are here using, an adequate set is certainly a sufficient

condition for correctness. One can argue that it is also a necessary

condition as follows: Consider testing to be a game between the

person proposing the test inputs and an adversary. Instead of a

single correct function F, the adversary keeps a set of

“possible” correct functions. Initially this set contains all the

functions realized by programs in >. Each time a request is made for

the value of F at a specific point (and remember this is the only

knowledge we have of F) the adversary chooses one of the functions in

this set, returns its value, then eliminates all functions in the set

which do not have the same value at that point. However D is

constructed, if it is not adequate then by definition there are at

least two non equivalent functions in the adversary's set. Both are

realized by programs in $, and both these programs give the same

answers on D. Only one can be equivalent to P. P being proposed as

"correct. the adversary can then produce the other program as the true

function F.

Since it is both a necessary and sufficient condition, this

notion of adequate seems to formally capture the intuitive concept of

‘ot
we
“a ok

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e
l

d
o
l
e

v
e

P
O
R

‘

20

correctness.

The coupling effect one would like to demonstrate is that any

finite set of test cases D which differentiates P trom w will also

differentiate P from $, or to rephrase, any set D which differeztiates

P from w is adequate.

First a number of easy examples will be presented which give a

feeling for the type of results we are interested in, and which set

the stage for later developments. For example, the existence of such

a set D may depend upon a careful choice of the set 0. Remember that

we allowed the set > to depend on P. For example if P is a finite

automaton and we let $ be the set of all finite automata then we know

that no matter what our set w is an adequate set of test inputs cannot

exist. On the other hand if we let > be the set of finite automata

with at most one more state than P then not only does D exist but

there is a recursive procedure to generate it [19].

It is possible to show examples where the question of whether an

adequate set exists is formally undecidable: Assume we have some fixed

Godel encoding of all partial recursive functions [77]. Let P-(x) be

zero except in the case where the partial recursive function i

converges given input i in exactly x steps, when it takes on the value

one. Each program therefore is recursive and is nonzero on at most

one input,

Lemma 1: (a) If P; is the constant function zero then
there does not exist any adequate set. (b) If P, is not the

Ss
ao

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BL

{U
LE

A
y

e
e

21

constant function zero, then any set which contains the input

which causes the program to be nonzero is adequate, and no
other set is adequate.

Proof:(a) Given any finite set D, we can find a recursive program

which halts ir some number of steps not contained in D, and therefore

D fails to differentiate these two programs. (b) Let X be the input

which causes P; to be nonzero. If P; 1s nonzero, then Pj=P;.

Otherwise it is obvious that Pi7P 5. If a set D does not contain X,

then the same argument used in part (a) shows that D cannot be

adequate.

Note that for any P;, there exists an input X for which P;

returns a nonzero value if and only if the recursive function i halts.

Theorem 2: If for an arbitrary program P. one can decide
whether there exists an adequate set, one can tell whether the
partial recursive function i will halt on input i.

Since the latter problem is undecidable [77], so is the question

of whether an adequate set exists.

2.1 General remarks on adequate test sets

In this section we will only be interested in situations where an

adequate set is known to exist. Given this assumption, there are two

further questions we might ask.

1. Does there exist a recursive procedure to recognize such a
set?

2. Does there exist a recursive procedure to generate such a
set?

It is possible to make some very general observations, for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w
T

r
e
t
 e

R

22

o
t
h

‘
he
t
c
e
e

ay

example for any finite set of programs there always exists an adequate

set D, hence the major question is whether it can be generated or

recognized. If one assumes all programs are recursive one can prove

the following two general theorems. Assume, without loss of

generality, that the inputs to the programs consist of a single

positive integer.

Theorem 3: There exists a procedure to generate an
adequate set if and only if there exists a procedure to
recognize such a set.

proof: Notice that any set which contains an adequate set is

itself adequate. If we have a procedure to recognize an adequate set

then we can construct a procedure which generates such a set merely by

repeatedly asking if the set composed of the uumbers 1 through N is

adequate for larger values of N. Since some set must eventually be

adequate, this process must eventually halt.

On the other hand if we have a procedure to generate an adequate

set then to recognize another set as adequate one merely asks if the

second set divides $ into the same two groups as the generated set

dces.0

Theorem 4: There exists a procedure to generate a set D

which differentiates P from a set of programs S$ if and only if
the equivalence problem for P and each program in S is
decidable.

proof: If we can generate such a set D then to decide the

equivalence of P and any element in $ is merely a matter of running

both programs on each member of D and checking that the two answers

7
G
h
e
t
l
i
n

d
o
t

er
s

.
.

be
ii
e

P
e

E
R

U
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L
a
s

ee
e

ey

S
e

23

agree.

On the other hand, if one can decide the equivalence of P and any

program in § then divide the set S into two parts: those equivalent to

P are ignored. For those programs not equivalent to P dovetail all

inputs until we find a value on which the two programs disagree.

Since we know the programs are not equivalent this procedure must

eventually halt with a set of test cases D which is by definition

adequate.

Theorem 4 formalizes the comment made in chapter one that the

problem of deciding the equivalence of a program and its mutarts is a

major obstacle in theoretical studies. It might seem that the results

of theorem 4 are discouraging, since the equivalence question for most

commonly studied language classes are undecidable [50]. There seem to

be two possible methods to circumvent this impasse:

1. Carefully define $ so that the equivalence problem is
decidable.

2. Merely assume that we have a procedure to decide
equivalence, thus avoiding the question.

To pursue the first solution would lead us far into language

theoretic issues which are totally removed from the problems of

testing. Therefore in all the examples in this thesis I have chosen

the second solution.

0

“st

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

2.2 Decision Tables

Decision Tables” are a highly structured way of describing

decision alternatives. Such tables are chiefly used in business and

data processing applications [70, 75], although they can also be used

to organize test data selection predicates [37].

To form a decision table we need a set of conditions, a set of

actions, and a table composed of two parts. Entries in the upper part

are from the set {YES, NO, DON'T CARE} (denoted Y, N, and *); entries

in the lower table are either DO or DON'T DO (denoted X or 0). Each

column in the matrix is called a rule. An example with four rules is

shown in figure 2-1,

condition 1
condition 2
condition 3

condition 4 m
e

m
e

H
H

+

K
D

%
K
K

S
t

we

+
S
w

action l X X O X

action 2 X 0 0 0

action 3 0 0 X X

Figure Z-i: A typical decision table program

To execute the program on some input the conditions are first

Simultaneously evaluated, forming a vector of YES, NO entries. This

vector 1s then compared to every rule. If the vector matches any rule

the indicated actions are performed. It is assumed that either the

actions are commutative or there is a given order of their

*This work was originally published in the proceedings of the 1978
Johns Hopkins Conference on Information Sciences and Systems [12].
The presentation given here has been greatly simplified and expanded,

Vi
ck

Th
t
i
c
e

.
.

te
e

e

e
o
,

Me
e

y
e
r
,

a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“ 25

application. If for each feasible input there is at least one rule

that can be satisfied we say the decision table is complete. We say

it is consistent if there is at most one rule [70]. We will assume

the program under test is consistent. We can also assume it is

completes since an incomplete decision table can always be turned into

a complete one by adding additional actions which merely return an

error flag and additional rules which are satisfied by the previously

unmatched inputs.

We will also assume that no two rules specify exactly the same

set of actions. We do this with little loss of generality since two

such rules can be combined into a single rule with at most the

addition of one new condition.

Given a decision table program P let > be the set of ail

consistent programs having the same conditions and actions as P. This

means members of $ differ from P only in the table portions, or by

having a different number of rules.

The mutants (w) of P will be those members of > which are formed

by taking a single * entry and changing it into a Y and a N entry»

respectively. If P is consistent then all the mutants will be

consistent. Some of these mutants may be equivalent to P. The mutant

which changes position j in rule i from a * to a Y is equivalent to P

only if it is impossible for any input to satisfy rule i and not

Satisfy condition j.

et
ei
nt
e

ae
WH
 A
T
T

e
e
,

ca

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

There are two mutants for every * entry in P. This means there

are no more than 2nm mutants, where n and m are the dimensions of the

table. Each mutant requires at most a single test case to

differentiate it from P. Even though there are potentially 2°

different inputs, an adequate mutation set need only have at most 2nm

inputs.

We will make the following assumptions:

1. The decision table P is both consistent and complete, and
all members of > are consistent.

2. Given any program in >, if we are given an example of
input/output behavior we can determine which rule was
applied to produce the output from the given input. [In
particular this implies that no two rules specify exactly
the same set of actions.

3. There exists at least one input which satisfies each rule
in P,

4. It is possible to decide the equivalence of P and any
member of w.

The results given here will demonstrate that any set of inputs

which differentiates P from w in fact differentiates P from >. Assume

we have such a set D. Assume that each rule in P is satisfied at

least once by some member of D, adding test inputs if necessary to

meet this condition. We can initially fail to meet this condition

only if there are some rules which do not contain *'s. Note that we

could have guaranteed the satisfaction of every rule with mutants if

we also mutated the action matrix, as was done in the original

psper [12]. The present exposition seems to be simplified without

Sacel
by rd
ry
it gs an
Ld

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
e
e

s
e

f

ae
,

27

loss of generality by the elimination of this step.

Given any program Q in $, if for each x in D P(x) = Q(x) then we

will say Q tests equal to P. Since each rule in P has a unique set of

actions by a simple counting argument we know that if Q tests equal to

P then for each rule in P there is a corresponding rule in Q with

exactly the same actions. Using this fact, the following theorem can

be demonstrated:

Theorem 5: If D differentiates P from w and Q tests
equal to P, then for each rule in P the set of inputs
satisfying the corresponding rule in Q is strictly larger than
that of P.

proofs First note that it is not possible for a rule to have a Y

entry in P and for the corresponding rule in Q to have an Ny, or vice

versa. If this were so no data which satisfied the rule in P could

satisfy the rule in Q.

Now consider each * entry in P. There are two cases. If the

change which replaces this * by a Y (the same argument holds for N) is

equivalent, this means the conjunction of the other conditions implies

a YES in this position. In this case it doesn't matter whether the

corresponding rule in Q has a Y or a * (and these are the only two

possibilities) this change cannot contribute to decreasing the size of

the set of inputs accepted by the rule in Q.

On the other hand if this change is not equivalent, D contains

points which while satisfying the rule both satisfy and fail to

B
R

ee,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we
it

ga
t

Ta
r

EA
D

28

satisfy this particular condition. Both these must be accepted by the

same rule in Q. Therefore Q must also have a * in this position.

The only remaining possibility is that some rule in P has a Y (or

N) and the corresponding position in Q has a *. This strictly

increases the size of the set of inputs accepted by this rule, giving

the result.

Theorem 6: If test data (D) executes every rule and
differentiates P from w, then D differentiates P from 9.

proof: Let Pi be the set of inputs accepted by rule i in P.

Since P is consistent, the Pi are disjoint. Since P is complete, they

cover the entire space of inputs. Each corresponding rule in Q must

accept at least the set accepted by the rule in P. Since Q is

consistent, it can satisfy no more. 0

2.2.1 Extensions and restrictions

Notice the assumption that P is complete is not used in the proof

of theorem 5. This might lead one to suspect that this restriction

could be removed. To see that this is not the case, consider the

three decision tables each consisting of a single rule, shown in

figure 2-2.

P M Q
condition one Y Y *

condition two * Y Y

Figure 2-2: Example showing completeness is
necessary in theorem 6

Assume the satisfaction of condition one implies the satisfaction

of condition two. This means the program P is equivalent to its

Fa
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29 eo
L
i

at
o

wi
de

ts

e
mutant M, therefore the only test case we will generate will be one

which merely executes the rule (say YY). Now consider the program Q.

‘Theorem 5 states that any input which satisfies the rule in P must

satisfy the rule in Q, and indeed this is the case. The converses

however, is not true, as the input NY shows.

Testing an inconsistent program is rather like looking for

missing path errors (see section 4.2.3), in that for both cases the

testing method must attempt to guess at something which should be, but

is not, contained in the program. Given the great deal of uncertainty

involved in this, it should not be surprising that the difficulties

involved in testing these programs are considerable.

We can, however, replace the assumption the P is complete with

two weaker hypotheses: 1) that all the conditions are independent,

that is, that all 2" possible inputs are feasible. (Notice this

implies that none of the mutants constructed in the last section can

be equivalent). and 2) that no program in $ can have more rules than

are lu P.

We can create a new type of mutant, by replacing each Y or N

entry with a *, as long as by doing so we do not create an

imccnsistent program. Notice that if P is complete, all such mutants

create inconsistent programs.

Theorem 7: If test data (D) executes every rule and
differentiates P from w, then D differentiates P from 9.

eS 8
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 pg

e
y

We
s
s
a
k
e

proof: Theorem 5 still applies, and in fact can be strengthened,

since there are no equivalent mutants of the first type. This means

that for every * entry in P, the corresponding position in Q must also

have a *. The only possible way to have an inequivalent program Q is

for there to be some input X which satisfies rule j in Q but no rule

in P, Let rule i be the rule in P with the same actions as rule j (a

simple counting argument shows such a rule must exist). The only

possible way for X to satisfy rule j and not rule i is for there to be

a * entry in rule j and a Y (or N) in rule i which X fails. This

means that the mutant which effects this same transformation cannot

produce an inconsistent program (if rule i conflicted with some other

rule in P it would have to conflict with the corresponding rule in Q).

But therefore there must be some input which differentiates it from P.

This means there is some input which is is rejected by i but satisfies

the mutated rule. But this input must also satisfy rule j,

contradicting the fact that Q tests equal to P.O

Notice that if the test sets used in theorem 6 and 7 exist they

are very small. As noted earlier the number of test cases is linear

in the size of the program, even though the number of inputs may be

exponential.

Recall that theorem 4 implied we could form an adequate mutation

set only if we could decide equivalence of P and each of its mutants.

Obviously there are some cases where this is true, for example when

all the conditions are independent and therefore none of the mutants

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

are equivalent. We can easily find examples where this is not true.

This is the case whenever we have two conditions where the question of

whether the first condition implies the second is undecidable.

condition 1 ¥
condition 2 *

Fieure 2-3: An example where equivalence is undecidable
if the conditicns interact

We can replace the * in the condition 2 row with a Y if and only

if condition 1 always implies condition 2. In this fashion using any

classic undecidable problem [50] we can construct a program with the

property that the equivalence question for it and one of its mutants

is undecidable.

An assumption made in proving theorem 6 was that each rule had a

distinct set of actions. We avoided the question of what happens if

this is not the case by using the device of combining two such rules

into one and adding a new condition entry. But this is simply moving

part of the table into the condition entries, which we then proceed to

assume are correct. To see that there are errors which might not be

detected in this manner consider the two decision tables shown in

figure 2-4. The two programs are not equivalent (they process the

input NNYN differently) yet they agree on the set of test inputs

{NNYY, NYYN, YYNN, YNNY, NNNN, NYNY, YYYY, YNYN}, which is sufficient

to eliminate all the mutants of program 1.

It 1s not clear whether the restriction to rules having distinct

actions can be replaced with a weaker assumption, or if there is any

By
e

ti
s

io
s
v
i
e
l
e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

S PROGRAM 1 PROGRAM 2
a N¥NY zk kk &k &*

k k * * N Y WN Y

Y WN Y * *& * &*

* & & * YNN Y

X X¥ O O Xx X O O

0 0X X OO KX ZX

Figure 2-4: A case not covered by the mutation test

test method which can be used to demonstrate correctness in this case,

other then trying all 2" possible inputs.

2.3 LISP programs

This section will consider programs written in the subset of LISP

containing the functions CAR, CDR and CONS and the predicate ATOM*. A

similar class of programs has been studied previously [44, 78, 84].

Associated with each S-Expression X we can construct a binary

tree, which represents the structure of X. Call this tree the

projection of X.

We will define a relation <= as follows. Given two S-expressions

X and Y we will say X <= Y if the projection of X is equal to the

intersections of the projections of X and Y.

We will make the convention that all S-Expressions (from now on

we will use the less clumsy expression point) have unique atoms.

Certainly if two programs agree on all such points they must agree on

* . - . . .
An earlier version of this section appeared in a paper presented at

2 workskcp on software testing and test documentation [13]

SE
3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bo
ot
s

m
a

2
Re
ne

T
R
S

33

- all inputs, hence we can do this without loss of generality.

2.3el Straight line programs

We will call a LISP program a selector program if it is composed

of just CAR and CDR. We will inductively define a straight line

program as a selector program or a program formed by the CONS of two

other straight line programs.

Theorem 8: If two selector programs return identical

values on any input for which they are both defined, they must
compute identical values on all points.

proof: The only power a selector program has is to choose a

subtree out of its input and return it. One can view this as simply

selecting a position in the complete CAR/CDR tree and returning the

subtree rooted at that position. Since there is a unique path from

the root to this position, there is a unique predicate which selects

it out. Since atoms are unique by merely observing the output one can

infer the subtree which was selected. QO

We will say a straight line program P(X) is well formed if for

every occurrence of the construction CONS(A,B) it is the case that A

and B do not share an immediate parent in X. The intuitive idea of

the definition should be clear: a program is well formed if it is not

doing any more work than it needs to. Notice that being well formed

is an observable property of programs, independent of testing.

We can define a measure of the complexity of a straight line

program as follows:

see

De oe

as
® :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wi
e
p
i
t
a

To

a
t
e
e

A
v
e
n
a

B
r
o
t
!

34

1)The CONS-depth of a selector program is zero.

2)The CONS-depth of a straight line program
P(X) = CONS(P1(X),P2(X))

Fr O23

1+MAX(CONS-depth(P1(X)) ,CONS~depth(P2(X))).

Lemma 9: If two well formed selector programs compute
identically on any point for which they are both defined, then
they must have the same CONS-depth.

proof: Assume we have two programs Pl and P2 and a point X such

that P1(X) = P2(X) yet the CONS-depth(P1l) < CONS-depth(P2). This

implies that there is at least one.subtree in the projection of P2

which was produced by CONSing two straight line programs while the

same subtree in P1(X) was produced by a selector. Sut then the

objects PZ CONSed must have an immediate ancestor in X, contradicting

the fact that P2 was well formed.

Theorem 10: If two well formed straight line programs
agree on any point X for which they are both defined, then
they must agree on all points.

proof: The proof will be by induction on the CONS-depth. By

lemma 9 any two programs which agree at X must have the same

CONS-depth. By theorem 8 the theorem is true for programs of

CONS-depth zero. Hence we assume it is true for programs of

CONS-depth n and show the case for ntl.

If program Pl has CONS-depth ntl then it must be of the form

CONS(P11,P12) where Pll and P12 have CONS-depth no greater than n.

Assume we have two programs Pl and P2 in this fashion. Then for all

Ys

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

yi
n

a
i
s

Bg

T
e
a

35 4
P1(Y) = P2(Y) LFF

CONS (P11(¥),P12(Y¥)) = CONS(P21(Y),P22(Y)) IFF
P11(Y) = P21(Y) and P12(Y) = P22(yY)

Hence by the induction hypothesis Pl and P2 must agree for all Y.

One can easily generalize theorem 19 to the case where we have

multiple inputs. Recall that each atom is unique, therefore given a

vector of inputs we can form them into a list and the resulting

structure will be a single input with unique atoms. Similarly a

program with multiple arguments can be replaced by a program with a

single argument by assuming the inputs are delivered iz the form of a

list, and replacing references to argument names with selector

functions accessing the appropriate positions in this list. Using

this construction one can verify that if theorem 10 did not hold in

the case of multiple arguments, we could construct two programs with a

Single argument for which it did not hold, giving a contradiction.

fo summarize this section, for any well formed straight line

program, any unique atomic point for which the function is defined is

adequate to differentiate the program from all other well formed

straight line programs.

2.3.2 Recursive programs

The type of programs studied in this section can be described as

follows:

The input to the program will consist of selector variables,

“on
fea

a
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
i a

P
W
N
S
 AR

36

denoted x» .-. X, and constructor variables, denoted y;» ««. Yp: A

program will consist of program body and a recurser. A program body

consists of n statements, each statement composed of a predicate of

the form ATOM(t(x;)) where t is a selector function and x; a selector

variable, and a straight line output function over the selector and

constructor variables. A xecurser is divided into two parts. The

constructor part is composed of p assignment statements for each of

the p constructor variables where 5 1s assigned a straight line

function over the selector variables and Ys. The selector part is

composed of m assignment statements for the m selector variables where

x; is assigned a selector function of itself.

The example in figure 2-5 should give a more intuitive picture of

this class of programs.

Program P(x] 900+ XsYj see eYp) =

IF p, (x1) THEN £1 (xy 200K peY] 20 0¥p)

ELSE IF po(xj9) THEN £5(xys-+-%,syy2+0¥,)

ELSE IF Py lXip) THEN £ (xy 200 Kp oVy 900 0¥p)

ELSE

y, 35 81 (yy 9X 9---X,)

a Bp l¥peXy2++ +)

xy := hy (x,)

x = biG)
P(x] 900 Xp2¥] 20+ °¥ 5)

Figure 2-5: An example recursive program scheme

B
A
L
A

e
e

P
e

th
in
s
b
o
d
a

de
,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

m
y

N
e
e
s

.
Er
:

=

-
ta
le
s

i
o
g

Given such a program, execution proceeds as follows: Each

predicate is evaluated in turn. If any predicate is undefined so is

the result of the execution, otherwise if any predicate is TRUE the

result of execution 1s the associated output function. Otherwise if

no predicate evaluates TRUE then the assignment statements in the

recurser and constructor are performed and execution continues with

these new values.

the following restrictions we be assumed:

1. All the recursion selector and recursion constructor

functions must be non trivial (i.e. of depth one at least,
is ruled out). so that Ki; 3= x;

2. Every selector variable must be tested by at least one
predicate.

3. There is at least one output function which is not a
constant.

4. (freedom) for each 1<=k<=n and m>=0 there exists at least
one input which causes the program to recurse m times
before exiting with output function k.

9. Each constructor variable appears totally in at least one
output function.

Let > be the set of all programs with the same number of selector

and constructor variables as P, the same number of predicates, and

output functions no deeper than some fixed limit olimit. Our goal is

to construct a set of test cases (D) which differentiates P from all

members of $. The mutants of P (w) will be defined as they become

important to the proof. The argument will proceed in several small

steps:

B
i
a
s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

In section 2.3.2.1 basic definitions are given and some tools

which will be used in later sections are derived. Section 2.3.2.2

shows how to use testing to bound the depth of the selector functions.

In section 2.3.2.3 we narrow the form of the selector functions still

further, finally in section 2.3.2.4 showing they must exactly match P.

Section 2.3.2.5 deals with the points tested by the predicates, and in

section 2.3.2.6 the main theorem is given. Section 2.3.3 concludes

with some comments on the difficulty of proving a program correct in

this manner.

2.3.2.1 Definitions and tools

Capital letters from the end of the alphabet (X, Y and Z) will be

used to represent vectors of inputs. Hence we can refer to P(X)

rather than P(X] see eK ys¥y sees s¥p)- Similarly we will abbreviate the

Simultaneous application of constructor functions by C(X) and

recursion selectors by R(X).

Letters from the start of the alphabet will be used to represent

positions in a variable, where a position is defined by a finite

CAR-CDR path from the root. When no confusion can arise we will

frequently refer to "position a in X" whereby we mean position a in

some x; or y; in X. We will sometimes refer to position b relative to

position a, by which We mean to follow the path to a and starting from

that point follow the path to b.

The depth of a position will be the number of CARs or CDRs

Pa

ze

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

ab
t

uh

& necessary to reach the position starting from the root. Similarly the

depth of a straight line function will be the deepest position it

references, relative to its inputs. Let maxd be the maximum depth of

any of the selector, constructor, recurser or output functions in P,

The size of an input X will be the maximum depth of any of the

atoms in X.

We can extend the definition of <= to the space of inputs by

saying X<=Y if and only if all the selector variables in X are smaller

than their respective variables in Y, and similarly the constructor

variables.

We will say Y is X "pruned" at position a if Y is the largest

input less than or equal to X in which a is atomic. This process can

be viewed as simply taking the subtree in X rooted at a and replacing

it by a unique aton.

If a position (relative to the original input) is tested by some

predicate we will say that the position in question has been touched.

Call the n positions touched by the predicates of P without going into

recursion the primary positions of P.

The assumption of freedom asserts only the existence of inputs X

which will cause the program to recurse a specific number of times and

exit by a specific output function. Our first lemma shows that this

can be made constructive.

¢
B
o
i

ie

ei

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 11: Given m>=0 and 1<=i<=n one can construct an
input X so that P(X) is defined and when given X as an input P
recurses m times before exiting by output function i.

proof: Consider mtp infinite trees corresponding to the mp

input variables. Mark in BLUE every position which is touched by a

predicate function and found to be non-atomic in order for P to

recurse m times and reach the predicate i. Then mark in RED the point

touched by predicate i after recursing m times.

The assumption of freedom implies that no blue vertex can appear

in the infinite subtree rooted at the red vertex, and that the red

vertex can not also be marked blue.

Now mark in YELLOW all points which are used by constructor

functions in recursing m times, and each position used by output

function 1 after recursing m times. The assumption of freedom again

tells us that no yellow vertex can appear in the infinite subtree

rooted at the red vertex. The red vertex may, however, also be

colored yellow, as may the blue vertices.

It is a simple matter to then construct an input X so that

1. all BLUE vertices are interior to X (non atomic),

2. The RED vertex is atomic, and

3. all YELLOW vertices are contained in X (they may be atomic)

Notice that the procedure given in the proof of lemma 11 allows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one to find the smallest X such that the indicated conditions hold.

If a is the position in question we will call this point the minimal a

point. Freedom implies no point can be twice touched, hence the

minimal a point is a well defined concept.

Given an input X such that P(X) is defined, let F,(Z) be the

Straight line function such that Fy(X) = P(X). Note that by theorem

10, Fy is defined by this single point.

Lemma 12: For any X for which P(X) is defined, one can
construct an input Y with the properties that P(Y) is defined,
Y >= X and Fy * Fy. x Y

proof: Let m and i be the constants such that on input X, P

recurses m times before exiting by output function i. Let the

predicate Pp; test variable Xi°

There are two cases. First assume f is not a constant function.

Now it is possible that the position which would be tested by P; after

recursing m+] times is an interior position in X, but since X is

bounded there must be a smallest k > m such that the predicate

pi(BM(x,)) is either true or undefined. Using lemma 11 we can find an

input 2 which causes P to recurse k times before exiting by output

function i. Let Y be the union of X and Z. Since Y >= Z, P must

recurse at least as much on Y as it did on Z. Since the final point

tested is still atomic P(Y) will recurse k times before exiting by

output function i. Since £ (R(X) ,C™(Y)) z £; (RE(x),c*(x)) we have

om
ae
wet

pe

8
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

The second case arises when f; is a constant function. By

assumption 3 there is at least one output function which is not a

constant function. Let f; be this function. Let the predicate P;

sey
oo

wr
ar
-p
ym
en
an
 epe
e

pupp
ies

prema

FO

IF
T

SA
A
E
T
T

EI
NE

RPE

test variable X50 The same argument as before goes through with the

exception that is may happen by chance the P(Y) = P(X) (i.e. PCY)

returns the constant value). .In this case increment k by 1 and

perform the same process and it cannot happen again that P(Y) = P(X).

0

T
R
O
I
S

To
rr
e

sa
e

og

P
E
S

O
e

e
y
e

ar
e

Lemma 13: If P touches a location 4, then one can
construct two inputs X and Y with the properties that P(X) and
PCY) are defined, furthermore for any Q in $, if P(X) = Q(X)
and P(Y) = Q(Y) then Q must touch a.

ae
 y

re
te

e,

proof: Let Z be the minimal a point. Using lemma 12 we can

Te
t

re
ge

an

s
p
t
e
c
t
i
e

a
n
y

ree

a construct an input X such that P(X) is defined, X >= Z and Fy # Fy.

Let Y be X pruned at a.

T
P
I
T

M
E
R
E

e
r

e
e

First notice that P(Y) is defined and Fy = Fz. To see this note

that every point which was tested by P in computing P(Z) and found to

be non atomic is also non atomic in Y. Position a is atomic in both,

and if the output function was defined on Z then it must be defined on

ST
RE

ET

S
o
r

re
 a
e

ee

Na

ee

Y which is strictly larger.

Suppose given input Y a program Q recurses m times before exiting

mR
 T
M
M

A
S

t
e
s

evo
a
v
e
s

om
“a

ri
n

by output function i, but does not touch position a. Since X is

Strictly larger than Y, on X Q must recurse at least as much and at

least reach predicate i. Let the position in Y which was touched by

predicate i and found to be atomic be b. Since position b is not the

KY
AT

P
R
T

T
S
C

r
e
y

e
r
e
s

r
n
p

y
e
n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

game as position a, position b is also atomic in X. Therefore given

input X Q will recurse m times and exit by output function i. But

Ty

E
S
A
s

to
y
S
a
o

Z
2

5
1

x
A
O
E

S
e
a

Pe
R
O

LE

OS
T
a
t

ey
e

oe

this impiies by theorem 10 that F, = Fy, a contradiction. D

2e3e2e2 Bounding the depth of the recursion and predicate functions

Our first set of test inputs use the procedure given in lemma 13

to demonstrate that each of the n primary positions in P are indeed

. touched.

Next, for each selector variable, use the procedure given in

lemma 13 to show that the first ntl positions (by depth) must be

touched. Let d be the maximum size of these m(n+l) positions. (We

: can assume d is at least 3 and is larger than both 2*maxd and olimit.)

Lemma 14: If Q is a program in $ which correctly
a processes these 2m(n+1) points, then the recursion selectors

1 of Q have depth d or less.

Sp
re
e

ri
ge

e
wo
re

proof: Study each selector variable separately. At least one of

the n+l points touched in that variable must have been touched after Q

had recursed at least once. If the recursion selector had depth

greater than d the program could not possibly have touched the point

in question. [

Lemma 15: If Q is a program in $% which correctly
processes these 2m(n+l) points, then none of the selector
programs associated with the predicates of Q can have a depth

greater than d. s
e
i
n

er

m
n
t

proof: At least one of the inputs causes Q to recurse at least

once, hence all the predicates must have evaluated FALSE and therefore

Se

tr
p

pr
e
mo

pe
s

g
ae

e
e
n

a
g
e
,

were defined. If any of the predicates did have a depth greater than

BR
S
S
P
I

EE
 E
Sr
eM
E
sr

or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
 ¢.

[
a
a

44 wt
, oo

T
e

e
R

Tp

Sy
en

pe
n

r
a
t
h

d, they would have been undefined on this input. QO

P
P
A

Te
y

o
a
t

T
E
E
P
E

Since d>olimit we also have that d is a bound on the output

functions of Q.

We are now in a position to make a comment concerning the size of

the points computed by the procedure given in lemma 13. Let a be the

maximum depth of the "relative root" (the current variable positions

relative to the original variable tree) at the time position a is

touched. We know the minimal a tree is no larger than mtmaxd. This

being the case to find an atomic or undefined point (as in the

procedure associated with lemma 12) we will at worst have to recurse

to a point mmaxd deep, but no more than m+maxd+d deep. Hence neither

of the two points constructed in lemma 13 need be any larger than

S
N
P
s

roy.
re

wo

:
*

mt2*maxd+d. This fact will be of use in proving lemma 18.

2.3.2.3 Narrowing the form of the recursion selectors

Say a selector function f factors a selector function g if g is

e equivalent to £ composed with itself some number of times. For

example CADR factors CADADADR. We will say that f is a simple factor

of g if £ factors g and no function factors f, other than f itself.

Denote by 85 i=1,..,m the simple factors of r;» the recursion

nT

Selector functions. That is, for each variable i there is a constant

m; so that the recursion selector rs is s; composed with itself m;

B
a
r
e
r

p
e

we
ep

times. Let q be the greatest common divisor of all the m's. Hence

the recursion selectors of P can be written as S% for some recursion

<
N
A
O
T

ae

W
E
 r
e
r
e
 o
s

e
R
E

eT

S
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
selector S.

"
P
M
I

e
e

Ta,
a
e

EL
SE

TE

ATE
 S
PT
 R

E
NTI

We now construct a second set of data points in the following

S
a
t
e

fashion: For each selector variable x;, let a be the first position

s
e
m
a
n

te

AT
T
M
T
T

T
S

touched with depth greater than 2d* in Xie Using lemma 13 generate

two points which demonstrate that position a must be touched. Let Dp

I
O
P

AT
T
P
e
r
r
e
t

be the set containing all the (2n + 2m(ntl) + 2m) points computed so

s
p
r
e
e
s

.

E far.

_ Lemma 16: If Q is a program in $ which computes

L correctly on Dp then recursion selector i of Q must be a power

: of s;. i

a
r
e
n
a
c
c
e
n
s

proof: Assume the recursion selector of x; in Q is not a power of

Si6 Recall that the depth of the selector cannot be any greater than

d. Once it has recursed past the depth d it will be in a totally

different subtree from the path taken by the recursion selector of P.

T
E
S

ee
e
y
g

ee
ns

qe

rc
ta

ri
ne

s
se
re

ye
y.

Since d>3 it is required that Q touch a point which has depth at

B
w

least 3d. Q must therefore touch this point prior to recursing to the

SO
T
E
e

depth d. By lemma 14 this is impossible. OU

T
e
e

ae

7

We can, in fact, prove a slightly stronger result.

Lemma 17: If Q is a program in $ which computes
correctly on D, then there exists a constant r such that the

recursion selectors of Q are exactly S*.

SO
LO
S
L
T
E
 p
r

p
e
e
s

proof: We know by lemma 15 that the recursion selectors of Q must

be powers of S;- For each selector construct the ratio of the power

of s; in Q to that in P. Lemma 17 is equivalent to saying that all

these ratios are the same, Assume they are different and let x; be

f

E
r

[
E
:

Ee

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

4
S
e

the variable with the smallest ratio and x, the variable with the

CD
PE
S
T
R
A
T
E
S

TI
N,

e
e

TE

e
y

a
e

largest.

Let X and Y be the two inputs which demonstrate that a position a

of depth greater than 2d* in Xs is touched. Both P and Q must recurse

at least 2d times on these inputs. In comparison to what P is doing,

P x: is gaining at least one level every time Q recurses. By the time

Xs is within range to touch a, x; will have gone 2d levels too far.

~ Since 2d>d+2*maxd, x5 will have run off the end of its input, hence Q

cannot have received the correct answer on X and Y. OC

Lemma 13 gave us a method to demonstrate a position is touched.

We now give the opposite: a way to demonstrate a position is not

touched.
t

Lemma 18: If Q is a program in $ which computes
correctly on all the test points so far constructed, then for
any position a not touched by P one can construct two inputs X
and Y so that if P(X)=Q(X) and PC(Y)=QC(Y) then Q does not touch
ae

proof: Let position a be in variable x;- Let m be the smallest

number such that after recursing m times recursion selector i is

deeper than the depth of a. Let h be the maximum depth of any

recursion selectors at this point. Let X be the complete tree of

: depth ht2d pruned at a.

There are two cases: If P(X) is not defined, assume Q touches a.

The relative roots of Q can not be deeper than htd at the time a is

ED
N

fe
et

ye
e

touched. Hence the minimal a point is not any deeper than ht2d.

P
e

A
R
I

P
T
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Since X is strictly larger than the minimal a point Q(X) must be

defined, which contradicts the fact that P(X)=Q(X).

The second case arises if P(X) is defined. Using lemma 12,

construct on input Z>=X such that Fy#F,. Let f be Z pruned at a.

F
E
T
T

S
P
A
D
E
S

TE
RT
 T
O

F
E
O

T
e

Te
So
r

RE
e
e

ge
 a

‘

Assume Q touches.a. Since Y>=X, Q(Y) must be defined, so assume P(Y)

is defined. By construction Fy=F>7F,. But since Q touched a, then

Fy=Fy» which is a contradiction. 0

F
R
E

TE

Te
R
T
E

p
e

t
e

oe

2.36224 the recursion selectors must be the same as P

If Q is a program in which executes correctly on Dg then from

Pr

r
c

te
e

lemma 17 we know the recursion selectors of Q must be s* fcr some

constant r. From lemma 14 we know the depth of S is no larger than d,

hence there are at most d/(depth of S) possible alternatives. For

each possible r (not equal to q, that is the value in P), construct a

mutant program P* which is equal to P in all respects but the mutant

tn

e
e
e

O
r

e
t

selectors, which are S*.

In this section we will consider test cases as pairs of inputs,

t
e
r
e

o
e

en
e

ce

e
e
e

e
e
e

generated using the procedure given in lemma 18, which return either

the values YES, saying they were generated by the same straight line

program, or NO, saying they weren't. Other than this we will not be

concerned with the output of the mutants.

RS

F
e

R
E

E
T
E

R
E
E
T

e
t

re

y
e

et

e
y
e

f If each mutant touches a point which P does not, then construct

two points (using lemma 18) to demonstrate this. If any mutant

touches only points which P itself touches, ther we will say P cannot

 ke Fs
Ye

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

T
E
A
R
S

T
e
y

CE

ae
r
e
e
d

be shown correct by this testing method. This is the first example of

testing by using mutant programs, Call this set of test inputs D).

P
E
C
T
S

M
A

E
e

sve
te

ne
y

Lemma 19: If Q is a program in $ which executes

correctly on Dy and D, then the recursion selectors of Q must

be exactly Ss‘.

P
A
T
O

te
e

M
E
T
E
R

a
y

proof: Assume not, and that the recursion selectors are S* for

some constant r#q. No matter what the primary positions of Q ares we

knew it must touch at some point the primary positions of P. It

therefore must always touch the primary positions of P relative to the
”

position it has recursed to. But therefore it must at least touch the

Lr
y
e
e

points which the mutant associated with r does. QO

2.3.2.5 Testing the Primary Positions of P

Consider each primary position separately. Assume that in some

program Q in > the position is not primary, but that it is touched

after having recursed m times. Let b be the position of a relative to

si@, This means in Q that b is primary. Now b cannot even be touched

(let alone be primary) in P because of the assumption of freedom.

Using the procedure given in lemma 18, construct two points which

demonstrate that b is not touched, Taken together, these test points

insure that the primary positions of P must be primary in any other

program.

Notice carefully that we need to make no other assumptions about

the other primary positions in Q, that is, we can treat each of them

: independently. We therefore have at most n(d/(depth of S7)) mutant

programs, hence at most twice this number of test points. Call this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

S
P
E
R

we
 X,

test set Do»

Lemma 20: If Q is a program in $ which executes
correctly on Dy» D,, and D, then the primary positions of Q
are exactly those of P.

BP
R
e
S

L
E

T
e

e
e

3
P
e
r
r
i

me

e
R

S
e

0

Notice that by theorem 10 this also gives us the following

Lemma 21; The output functions of Q are exactly those of
P.

2.3.2.6 Main Theorem

Once we have the other elements fixed, the recursion constructors

are almost given to us. Remember one of the assumptions made in the

beginning was that each of the constructor variables appears in its

entirety in at least one of the output functions. All we need do is

AT

a
y
e

ro
me

NPR
my

:

= to construct P data points so that data point i causes the program P

to recurse once and exit using an output function which contains

OR
C

tN

m
y

constructor variable i. Call this set Dz. Using theorem 10 we then

have

Lemma 22: The recursion constructors of Q must be
7 exactly those of P.

The only remaining source of variation is the order in which the

primary positions are tested. The only solution we have been able to

find here (short of making more severe restrictions on $) is to try

all possibilities. (If all the output functions are unique, this step

is unnecessary, since Dy suffices to show the order.) There are nu! of

r
t
a
' }
E
r
‘ fs
r.

E:
a

fr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

these, some of which may be equivalent to the original program. Let

Dy be a set of data points which differentiates P from all non

equivalent members of this set.

S
a

-

ca,
a
oo

i,

E
RE
Ke P
e
e w

-'
he.

i.
no

f
e
y

w
e

D Putting all of this together gives us the main theorem:

Theorem 23: Given a program P in >, there exists a
finite set of test cases which can be effectively constructed
which have the property that for any program Q in $, if Q
tests equal to P on these points, then P is equivalent to Q.

i Proof: This follows directly from lemmas 14, 19, 20, and 22.

ke Corollary: Either P is correct or no program in > realizes the

: intended function.

Corollary: If the competent programmer hypothesis holds then P is

correct.

2.303 Discussion
Theorem 23 and the restrictions which were made in section 2.3.2

in order to prove it demonstrate one very critical problem with this

! approach. These restrictions were not made because they were in any

sense natural or reasonable, but because they were necessary to the

proof. While we cannot rule out the possibility that these

restrictions could be removed or that a simpler proof could be found,

S
O
T

e
t
e
r

ey

te
en

ra
y

this does show that any such result is likely to be difficult to

s
o
s
o

discover. This severely weakens our hope that a theorem such as 23

e
e
e

ne

could be proved for a more natural class of programs. This being the

case, if one wants to analyze the type of programs which programmers

E
N
T
E

S
E
N
G

OE
Y

Ta

P
I

I
S
e

ere
We

om

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oi

are more accustomed to using the empirical approach of chapter four

must be used.

J
A
D
E

OI
)
a
g

O
y

:
See

ee
e
t

ae

eg
al
 e
e

A
o

Note that although the class of programs studied here is small,

it is not vacuous. Several examples previously studied by other

authors [44, 78, 84] can be expressed in the form used here.

: While it is known that the equivalence problem for linear

recursive schemata is decidable [64], it is not clear what

relationship this has to the present work. For one thing the programs

: studied in the section on LISP are partial, not total as is assumed in

the schemata results. Secondly while theorem 10 gives us some

knowledge about how an output was derived from a given input, we

er
e
a
y

a
r
d

p
e

e
e

e
e
t

re
e

.
.

v
s
t
e

o
e

.

cannot a priori decide, for example, how many times the program

recursed before providing this output. Finally note that, as opposed

Te
e
a
S
E
E
D
E
R
S

TRI
ES
T
e

to the finite case (theorem 4), it is not clear at all that merely

having a decidable equivalence property is sufficient to show the

f existence of a set which differentiates P from the infinite set 0.

To see that > is infinite, we point out that even with the

assumed bound on the depth of the output functions, we did not bound

the number of CONS functions they could contain, hence there are an

infinite number of programs in the set >. This is true even after we

S
I
T
U

m
e
,

Un

a
r
e

c
r
e
o

re
re

have bounded the depth of the recursion selectors and the predicate

selectors in lemma 15.

The most important aspect of this result is not the proof (which,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

7
mT

aa
h

UT
A
D

Pe

T
a
e

pe
re
n

eps
a
sn
 T

ee
ae

a

a
nc

7

T
e

N
E
S
S

E
T
E

er
es
)

in fact has rather limited applicability) but the method of the proof.

Once we have fixed the recursion selectors via test set Dp» the

remainder of the arguments are proved by constructing a small set of

alternative programs (the mutants) and showing that cest data designed

to distinguish these from the original actually will distinguish P

from a much larger class of programs. In all we constructed

f d(1/(depth of S) + n/(depth of S1)) + p + n! mutants, and proved that

test data which distinguishes P from this set of mutants actually

r distinguishes P from the infinite set of programs in >.

Finally note that although the proof of che result given here is

rather long and tedious, the end result is a procedure which is

P entirely mechanical for proving correctness. The user of such a

procedure need have no knowledge of the proof which was used to

po
r

ee
ce
cp
im
e

ae

M
e
r
 a

e

validate the method, much like the user of a timesharing system need

have no knowledge of how the operating system is implemented. This is

the direction I feel research in testing should follow: finding

mechanical methods which may be difficult to verify, but once verified

b give en easy procedure for developing good test data.

I

W
r

e
r
e

E
m
p

T
e
t
e

w
e
y

R
O
G
E
T
 E
I
T

ED

IT
Pe

c
r
e
s
s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S
E

P
E
E

I
E

E
y

f r
e

o
a

w
a
y

c
g

al
S
e
l
e

oa
t

c
t

E
e

TE

E
e

f A FORTRAN MUTATION TESTING SYSTEM

E During the summer of 1977 a system to perform mutation analysis

s on FORTRAN programs was designed and constructed. This first system

- was called PIMS, for PIlot Mutation System [11] and was implemented on

. the PDP10 at Yale University.

: The PIMS system allowed the user to test single ANSI standard

L FORTRAN subroutines. The language FORTRAN was chosen for the initial

implementation because it was (and still is) widely studied in the

testing literature, it has a fairly simple semantics with few language

i constructs, and it lends itself to considering large programs on a

module by module basis. The last consideration was important because

of the restriction to testing only single subroutines.

A second important consideration in favor of FORTRAN was the fact

that FORTRAN programs possess the important property that small

Syntactic changes usually produce only small semantic changes. A

higher level language, for instance APL, does not possess this

TT
 P
P
T
s
 e
s

ee

p
e
e
p

ig

e

property. In APL even smali syntactic changes can produce radically

different programs, hence we would expect very few of the syntax based

53

B
R
E

S
T
S

e
e

ss

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

mutants to produce useful results for APL. On the other hand, much

[CO
TES

a
T
e
r
o
n

at
or

ay

lower level languages, for example assembly code, possess this

property to an even larger extent than FORTRAN. But mutating the

SC
L

a
e

T
o
p
a
s

assembly code produces other problems; What may be a simple mutation

M
D

s
a
e

on the FORTRAN level may produce large changes in the assembly code,

for example changing an AND operator to an OR operator where these are

implemented with control structures. An even more important

i consideration is psychological; A mutant described in FORTRAN has a

quickly assimilable meaning, whereas a mutant described in assembly

e language might require a significant amount of analysis on the part of

i the human tester to decipher its consequences. Therefore in many

respects, FORTRAN was a good choice for an experimental testing

system.

ot
e

se
c
g
e
e
r
r
e
e
e
i
r
e
e

Both the PIMS system and the later EXPER system operated by

parsing the program into an internal form, which was interpreted, and

producing the mutants at the internal form level. This method was

used rather than parsing the program into assembly code for several

reasons: If the mutants were produced at the source level, it would be

necessary to recompile the program each time a mutant was to be

executed. On the other hand if the mutants were produced at the

assembly language level we would be restricted by the particular

i structure of the PDP10: machine architecture. In any case the program

would have to be parsed anyway in order to construct the mutants, so

that half the interpretive system was already necessary. In addition

PE
RE

PE

ea

RE
T

ey

P
E
T

e
e

ve
ne
er

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

T
I
R
E
:

Ye
a

SE

an interpreter based system allowed us greater control over program

execution, which was important since many of the mutants were

unstable, often resulting in infinite loops, zero divides or floating

point interrupts.

Several experiments were conducted on PIMS during the following

P
E
S
T

R
R
S
P

SO

e
e

TI

S
Y

g
p

o
e

et

et

g
r
e
y

pr
on

ow

8)
 o
e:

Tae
ee

2

TT

IN

IE
R
I
E
L

OO
ee
 E
E

year, and it quickly became apparent that the restriction to a single

hs subroutine was becoming a bottleneck. Accordingly in the spring of

b. 1978 a second mutation system, which came to be called EXPER (for

EXPERimental mutation system), was designed and built. Details of

: EXPER are described in [14, 15]. The chief language limitations in

this system were the absence of input/output statements (all

2

e
e
t

communication is through parameter and common variables), the lack of
statement functions, and the lack of complex data types. The EXPER system was used for all the studies described in chapter four.
3.1 Mutant operators in the EXPER system

The most important source of variation in the design of a system

to implement mutation analysis is the choice of those programs which

are to be considered mutants of the original program. The choice of

C
E
L
E
R
Y

E
G
E

E
T
E

EE
N

TR

I
E

F
O
T
N

N
R

Or
e

Sm
ep

ee

NTE
e
e
n
s
 oe

pe
ye
o

es

.
_

0
Se
p

oe
sy

an
:

S
a

mutants is, in effect, what characterizes the system, and two systems

which produce different mutants from the same source program may

exhibit radically different behavior. This section will be devoted to

describing the mutants produced by the EXPER system.

Since the mutants are produced automatically they must be

e
S

EP

E
y

CE
 e
e

ET
E

OR
,
F
E

a

e
R

B
E

t
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
A
T
T
Y
,

Pe
ds

ae

P
e
s
 ‘

i
SLE

S
ESS

produced by some fixed algorithm. In designing EXPER, therefores we

qT
,

chose to view the construction of the mutants as the application of a

series of mutant operators to the original program. A mutant operator

is a procedure which takes as input a program and produces as output a

set of mutant descriptions. A mutant description is a short (3

E
O

A
D
E

o
e

e
r

e
e

P
E
E

E
E

S
E

computer words in the PDP20 implementation) encoding of the type of

sy

we
Se
g

Te
d

mutation and its location in the original program. See [14] for more

s
y

te

vo

details on the actual implementation. “T
OR

We can divide the mutant operators into three groups, depending

Si
ta

ai

e
a

upon whether they affect operands, operators or statements as a whole.

3.1.1 Source operand mutant operators

E
E
N

SR

C
R
E
N
T

T
E
D
L

E
N
E

P
U
T

Nes

The first set of mutant operators alter the basic data objects

which are being manipulated by the program. We cam consider three

different types of basic data objects: constants, scalar variables and

array references. There are accordingly nine mutant operators which

can be described by the form
replace each x with each distinct occurrence of y

Cp
ar
te
re
e

cr
i

ce
t

 where x and y range over constants, scalars and array references.

Another operator takes each constant (even those which appear in

DATA statements) and alters it slightly. Slightly means for integers

plus or minus 1, for reals plus or minus 10% (or if the value is zero

O
S
S

e
r
p

tT

r
e
n

e
t
e

e
e

te
 c
e

-01), for logicals the logical complement, and for characters the

first character in a string constant is replaced by the character's

neighbors in the underlying ordinal scheme (e.g. 'cat' is replaced by ee pe Ea aS EIN
P
E

B
E
E
R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

"bat* and 'dat'). Of course it may be possible for this type of

mutant to duplicate one produced by the first group, and a certain

attempt is made to avoid this redundancy.

A third type of source operand mutation takes the array name in

S
O
T
O

N
A
P
E

R
U
E

TN
 E

E
S
P
O
T
T
Y

RE
AR

PE

ER
Y.

ce

R
D

Br
e

te

SN
E

EEE
 R

OD
 e
r
n

o
v
e
?

each occurrence of an array expression and changes it to all other

r
e
r
e

s
pr
t

ee
e

array names of the same dimensionality.

3.1.2 Operator mutations

In order to extend the error detection power of the mutations,

the EXPER system adds several new operators to the usual FORTRAN

R
o
y

e
n
e

me

e
r
e
g
p

er

g
e
e

se
e

a
n

.
F
O
r

ME

4

repertoire. These new operators cannot appear in the original

program, but are produced in mutants.

The first two are binary operators which can take the place of

either arithmetic or logical operators. They are called Jeftop and

O
I
C

o
r
n

or
e
p
e
e

ge
 m
ee

op
e
a
r
s

ids

we
nt

.

Zightop and their semantics is to evaluate both operands (this is an

artifact of the stack type architecture of the interpreter) and to

return either the left or right hand argument, ignoring the other

U
T

E
g
e

Te

m
e
e
n

y
s

argument.

A second pair of new operators are also binary and can take the

N
T
E

r
e

w
r
i

en
er

place of relational or logical operators. They are called trueop and

falseop and their function is to evaluate both operands, and

S
I
R
O

T
o
s

a
p
e

or
es

regardless of their values return TRUE or FALSE, respectively.

S
O
T
O
 t
o
r

S
T
S

7

There are also several unary operators which have been created.

Twiddle (denoted ++ or --) is an operator which returns its argument

ONIN
P
E
T
A
 ST

 T
T:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

plus or minus one (if the argument is integer) or plus or minus .01Z

or .01 (which ever is greater, if the argument is real). -ABS returns

the negation of the absolute value of its argument. ZPUSH(X) returns

X if nonzero, otherwise a TRAP error occurs and the mutant program is

eliminated. The purpose of the last operator is to force the

expression X to be zero.

Having described these new operators, the procedures which

construct the mutants can be characterized as follows: Arithmetic

operator mutations are formed by taking each arithmetic operator and

T
T

I
T
s

e
e
n

en
s

r
e
p
o

e
g
e
r
c
e

replacing it with the other members of the set {+, -s /» *, **,

r
o
n

e
i
s

oy
a
r
i
s
e
 aa

T
E

w
e
 r
S
P
T

e
e
r
 TI

leftop, rightop}. Relational operator mutations are formed by

replacing each relational operator with other members of the set

{.LE., .LT., .EQ., .NE., .GI., .GE., trueop, falseop}. Logical

operator mutations are formed by replacing each logical operator with

other members of the set {.OR., .AND., leftop, rightop, trueop,

falseop}. Unary operator removals are made by deleting each unary

operator. Unary operator insertions are formed by inserting the unary U
T

ay

e
e
e

oo
p
e
e

operators {-, .NOT., ++, --, ABS, -ABS, ZPUSH} wherever they would be

syntactically correct.

Again, there is some possibility of creating redundant mutations

(for example changing A - 1 to A * 1, which is the same as deleting

T
E
P

e
e

e
r
t

er
g

ye
 o

e
U
E

oe

e
a
e

the - 1 clause altogether) or unnecessary mutants (such as ZPUSH(A*B),

WWE
T
e

ee

t - since the effect will be achieved by placing the ZPUSH around the A

and B separately). Some effort is made to avoid these.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

3.1.3 Statement mutations

:

| iy

cm
be:
Re:
heey

a

A sequence of unlabelled, non-IF statements-is called a basic

block [39]. Statements in a basic block have the property that if any

one of the statements is executed they all must be executed. One type

E
e

eT
 T
ER

ey
 T
E
 Of

S
T

of statement mutation operator replaces the initial statement of each

rT
se
as

basic block with a TRAP statement. The semantics of the TRAP

statement are that if it is ever executed it immediately causes the

mutant to abort. On the other hand if such a mutant survives it

implies that the basic block has never been executed. In this manner

20
T
O
R
E
R

PE
oe

ar
ep
e
c
o
r
t
e

P
O
E
U
N

TN
T

Oy

Sre
e

r
e
e
s
e

mutants insure that every statement is executed at least once.

rm
an
se

we
e

Just because a statement can be reached does not mean that it is de
ve

rr
ea
ec
or
r

performing a necessary part of the program being executed. A second

mutant operator replaces each statement with a CONTINUE statement,

effectively deleting the statement.

i A third operator changes the labels on GOTO statements and

arithmetic IF statements to other labels in the program.

The final mutant operator has two parts. The first part changes

T
e
m
e
n
o
s

o
r
e

R
e
t
t

the ending statement label on DO loops to other labels which lie

WO
ME

ta
r

re
pa

y
pe
te

between the do loop head and the end of the program. The second part

changes the DO statement into a FOR statement, where a FOR statement

differs from a DO statement in that if the ending value is smaller

than the starting value the loop is not executed, in contrast to

SO
C

ME
AT
e
r
e
p
r
e

n
y

ph

o
s
c

n
e
g

g
r
r

FORTRAN where loops are always executed at least once.
:
c f
f

E
se

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

3.2 A consideration of the power of the mutant operators

One way to assess the capabilities of the mutant operators just

P
A
T
O
N

O
H
I

outlined is to select a set of programs with known errors and ask

Y
N

S
T

which of the errors would be caught by this method. This information
can then be compared with other testing methodologies which have been

proposed in the literature, or used to direct the search for new

mutant operators. Several studies of this nature will be reported on

Oo
t
T
y
e

g
u
m

a
r

n
o
t
e

e
r
y

in the next chapter.

s
e
e
p

A second way to evaluate this particular choice is to ask if the

p
r
e
t

p
e
e
r

operators force data to be constructed which achieves the goals of

other testing methods. In this section a number of testing methods

ST
e
e

T
e

will be examined, and we will see that in many cases mutation analysis

does subsume their goals.

: 32.1 Trivial errors

If one of the mutants considered is indeed the correct program

then of course the error will be discovered when an attempt is made to

eliminate that particular mutant. Alternatively if the errors in the

original program act in a reasonably independent manner and each error

is individually captured by a single mutation then the errors will

almost certainly be detected.

Given the vast folklore about large systems failing for extremely

trivial reasons [67], the ability to detect such simple errors in

indeed a good starting place. However many errors do not correspond I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=
T
T
T

AO
RE
T
S
N

EL
S

PE
TE

D
O
T

PO
T
B
L

TP
T

3
B
O
N

a
r
s

t
o
t

P
a
 ee

a
E
e

RE
ED

AS

P
O
R
E

T
T

N
D

E
y

T
N
T

LE
CT

 T
TS

POR
T
(
O
E
E

PE
M

R
e
t
e

a
I

SU
IT

I
O
O
I

er

p
g

t
o
n
e
s

c
e
?

pe
et
et
en
r

P
e
m
e
e
r
e
y

P
e
r
e
y

r
a
e

se
e

S
E
E

t
e
r
e
s
!

E:

x
s:

K 5
Pe 3
cc

er

a f

A
E

C
U
E

N N
e
e

oe

61

exactly to the generated mutations, and multiple errors may interact

in subtle fashions. This being the case, any realistic testing method

must demonstrate a much more powerful error detecting capability.

3.2.2 Statement analysis

Many programming errors manifest themselves by sections of code

being "dead", that is unexecutable, when they shouldn't be. Also many

bugs are of such a serious nature that any data which executes the

particular statement in error will cause the program to give incorrect

results. These errors may persist for weeks or even years if the

error occurs in a rarely executed section of code.

Accordingly a reasonable first goal for a set of test cases is

that every statement in the program is to be executed at least

once [58].

Various authors have presented methods to achieve this

goal [41, 82]. Usually these methods involve the insertion of

counters into the straight line segments of code. When all counters

register non-zero values every statement in the program has been

executed at least once.

In mutation analysis we take a different approach with the same

objective. If a statement is never executed then obviously any change

we produce in it will not cause the altered program to produce test

answers differing from the original. However as a means of directing

the programmers attention to these errors in a more direct and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
unambiguous fashion the TRAP mutants described in section 3.1.3 are

generated. Obviously these mutations are extremely unstable, since

S
T
E
E
L
S

EY

TR
E L

EP

any data which executes the replaced statement will cause the mutant

to produce an incorrect result, and hence to be eliminated. The

reverse, however, is also true. That is, if any of these mutants

survive, then the statement which the mutation altered has never been

executed. Hence an accounting of the survival of this class of

S
C
R

cr
t

e
s

e
e
n

ar
gs

e
t
e

so
e

.
ORD

EAL

NEE
 S

TE

ES
Y
E
R

2
PW

RT
EE

mutations gives important information about which sections of code

have and have not been executed.

T
A

o
e

A statement can be executed and still not serve any useful

purpose. In order to investigate this possibility we generate another

O
Y

R
E
U
T
E
R

LO

g
e

be
en

s,

type of mutant which replaces every statement with a CONTINUE

statement (a convenient FORTRAN statement with no semantic meaning).

The survival or elimination of these mutations gives more information

than merely whether the statement is executed or not, it indicates

whether or not the statement is performing anything useful. If a

statement can be deleted with no effect then at best it indicates a

waste of machine time and at worst it is probably indicative of much

f more serious errors.

Merely being able to execute every statement in the program is no

: guarantee that the code is correct [37, 52] Problems such as

coincidental correctness or predicate errors may pass undetected even

if the statement in error is executed repeatedly. In subsequent

T
E
T

o
e
r

Sections we will see how mutation analysis deals with these problems.

P
R
T

re
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

3.2.3 Branch analysis

Some authors have pointed out [58] that an improvement over

statement analysis can be achieved by insuring that every flowchart

branch is executed at least once. For example the following program

W

rf

& ert
C

a

re
SS
ge

Be

E fe:
i!

E
E

Be
be

fe:
we o
ee
me

c.

Ee

if.
=
i .
Le

“. £
ge”
aan
be ke

Hh

segment

7 A
é IF (condition)

THEN B
: Cc

has two branches corresponding to the two flows A-B-C and A-C. All

three statements A,B and C can be executed by a single test case. It

is not true, however, that in this instance all branches have been

executed.

The requirement that every branch be taken is equivalent to

requiring that every predicate expression evaluate both TRUE and

FALSE. It is this formalization which is used in mutation analysis.

(Sources of other branches are arithmetic IF statements and GOTO

statements. Simple GOTO staterents are covered by the statement

: analysis mutants described in the last section. Arithmetic IF and

computed GOTO statements are covered by mutating the label portion of

\ the statement).

Among the mutants generated are ones which replace each

relational expression and each logical expression by the logical

i constants TRUE and FALSE. Of course, like the statement analysis

mutations these are very unstable and easily eliminated by almost any

E data. But if they survive they point directly and unambiguously to a

R
E
T

S
I
T
s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

ei Ee weakness 1n the test data which might shield a potential error.
Fe

ee By mutating each relation or lcgical expressicn independently we
5
t : . . FS actually achieve a stronger goal than that usually achieved by branch

F- *

fe analysis.
[:
E
E Consider the compound predicate

(A <= B AND C <= D)

7
s

w
o
e

The usual branch analysis method would only require two test cases to

test this predicate. If the test points were (A<B,C<D) and (A<B,C>D)

this would have the effect of only testing the second clause, and not

the first. This is because branch analysis fails to take into account

the “hidden paths” [22], implicit in compound predicates.

TEE
IT
AT
T

ree
nee

n
o
p
e
 me
ra
n

eve
r
ry

St

In testing all the hidden paths mutation analysis would require

at least four points to test this predicate. The four points

correspond to the branches (A > B,C >D), (A> B, C <=D), (A <= B,C >

D) and (A <= B, C <= D). (Predicate testing, as described in section

3.2.5 would require us to construct,in addition, several more points.)

As an example of how errors can be detected in this manner

consider the program shown in figure 3-1, taken from an article by

Geller [33]. The program is intended to derive number of days between

two given days in a given year. The predicate which determines

whether a year is a leap year or not is, however, incorrect in this

version. Notice that if a year is divisible by 400 (year REM 400 = 0)

it is necessarily also divisible by 100. Hence the logical expression
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PROCEDURE calendar (INTEGER VALUE
dayl, monthl, day2, month2, year);

BEGIN
INTEGER days$
IF month2 = monthl THEN days = day2 - dayl

COMMENT if the dates are in the same month, we can

compute the number of days between them immediately;

ELSE

BEGIN

INTEGER ARRAY daysin (1 .. 12);
daysin(1) := 31; daysin(3) := 31; daysin(4) := 30;
daysin(5) := 31; daysin(6) := 30; daysin(7) := 31;
daysin(8) := 31; daysin(9) := 30; daysin(10):= 31;
daysin(11):= 30; daysin(12):= 31;
COMMENT set daysin(2) according to whether or not

. year is a leap year ;
IF (Cyear REM 4) = 0) OR

((year REM 100) = 0 AND (year REM 400) = 0)
THEN daysin(2) := 28
ELSE daysin(2) := 29;

days := day2 + (daysin(monthl) - dayl);
COMMENT this gives the correct number of days -

days in complete intervening months);
FOR i := monthi + 1 UNTIL month2 -1 DO

days := daysin(i) + days;
COMMENT add in the days in

complete intervening months;
END;

WRITE(days)
END;

Figure 3-1: Program exhibiting an error
caught by branch analysis

formed by the conjunction of these two conditions is equivalent to

just the second term alone. Alternatively, the expression

year REM 100 = 0 can be replaced by the logical constant TRUE and the

resulting mutant will be equivalent to the original. Since this is

obviously not what the programmer had in mind the error is discovered.

3.264 Data flow analysis

During execution a program may access a variable in one of three

ways [29]. A variable is defined if the result of a statement is to

assign a value to the variable. A variable is referenced if the i

q

r

E
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

statement requires the value of the variable to be accessed. Finally

a variable is undefined if the semantics of the language do not

: explicitly give any other value to the variable. Examples of the

- latter are the values of local variables on invocation or procedure

return, or DO loop indices in FORTRAN on normal do loop termination.

TIO
E
E

T
e
r

Fosdick and Osterweil [29] have defined three types of data flow

anomalies which are often indicative of program errors. These

anomalies are consecutive accesses to a variable of the forms:

1. undefined and then referenced

2. defined and then undefined

3. defined and then defined again

The first is almost always indicative of an error, even if it

occurs only on a single path between the place where the variable

becomes undefined and the refererce place. The second and third,

however, may not be indications of errors unless they occur on every

path between the two statements.

Although the first type of anomaly is not attacked by mutations

per se it is attacked by the mutation system, which is a large

interpretive system for automatically generating and testing mutants.

Whenever the value of a variable becomes undefined it is given a

special marking. Before every variable reference a check is performed

to see if the variable has a value. If the variable does not an error

is reported to the user, who can take corrective action. i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ia

ng

.

ue ‘
4 ie

a ek
an

ae

P
R
S
,

SE
P,

T
O
T
O

EE
N
E
L

TE
NE
 T

EN
T

TE
T
R
E
 Te

Tr

te

wa
ss

5

E

67

The second and third types of anomalies are attacked more

directly. If a variable is defined and not used then usually the

statement can be eliminated with no obvious change (by the CONTINUE

insertion mutations described in the last section). This may not be

the case if, for example, in the course of defining the variable a

function with side effects is invoked. In this case the definition

can likely be mutated in any number of different ways which, while

preserving the side effect, obviously result in the variable being

| given different values. An attempt to remove these mutations will

almost certainly result in the anomaly being discovered.

3.2.5 Predicate testing

Howden [52] has defined two broad categories of program errors

under the names domain errors and computation errors. The notions are

not precise and it is difficult with many errors to decide which

category they belong in. Informally, however, a domain error occurs

when a specific input follows the wrong path due to an error in a

control statement. A computation error eccurs when an input follows

the correct path but because of an error in computation statements the

wrong function is computed for one or more of the output variables.

Following Howden's study, several researchers examined the

question of whether certain testing methodologies might reliably

uncover errors in these or other classification schemes. A number of

authors [6, 20] observed that points on or near a predicate border are

most sensitive to domain errors. A testing method, called the domain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strategy [87], formalized this in that it is guaranteed to catch a

F limited class of these types of errors. The original reference should

be consulted for a more complete presentation of the several technical

restrictions and applications of their method, but we can here give an

informal description of how it works.

If a program contains N input variables (including parameters,

array elements and 1/0 variables) then a predicate can be described by

a surface in the N dimensional input space. Often the predicate is

linear, in which case the surface is an N dimensional hyperplane. Let

us consider a simple two dimensional case where we have input

variables I and J and the predicate in question is
It2%J <= -3

The domain strategy would tell us that in order to test his

predicate we need three test points, two on the line I+2*J=-3 and one

a small distance e from the line. Call the two points on the line A

and B and the point off the line C.

Assuming a correct outcome from these tests what have we

discovered? We know the line of the predicate must cut the sections of

the triangle AC and BC. Since e is quite small the chances of the

predicate being one of these alternatives but not the original line is

also small. Hence, although we don't have complete confidence that

the predicate is correct, we do have a much larger degree of

confidence than we could otherwise have attained.

e
e
e
 Bs

~

os
i 4
a 3
bo

E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

EST
TE
o
o

To see how mutation analysis deals with the same problem we first

R
S
s

c
r
e

observe that it really is not necessary to have both A and C be on the

predicate line. If A is on the line and B and C are on opposite sides

of the line the same result follows. We now described how mutations

cause points with these properties to be generated.

As an intuitive aid one can think of mutation analysis as posing

certain alternatives to the predicate in question, and requiring the

tester to supply reasons, in the form of test data, why the

alternative predicate could not be used just as well in place of the

original. These alternatives are constructed in various ways.

A number of the alternatives are generated by changing relational

Po operators. Changing an inequality operator to a strict inequality

operator, or vice versa, generates a mutant which can only be

eliminated by a test point which exactly satisfies the predicate. For

example changing I+2*J <= -3 to I+2*J < -3 requires the tester to

exhibit a point for which I+2*J = -3, hence which satisfies the first

predicate but not the second.

A second class of alternatives involves the introduction of the

unary operator "twiddle" (denoted ++ or --), whose semantics were

described in section 3.1.3. Graphically, the effect of introducing

twiddle is to move the proposed constraint a small distance parallel

to the original line. In order to eliminate these mutants a data

point must be found which satisfies one constraint but not the other,

F.
F

: k
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

hence is very close to the original constraint line.

Finally a third class of alternatives are constructed by changing

each data reference into all other syntactically correct data

references, and each operator into all other syntactically correct

operators. The effects of these are related to the phenomenon of

spoilers, which are described in section 3.2.9.

The total effect achieved by so many alternatives is to cause the

programmer to generate a large number of test inputs which are very

closely tied to the particular form of the program. Hence by a

process similar to that of White et al [87] we increase inductively

our confidence that the predicate is indeed correct.

READ I,J;

IF I <= J+1

THEN K
ELSE K e

e

|
ee
 H
+

+
 I

2x

IF K >= I+1

THEN L
ELSE L

fF

t+
 t
s

e
o

w
t
 I +

J-

IF I=5
THEN M
ELSE M

2*L + Kj

L + 2*K -13

WRITE M3;

Figure 3-2: Example program from White [87]

In order to more fully illustrate the construction of these

alternatives and demonstrate their utility we will examine a small

example. The program in figure 3-2 was taken from the paper

describing this method. No specifications were given, but the program
ik

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

T
a
N

IT
T
t
o
e

can be compared against a presumably "correct" version. It is a good

“t
T

example because it only involves two input variables, hence the

alternatives can be easily illustrated in a graphical manner.

As one can see the program has three predicates: I <= J+l,

K >= I+] and I = 5. Consider only the effects of changing the first.

The EXPER system looks at 41 distinct alternatives for the

predicate I <= J+1 [16]. In fact 45 choices are tried, however some

of the choices are redundant, for example ++I <= J+l and I <= --J +1.

These redundancies are created because the mutants are formed in an

entirely mechanical way. It is our feeling that the processing time

lost because of redundant mutations is much less than the time which

would be required to eliminate them by preprocessing the alternatives,

hence the presence of these redundancies is of little concern.

In the paper from which the example program was taken the authors

hypothesize that the program contains the following four errors.

1. The predicate K >= I+] should be K >= I+2.

2. The predicate I=5 should be I=5-J.

3. The statement L=J-1 should be L=I-2.

4. The statement K=I+J-1 should read

THEN IF (2*J < -5*I -40) .
THEN K = 3;
ELSE K=I+J-1;

It can be shown that the attempt to eliminate the alternative

K >= I+2 must necessarily end with the discovery of the first error.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Note that this is not trivially the case since errors 1 and 4 can

e
e

e
T

interact in a subtle fashion.

3.2.6 Error sensitive test cases (ESTCA)

Another testing methodology directed specifically at detecting a

certain type of error is the Error Sensitive Test Cases method

proposed by Kenneth Foster [30]. The method is a procedure for

deriving test cases specifically directed to detecting the following

types of errors:

l. Omitted or out of sequence operations or conditions.

. 2. References to the wrong variables.

3. Substitution of relations or conjunctions in simple or
compound conditions (LT for LE, OR for AND).

4, Missing or incorrectly placed parentheses, incorrect
grouping of variables in an arithmetic expression.

5. Substitution of arithmetic operations (* for **).

6. Incerrect constant values as factors in arithmetic
computations or as limit counters.

7. Arithmetic operations on variables in the wrong sign form

(load or store positive, negative, with complement sign,
and so on).

The method used in detecting these errors is quite similar to

mutation analysis. That is, test data is derived which would be

incorrectly processed were the program to contain an example of this

type of error. This is precisely the same thing as requiring that all

non equivalent mutants be eliminated.

The major difficulty with Fosters method is its complexity. In

order to include all the special cases which can arise in conjunction
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

with these errors the procedure is, by necessity, quite detailed and.

complex. Note that if, for example, we want to insure that a specific

+ operator might not inadvertently be appearing where a * operator

should it is not simply sufficient to find test data where the two

expressions locally disagree, but we must continue to analyze the two

programs until they halt to insure that different responses are

produced. This distinction between local and global testing is

discussed in more detail in section 5.1.

The ESTCA method was designed to allow a human programmer to

: construct test cases, but in so doing the amount of information which

must be maintained and processed is exceedingly large. The danger is

quite clear that one can lose sight of the forest for all the trees.

This criticism is only partially alleviated by proposing to generate

the test cases automatically (a proposal which in itself raises many

more unanswered questions).

er

On the other hand the experience with the mutation system

Suggests that the vast majority of changes of the type analyzed by

ESTCA are likely to be detected by even the most rudimentary test

cases. It is only a small number of changes which are subtle enough

to require detailed investigation, and it is only these few changes

which should require the human testers attention. Unfortunately

discovering, a priori, which of these changes are important is an

exceedingly difficult problem. Ik
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q

;

e
a

3.2.7 Domain pushing

One very important rutation which was mentioned in the section on

predicate errors concerns the introduction of unary operators into the

program. These unary operators are introduced wherever they are

syntactically correct according to the rules of FORTRAN expression

construction. In addition to the operators ++ and -~ already

discussed, the remaining unary operators are - (arithmetic negation)

and a class of non FORTRAN operators ABS (absolute value), -ABS

(negative absolute value) and ZPUSH (zero push). Only the actions of

the last three will be described in this section.

Consider the statement

A=B+#+C

in order to eliminate the mutants
A = ABS(B) + C
A= B+ ABS(C)
A = ABS(B + C) |

|

we must generate a set of test points where B is negative (so that B+C

will differ from ABS(B)+C), C is negative and the sum B+C is negative.

Similarly negative absolute value insertion forces the test data to be

positive, and ZPUSH forces it to be zero. We use the term domain

pushing for this process, meaning the mutations push the tester into

producing test cases where the domains satisfy the given requirements.

Compound this process by every position where an absolute value

sign can be inserted and one can observe a scattering effect, where

the tester is forced to include test cases acting in various

conditions in a multitude of domains. Very often in the presence of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

TL
E
T
y

an error this scattering effect will cause a test input to be

generated which will demonstrate the error.

Notice that if it is impossible for B to be negative then this

example produces an equivalent mutation, that is the altered program

is equivalent to the original. In this case the proliferation of

: these alternative can either be a nuisance or an important

documentation aid, depending upon their frequency and the testers

point of view. The topic of equivalent mutants will be examined more

fully in section 4.5.

Recall again that one of the errors the program in section 3.2.5

was presumed to contain altered the statement L = I-2 to L= J-l. One

effect of this error is that any test input in the area I > J+l and

I <= 0 will produce erroneous results. But this is precisely the area

which the mutant K = 2*ABS(I) + 1 directs us to. This means that this

error could not have gone undiscovered using mutation analysis.

This process of pushing the programmer into producing data

satisfying some criterion is often also accomplished by other

mutations. Consider the program in figure 3-3, which is based on a

program by Naur [71], and is one of the programs studied in section

4.2.2.

Consider the mutant which replaces the first statement FILL:=

with the statement FILL:=1. The effect of this mutation is to force a

test case to be defined in which the first word is less than MAXPOS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e
a

S
e

e
S

er alarm := FALSE

bufpos := 0;
fill := 0;
REPEAT

incharacter{cw)
IF cw = BL or cw = NL
THEN

IF £111 + bufpos <= maxpos
THEN BEGIN

outcharacter(BL);
END

ELSE BEGIN

outcharacter(NL);
fill := 0 end;

FOR k := 1 STEP 1 UNTIL bufpos DO

outcharacter(bufferLk]);
fill := fill + bufpos;
bufpos := 0 END

ELSE

IF bufpos = maxpos
THEN alarm := TRUE;
ELSE BEGIN

bufpos := bufpos + 1;
buffer[bufpos] := cw END

UNTIL alarm OR ecw = ET

Figure 3-3: Example program from Naur [71]

characters long (since the effect of the mutant must be manifest

before FILL is redefined). This test case detects one of the five

errors in the program [37]. The interesting observation is that the

effect of this mutation is several statements distant from the

statement in which the mutation takes place, again illustrating one

aspect of the coupling effect.

3.2.8 Special values testing

Another form of testing which has been introduced by Howden [53],

is called special values testing. Special values testing is defined

by a number of rules , for example

1. Every subexpression should be tested on at least one test
case which forces the expression to be zero, together with
one which forces it be be greater than zero, and one which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

T
T
T

ee

forces it to be less than zero.

Ee 2. No two variables should always have equal values.

: 3. A variable should assume more than one value during each
E test case.

4. Every subexpression should take on more than one value
across all test cases.

That the first rule is enforced by the zero push and absolute

value mutations has already been discussed in the last section on

domain pushing.

That the second rule is important is undeniable. I£ two

variables are always given the same value then they are not acting as

"free variables" and a reference to one can be universally replaced

with a reference to the second. In fact this is exactly what happens

in this case, and the existence of these mutations enforces the goals

of the distinct values rule.

A similar argument could be made concerning the importance of the

third rule, however in languages which do not have the ability to make

labelled constants (such as FORTRAN), variables are often used in this

fashion. This rule is not enforced by mutation analysis.

The fourth rule is enforced for some special cases, for example

predicates (section 3.2.3), and by substituting constants for scalars

and array expressions. A more general method of enforcing this rule

could be envisioned and is indeed implemented in a system similar to

mutation analysis (see section 3.5). However there is at least some

:
E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

: Goubt whether the more general capabilities would justify the

increased costs involved in enforcing them.

3.2.9 Coincidental correctness

We say the result of evaluating a given test point is

coincidentally correct if the result matches the intended value in

spite of the fact that the function used to compute the value is

incorrect. For example if all our test data results in a variable I

having the values 2 or 0, then the computation J = I*2 could be

coincidentally correct if what was intended was J = I**2.

The problem of coincidental correctness is really central to

program testing. Every programmer has encountered statements which

were incorrect, but which produced the correct response for a

surprising large number of inputs. Yet with the exception of mutation

analysis no testing methodology in the authors knowledge deals

directly with this problem. Some researches even go so far as to

State that the problems of coincidental correctness are

intractable [87].

In mutation analysis coincidental correctness is attacked by the

use of spoilers. Spoilers implicitly remove from consideration data

points for which the results could obviously be coincidentally

correct, in a sense "spoiling" those data points. For example by

explicitly making the mutation J = I*2 => J = I**2 we spoil those test

cases for which I = 0 or I = 2, and require that at least one test
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

SM

LE
S

ST

case have an alternative value.

Often the fact that two expressions are coincidentally the same

over the input data is an indication of program error or poor testing.

For example the sorting program shown in figure 3-4, taken from a

paper by Wirth [88], will perform correctly for a large number of

input values. If, however, the statements following the IF statement

are never executed for some loop iteration it is possible for R3 to be

incorrectly set, and an incorrectly sorted array may be produced.
Sort (R4)
For Rl = 0 by 4 to N begin

RO := a(R1)
for R2 = Rl + 4 by 4 to N begin

if a(R2) > RO then begin
RO := a(R2)
R3 := R2

end
end
R2 := a(R1)
a(R1) := R0
a(R3) := R2

end

Figure 3-4: A program exhibiting a coincidental
correctness error

By constructing the mutant which replaces the statement a(R1):=R0

with a(Rl):=a(R3) we point out that there are two ways of defining RO,

only one of which is used in the test data. Therefore the error is

uncovered.

3.2.10 Missing path errors

As identified by Howden [52], we can say a program contains a

missing path error if a predicate is required which does not appear in

the program under test, causing some data to computed by the same i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F
O
E

et
e

ce

S
P
S
T
 oT

ve
th
us
ty
y

De

 |

T
a
s
t
e
s

Ce
e
e
e

80

function when really different functions are called for. These

missing predicates can, however, be the result of two different

problems, so we might consider the following definitions: A program

contaiss a specificational missing path error if two cases which are

treated differently in the specifications are incorrectly combined

into a single function in the program. On the other hand 2 program

contains a computational missing path error if within the domain of a

single specification a path is missing which is required only because

of the nature of the algorithm or data involved.

An example of the first type is error number four from the

example in section 3.2.5. Although this error might result from a

specification, there is nothing in the code itself which would give

any hint that the data in the range Z*J<-5*I-40 is to be handled any

differently than given in the test program.

For an example of the second class of error consider the

subroutine shown in figure 3-5, which is one of the programs ztudied

in section 4.2.1. The inputs are a sorted table of numbers and an

element which may or may not be in the table. The only specification

is that upon return X(LOW) <= A <= X(HIGH), and HIGH <= LOW +1. The

problem arizes if the program is presented with a table of only one

entry, in which case the program loops forever.

Nothing in the specifications state that a table with only one

entry is to behave any differently from a table with multiple entries,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SUBROUTINE BIN(X,N,A,LOW,HIGH)
INTEGER X(N) ,N,A,LOW,HIGH
INTEGER MID

’ Low = 1
HIGH = N

6 IF(HIGH - LOW - 1) 7,12,7
12 STOP
7 MID = (LOW + HIGH) / 2

IF (A - X(MID)) 9,10.10
9 HIGH = MID

GOTO 6
10 LOW = MID

GOTO 6
END

Figure 3-5: Program exhibiting a missing path error

a - =>

it is only because of the algorithm used that this must be treated as

a special case.

Problems of the second type are usually caused by the necessity

to treat certain values, for example negative numbers, differently

from others. This being the case the process of data pushing and

spoiling described in sections 3.2.7 and 3.2.9 will often lead to the

detection of these errors. So it is in this case where an attempt to

remove either of the following mutants will cause us to generate a

test case with a single element.
IF (HIGH - LOW - 1) 12,12,7

MID = (LOW + HIGH) - 2

Since mutation analysis, like most other testing methodologies,

deals only with the program under test (as opposed to dealing with the

specifications), the problems of detecting specificational missing

path errors are much more difficult. Since mutation analysis causes

the tester to generate a number of data points which exercise the

program in a multiplicity of ways our chances of stumbling into the i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

T
T

e
e

area where the program misbehaves are high, but are by no means

certain.

So it is with the missing path error from the example in section

3.2.5. It is possible to generate test data which passes our test

criterion but which fails to detect the missing path error. We view

this not, however, as a failure of mutation analysis but as a

fundamental limitation in the testing process. In our view the only

way that this type of error can be eliminated is to start with a core

of test cases generated from the specifications, independent of the

program implementation. This core of test cases can then be augmented

to achieve goals such as those presented by mutation analysis. Some

methods of generating test data from specifications have been

discussed elsewhere [37, 73].

3-3 A discussion concerning the number of mutants generated by EXPER

The most commonly made criticism of mutatior analysis is that it

requires the execution of an inordinately large number of alternative

programs. This section will analyze the number of mutants generated

by a typical program. The question of whether this number is

practical will be more fully addressed in section 4.4.

What are some ways we can measure the size of a program? The

easiest metric is just the number of executable statements, which we

will denote by N. This number can, however, be deceptive. For

example a single assignment statement can be simple (A = B) or ‘
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83 r
T

extremely complex
A=SQRT(B+SIN(ABS(B**5))/COS(B*B))

Accordingly another measure we might use is the number of references

made to constants, scalar variables, and arrays (X) or the number of

these references which are ‘istinct (Y).

Another element we : .tht wish to measure is the complexity of the

control structure. McCabe has defined one commonly used measure of

complexity [66], which we will denote V. Finally Halstead [28] has

defined a general metric of program size, which he calls Effort (E).

N M x Y E Vv
12 2580 103 21 32033 1
13 317 27 8 4071 5
17 386 32 8 6928 4
17 634 45 9 15246 7
24 2716 72 40 17565 367
26 646 40 11 16270 369
33 859 55 13 41819 12
33 23382 407 53 249701 1
56 3657 129 23 138939 9
66 2425 115 I5 170492 10
67 5230 158 28 189585 15
71 2888 135 16 166715 ii
98 8457 227 32 365825 22
112 16380 237 68 320331 26
277 34657 = 545 63 3024488 122
514 120000 1138 93 19267409 113

Table 3-1: Number of mutants generated versus program size

Table 3-1 gives, for 16 typical programs, a table of N, M, X, Y;

E and V. Notice that the number of mutants is not particularly tied

to the number of statements (the two programs with 33 statements are a

good example of this). If we use a correlation coefficient [27] as a

measure of relationship we can correlate the number of mutants with

each of the other columns (plus the product of X and Y) and obtain the
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statistics shown in table 3-2. As one can see the number of mutants

seems to be most highly correlated with the product of X and Y.
r N x Y XY E V

950 978 826 999 975 798

Table 3-2: Correlation coefficients for mutants

This high relationship is undoubtedly related to the "replace

every member of X with a member of Y" nature of the data mutations,

since data mutations account for, on the average, 82% of all mutants

generated (operator mutations making 5% and statement mutants 132).

We therefore computed the correlation coefficients for each of the

Major categories of mutants separately, obtaining the statistics shown

in table 3-3.

DATA OPERATOR STATE

-946 -953 - 940
999 ~953 977
-980 ~993 921
-836 -874 722
-999 -961 -970
-970 - 880 -999
0/95 -880 -/64

Table 3-3: Correlation coefficients by mutant type

<
t
r

bg

4

bd

ie

We find that, as we suspected, the data mutants are most highly

related to XY. However, the operator mutants correlated more highly

with just X, and the statement mutants with E. Combining these

figures together we found that the number of mutants can be

approximated by the equation

M= 79 + .766 XY + 4X + .0008 E

This equation is, however, correlated only marginally better than the

simple predictor XY (an increase of one in the fifth decimal place). A
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 A sampling experiment

It has been observed that there is a great deal of redundancy

built into the mutants, in that several mutants, although acting

differently, will often all have the same effect. Although it appears

that much of this redundancy is unpredictable, we can still make use

of it by randomly generating only a small percentage of the mutants.

(Often these redundant mutants could be detected algorithmically, but

would require a significant amount of analysis. In designing EXPER

there was a conscious choice made to allow redundant mutants rather

than expend the time to detect them).

One experiment, designed by Sayward, was intended to measure the

degree of this redundancy. In this experiment three programs where

studied by three different subjects. Each subject analyzed each

program generating 10% of the mutants for one, 25% for the second and

50% for the third. Each program was studied at each percentage level.

After adequate test data had been constructed which eliminated all the

nonequivalent mutants at the lower percentage levels, the test data was

used to execute all the mutants. The number of nonequivalent mutants

not caught could then be expressed as a percentage of the total number

of mutants. The results were as shown in table 3-4,

PERCENT GENERATED 10 25 50
PROGRAM A 0.632 0.37% 0.12%
PROGRAM B 0.202 0.27% 0.28%
PROGRAM C 0.82% 0.28% 0.272%

Table 3-4: Results of a sampling experiment

Even with test data generated using only 10% of the mutants no i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

more than 1% of the nonequivalent mutants were overlooked. The

resulting percentages were much lower than expected. In order to

investigate this further, all the programs analysed in the reliability

study reported in section 4.2.3 were first analyzed using only 10% of

the mutants. In each case it was found that test cases so developed

eliminated over 994 of all nonequivalent mutants. This suggests very

strongly that 1) more effort could be expended to delete and eliminate

redundant mutants, and 2) generating even a small percentage of the

mutants is a useful heuristic for evaluating and constructing test

cases in practice.

3.5 A discussion of a similar system

Independent ly of the work on the mutation system at Yale, a

system with several similar capabilities was being constructed at the

University of Maryland by Richard Hamlet [40, 41]. Although there are

Similarities in goals, there are several weior differences between

EXPER and the Maryland systems. The mutation system was designed to

be highly interactive and iterative, so that the programmer can enter

a few test cases, observe their effect, and then enter more test

cases. In contrast, Hamlet's system is based around a batch compiler;

Test cases are typed as source statements along with the program and

are executed by the complier, so that errors are reported much as

syntax error would be.

Since it was an experimental system, Hamlet's system was

purposely a rather limited implementation. In particular the only I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data types in the language which he processed (a version of ALGOL)

were integers, and the routines to be tested were limited to integer

functions with a single integer argument. Because test cases were

entered alongside the source statements, it was necessary that the

description of a test case be succinct, for this reason the

restriction to single integers was significant.

Hamlet's system operated by keeping a history of the values of

expressions as they occured in the execution of the program on the

test cases. In this respect the system is similar to the testing and

debugging system created by Fairley [25]. After all the test cases

have been executed, this history is then analyzed to check for several

conditions, including a) every statement has been executed, b) every

variable has taken on multiple values during its existence (this is

looking at a single variable across ali the locations it is altered in

the program), c) every expression has taken on multiple values across

all test cases (this is looking at a single location in the program

across all test cases). In addition, for each expression in the

program the system does an exhaustive substitution of simpler

expression, to insure that the full complexity of the expression is

required.

Some of these features are directly implemented in mutation

apalysis, for example the ability to detect that every statement is

executed. Some are partially implemented, for example the branch

analysis mutants (section 3.2.3) insure that at least branch
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
T
e

88

expressions vary across all their values. It is significant that

Hamlet singles out branch expressions as being the most important

example of how errors are detected in this manner.

A slightly more general method to achieve Hamlet's goal (c) could

be envisioned for mutation analysis as follows: A special array

exactly as large as the number of subexpressions computed in the

program is kept, with two additional tag bits for each entry in this

array. Initially all tag bits are off, indicating the array is

uninitialized. As each subexpression is encountered in turn the value

at that point is recorded in the array and the first tag bit is set.

Subsequently when the subexpression is again encountered if the second

tag bit is still off the current value of the expression is compared

against the recorded value. If they differ the second tag bit is set.

Otherwise no change is made.

In this fashion by counting those expressions in which the second

tag bit is OFF and the first ON one can infer which subexpression have

not altered their value over the test case executions, and hence one

can construct mutations to reveal this. However, in view of Hamlet's

coments on the number of errors caught in this fashion, one might

decide this was not worth the effort,

An approximation to Hamlet's substitution of simpler expressions

is achieved by the use of the operators leftop and rightop (described

in section 3.1.2). Mutation analysis, however, makes the basic
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumption that the analysis of a small number of carefully chosen

alternatives will actually achieve as much as an exhaustive analysis

of all possible alternatives (the coupling effect). For this reason

the mutation system examines far fewer alternatives. In one example

program Hamlet's system generated around 8,000 alternatives, whereas

the mutation system only considered about 350.

 A
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

T
r

CHAPTER 4

EMPIRICAL STUDIES

It is highly unlikely that a concise theorem, of the type

developed in chapter two, can ever be proved for a large set of

natural errors in any realistic programming language like FORTRAN.

This is not only due to the presence of a large number of formally

undecidable problems [18, 31, 40, 52], but is also supported by much

simpler arguments.

1. To be tractable, a testing method cannot be exhaustive, in

the sense of trying every possible state vector at every statement in

the program. Assume we have a finite set of test inputs for a program

containing the predicate C. As was done in section 2, consider

testing to be a game played against an adversary. The adversary can

look at the set of values of the state vectors at the point C was

evaluated, and divide them into two sets: those where C evaluated

TRUE and those where C evaluated FALSE. All the adversary need do to

find a program which is close to the original (differs from it in

only one place) and which is likely not equivalent to the originals

but which agrees on the proposed test datas is to find a condition D

90
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

which is independent of C but which also evaluates TRUE on the first

set. The adversary can then reveal that in the “correct" program the

predicate is (C AND D).

The two programs are likely not equivalent, but are indeed very

similar. Since FORTRAN is so expressive it is highly likely such a

condition can be found. In our inductive modei of the world we have

mo more reason to believe in the one than in the other. An example of

this type of error is encountered in the NAUR program described in

appendix C.

2. One might suspect that predicates cause trouble, but even in

the case of straight line programs we can have difficulty. Consider

the two programs shown in figure 4-1 below. The programs are very

similar to each other (they differ in only two places), and one might

competently be considered an approximation to the other. Yet they

are not equivalent. The programs compute the same answers on the set

{0 000, 13 4 8, -1 -3 -4 -8}, furthermore these three inputs

eliminate all mutants in the EXPER FORTRAN mutation system. Although

this proves nothing, (other than being our first example of where

EXPER can fail), it shows that even in the very restricted class of

Straight line FORTRAN programs with only addition and subtraction

tremendous difficulties can be encountered.

What then saves us from a morass of intractability?

The saving grace is that programmers are usually not adversaries,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

FUNCTION E(A,B,C,D) FUNCTION E(A,B,C,D)

F = BtC F = Bta

G = 4-F G = A-F

E = GtD E = GtD-B

END END

Figure 4-13; Twe programs which are close but not equivalent

hiding inscrutable mistakes in obscure locations. Most errors a

programmer makes are simple in forms well understood and classifiable.

Furthermore we are willing to live with something less than assurances

of total correctness. If we observe that the program works correctly

‘ESL S’ Taree number of well designed inputs and that the program has

been reasonably well exercised then we are usually willing to believe

it is correct (always keeping in mind the small possibility we may be

wrong). The fact that these goals are not perfect but are attainable

is why testing has been and will continue to be established practice

among programmers.

Given a testing tool, like the EXPER system, which we know is not

perfect, experimental studies are ef great importance in establishing

how well we can expect the tool to work in practice. People are quite

willing to live with non perfection, for example compilers that on

tare occasions fail, as long as the number of failures are small in

relation te the number of successes. Similarly the lack of perfection

in the mutation system should not dishearten us, but rather should

encourage us to examine how it works on the types of errors commonly
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encountered,

Notice that, as we saw in chapter one, the mutation methodology

exists quite independently of the EXPER mutation system. Experimental

studies must be of a specific system, in this case the EXPER system.

These only roughly approximate an evaluation of the method in general.

It is possible that an alternative system could be constructed using

the mutation idea but with quite a different set of mutant operators.

Such a system could perform in a radically different manner from

EXPER, with a result that the empirical results reported here could be

similarly changed.

The selection of mutant operators described in the last chapter

is also not static. Several of the operators mentioned in chapter 3

were not present in the original implementation of EXPER, and were

added as experience suggested they might be useful. There is no

evidence that this trend has halted. Further experience with the

system and its error detection capabilities will undoubtedly suggest

new operators which might significantly alter the statistics reported

here for experimental studies.

4.1 An example of the coupling effect

This section wiil illustrate a representative case of coupling in

a FORTRAN program. The program is adapted from the IBM scientific

subroutines package [59], a collection of statistical and scientific

programs in common use. The error was artificially inserted in a
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

study by Gould and Drongowski [38]. The error occurs in the line

which reads

40 INN uB0(3)

but which should read

40 INN = UBO(2)
SUBROUTINE TAB1(A,NV,NO,NINT.S,UBO,FREQ,PCT,STATS)
INTEGER INTX
REAL TEMP, SCNT, SINT
INTEGER INN, J, IJ
REAL VMAX, VMIN
INTEGER I, NOVAR
REAL WB0(3), STATS(5), PCT(NINT), FREQ(NINT)
REAL UBO(3), S(NO)
INTEGER NINT, NO, NV
REAL A(600)
NOVAR = 5
DO 5 I=1, 3

5 wWBOC(I) = UBO(T)
VMIN = 0.1000000000E+11
VMAX = -0.1000000000E+11
IJ = NO * (NOVAR - 1)
DO 30 J=1, NO
IJ=IJ+1
IF(S(J)) 10,30,10

10 IFC(ACIJ) - VMIN) 15,20,20
15 VMIN = A(IJ)
20 IF(ACIJ) - VMAX) 30,30,25
25 VMAX = A(IJ)

t

30 CONTINUE
STATS(4) = VMIN
STATS(5) = VMAX
IF(UBO(1) - UBO(3)) 40,35,40

35 UBO(1) = VMIN
UBO(3} = VMAX

40 INN = UB0(3)
DO 45 I=l, INN
FREQ(I) = 0.0000

45 PCT(I) = 0.0000
DO 50 I=l, 3

50 STATSCI) = 0.0000
SINT = ABS((UBO(3) ~ UBO(1)) / (UBO(2) - 2.0000))
SCNT = 0.0000
IJ = NO * (NOVAR ~ 1)
DO 75 J=1, NO
Ij =IJ+1
IF(S(J)) 55,75,55

55 SCNT = SCNT + 1.0000
STATS(1) = STATS(1) + A(IJ)
STATS(3) = STATS(3) + ACIJ) * ACIJ) Lh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

TEMP = UBO(1) - SINT
INTX = INN - l
DO 60 I=l1, INTX

TEMP = TEMP + SINT
IF(ACIJ) ~ TEMP) 70,60,60

60 CONTINUE

65 FREQCINN) = FREQ(INN) + 2.0000
GOTO 75

70 FREQ(I) = FREQ(I) + 1.0000
75 CONTINUE

IF(SCNT) 79,105,79
79 DO 80 I=l, INN
80 PCT(I) = (FREQ(I) * 100.0000) / SCNT

IF(SCNT - 1.0066) 85,85,90
85 STATS(2) = STATS(1)

STATS(3) = 0.0000
GOTO 95

90 STATS(2) = STATS(1) / SCNT
STATS(3) = SQRT(ABS((STATS(3) - (STATS(1) * STATS(1))

* / SCNT) / (SCNT - 1.0000)))
°95 DO 100 I=l, 3
100 UBO(I) = WBOCTI)
105 RETURN

END

There are a number of mutants which cause the programmer to

generate test inputs which uncover this error. Consider, for example,

the one which changes the statement

IF (ACIS) - TEMP) 75,65,65

to

IF (ACIS) - 1.000) 75,65,65

Control reaches this point only if A(IJ) is bigger than TEMP, so

control always passes to 65. By tracing the flow of control we can

discover that TEMP is equal to the value of the input parameter UBO(3)

at this point. To eliminate this mutant then we must find a value

where A(IJ) is less than one but larger than UBO(3). Therefore UBO(3)

must be less than one. There is nothing in the specifications which i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

tules out UBO(3) being less than one, but the error causes UBO(3) to

be assigned to the integer variable INN. All the feasible paths which

go through the mutated statement also go through label 65, which

references FREQ(INN). Since INN is less than or equal to zero, this

is out of bounds, and the error is discovered.

4.2 Reliability studies

A method one might consider for evaluating a tcol such as the

program mutation system would be to use an experiment similar to those

used in psychological studies, such as the double blind technique.

Using this method one has a group of subjects which varying levels of

programming and testing skills and a group of programs which have zero

or more errors known only to the experimenter. Each subject reports

on the errors detected in trying to pass the mutant test. Analysis of

variance or similar statistical techniques can then be used to

evaluate the results.

Unfortunately there are two serious difficulties which prevent

one from using a technique such as the one just described. The first

is the high cost of performing such controlled multi-subject

experiments. The second, and more serious difficulty is the problem

of factoring out those errors caught as a direct consequence of the

method from errors caught by other means, such as merely reading the

listing. (Holthouse et al [49] mention this difficulty and describe

these errors as being caught by the 'peripheral vision’ of the human

tester.)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e
T

97

In order to remove this second difficulty in comparing various

testing methods we need a uniform notion of when a method has

discovered a particular error. Howden calls this idea reliability and

defines it as follows:

If the use of a program testing technique is guaranteed
to always reveal the presence of a particular error in a
program, then the techniane is said to be reliable for the
error. [53] (italics mine)

We have taken the word guarantee as it is used here to mean that

the method itself, no matter who applies it or their level of

programming expertise, must somehow insure that the error will be

discovered.

Notice that there is a certain artificiality introduced

concerning whether test data which shows the program is incorrect

actually shows the presence of a particular error. As noted by

Gannon [32], in the presence of such test data a possible, and indeed

likely, outcome is that the wrong cause will be diagnosed and an

incorrect fix applied. We have tried to avoid a discussion of this

problem by making the definition that a set of test inputs (D) reveals

the error E if upon removing or correcting E the test inputs D are

correctly processed.

in order to achieve this extremely stringent requirement, we

devised the following experimental method: The goal of the method is

to achieve one of two possible cutcomes. Either

1. a set of test cases is developed which are processed
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

correctly by the erroneous pregram and which eliminate all
non equivalent mutants (in which case we say the error is
not reliably caught by mutation analysis), or

2. a set of mutants is discovered with the property that the
only inputs which cause an observable difference in the
erroneous program and the mutant programs also cause an
observable difference in the erroneous program and the
correct program. In this case we say that mutation
analysis would reliably uncover the error, since any data
which eliminated one of these mutants would discover the
error.

The method used to achieve these goals was as follows: An

experienced programmer would be given the incorrect program and would

have total knowledge of the location and nature of the errors it

contained. Choosing a mutant he would attempt to find a test case for

which both the correct and erroneous program agreed but which

differentiated the erroneous program from the mutant program. The

construction of test data in this fashion puts mutation analysis in

the worst possible light, in that the tester is forced to act as an

adversary and find the least meaningful sets of inputs. Often this

involves a detailed analysis of the effects of a certain error. For

example, one of the programs in the second study computes statistics

for vectors of inputs; For a vector of three numbers, the correct

enswer is produced only if 5x*-5xyv45y2-5yz+5Z2-5zx=9. While it is

possible that another test generation method would only construct

inputs which satisfied this constraint, it seems extremely unlikely.

(Because of the often significant amount of work which must be done to

find this absolutely worst case inputs, Professor Sayward has coined

the slightly more picturesque term Beat the System Experiments for
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

this type of study.)

Having found test data to eliminate this mutant, the tester would

then execute all the mutants on this test case (probably eliminating a

large number of other mutants in the process). If it was not possible

to find such a test case another mutant was chosen. This process was

iterated until one of the two goals given above was achieved. This is

a worst case type of analysis, in that any other method of generating

test data must necessarily find at least the errors found in this

fashion, and very likely many of the others also.

This type of experiment is actually an extension of the

reliability studies performed by Hamlet [42] and Howden [52]. These

earlier studies, however, were directed at comparing two or more

competing methodologies, and deriving statistical information of the

form “on the following samples of programs method A discovered XZ of

the errors and method B discovered YZ." In the following experiments

we were much less concerned with the number of errors caught and much

more concerned with the type of errors missed. Furthermore this

information was not used to compare two methods but was designed to

evaluate the mutation analysis system (EXPER) and to direct the search

for new mutant operators which would improve the system.

For example, several of the programs studied revealed that a

significant number of errors in FORTRAN were caused by programmers

treating the DO statement as if it were an ALGOL FOR statement,
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
e

100

forgetting that no matter what the limits are, a DO statement will

always (perhaps erroneously) execute the loop body at least once. The

way we chose to detect these errors was to introduce a mutant which

changed a DO statement into a FOR statement, bringing this fact to the

programmers attention and forcing him to derive data which indicated

he had knowledge of this potential pitfall.

Using this methodology, several experiments were conducted

measuring the reliability of mutation analysis. Both the first two

studies were based on data from previous studies by Howden [54, 56].

4.2.1 An experiment using program fragments from Kernighan and Plauger

This study was based on 12 program fragments from the "common

blunders" chapter of Kernighan and Plaugers book The elements of

programming style [60]. A description of each of the errors is

contained in appendix A.

William Howden had previously studied these program fragments in

an attempt to compare the error detection capabilities of symbolic

evaluation and path testing. In symbolic evaluation a program is

executed symbolically rather than with numerical values and the user

is given the symbolic output which can, presumably, be checked against

a specification for correct output. The second method studied by

Howden, path testing, involves finding data which executes every

feasible path (up to iterations of loops) and which iterates each loop

at least twice. For each such path test data was generated randomly. I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

By generating the test data randomly Howden's study was not, in the

strict sense of the definition given in the last section, a

reliability study. A reliability study is, however, an example of

worst case analysis, in that any other method must necessarily give

better results. Hence the figures reported by Howden can be

considered as bounding what one would expect from a reliability study.

Howden found that symbolic evaluation would detect 13 of the 22

errors (15 if a more graphic method of presenting the symbolic output

were used). Path testing would detect only 9. Combining the two

method one would detect 16 of the 22 errors. Using the definition of

reliability described in the last section we were able to demonstrate

that mutation analysis would necessarily discover 20 of the 22 errors.

These results are given in table 4-1, and further information on the

particular errors and their discovery can be found in appendix A.
SYMBOLIC EVALUATION 13/22
PATH TESTING 9/22
BOTH COMBINED 16/22
MUTATION ANALYSIS 20/22

Table 4-1: Howden's data combined with
that for Mutation Analysis

In [54] Howden describes some of the errors not caught by the two

methods he studied. Fcr example in one case there is the computation
J = MARKS(I)-1/10 +1

where a pair of parenthesis have been erroneously omitted around the

formula MARKS(I)-1. This is one of the errors which would not be

detected by symbolic evaluation unless a special two dimensional

output was used. To see how this error is caught by mutation analysis l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

note that in FORTRAN the expression 1/10 is equal to zero. By making

the mutation which replaces 1/10 with 0/10 the error is quickly

revealed.

Another error not revealed by either symbolic evaluation or path

testing involved the omission of an absolute value operator from an

expression. One of the mutants generated is, however, exactly the

correction needed to repair this error. Hence the error is again

easily discovered.

There are two errors which are not caught in this experiment.

The first involves two adjacent statements which should be

interchanged. Note that we could have chosen to make a mutant

operator which interchanged statements, in which case this error would

have been caught. Because in so many cases one can interchange

statements with no effect on the program we chose nct to make this

operator. This illustrates the fact that a slightly different set of

operators could radically alter the results reported in these

experiments.

The second error involves strict equality being used with real

variables when a fuzzy equality which avoids round off problems should

be used. It is much more difficult to find a mutant operator which

could conceivably discover this error.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103.

4.2.2 An experiment using four programs from a study by Howden

The four programs analyzed in this study were taken from the

report on an experiment conducted by Howden for the National Bureau of

Standards [56]. All the programs had previously appeared in the

literature, and are described in appendix B. In this study Howden

considered a number of different test data generation methods to

determine which would reliably uncover errors in six different

programs.

It was our desire in undertaking this study that the data

presented by Howder would serve as a useful benchmark by which the

capabilities of mutation analysis could be evaluated, Unfortunately,

two of the programs in Howden's study were written in COBOL and PL/1

and depended heavily on Fixed Decimal, Picture type data, or ON

conditions. The fact that these issues do not arise in FORTRAN and

cannot be easily simulated meant that these two programs had to be

excluded from this study. Even more disturbing was the fact that the

two programs excluded accounted for 23 of the 28 errors (or 822)

considered by Howden. (The COBOL program contained 2? errors, all of

which are caught by branch analysis. Since mutation analysis subsumes

branch analysis these would all have been caught by mutation analysis.

Because of the presence of ON conditions the other PL/1 program could

not be evaluated.)

This left us with four programs containing a total of five

errors. Although this sample was much too small for us to draw any L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

definitive conclusions, it is hoped that because of the number of

methods studied by Howden some idea of the relative strengths of the

methods can be gathered.

Howden analysed six different testing methods: Path testing is a

technique which requires that each executable path through the program

be executed at least once. (This definition seems to differ from the

definition used by Howden in the earlier study.) This technique is not

practical since a program may have an infinite number of paths, but it

does give an upper bound on the reliability of techniques that require

testing of some subset of the set of all paths. Branch Testing

requires that each branch be tested at least once for all its possible

outcomes. Structured testing assumes that the program consists of a

hierarchical structure of small functional modules. Each path through

a functional module which executes loops less than 2 times is tested

at least once. Special values testing is a collection of rules which

experience indicates are important for finding good test data.

Examples of such rules are that each expression should, if possible,

evaluate to zero, that different elementary items in an input data

Structure have distinct values, plus rules specific to the program

under test. Anomaly Analysis does not execute the program but rather

looks at the code for suspicious looking constructs. Finally,

Specification Requirements constructs test cases only from the

specifications, and not from the code itself.

The single error in this study which mutation analysis failed to
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

PATH ANALYSIS 4/5
BRANCH ANALYSIS 0/5
STRUCTURED TESTING /5
SPECIAL VALUES 4/5
ANOMALY ANALYSIS 0/5
SPECIFICATION REQUIREMENTS 3/5
MUTATION ANALYSIS 4/5

Table 4-2: Number of errors caught versus testing method

detect (which is described in appendix B), can be characterized as a

missing path error. For methods which, like mutation analysis, are

based on an examination of the code, these are indeed the most

difficult type of errors to detect. It is interesting to note that

those methods which construct test data from a description of the

program and not the code itself (specification requirements and

special values testing) do well at discovering these errors. This

would seem to imply that a combined method would be most desirable,

where an initial core of test cases would be constructed just from the

specifications, and then this core could be expanded to correct

weaknesses as demonstrated by mutation analysis. Such a combined

testing strategy might prove very effective.

Appendix B contains more detailed information on each of the

programs and how the errors are detected,

4.2.3 Further reliability studies

Mutation analysis is unique in that by an appropriate choice of

new mutant operators the method can in practice be significantly

improved. This notion of reliably uncovering errors gives us

important information which can be used to help direct the search for

these new operators. To understand this, note that in studying a
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

given program and a given set of errors, information is obtained no

matter what the outcome:

a) If the errors sre reliably found, insight is gained into why

the method works. This is because the result is an actual set of

mutants which force the discovery of the error. Some connection

between mutants and errors can then be formulated.

b) If the method fails to reliably find the error, then the

weakness so shown can be used to direct the search for new mutant

operators.

It is in this manner that many of the mutant operators described

in the last chapter have been discovered and added to the EXPER

system.

It is precisely because such a useful store of information can be

discovered that we have continued to run these

reliability experiments on other programs :* To date thirteen

programs have been analyzed. These programs contained a total of 30

errors. Of these 30 mutation analysis, as characterized by the EXPER

system, would discover 25. Further information on the programs is

contained in appendix C.

“Several of the programs studied here were actually analyzed, under
my direction, by Mr. Robert Hess. I am extremely grateful for his
assistance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

It is difficult to construct a classification scheme for error

types which is neither so specific that each error forms its own type

nor so general that important patterns cannot be detected. If the

classification is based on logical mistakes it is often hard to relate

errors to mistakes in the code. On the other hand it seems difficult

to base a scheme just on mistakes in the code, since often a single

legical mistake will be responsible for changes in several locations

in the program. Goodenough and Gerhart [37] and Howden [52] among

others have attempted to construct a generally applicable system.

Neither of these systems give a sufficiently intuitive picture of the

errors in any particular class. Therefore we have chosen to group the

errors in these thirteen programs into the following categories:

Missing Path Errors: These are errors where a whole sequence of

computations which should be performed in special circumstances are

onitted.

incorrect Predicate Errors: These are errors which arise when all

important paths are contained in the program, but a predicate which

determines which path to follow is incorrect.

incorrect Computation Statement: These are errors which arise

from a computation statement which is incorrect in some respect.

Missing Computation Statement

Missing Clause in Predicate: This is a special case of an
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

incorrect predicate error, but since it is so hard to detect we give

it special treatment.

The 30 errors in these 13 programs range from simple to extremely

subtle errors. Due to the worst case nature of reliability studies

the fact that 5 errors are not discovered does not mean that these

errors would always remain undiscovered if mutation analysis were

used, merely that we cannot guarantee the discovery. Table 4-3 gives

the number of errors detected by error type. Of these 30 errors, only

11 would be caught using branch analysis.

NUMBER CAUGHT
MISSING PATH ERROR 7 6
INCORRECT PREDICATE ERROR 4 3
INCORRECT COMPUTATION STATEMENT 15 14
MISSING COMPUTATION STATEMENT 3 2
MISSING CLAUSE IN PREDICATE 1 0

Table 4-3: Number of errors detected versus error type

One can notice that in three of these categories the errors are

caused by the lack of certain constructs in the program. Since the

testing method is being asked to guess at something which is not in

the program, we should be surprised that it does as well as indicated.

None the less, missing path errors and missing clauses in predicates

are probably the most difficult errors for any testing method to

discover.

Table 4-4 shows the number of errors which are detected broken

down by operator type. Two figures are given for each mutant operator

type; The first is the total number of errors detected by mutants of

that type, and the second represents the number of errors identified
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

by this operator and only this operator. From this table we can gain

some idea of the relative strengths of the mutant operators.

TOTAL UNIQUE
Constant replacement 5

Scalar Variable Replacement
Scalar Variable for Constant Replacement
Constant for Scalar Variable Replacement
Source Constant Replacement
Array Reference for Constant Replacement
Array Reference for Scalar Variable Replacement
Comparable Array Name Replacement
Constant for Array Reference Replacement
Scalar Variable for Array Reference Replacement
Array Reference for Array Reference Replacement
Data Statement Alteration
Unary Operator Insertion
Arithmetic Operator Replacement
Relational Operator Replacement
Logical Connector Replacement
Absolute Value Insertion
Statement Analysis
Statement Deletion
Return Statement Replacement
GOTO Label Replacement
DO Statement End Replacement

Table 4-4: Errors detected versus mutant classification

r
F
H
N
O
O
U
N
R
D

O
F
F

O
O
O
O

C
D
O
O
O
F
O
K
O
 p

m

N
E
N

O
K
D
U
O
C
K
H

EP
H
P
O
M

D
W
H

W
h

W
U

pS

The low figures for logical connector replacement and data

statement alteration are due more to the lack of these constructs in

the programs being tested than to any fundamental weakness in these

operations. The high figure for the number of errors caught only by

statement analysis is due to the fact that the other mutant operators

were enabled only after all statement analysis mutants were eliminated

(i.e. all statements had been executed).

The observation we can make is that we again see a strong

redundancy in the mutant operators, particularly in the operand

mutations. This redundancy is less noticeable, although still present i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

in some degree, in the operator and statement mutations. This remark

might lead us to conclude that in sampling mutants (see section 3.4)

we should weight the different mutant types; Perhaps generating all

the statement and operator mutants and only sampling the operand

mutations.

We can envision using this data to construct a procedure which

would minimize the expenditure of machine and human resources in the

discovery of errors; However there is an important point to be noted

in this regard, which is that while logically two mutants may have the

same error detecting power, psychologically they may be vastly

different. For example mutants which in effect say "this statement

has never been executed", "this statement can be deleted", or "this

relational or logical operator can be replaced with the constant TRUE"

pinpoint an error much more directly and forcefully than one which

says "This expression can be incremented by one and the same result

will be produced." This psychological argument would seem to imply

that the first mutant types to be enabled should be statement

analysis, statement deletion, goto label replacement (used in branch

analysis), and the arithmetic, relational and logical operator

replacements.

The choice of which mutant operators to apply next seems to be a

trade off between human and machine resources. Operand mutations seem

to have a much more immediately assimilable meaning than do either the

remaining statement or operator mutations. On the other hand, operand
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill

mutations typically comprise over 802% of all mutants generated. If we

want to minimize machine resources (i.e. the number of mutants

executed before an error is found), we would therefore enable first

all the operator and statement mutants, and only once they have been

analyzed consider the operand mutants. On the other hand if we want

to minimize human resources (i.e. the amount of time the tester must

spend analyzing mutants and constructing test cases), then we would do

just the opposite. It seems difficult to decide without further

information which order would be best in practice, as each individual

Situation would dictate its own solution.

4.3 Testing large systems

In an attempt to discover if the testing of large hierarchies of

programs presented any serious difficulties not encountered in testing

small singie modules, several parts of the EXPER system were tested

using the system on itself. These parts consisted of two large groups

of subroutines from the parser, each approximately 1,000 statements in

length (not counting comment cards). Because of time and space

limitations not all the subroutines could be tested, hence only the

most central and critical routines were selected (in all about half

the total number of statements were tested).

The experiment was quite rewarding as over a dozen errors were

discovered in the EXPER system. The large number of errors was

surprising since at the time the experiment was conducted the system

had been in operation for over a year and a half. Examples of the
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

type of errors discovered were: passing the wrong number of parameters

to procedures, or passing incorrect parameters, declaring variables

the wrong type, referencing out of bounds array indices, getting stuck

in infinite loops on error conditions, dead code which could not be

executed, and a confusion over whether columns 72 to 80 could contain

valid FORTRAN statements.

The difficulties encountered in this experiment were much more a

consequence of managing a large network of subroutines, and not

particularly related to mutation analysis. Most of these difficulties

have been noted previously by other authors [49]. Examples of the

problems encountered are:

A) Defensive coding. This is responsible for sections of code

marked "Hope this never happens but if it does do the following." It

seems clear that defensive coding encourages reliability, especially

Since about half the time the assumption that the code can never be

executed proves to be wrong. But if the assumption is right then the

unexecuted parts of the code can be mutated in any fashion with no

_ effect.

B) Portions of code which, while executable, are difficult to

reach because they require an inordinately large input space or too

much CPU resources to duplicate.

C) Routines which are also used by other sections of code not

being tested. In one case during this experiment a predicate was |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

discovered which could not be forced to be true. A fix was then

applied which removed the offending statement. A month later it was

discovered that the subroutine in question was used elsewhere and the

now absent predicate was of critical importance.

D) Starting over again. Once testing has commenced the code is

regarded as unalterable. If errors are discovered and the program

must be changed, one is forced to start the entire testing process

over again. This means that all the previously developed test cases

must be rerun and all the previously eliminated mutants dealt with

again.

If one were at attempt to construct a commercially viable

mutation testing system, all of these problems would have to be dealt

with. In spite of these difficulties this experiment did prove that

mutation analysis could be applied to medium to large software

systems. The difficulties involved in using mutation analysis seem no

more severe than those involved in any other testing method.

4.4 The lifespan of an average mutant

An important observation to keep in mind when considering the

cost of mutation analysis is that about 80% of all mutants die the

first time they are encountered, no matter how good or bad the test

data is. This means that at worst only about 20% of the mutants

generated will require lengthy investigation.

The reason for this high attrition rate seems to be a striking
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

nonunifsrmity with regards to how mutants die in the various test

cases. In the EXPER system there are eight ways a mutant can die: by

computing the wrong answer, by receiving an arithmetic fault, by

computing a subscript index out of bounds, by executing a trap

statement, by referring to an undefined variable, by attempting to

divide by zero, by running for too long, and by attempting to change a

read only variable. We have observed that in the first few test cases

a high percentage of mutants die by means other than getting the wrong

answer. The situation is thereafter reversed, when almost every

remaining mutant which dies does so because it computes an answer

different from the original program.

We have also observed that in achieving the goal of all non

equivalent mutants being eliminated, about twice as many mutant

executions are performed as there are mutants generated. This figure

includes equivalent mutants which survive all test cases. If we

eliminate these from consideration, then the average mutant survives

about 1.5 test cases before being eliminated.

The last few mutants to be eliminated are, however, extremely

recalcitrant. It is these mutants which are probably the most

difficult and the most important to remove since they give the

greatest insight into the functioning of the program. Typically, the

last 502 of test cases are used to eliminate the last 2-10% of the

mutants.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

4.5 The problem of equivalent mutants

In the first chapter it was noted that a major stumbling block to

the application of mutation analysis is the problem posed by mutants

which are equivalent to the original program. In chapter two we saw

that this same problem was of some concern in the theoretical studies.

In practice equivalent mutants are a nuisance, but for an entirely

different reason. It is not that equivalent mutants are difficult to

discover, but that they are so prevalent and simple minded that they

get in the way of the more important aspects of testing.

Typically between 4 and 10% of the mutants generated are

equivalent, with heavy clustering towards the 4. The equivalent

mutants are not, however, distributed with the same ratios as all

mutants. In fact, a very small number of mutant types account for a

disproportionate number of equivalent mutants. The following table

gives some typical figures. The first column gives the percentage of

equivalent mutants which the equivalent mutants of the given type

represent, and the second column gives the same percentage for all

mutants.

PERCENT OF EQUIVALENT OF ALL
ABSOLUTE VALUE INSERTION 75 4.0
GOTO REPLACEMENT 12 0.7
RELATIONAL OPERATOR REPLACE 7.5 0.5
ALL OTHER MUTATIONS 5.) 0.5

Table 4-5: Percentage of equivalent mutants
versus mutant type

In order to investigate how difficult it would be to construct an

automatic system to eliminate these mutants we defined several levels
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

of difficulty. An automatic system could easily be constructed to

remove mutants of the first three levels, Mutants of level four

could, in principle, be eliminated but the costs might be prohibitive.

Mutants of level 5 probably could not be eliminated algorithmically.

TYPE 1: These are mutants eliminable by

a) noting that if a parameter has a variable upper bound, the value of

the upper bound variable must be strictly positive, and

b) Noticing the values on DO loop limits, for example if I=1,10 then

for the extent of the loop I is positive and between 1 and 10.

TYPE 2: These are mutants eliminable by examining the statements

in the immediate proximity of the mutated statement, in particular no

further removed then the last multiple entry point (labelled statement

or DO loop start).

TYPE 3: Eliminable by noting that if a variable is initialized to

a non negative (strictly positive) value and always incremented then

it will remain non negative (strictly positive).

TYPE 4: These are mutants which are eliminable in theory but

would require a symbolic executor system to trace a large number of

feasible paths.

TYPE 5: Finally, these are mutants which require a deep

understanding of the algorithm, knowledge about number theory, or

other real world knowledge generally beyond the scope of automatic i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

analysis.

By level of difficulty, equivalent mutants typically group as

shown in table 4-6. As can be seen, generally well over 70% of the

equivalent mutants can be detected by the most rudimentary automatic

procedures. Most of the remaining 30% could, in principle, be

eliminated automatically hence are probably easy for humans to

recognize. Generally less than 3% of the equivalent mutants (0.14% of

all mutants) require a deep understanding of the program or

programming process to be eliminated.

LEVEL PERCENT OF EQUIVALENT OF ALL

lL 31.1 2.3
2 2.8 0.13
3 40 .8 2.0
4 22.9 1.4
5 2.4 0.14

Table 4-6: Percentages of mutants versus level number

Baldwin and Sayward [3] have discussed the use of traditional

program optimization methods in the detection of equivalent mutants.

While powerful, these methods do not seem to be directly applicable to

absolute value insertion mutations, which table 4-5 shows are the most

common form. A simpler method would probably suffice.

So as not to leave the impression that the problem of equivalent

mutants is trivial, note that often those few mutants in the type 5

category are extremely subtle. During the course of the sampling

experiment discussed in section 3.4 there were several extended

discussions concerning whether certain mutants were or were not

equivalent. There is even a program containing two mutant changes i
a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

which was published and asserted to be equivalent [65], however later

investigation proved this not to be the case. The saving grace is

that these examples are rare.

 i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

DIRECTIONS FOR FUTURE RESEARCH

oY

Mutation analysis is a recent innovation. Because it represents

a new solution to some very general problems, the method has numerous

aspects which I have not pursued in this thesis. In this chapter I

will specifically mention five areas of possible future research:

1. The use of symbolic execution to generate test cases
automatically.

2. Preprocessing or postprocessing the program to reduce the
number of mutants generated.

3. Expanding the concept of test case to include more than
just input/output behavior.

4. The analysis of new and different mutant operators.

3- The application of the mutation analysis paradigm to other
problem domains.

del Using symbolic execution to generate test cases

Symbolic execution is another testing method which has been

extensively studied [6, 20, 54]. In this method, variables are

treated as algebraic unknowns, and a specific path through a program

is interpreted symbolically, producing an equation (or several

equations) expressed in terms of these unknowns. The equations can

then be solved by some automatic means to derive test data which

119
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

follows this path. In essence this is what a human tester must do,

the difference being the machine is now used to derive the test data.

Symbolic execution is costly and there are problems connected

with solving the resultant equations, but a greater shortcoming is the

fact that the goal is very weak. In most systems that have been

proposed the goal is a set of test cases that execute every statement.

4s I have discussed in section 3.2.2, a test set of this nature gives

us very limited knowledge about whether the program is correct. This

is most strikingly illustrated by the case of Straight line code,

where often a test case consisting of all zero inputs can execute

every statement while telling us next to nothing about the program.

Some symbolic execution systems have slightly stronger goals, and

the test cases they generate are slightly better. For example the

ATTEST system [21] uses the symbolic information to preclude zero

divide, index overflow or underflow, computed goto out of bounds, and

variable dimension out of bounds. But problems such as predicate

errors (section 3.2.5) and coincidental correctness (section 3.2.9)

may still pass undetected.

Mutation analysis provides a goal for symbolic execution systems

that is significantly stronger. Each mutant, in effect, presents a

different goal for the symbolic execution system: that of finding

test data to differentiate it from the original program. That is, the

symbolic execution system can be used to generate test data that
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

eliminates mutants, a task usually left to the human tester. In the

case of equivalent mutants such a task is impossible, but it might be

possible to use the information obtained to prove equivalence. It can

happen that a mutated statement is not locally equivalent to the

original. So a symbolic execution system would have to evaluate more

then just local situations, txacing at least one program path from

start to finish.

The use of symbolic evaluation in conjunction with mutation

analysis could both increase the capability of symbolic evaluation and

ease the problem of generating test cases for mutation analysis.

5-2 Reducing the number of mutants generated by EXPER

The sampling experiment described in section 3.4 suggests that

there is a large amount of redundancy in the mutants generated by

EXPER. An interesting question is whether this redundancy is

algorithmic, that is, whether it might be possible to decide a priori

which mutants are redundant and therefore unnecessary. We made a very

limited attempt at this type of analysis with EXPER, writing a number

of different rules concerning when not to generate mutants [14].

These rules, however, examine only the immediate neighborhood of the

mutated section of code. It is possible that with more global

information (such as might be obtained from the symbolic execution

System described in the last section) a large number of mutants might

be eliminated without any need for test cases. On the other hand, it i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

is equally possible that the cost of this analysis might far outweigh

the cost of executing the redundant mutants.

5.3 Using more than input/output behavior in test cases.

A testcase in EXPER is defined only by input/output behavior.

But in many situations it is reasonable to assume that a user knows

more than merely whether a given output is correct for a given input.

For example he might be able to tell whether some intermediate values

are correct, or he might be able to recognize a symbolic trace of the

] correct computation.

If we include this type of information the problems of testing

may become significantly easier [4, 9, 57]. Recently Martin Brooks

has analysed a testing procedure very similar to mutation analysis

using program traces as an additional source of information [9].

5.4 New mutant operators

It is a certainty that the set of mutant operators described in

chapter three is not perfect, and that the process of discovering new

mutant operators will continue. One new direction is indicated by the

recently created zero push operator (section 3.1.2). Other

push mutants that could be envisioned are one push, blank push for

characters, and an arbitrary constant push where the constant values

are taken from the program. For analysis of numerical software we

might want a big number push and a small number push, to insure that

quantities are both larger than some fixed limit and smaller (in

absolute value) than some quantity.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Section 3.5 mentioned a new operator of a type not currently

implemented in EXPER, which measured the values of an expression at a

specific point.

There is a danger in this game of making new mutant operators

that we will significantly increase the cost of an analysis without

significantly improving its capabilities. For this reason reliability

studies of the type discussed in chapter four should be used in

evaluating new operators, and a new operator should not be introduced

unless it reliably detects at least one new error representing a class

of errors committed in practice.

Finally this research might introduce a completely different type

of mutant operator. One possibility is based on the observation that

all the current mutant operators manipulate the code, but an equally

important part of the program is the data. For example one might

consider a mutant operator that would alter an input parameter by 10%

of its value. This type of operator might not help in finding errors,

but would be useful in evaluating the robustness of a software system.

55 Mutation analysis in other problem domains

In chapter one the notion of weighing inductive evidence by using

mutation analysis was introduced in a framework quite divorced from

computers and computer programs, and it is possible that mutation

analysis might be used to analyze some very general logical theories.

On a practical levels, one might ask whether mutation analysis on
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

other languages would be significantly different from the analysis of

FORTRAN presented in this thesis, I doubt very much that ALGOL-like

languages would present any new insights, but totally different

languages like LISP, SNOBOL, APL and SETL night produce some

SUIprises.

Various researchers are currently attempting to define a

language that can be used to formally express the specifications of

a program. Given such a language, one could conceive of a system that

develops test cases using mutation analysis on the specifications,

test cases that could then be used as a basis for generating more

extensive data using mutation analysis of the program.

Another interesting direction would be to apply mutation analysis

to a totally different form of testing, for example the testing of

logical circuits. Assume we have a model of either the logical or

physical components of, say, an LSI chip, and we can interpret the

actions of this model on certain inputs. We could then consider

mutants that altered the model in some way, perhaps related to design

or fabrication defects, and search for test data that would detect

these errors.

There is an interesting twist involved in the modelling of

physical circuits: Because of the way circuits are made it is often

not possible to insure that what is intended to be, for example, a .1

ohm resistor will not actually be .05 or .15 ohms. Hence one must 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

attempt to design devices that are impervious to such changes.

Mutants that produce these changes are just the opposite of those we

have been considering. In the paradigm which I have described up to

now an uneliminated mutant indicates a potential error. Here, since

all such changes should be transparent, if such a mutant is eliminated

it indicates an error.

5.6 Summary

This thesis has examined many issues related to the problem of

program testing, all unified by the mutation analysis paradigm

introduced in chapter one. To provide some sort of summary, chapter

one introduced into the usual inductive procedure a method for

weighing the importance of test case observations. The method is

quite general, and may have interesting applications quite unrelated

to computer programming. Chapter one discusses how in the particular

case of testing computer programs this method can be strengthened even

further by observing the coupling effect and the competent programmer

hypothesis.

Chapter two was devoted to showing that in some restricted

domains the mutation analysis method can be used to formally prove the

correctness of programs. In particular two examples, decision tables

and limear recursive lisp programs, are studied in detail.

While the results of chapter two may have some limited

applicability, the type of programs analyzed by these methods are q
Fe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

quite different from the type of program run on.a typical day on an

average computer. I have argued (chapter 4) that it is extremely

unlikely that a concise clear theorem of the type developed in chapter

two can be proved for a reasonable class of errors in any general

(that is, Turing complete) programming language. In order to examine

exactly what the capabilities of mutation analysis are in these more

general settings, in chapter three I describe a system which applies

mutation analysis to FORTRAN programs. Also in this chapter I show

how the particular mutant operators this system uses can mimic several

other testing methods.

Chapter four goes on to describe several experiments conducted

with the aid of this system. I analyze the time and machine resources

the system requires, difficulties involved in using it, its

effectiveness in finding errors, and compare the method against other

testing methodologies. I also show how the information obtained from

these studies can be used to direct the search for new mutant

operators, thereby improving the error detection capabilities of the

system.

Mutation analysis is a tool. It does not immediately solve ail

the problems associated with testing, but it can be a significant help

in the detection of errors and the testing of computer programs. It

does provide something few other testing methods can, which is a

quantitative estimate of test data adequacy.

q

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

The mutation analysis paradigm presented in this thesis is an

example of an inductive, rather than the more widely studied

deductive [43], means of increasing confidence in software. The field

of inductive formalisms in computer testing is certainly not exhausted

by this approach, and the need for discovery, comparison, and analysis

of other test measurement methods should certainly provide an

attractive research area for some time to come.

 i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Errors from Kernighan and Plaugers

chapter on Common Blunders

This appendix lists the 22 errors contained in the common

blunders chapter of Kernighan and Plaugers book The Elements of

Programming Style. All page numbers refer to the first edition.

There are six general ways in which errors are detected:

8 are caught merely as a consequence of the interpretation process,

2 are caught by spoiling coincidentally correct expressions,

2 are caught by the correct program being a mutant of the incorrect

One»

2 are caught by domain pushing (inserting ABS statements),

2 are caught by predicate testing,

I is caught by the branch analysis mutants.

The 22 errors are as follows:

1. Page 77. Sin routine, variable SUM is uninitialized.
Caught by the interpreter.

2. Page 78. Sin routine, DABS operator needed, caught since
this is a mutant.

3. Page 78. Sin routine, -1**(I/2) used instead of
(-1)**(I/2). The exponent can be mutated to I/3 or I/1 or
removed altogether with no noticeable effect.

4. Page 78. Sin routine, two statements interchanged. This
error is not necessarily caught by mutation analysis.

2. Page 79. Current routine, uninitialized variable E.

128 J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 q

4

6.

7.

9.

10.

ll.

12.

13.

14.

15.

16.

17.

18,

19,

20.

129

Caught by the interpreter.

Page 79. Current routine, integer/real mismatch. Caught
by the interpreter.

Page 80. Current routine, variable C not reset. Caught by
branch analysis mutations, since when SC+CI .LE. TC (which
must happen to eliminate all branch analysis mutants) the
wrong answer will be produced.

Page 80. Current routine, fails to work when variable
CI=0. Caught by zero push mutations.

Page 81. Expression NUM should be NUM(1). Gives a
compiler error.

Page 81. Variables initialized with DATA statements are
overridden. In EXPER variables jn DATA statements default
to read only unless otherwise marked.

Page 83. Program fails to work if exactly 46 transactions.
Caught by changing the Greater than operator to Greater
than or Equal.

Page 84. Greater than instead of Greater than or Equal
meeded. This is a mutation.

Page 84. Possible reference to undefined variable LOW(2).
Caught by changing DO 12 I=2,N to DO 12 I=1,N.

Page 85. Possible error if B+C less than .01 . Caught by
twiddling B+C by .01 .

Page 85. Loop exits out of both side and botton. Caught
by changing 60 to 61, forcing loop to go through 60 times.

Page 87. Search Program. Uninitialized Variables. Caught
by interpreter.

Page 87. Search Program. Doesn't work for tables of one
entry. Caught by changing (LOW+HIGH)/2 to (LOW+HIGH)-2.

Page 87. Search Program. Doesn't work when match is in
A(1). Caught same as previous error.

Page 89. J=MARKS(I)-1/10 should be J=(MARKS(1I)-1)/10
Caught by changing 1/10 to 0/10.

Page 90. Parenthesis missing around expression AN - 1.0.
This will be caught by almost any data, in particular when
an attempt is made to force (SUMSQ - (SUMX**#2 / AN)) to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Zero.

21. Page 91. 10 times .1 is not 1. Any data will give wrong
answer.

22. Page 93. Equality should be fuzzy. This error is not
caught by mutation analysis.

}

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 5

Details of the four programs from a study by Howden

The first program is written in an ALGOL dialect and initially

appeared in a paper by Henderson and Snowden [46]. It is intended to

read and process a string of characters which represent a sequence of

telegrams, where a telegram is any string terminated by the keywords

"Z22Z 2Z2Z", The program scans for words longer than a fixed limit,

and isolates and prints each telegram along with a count of the number

of words contained therein, plus an indication of the presence or

absence of over length words. The program has also been studied in

Ledgart [63] and Gerhart and Yelowitz [34]. The program contains the

following loop which is intended to insure that blank characters are

skipped and that following the loop the variable LETTER contains a non

blank character.

WHILE input * emptystring AND FIRST(input) = * !
DO input := REST(input);

IF input = emptystring THEN input = READ + * ';
LETTER = FIRST(input);

The WHILE loop terminates either on an empty string or a non

blank character. If it terminates on an empty string and the first

character in the buffer loaded by the READ instruction is blank,

LETTER can contain a blank character.

When this program is translated into FORTRAN and executed on the

EXPER system the error is not necessarily caught. The reason for this

131

j

a .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

failure is not so much a failure of mutation testing as it is of

FORTRAN. ALGOL treats strings as a basic type, whereas in FORTRAN

they are simulated by arrays of integers. The fact that strings are

basic to ALGOL means that if we were constructing a mutation system

for ALGOL instead of FORTRAN we would have to consider a different set

of mutant operators. A natural operator one would consider can be

explained by noting that blanks play a role in string processing

programs analogous to that played by zero in numbers. Hence we might

hypothesize a blank push operator similar to the zero push operator

in EXPER. If we had such an operator an attempt to force the

expression FIRST(input) to blank would certainly reveal the error.

The second program, also written in ALGOL, appeared in a paper by

Naur [71] and has also been studied widely [30, 34, 37]. The program

is intended to read a string of characters consisting of words

separated by blanks and/or newline characters, and to output as many

words as possible with a blank between every pair of words. There is

a fixed limit on the size of each output line, and no word can be

broken between two lines.

There are two errors in this program, as studied by Howden. Each

time a word is encountered which fits on the current line a blank is

inserted to separate it from the preceding word. In the case of the

first word in the file this causes an extra blank to be inserted, The

second error occurs if the last word in the file is not followed by a

blank or newline, in which case the word buffer area is not emptied 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

and the last word is not output.

Goodenough and Gerhart [37] consider the fact that the program

does not suppress multiple blanks between words to be a third error.

I have also taken this position.

If we attempt to eliminate mutants of the erroneous program, we

find the following three mutants cannot be eliminated without causing

the original program to fail:

1. The first FILL := 0 statement can be replaced with FILL :=
1

2. FILL never has the value zero in the statement FILL := FILL
+]

3. BUFPOS is always greater or equal to one in the loop FOR
k=] ,BUFPOS (No data forces the execution of the hidden path
in which the loop is never executed)

If the first mutant is to be eliminated its effects must be

noticed before the FILL := 0 statement following the writing of the

newline character. This mutant can only be eliminated if the first

imput character is a blank, newline or the start of a word of less

than MAXPOS characters. If the first input character is a blank or

newline an unnecessary blank will be output, revealing the multiple

blanks error. If the first input character is the start of a word of

less than MAXPOS characters, an unnecessary space will be output

before the word and the initial blank error will be discovered,

FILL can have the value zero in the statement FILL := FILL+1 only

in the case we have just output a newline character (which may be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

initial newline). In this case the space is redundant and the initial

blank error is revealed.

The only way BUFPOS can equal zero in the FOR loop is in the

event of two or more consecutive blank lines or newlines. This would

reveal the multiple space error.

Hence both the multiple spaces and the initial blank error will

be discovered. If we correct those two errors and perform the

reliability experiment again we discover that it is possible to

eliminate all mutants using test cases which end in "newline,end of

text" or "blank, end of text". These test cases do not reveal the

last word error, hence mutation analysis cannot guarantee the

discovery of this error. Note, however, that if the test cases are

constructed randomly it is extremely unlikely that they would all end

in one of these two forms.

The third program appears in a paper by Wirth describing the

language PL-360 [88]. It is intended to take a vector of N numbers

and sort them into decreasing order. It was also studied by Gerhart

and Yelowitz [34]. As the outer loop is incremented over the list of

elements the inner loop is designed to find the maximum of the

remaining elements, and set register R3 to the index of this maximum.

If the position set in the outer loop is indeed the maximum, then R3

will have an incorrect value and the three assignment statements

ending the loop will give erroneous results. A listing of this
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

program is given in section 3.2.9.

There are three mutants which cannot be eliminated without

discovering this error. The first two change the statement RO :=

A(R1) into RO := A(R1)-1 and RO := -ABS(A(R1)) respectively. The

third mutant changes the statement A(R1) := KO into A(R1) := A(R3).

The final program is written in FORTRAN, and computes the total,

average, minimum, maximum, and standard deviation for each variable in

an observation matrix. The program is adapted from the IBM scientific

subroutines package [59]. It was analyzed and three artificial errors

inserted in a study by Gould and Drongowski [38]. In Howden's study

only one of those errors was discussed. The error occurs in a loop

which computes standard deviations. The program has the statement

SD(I)=SQRT(ABS((SD(1)-(TOTAL(I)*TOTAL(I))/SCNT)/SCNT - 1

A pair of parenthesis have been inadvertently left off the final SCNT

- 1 expression. Let X stand for the quantity
ABS(SD(I)-(TOTAL(I)*TOTAL(I))/SCNT)

The correct standard deviation is SQRT(X/(SCNTI-1)). The only way this

can be made zero is for X to be zero. But the program containing the

error computes the standard deviation as SQRT(1-X/SCNT). If X is zero

this quantity is 1, hence the standard deviation is wrong.

Alternatively, if the incorrect expression is forced to be zero, the

correct standard deviation should be greater than one. Hence by

forcing the standard deviation in this line to be zero the error is

easily revealed. 4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Programs analyzed in the third reliability study

The 13 programs studied in section 4.2.3 consisted of 3 of the 4

described in the preceding appendix (the telegraph program, the

sorting program, and the statistics program) plus 10 other programs

taken from the literature. These last 10 programs will be described

here.

The first program appeared in an article by Geller in the

Communications of the ACM [33]. A source listing of this program is

given in section 3.2.3, where the single error in the program is

analysed.

The second program computes the Euclidean greatest common divisor |

of a vector of integers. It appeared in an article by Bradley in the

Communications of the ACM [7]. The program contain: the following

four errors: (1) I£ the last input number is the only non-zero

number, and it is negative, then the greatest common divisor returned

is negative. (2) If the greatest common divisor is not 1, then a loop

index is used after the loop has completed normally, which is in error

according to the FORTRAN standard. (3,4) There are two DO loops for

which it is possible to construct data so that the upper limit is less

than the lower limit, which causes the program to produce incorrect

results since FORTRAN do loops always execute at least once.

136 4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

None of the errors are caught using branch analysis. All are

caught with mutation analysis.

The next three programs are adapted from the IBM Scientific

Subroutines Package [59]. In each program three errors where

artificially inserted in a study conducted by Gould and

Drongowski [38].

The first program computes the first four moments of a vector of

ofservations. One of the errors would be detected using branch

analysis, the other two can be overlooked. All three errors would be

discovered using mutation analvsis.

The second program computes statistics from an observation table.

Again one error would be discovered using branch analysis, but all

three errors are discovered with mutation analysis.

The third program computes correlation coefficients. In addition

to the three artificial errors inserted by Gould and Drongowski, the

program cont2ins a third error which is also present in the original

program. This third error involves a variable which is saved and

restored so that on returning from the subroutine it should have the

same value as on entry. It is possible, however, for the value of

this variable to change and not be restored. Two of the artificial

errors and the naturally occuring error are detected with branch

analysis. All four errors are detected using mutation analysis.

q
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

~

The next program takes three sides of a triangle and decides if

it is isosceles, scalene or equilateral. It first appeared in a paper

by Brown and Lipow [10]. In [65] a bug is described where two

occurrences of the constant 2 are replaced with the variable K. This

bug is very subtle, however it can be detected with the test case

6,3,3. Neither branch analysis or mutation analysis would force the

discovery of this error.

The seventh program is the FIND program from an article by

C. A. R. Hoare [48]. The bug has been studied by the group developing

the SELECT symbolic execution system [6]. The bug is very subtle and

neither branch testing nor mutation analysis would guarantee its

discovery. It would appear that the failure to detect this bug is an

artifact of the worst case nature of this analysis, since the error

was easily discovered during some early experiments on the coupling

effect [22].

The eighth program is the text editor by Naur also described in

the last appendix. In this case, however, we used the version studied

by Goodenough and Gerhart [37] containing five errors. A listing is

given in section 3.2.9.

The ninth and tenth programs are an accounting program and a

Student scores program from a technical report by S. Sheppard et

al [79], issued by the Office of Naval Research. The first program
wm

contains three errors and the second a single error. All errors were
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

detected using mutation analysis. Only two would be caught using

branch analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[1]

[2]

[3]

£4]

[6]

C74

£10]

[11]
[5]

Bibliography

Vinod K. Agarwal and Gerald M. Masson.
Recursive Coverage Projection of Test Sets.
IEEE Transactions on Computers (11):865-870, November, 1979.
Dana Angluin.

On the Complexity of Minimum Inference of Regular Sets.
Information and Control] 39(3):337-350, December, 1978.

Douglas Baldwin and Frederick Sayward.

Hevristics for Determining Equivalence of Program Mutations.
Technical Report 161, Yale University, 1979.
A. W. Biermann and R. Krishnaswamy.
Constructing Programs from Example Computations.
IEEE Transactions on Software Engineering SE-2(3) 2141-153,

September, 1976.

Lenore Blum and Manuel Blum.

Toward a Mathematical Theory of Inductive Inference.
Information and Gontro] 28(2):125-155, June, 1975.
R. S. Boyer, B. Elspas and K. N. Levitt.
SELECT - A formal system for testing and debugging programs by

symbolic execution.
Sigplan Notices 10(6):234-245, June, 1975.

Gordon H. Bradley.

Algorithm and Bound for the Greatest Common Divisor of n
Integers.

Communications of the ACM 13(7):433-436, July, 1970.
Melvin A. Brever and Arthur D. Friedman.
Diagnosis & Reliable Design of Digital Systems.
Computer Science Press, Woodland Hills, CA, 1976.

Martin Brooks.

Automatic Generation of Test Data for Recursive Programs Having
Simple Errors.

PhD thesis, Stanford University, 1980(expected).
J. R. Brown and M. Lipow.

Testing for Software Reliability.
In Proceedings 1975 International Conference on Reliable

Software, pages 518-527. IEEE, 1975.
IEEE catalogue number 75 CHO 940-7CSR.

Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward and
Richard A. DeMillo.

The Design of a prototype mutation system for program testing.
In Proceedings 1978 National Computer Conference, pages 623-627.

AFIPS Press, Montvale, New Jersey, 1978.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23] q

141

Timothy A. Budd and Richard J. Lipton.

Mutation Analysis of Decision Table Programs.

In Proceedings of the 1978 Conference on Information Sciences
and Systems, pages 346-349. The Johns Hopkins University,
1978.

Timothy A. Budd and Richard J. Lipton.
Proving LISP Programs using Test Data.

In Digest for the Workshop on Software Testing and Test
Documentation, pages 374-403. Fort Lauderdale, Florida,
December, 1978,

Timothy A. Budd, Robert Hess and Frederick G. Sayward.
EXPER Implementors Guide.

(In preparation).
Timothy A, Budd, Robert Hess and Frederick G. Sayward.
User's Guide for EXPER: Mutation Analysis system.
(Yale university, memo).
Timothy A. Budd, Richard J. Lipton, Richard A. DeMillo and
Frederick G. Sayward.

Mutation Analysis.
Technical Report 155, Yale University, 1979.

Rudolf Carnap.
Logical Foundations of Probability.
University of Chicago Press, 1950.

John C. Cherniavsky.

On Finding Test Data Sets for Loop Free Programs.
Information Processing Letters 8(2):106-107, February, 1979.
Tsun S. Chow.

Testing Software Design Modeled by Finite-State Machines.
LEEE Iransactions on Software Engineering SE-4(3):178-187., May,

1978.
Lori A. Clarke.

A System to Generate Test Data and Symbolically Execute
Programs.

IEEE Transactions on Software Engineering SE-2(3):215-222,
September. 1976.

Lori A. Clarke.

Automated test data selection techniques.
In Proceedings of the Infotech State of the art conference of

Software Testing, pages 9/1-9/22. London, England,
September, 1978.

Richard A. DeMillo, Richard J. Lipton and Frederick G. Sayward.
Hints on Test Data Selection: Help for the Practicing

Programmer.
Computer 11(4):34-43, April, 1978.

Ditto, Hurley, Kessler and Mills.
safeguard Code Certification Experimental Report.
IBM Systems Assurance Department Report, Federal Systems

Division, Gaithersburg, Md., 1970.
Cited in [Hetzel].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[24]

[25]

[26]

[273

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

3

q 4 :

142

Albert Endres.

An Analysis of Errors and Their Causes in System Programs.

IEEE Transactions on Software Engineering SE-1(2):140-149, June,
1975. .

Richard E, Fairley.
An Experimental Program-Testing Facility.
IEEE Transactions on Software Engineering SE-1(4) 2350-357,

December, 1975.

W. Feller.

An Introduction to Probability Theory and its Applications.
Wiley, 1957.

R. A. Fisher.

Statistical Methods for Research Workers.
Hafner Publishing Company, New York, 1958.

Ann Fitzsimmons and Tom Love.
A Review and Evaluation of Software Science.
ACM Computer Surveys 10(1)}:3-18, March, 1978.

Lloyd D. Fosdick and Leon J. Osterweil.
Data Flow Analysis in Software Reliability.
ACM Computer Surveys 8(3):305-330, September, 1976.

Kenneth A. Foster.
Error sensitive test cases.

In Digest for the Workshop on Software Testing and Test
Documentation, pages 206-225. Fort Lauderdale, Florida,
December, 1978.

Harold N. Gabow, Shachindra N. Maheshwari and Leon J. Osterweil.
On Two Problems in the Generation of Program Test Paths.
IEEE Transactions on Software Engineering SE-2(3):227-231,

September, 1976.

Carolyn Gannon.
Error Detection Using Path Testing and Static Analysis.
Computer 12(8):26-32, August, 1979.
M. Geller.

Test Data as an aid in proving program correctness.
Communications of the ACM 21(5):368-375, May, 1978.
Susan L. Gerhart and Lawrence Yelowitz.
Observations of Fallibility in Applications of Modern

Programming Methodologies.
LEEE Transactions on Software Engineering SE-2(3):195-207,

September, 1976.

Girard and J-C Rault.

A Programming Technique for Software Reliability.
In Symposium on Software Reliability. IEEE, Montvale, New

Jersey, 1977.

(Cited in [Glib]).
Tom Glib.

Software Metrics.
Winthrop Publishers, 1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a

j

2
a a ; j

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

143

John B. Goodenough and S. L. Gerhart.
Towards a Theory of Test Data Selection.
ZEEE Transactions on Software Engineering SE-1(2):156-173, June,

1975.

John D. Gould and Paul Drongowski.
An Exploratory Study of Computer Program Debugging.
Human Factors 16(3):258-277, May, 1974.
David Gries.

Compiler Construction for Digital Computers.
Wiley, 1971.

Richard Hamlet.
Testing programs with finite sets of data.
The Computer Journal 20(3):232-237, March, 1977.
Richard Hamlet,

Testing programs with the aid of a compiler.
IEEE Transactions on Software Engineering SE-3(4):279-290, July,

1977. .
Richard Hamlet.
Critique of Reliability Theory.

In Digest for the Workshop on Software Testing and Test
Documentation, pages 57-69. Fort Lauderdale, Florida,
December, 1978.

Sidney L. Hantler and James C. King.

An Introduction to Proving the Correctness of Programs.
A&M Computing Surveys 8(2):331-353, September, 1976.

Steven Hardy.

Synthesis of LISP programs from Examples.
In Proceedings of the Fourth International Joint Conference on

Artificial Intelligence, pages 240-245. Tbilisi, Georgia,
USSR, 1975.

Carl G. Hempel.

Studies in the logic of Confirmation.
In Aspects of scientific explanation and other essays in the

Philosophy of science, chapter One,pages 3-51. Free Press,
New York, 1965.

P. Henderson and R. Snowden.
An Experiment in Structured Programming.
BIT 12:38-53, 1972,
William C. Hetzel.

An Experimental Analysis of Program Verification Methods.
PhD thesis, University cf North Carolina at Chapel Hill, 1976.
C. A. R. Hoare,
Proof of a program: FIND.
Communications of the ACM 14(1):31-45, January, 1971.

Mark A. Holthouse and Mark J. Hatch.
Experience with Automated Testing Analysis.
Computer 12(8):33-36, August, 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

er
at

kote
D
e
a
s

3 [50]

(51]

[52]

[53]

(54]

[55]
[56]

Pe
d
d
e
h

ane

em

ce
ed

F
e

te
e
t
e
l

bee

e
n
e
d

meal

[57]

3 [58]

[59]

[60]

[61]

[62]

b
t
h
 t

th
ea

Lt
AC
RO
RE

Er
e
e
e

ee
 T

EN
TH

144

John E. Hopecroft and Jeffrey D. Uliman.

Formal Languages and their Relation to Automata.
Addison-Wesley, 1969.

William E. Howden.

Models of Correct Programs and Program Testing.
Technical Report 10, Applied Physics and Information Science

Department, University of California, San Diego, 1976.

William E. Howden.
Reliability of the Path Analysis Testing Strategy.
LEEE Transactions on Software Engineering SE-2(3):208-214,

September, 1976.

William E. Howden.
An Evaluation of the Effectiveness of Symbolic Testing.
Software: Practice and Experience 8:381-397, 1978.

William E. Howden.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
JEEE Transactions on Software Engineering SE-3(4):266-278, July,

1977.

William E. Howden.
Algebraic Program Testing.
Acta Informatica 10(1}:53-66, 1978.

William E. Howden.
Symbolic Testing- Design Techniques, Costs and Effectiveness.
U. S. National Bureau of Standards GCR/7-89, SPRINGFIELD, VA,

1977.
National Technical Information Service PB2685l7.

William E. Howden and Peter Eichhorst.
Proving Properties of Programs from Program Traces.

un Edward F. Miller and William E. Howden, editors, Tutorial:
Software Testing & Validation Techniques, pages 46-56. IEEE

Computer Society, 1978.

J. C. Huang.
An Approach to Program Testing.
ACM Computing Surveys 7(3):113-128, September, 1975.
International Business Machines.
System/360 Scientific Subroutine Package.
IBM Application Program H20-0205-3, 1966.
B. W. Kernighan and P. J. Plauger.
The Elements of Programming Style.

McGraw Hill, 1974.

S. C. Kleene.
Introduction to Metamathematics.

Van Nostrand, Princeton, N. J., 1964,

P. Kugel.
Induction, Pure and Simple.
Information and Control 35:276-336, December, 1977.

H. Ledgart. |

The Case for Structured Programming.
BIT 13:45-57, 1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

di
ai
nd
a

ba
n

ta
s
i
s

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
j

[72]

: [73]

[74]

V
d
a

ee
ab
 e
e

i
e
a
t

Me
e

to
a

ea

e
e

[75]

[76]

St
es

ar

id
s
R
O
S
A
S

R
G

k
d

t
l
t

w
e
e

at
te
 D
ac
e

ba
ma

ss

ie

:

145

Harry R. Lewis.

A new decidable problem, with applications.

In Proceedings 18th annual symposium on Foundations of Computer
Science, pages 62-73. IEEE Computer Society, 1977.

R. J. Lipton and F. G. Sayward.

The Status of Research on Program Mutation.
In Digest for the Workshop on Software Testing and Test

Documentation, pages 355-373. Fort Lauderdale, Florida,
December, 1978.

Thomas J. McCabe.
A Complexity Measure.
ZEEE Transactions on Software Engineering SE-2(4):308-320,
ee December, 1976.

G. J.Meyers.
Software Reliability: Principles and Practices.
Wiley, 1976.

E. F. Miller and R.A. Melton.
Automated Generation of Testcase Datasets.
In Proceedings 1975 International Conference on Reliable

Software, pages 51-58. Los Angeles, CA, 1975.
IEEE catalogue number 75 SHO 940-7CSR.

H. D. Mills.

On the Statistical Validation of Computer Programs.

Technical Report FSC 72-6015, IBM, (undated).
M. Montalbano.
Decision Tables.

Scierce Research Associates, 1974,

P. Naur.

Programming by Action Clusters.
BIT 9:3250-258, 1969.

Daniel L. Ostapko and Se June Hong.

Fault Analysis and Test Generation for Programmable Logic Arrays
(PLA's).

IEEE Transactions on Computers C-28(9):617-627, September, 1979.

T. J. Ostrand and E. J. Weyuker.
Remarks on the Theory of Test Data Selection.
In Digest for the Workshop on Software Testing and Test

Documentation, pages 1-18. Fort Lauderdale, Florida,
December, 1978.

David J. Panzl.
Automatic Software Test Drivers.
Computer 11(4):44-50, April, 1572.

S. L. Pollack, H. IT. Hicks and W. J. Harrison.

Decision Tables: Theory and Practice.
Wiley, 1971.

C. V. Ramamoorthy, Siu-Bun F. Ho, W. T. Chen.
On the Automated Generation of Program Test Data.
TEEE Transactions of Software Engineering SE~2(4):293-300,

December, 1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

an
al

a
g

ed
a

ee

S
e
l

t
h

[86]

4 [87]
£88]

[89]

W
a

a
s

ed

N
e

e
s

KA
a

a

146

Hartley Rogers, Jr.

Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

D. E. Shaw, W. K. Swartout and C. C. Green.
Inferring LISP programs from Examples.
In Proceedings of the Fourth International Joint Conference on

Artificial Intelligence, pages 260-267. Tbilisi, Georgia,
USSR, 1975.

Sylvia B. Sheppard, Phil Milliman, and Bill Curtis.
Factors Affecting Programmer Performance in a Debugging Task.
Technical Report TR-79-388100-5, Office of Naval Research,

February, 1979.

M. L. Shooman and M. I. Bolsky.
Types, Distribution, and Test and Correction Times for

Programming Errors.
In Proceedings 1975 International Conference on Reliable

Software, pages 347-357. Los Angeles, CA., 1975.
IEEE catalogue number 75 CHO 940-7CSR.
Edward Hance Shortliffe.
Computer-Based Medical Consultations :MYCIN.
American Elsevier, 1976.

Leon G. Stucki,
A prototype automatic program testing tool.
In Proceedings AFIPS Fall Joint Computer Conference, pages

829-836, AFIPS press, 1972.
Leon G. Stucki.
Automatic Generation of Self Metric Software.
In Symposium on Computer Software Reliability, pages 94-100.

IEEE, Montvale, New Jersey, April, 1973,
Philip Dale Summers.
Program Construction from Examples.
PhD thesis, Yale University, 1975.
Patrick Suppes.
A Bayesian Approach to the Paradoxes of Confirmation.
In J. Hintikka and P., Suppes, editor, Aspects of Inductive

Logic, pages 198-207. North-Holland, 1966.
T. A. Thayer, M. Lipow and E. C. Nelson.
Software Reliability Study.
TRW-SS-76-03 (1976), TRW, One Space Park, Redondo Beach, CA

90278.
Le J. White, E. I. Cohen and B. Chandrasekaran,
A Domain Strategy for Computer Program Testing.
Technical Report OSU-CISRC-TR-78-4, Ohio State University, 1978.
N. Wirth.
PL360, A programming language for the 360 computer.
Journal of the ACM 15(1):37-74, January, 1968.
E. A. Youngs.
Errox-Proness in Programming.
PhD thesis, University of North Carolina at Chapel Hill, 1970.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

