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CHAPTER 1 

TESTING AS AN INDUCTIVE PROCESS 

Practicing programmers have traditionally increased their 

confidence in the correct functioning of a program by running it on a 

few test cases. If the test cases are well chosem such confidence is 

justified. If, as is more likely, the test cases are poorly chosen 

any sense of security can be misleading, since the test cases may 

reveal little or no information about whether the program is correct. 

It is extremely uncommon, however, for any attempt to be made at 

evaluating the effectivness or thoroughness of a set of test cases. A 

major reason for this omission is the lack of a generally agreed upon 

metric with which test cases can be measured. It is the aim of this 

thesis to analyze one such metric: mutation analysis. 

Since program testing proceeds from the specific observations of 

a program on a small number of test inputs to a general assertion 

concerning the programs behavior, it is an inductive, rather than 

deductive, process. A programmer thinks his program is correct. 

Typically, he then collects confirming evidence for this belief by 

executing the program on various test cases. As long as no test case 
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conclusively contradicts his belief, each additional test case 

increases the programmer’s feeling of confidence that the program is 

indeed correct. At some point when a sufficient number of test cases 

have been run (a point often equivalent to the programmer's becoming 

bored with testing) the process stops and the program is deemed 

correct. 

Inductive arguments of this kind are typical in scientific 

research as well as everyday discussion [17, 45]. While in everyday 

Situations these arguments may seem quite convincing, on a formal 

level there are some serious difficulties. Consider the assertion: 

Al: All ravens are black. 

Mcst people would agree that observing a black raven gives us evidence 

for Al whereas observing a brown shoe does not. This is because the 

assertion seems to be somehow about ravens and not about shoes. 

Logically, however, Al is equivalent to its contrapositive: 

A2: No non-black object is a raven. 

Since Al is equivalent to A2 evidence for one must be evidence for the 

other. But A2 seems to be making an assertion about non-black objects 

just as much as Al was mzking an assertion about ravens. Hence a 

brown shoe certainly seems to be evidence for A2. We seem to be 

reduced to conceding that by observing a brown shoes, a green vase, a 

white swan, or indeed any non-black object we are somehow increasing 

our belief in the blackness of ravens. 

This paradox is cbviously foolish, but as with most paradoxes the 
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reason it is foolish is not so obvious. It is not because the white 

swans or brown shoes we observe are neither blank nor ravens; Although 

an ornithologist might not dream of examining a brown shoe to test Al, 

he might think it necessary to examine some non-black birds that look 

very much like ravens, although they turn out to actually belong to 

some other species. 

An initial response to this paradox might be that while the 

observation of a brown shoe may logically give some evidence for Al, 

the weight of the evidence it conveys is negligible. The notion that 

not all confirming observations are alike, that some are more 

important than others, was absent from our description of the 

inductive paradigm. While seemingly quite trivial, it forces us te 

consider the much less obvious question of how one tells the black 

ravens from the brown shoes, that is, how one separates the important 

test cases from those that are totally uninteresting. This is the 

problem that mutation analysis addresses. That is, mutation analysis 

is a method for evaluating the effectiveness of a set of test cases 

for a given assertion. 

The goal of testing should not be merely to force acceptance by 

the sheer numbers of confirming examples, but rather to provide 

reasons why the particular assertion (program) being proposed is to be 

believed. In this respect the observation of a single black raven 

gives more evidence for Al than the observation of five thousand brown 

shoes, 

af 
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The method used in mutation analysis to evaluate test cases is to 

construct a number of alternative assertions that are semantically 

close to the original, and then to ask if the test data distinguishes 

the two assertions (in the senze of being confirming evidence for the 

original and contradicting evidence for the alternative). Borrowing a 

name from biology, we say these alternatives are mutants of the 

original assertion. 

For example, we may admit that observing a brown shoe does give 

evidence for Al, but it also gives evidence for the following two 

assertions 

A3: All ravens are yellow. 

44; All birds are black. 

Since on the weight of this evidence alone we therefore do not have 

any more confidence in Al than in A3 or A4, our faith in the ability 

of this test data to confirm Al is severely weakened. 

In order to differentiate Al from A3, we require a test 

observation that is a raven and not yellow. Such an observation will 

confirm Al (if the raven is indeed black) and contradict A3, thereby 

showing how the two assertions differ. Similarly, to differentiate Al 

from A4 we require a bird that is not black, and presumably therefore 

not a raven. This supports the intuitive feeling that the observation . 

of a black raven or a white swan gives greater evidence for Al than 

the observation of a brown shoe. 
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A more serious problem arises when we attempt to differentiate Al 

from the assertion 

A5: All members of corvus corax are black. 

AS is equivalent to Al, but that fact is evident only to those who 

happen to know the genus to which ravens belong. The problem of 

recognizing those mutants that are equivalent to the original 

assertion is the major impediment to the mutation analysis method. In 

practice however, as will be demonstrated in chapter four, this is not 

as serious a problem as might at first be imagined. 

1.1 Testing computer programs 

We are given a program P and a set of test cases that the 

programmer believes sufficient. As before, we now ask whether these 

test cases increase our confidence only in this particular program, 

and not some closely related but distinct programs, the so-calied 

mutants of P. We generate a set of mutants, forming each by altering 

the program P in a simple way. These mutants are then run on the test 

data to see whether they receive the same answers as P. If a large 

number of mutants produce the same results we assert, as in the case 

of the ravens, that this test data gives us no more reason to believe 

the original program is correct than that any of the mutants are 

correct. A test set that fails to differentiate P from a large number 

of mutants is like the observation of a brown shoe, which gave us no 

more evidence that all ravens are black than that they are all yellow. 

On the other hand, if a majority of the mutants are eliminated, then 

the test data closely fits P, and our confidence in the effectiveness 

1 
uk 
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of the test cases is increased. 

At first blush this might seem an amusing methodology, useful for 

catching. misspelled variable names and incorrect operators, but 

perhaps not worth all the fuss. To see that this is not the case note 

that there has been observed in many problem domains a strong coupling 

between simple and complex errors [11, 22, 29]. Test data that 

eliminates all non-equivalent mutants can be thought of as insuring 

the absence of simple errors (i.e. those errors that exactly match 

the mutation). This coupling of errors implies that while one is 

directly meeting the mutation goal, one is peripherally achieving a 

much stronger goal, that of differentiating P from a larger class of 

complex potential errors. This phenomenon has been called the 

coupling effect. The name coupling effect comes not only from the 

hypothesis that complex errors are coupled to simple ones, but also 

from the observation that different sections of one program are often 

strongly coupled together. Sayward has elsewhere given a statistical 

argument for belief in this coupling [65]. Chapters two and four will 

contain various theoretical arguments and empirical studies that 

address this belief. What follows will be an intuitive justification. 

Programs are highly interrelated objects. Actions taken in one 

location will usually have a major effect on the actions taken in 

another section. A correct program is one that is consistent, one in 

which every action is neatly tailored to fit every other action, much 

like a solid wall of bricks. Am incorrect program is like a badly 

ee 
ae 
Fate 
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formed brick wall: One brick is out of place, and it pushes another 

out of place, and that one still another, and so on until the entire 

wall is in jumbles. Mutation analysis uniformly exercises every part 

of the program, pushing it to its boundary conditions. Even if the 

original cause of an error cannot be discovered, its effects often can 

be. In this manner complex errors are uncovered by simple means. 

What about those programs that are internally consistent, but 

consistently wrong? Fortunately we know by numerous . 

studies [24, 80, 86, 89] that these degenerate cases are rare. More 

specifically, we have an assumption that states: 

A competent programmer, after giving the task sufficient 

thought and pursuing the normal process of programming and 
debugging, has probably written a program that is either 
correct or "almost" correct, in that it differs from a correct 

program in simple ways [22]. 

The name competent programmer hypothesis has been given to this 

assumption, since one way to interpret it is to say that incompetent 

programmers (those who write vastly incorrect programs) are quickly 

discovered by running their programs on almost any test data. Most 

programmers are neither malicious nor incompetent, and they can be 

expected to produce a product that is at least approximately correct. 

Our task therefore is reduced to validating a program that is probably 

not correct, but is very close. 

This is the framework for mutation analysis. We have a program P 

written by a competent programmer. We are given a set of test cases 
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which differentiate P from a small set of mutants derived from P. The 

coupling effect asserts that this test set in fact differentiates P 

from a much larger class of programs, throughout this thesis denoted 

$. The competent programmer hypothesis asserts that with high 

probability either P is correct or some program in $ is the correct 

program. The task placed before the programmer is to try to generate 

test cases that distinguish all non-equivalent mutants, The coupling 

effect asserts that if the program is indeed incorrect, then the 

programmer cannot succeed at this task. That is, there is at least 

one non-equivalent mutant that cannot be eliminated without generating 

a test case that is incorrectly handled. Conversely, if the 

programmer can find test data that differentiates P from all 

non-equivalent members of $, this means that the only member of > that 

recelves the correct answer on all these test cases is P itself. We 

can therefore conclude with high likelihood that P is correct. 

There are two very different directions in which one could 

proceed from here. The first would be to give very precise 

definitions to the terms "close,"" mutants," "competent programmer 

hypothesis, “coupling effect," which have been used up to now quite 

informally. Using these precise terms, one could then formally prove 

that a theorem similar to the coupling effect holds. Several studies 

of this nature are developed in chapter two. Unfortunately it becomes 

quickly apparent that the range of programs one can deal with in this 

manner is severely restricted. This is due not only to the difficulty 

ad 
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in dealing with complex data and control structures, but also to a 

plethora of formally undecidable properties [18, 31, 40, 52]. 

The other direction one can take is to let the more intuitive 

definitions of our basic terms suffice and to ask whether in some 

empirical or statistical sense the coupling effect holds. Studies of 

this nature are developed in chapter four. Given that these studies 

deal with the type of programs programmers write every day, they are 

in some sense of greater importance to the practitioner of software 

testing than the theoretical studies, even though the results derived 

are not formal but are only empirical. This schism between 

theoretical and empirical studies appears to be unreconcilable, and 

this dichotomy is reflected in the arrangement of this thesis. 

Although distinctly different, both types of studies are lmportant in 

advancing our understanding of the process of program testing. 

1.2 Error seeding, circuit theory and other metrics 

it has been observed that, in its application, the mutation 

analysis method bears a certain superficial resemblance to the error 

seeding method of Mills [69] (also called "bebugging' by Glib [36]). 

To motivate this method, Mills cites Feller's well known text on 

statistics [26]: 

Suppose that 1000 fish are caught in a lake and marked by 
red spots and released. After a while a new catch of 1000 
fish is made, and it is found that 100 among them have red 
Spots... We assume naturally that the two catches may be 
considered as random samples from the population of all fish 
in the lake... These figures would justify a bet that the 
true number of fish lies somewhere between 8500 and 12,000. 
[pages 43-44] 

ie vy: 
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In error seeding the red fish correspond to artificially inserted 

errors. Given that a certain number of errors are discovered during 

testing, the ratio of artificial to natural -rrors that have been 

uncovered should (in theory) give some indication of the number of 

natural errors that remain in the program. 

There are several points that can be raised here. First, note 

carefully the range of numbers given in the text from Feller; few 

software projects are large enough to contain 10,000 errors. In the 

more typical range for software errors the loss of significance will 

almost certainly render any estimates meaningless. Second, note the 

assumption that the fish (errors) are uniformly distributed. In 

software this is almost certainly not the case, since long sections of 

code are often simple minded, and interspersed with short bursts of 

complex, error prone computation. Since the natural errors are 

unknown we also have no assurances that a seeded error will not 

interact with a natural error in such a way that the effects of the 

Natural error are canceled by those of the seeded error, so that the 

seeded error actually disguises the natural one. 

Finally, note the assumption that the seeded errors (red fish) 

are identical, in terms of their distribution and appearance, with the 

more general population. While we have, for large classes of programs 

and programmers, some statistical ideas concerning the nature of those 

errors most often produced [24, 86], in any single program the errors 

are likely to be sporadic, nonuniform, and highly unpredictable. 
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Furthermore it is not clear how this statistical information can be 

used to generate artificial errors with the desired properties; if a 

large number cf very subtle errors are caused by the programmer's 

using a wrong variable name this does not imply the converse, that a 

randomly changed variable name will result in a subtle error. In fact 

the experiments to be discussed in chapter four would lead us to 

believe that most of these errors would be quite obvious. At least 

one study in error seeding [23, 47] reached exactly this same 

conclusion, namely that the seeded errors were much easier to detect 

than the natural ones. It would seem that generating artificial 

errors with the same features and likelihood of detection as natural 

ones would be an intractable problem. 

In mutation analysis we need assume nothing about statistical 

distribution of the errors in a program. Mutants are not examples of 

potential errors; they merely question whether the test data for a 

program is sensitive to changes in the program's structure. 

Furthermore, the failure to differentiate the program from a specific 

mutant points directly and unambiguously to a weakness in the test 

data. In error seeding, even assuming all the seeded errors are 

discovered, no such information is available. 

It is mentioned by Girard and Rault [35] that the error seeding 

technique can be used to "assess the 'detecting power' of test cases 

generated randomly." This is similar to the goal of mutation analysis, 

but it does not avoid the pitfalls of error seeding described here. 

a 
2 
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Mutation analysis is much more closely related to the classical 

method for detecting logical faults in digital circuits. Many 

physical faults, such as short or open circuits, manifest themselves 

on a logical level as circuit lines being stuck either in the high or 

the low position. The single fault testing model [8] therefore 

considers each mutant formed by assuming a single input line is stuck 

and constructing test data to detect this condition. The number of 

test inputs required to achieve this goal is usually minuscule in 

relation to the exponential number of inputs required to test the 

circuit exhaustively. Furthermore there is an assumption analogous to 

the coupling effect that states that in practice single fault test 

sets are relatively good for the detection of multiple faults. For 

the most part, this version of the coupling effect is statistical, or 

based on previous experience [1]. However a paper by Ostapko [72] 

studies a device known as a programmable logic array (PLA) and shows 

that for these objects a very strong coupling effect can be formally 

proved. 

Where mutation analysis and single fault testing differ is in 

their goals. Mutation analysis is concerned with evaluating test data 

and validating the initial design of a computer program. Single fault 

test sets check circuit deterioration at intermittent times during the 

life of a device. Otherwise the analogies between the two methods are 

close. 

Prior to mutation analysis there were few attempts to formulate 

uf 
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metrics to measure the effectiveness of test cases. A method that 

gained a certain popularity was merely to count the number of distinct 

Statements executed by a collection of test cases and express this as 

a percentage of the total number of statements in the 

program [68, 82]. This counting technique was later strengthened to 

the requirement that every predicate should take on its entire range 

of possible outcomes during a test [58]. There exist now several 

commercial systems that provide this type cf 

information [41, 74, 82, 83]. There are even some systems that 

attempt automatically to generate test cases that Satisfy these 

requirements [20, 76]. Although eazily computed, the figures derived 

by merely counting either statements or branches are now generally 

viewed as providing too little information for an accurate judgment to 

be made concerning program correctness [34, 47, 52]. As will be shown 

in chapter three, mutation analysis subsumes the goals of these and 

several other testing techniques. 

1.3 Literature and related work 

The term "paradoxes of induction" and the example of the ravens 

given in section one was first used by Hempel [45]. In response to 

Hempel”s paradox various solutions have been proposed in the 

literature. One solution, based on Bayesian principles, seems to be 

widely accepted [85]. This approach states that since non-black 

objects are evidently much more common than ravens, a raven is much 

more likely to provide us with a counterexample than a non-black 

as
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objects; hence the observation of a raven is more significant. On a 

practical level Shortliffe [81] uses this bayesian approach in an 

automated system designed to assist physicians in making decisions on 

the basis of inconclusive evidence, an induction problem using past 

experience as the test observations. In this case the problem is 

deciding on an appropriate therapy for patients with infections. 

As defined in the first section, the goal of testing is to 

differentiate a program from a small set of similar programs. 

Howden [51] briefly studied the notion of testing programs in the 

context of a small class of alternatives (which he termed the model 

set). His framework was much more highly structured than that of the 

present work, and his idea still seemed to be that test cases provided 

cirect evidence for the program's being correct, rather than giving 

reasons for ruling out alternatives in the model. Ina later 

work [55] he again approached the testing problem from the point of 

view of eliminating alternative programs. This work, although 

developed independently and presented in a different manner, is in 

many respects quite similar to the ideas developed in this chapter. 

Reduced to its simplest form, the coupling effect asserts that 

while one is guarding against simple errors, complex errors are also 

detected. It has already been mentioned that a similar type of 

observation is made with respect to logical devices [8, 72]. Fosdick 

and Osterweil [29] have noted that the detection of data flow 

anomalies (which are one form of simple error) is often a powerful 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Le
be

n 

15 

tool in detecting other types of errors. 

Richard Hamlet has also explored the notion of testing as a 

process of differentiating the given program from a set of 

alternatives [42], and in fact has constructed a system to perform 

this analysis [40, 41]. His framework is similar to mutation 

analysis, but lacks the coupling effect; hence his system must examine 

significantly more alternatives than the mutation analysis system. 

Hamlet's system will be described in more detail in section 3.5. 

One way to view the goal of testing is that one is attempting to 

find test data that characterizes a given program. If it is possible 

to construct such data, them it should be possible to go the other 

way, that is, to automatically construct the program given 

characteristic examples of its input/output behavior. This problem of 

automatic programming has been extensively studied [4, 78, 84], but 

researchers seem to devote little attention to the question of when 

such characterizing data exists. Thus there seems to be little of 

help here for work on program testing. 

Finally, there is a large body of literature concerned with 

characterizing the types of sequences that are recognizable by 

machines of different complexity classes. This work typically deals 

with more abstract types of machines, such as Turing machines or total 

recursive programs. A second feature of this work is that it deals 

with identification in the limit, that is, it assumes the presentation 

3 
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of an infinite number of inputs. Although using both computers and 

induction, these two assumptions prevent us from directly applying the 

results developed in this manner to the problem of program testing... 

Examples of this work are: Blum and Blum [5], Angluin [2], and 

Kugel [62]. 
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CHAPTER 2 

THEORETICAL STUDIES 

In chapter one a metric for evaluating test cases was proposed 

which, if applicable, makes an assertion which is valid only ina 

statistical sense concerning the likelihood of the program being 

correct. This chapter will demonstrate that in some abstract models 

of computation one can use test data which satisfies the mutation 

analysis metric to formally prove the correctness of programs. 

To do so we must first give slightly more formal definitions to 

the basic concepts introduced in chapter one: Assume we have a large 

class of programs P which is our universe of discourse (examples might 

be finite state acceptors, partial recursive functions, deterministic 

push down automata). We are given a specific program P which is a 

member of P. We will use {P} to denote the function computed by P, 

but use P(X) (rather than the more verbose {P}(x)) to denote the 

result of evaluating the function {P} on the input X. (The {P} 

notation is due to Kleene [61]). 

To ask if P is correct is equivalent to asking whether P realizes 

an intended (but unknown) function F. We must of course have some 
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limited knowledge of F for the problem to be feasible. There seem to 

be two general forms that this knowledge could take: 

1. We have F in some inefficient or non procedural language 
and the question is to decide the equivalence of the 
program P and the representation of F. 

2. The only knowledge we have of F is the ability to compute 
F(x) for any finite number of values. 

Option one seems to be too strongly tied to the form of the 

representation of F, therefore this thesis will only consider option 

two. 

We will formalize the competent programmer hypothesis by having a 

subset of P, denoted >, of programs "close" to P and assuming that P 

is a member of $ and furthermore there is some member of > (though 

perhaps not P) which realizes F. The mutants of P (denoted w) are a 

subset of 9. In each example cited in this chapter there will be an 

obvious recursive procedure which generates the mutants from the 

program P. Both the sets > and w may depend upon P. 

The purpose of testing is to find a finite set of test inputs, 

which we shall denote D, which possess the property that if P executes 

correctly on these inputs then P is "correct", that is, realizes F. 

But we must also do this using only the limited knowledge of F which 

has been outlined. In order to remove any extraneous details from the 

problem, we define the following two notions: 

Given a finite set of test cases D and a set of programs S, we say 

that D differentiates P from S$ if for any program Q in S, if for each 
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value x in D P(x) = Q(x) this implies {P}={Q}. 

(formally, ¥QeS (¥xeD P(x) = Q(x)) => {P} = {Q}) 

We say that a finite set of test cases Dis adequate if it 

differentiates P from $. 

Given the formalization of the competent programmer hypothesis 

which we are here using, an adequate set is certainly a sufficient 

condition for correctness. One can argue that it is also a necessary 

condition as follows: Consider testing to be a game between the 

person proposing the test inputs and an adversary. Instead of a 

single correct function F, the adversary keeps a set of 

“possible” correct functions. Initially this set contains all the 

functions realized by programs in >. Each time a request is made for 

the value of F at a specific point (and remember this is the only 

knowledge we have of F) the adversary chooses one of the functions in 

this set, returns its value, then eliminates all functions in the set 

which do not have the same value at that point. However D is 

constructed, if it is not adequate then by definition there are at 

least two non equivalent functions in the adversary's set. Both are 

realized by programs in $, and both these programs give the same 

answers on D. Only one can be equivalent to P. P being proposed as 

"correct. the adversary can then produce the other program as the true 

function F. 

Since it is both a necessary and sufficient condition, this 

notion of adequate seems to formally capture the intuitive concept of 

‘ot 
we 
“a ok 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e
l
 

d
o
l
e
 

v
e
 
P
O
R
 

‘ 

20 

correctness. 

The coupling effect one would like to demonstrate is that any 

finite set of test cases D which differentiates P trom w will also 

differentiate P from $, or to rephrase, any set D which differeztiates 

P from w is adequate. 

First a number of easy examples will be presented which give a 

feeling for the type of results we are interested in, and which set 

the stage for later developments. For example, the existence of such 

a set D may depend upon a careful choice of the set 0. Remember that 

we allowed the set > to depend on P. For example if P is a finite 

automaton and we let $ be the set of all finite automata then we know 

that no matter what our set w is an adequate set of test inputs cannot 

exist. On the other hand if we let > be the set of finite automata 

with at most one more state than P then not only does D exist but 

there is a recursive procedure to generate it [19]. 

It is possible to show examples where the question of whether an 

adequate set exists is formally undecidable: Assume we have some fixed 

Godel encoding of all partial recursive functions [77]. Let P-(x) be 

zero except in the case where the partial recursive function i 

converges given input i in exactly x steps, when it takes on the value 

one. Each program therefore is recursive and is nonzero on at most 

one input, 

Lemma 1: (a) If P; is the constant function zero then 
there does not exist any adequate set. (b) If P, is not the 
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constant function zero, then any set which contains the input 

which causes the program to be nonzero is adequate, and no 
other set is adequate. 

Proof:(a) Given any finite set D, we can find a recursive program 

which halts ir some number of steps not contained in D, and therefore 

D fails to differentiate these two programs. (b) Let X be the input 

which causes P; to be nonzero. If P; 1s nonzero, then Pj=P;. 

Otherwise it is obvious that Pi7P 5. If a set D does not contain X, 

then the same argument used in part (a) shows that D cannot be 

adequate. 

Note that for any P;, there exists an input X for which P; 

returns a nonzero value if and only if the recursive function i halts. 

Theorem 2: If for an arbitrary program P. one can decide 
whether there exists an adequate set, one can tell whether the 
partial recursive function i will halt on input i. 

Since the latter problem is undecidable [77], so is the question 

of whether an adequate set exists. 

2.1 General remarks on adequate test sets 

In this section we will only be interested in situations where an 

adequate set is known to exist. Given this assumption, there are two 

further questions we might ask. 

1. Does there exist a recursive procedure to recognize such a 
set? 

2. Does there exist a recursive procedure to generate such a 
set? 

It is possible to make some very general observations, for 
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example for any finite set of programs there always exists an adequate 

set D, hence the major question is whether it can be generated or 

recognized. If one assumes all programs are recursive one can prove 

the following two general theorems. Assume, without loss of 

generality, that the inputs to the programs consist of a single 

positive integer. 

Theorem 3: There exists a procedure to generate an 
adequate set if and only if there exists a procedure to 
recognize such a set. 

proof: Notice that any set which contains an adequate set is 

itself adequate. If we have a procedure to recognize an adequate set 

then we can construct a procedure which generates such a set merely by 

repeatedly asking if the set composed of the uumbers 1 through N is 

adequate for larger values of N. Since some set must eventually be 

adequate, this process must eventually halt. 

On the other hand if we have a procedure to generate an adequate 

set then to recognize another set as adequate one merely asks if the 

second set divides $ into the same two groups as the generated set 

dces.0 

Theorem 4: There exists a procedure to generate a set D 

which differentiates P from a set of programs S$ if and only if 
the equivalence problem for P and each program in S is 
decidable. 

proof: If we can generate such a set D then to decide the 

equivalence of P and any element in $ is merely a matter of running 

both programs on each member of D and checking that the two answers 
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agree. 

On the other hand, if one can decide the equivalence of P and any 

program in § then divide the set S into two parts: those equivalent to 

P are ignored. For those programs not equivalent to P dovetail all 

inputs until we find a value on which the two programs disagree. 

Since we know the programs are not equivalent this procedure must 

eventually halt with a set of test cases D which is by definition 

adequate. 

Theorem 4 formalizes the comment made in chapter one that the 

problem of deciding the equivalence of a program and its mutarts is a 

major obstacle in theoretical studies. It might seem that the results 

of theorem 4 are discouraging, since the equivalence question for most 

commonly studied language classes are undecidable [50]. There seem to 

be two possible methods to circumvent this impasse: 

1. Carefully define $ so that the equivalence problem is 
decidable. 

2. Merely assume that we have a procedure to decide 
equivalence, thus avoiding the question. 

To pursue the first solution would lead us far into language 

theoretic issues which are totally removed from the problems of 

testing. Therefore in all the examples in this thesis I have chosen 

the second solution. 
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2.2 Decision Tables 

Decision Tables” are a highly structured way of describing 

decision alternatives. Such tables are chiefly used in business and 

data processing applications [70, 75], although they can also be used 

to organize test data selection predicates [37]. 

To form a decision table we need a set of conditions, a set of 

actions, and a table composed of two parts. Entries in the upper part 

are from the set {YES, NO, DON'T CARE} (denoted Y, N, and *); entries 

in the lower table are either DO or DON'T DO (denoted X or 0). Each 

column in the matrix is called a rule. An example with four rules is 

shown in figure 2-1, 

condition 1 
condition 2 
condition 3 

condition 4 m
e
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action l X X O X 

action 2 X 0 0 0 

action 3 0 0 X X 

Figure Z-i: A typical decision table program 

To execute the program on some input the conditions are first 

Simultaneously evaluated, forming a vector of YES, NO entries. This 

vector 1s then compared to every rule. If the vector matches any rule 

the indicated actions are performed. It is assumed that either the 

actions are commutative or there is a given order of their 

  

*This work was originally published in the proceedings of the 1978 
Johns Hopkins Conference on Information Sciences and Systems [12]. 
The presentation given here has been greatly simplified and expanded, 
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application. If for each feasible input there is at least one rule 

that can be satisfied we say the decision table is complete. We say 

it is consistent if there is at most one rule [70]. We will assume 

the program under test is consistent. We can also assume it is 

completes since an incomplete decision table can always be turned into 

a complete one by adding additional actions which merely return an 

error flag and additional rules which are satisfied by the previously 

unmatched inputs. 

We will also assume that no two rules specify exactly the same 

set of actions. We do this with little loss of generality since two 

such rules can be combined into a single rule with at most the 

addition of one new condition. 

Given a decision table program P let > be the set of ail 

consistent programs having the same conditions and actions as P. This 

means members of $ differ from P only in the table portions, or by 

having a different number of rules. 

The mutants (w) of P will be those members of > which are formed 

by taking a single * entry and changing it into a Y and a N entry» 

respectively. If P is consistent then all the mutants will be 

consistent. Some of these mutants may be equivalent to P. The mutant 

which changes position j in rule i from a * to a Y is equivalent to P 

only if it is impossible for any input to satisfy rule i and not 

Satisfy condition j. 
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There are two mutants for every * entry in P. This means there 

are no more than 2nm mutants, where n and m are the dimensions of the 

table. Each mutant requires at most a single test case to 

differentiate it from P. Even though there are potentially 2° 

different inputs, an adequate mutation set need only have at most 2nm 

inputs. 

We will make the following assumptions: 

1. The decision table P is both consistent and complete, and 
all members of > are consistent. 

2. Given any program in >, if we are given an example of 
input/output behavior we can determine which rule was 
applied to produce the output from the given input. [In 
particular this implies that no two rules specify exactly 
the same set of actions. 

3. There exists at least one input which satisfies each rule 
in P, 

4. It is possible to decide the equivalence of P and any 
member of w. 

The results given here will demonstrate that any set of inputs 

which differentiates P from w in fact differentiates P from >. Assume 

we have such a set D. Assume that each rule in P is satisfied at 

least once by some member of D, adding test inputs if necessary to 

meet this condition. We can initially fail to meet this condition 

only if there are some rules which do not contain *'s. Note that we 

could have guaranteed the satisfaction of every rule with mutants if 

we also mutated the action matrix, as was done in the original 

psper [12]. The present exposition seems to be simplified without 
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loss of generality by the elimination of this step. 

Given any program Q in $, if for each x in D P(x) = Q(x) then we 

will say Q tests equal to P. Since each rule in P has a unique set of 

actions by a simple counting argument we know that if Q tests equal to 

P then for each rule in P there is a corresponding rule in Q with 

exactly the same actions. Using this fact, the following theorem can 

be demonstrated: 

Theorem 5: If D differentiates P from w and Q tests 
equal to P, then for each rule in P the set of inputs 
satisfying the corresponding rule in Q is strictly larger than 
that of P. 

proofs First note that it is not possible for a rule to have a Y 

entry in P and for the corresponding rule in Q to have an Ny, or vice 

versa. If this were so no data which satisfied the rule in P could 

satisfy the rule in Q. 

Now consider each * entry in P. There are two cases. If the 

change which replaces this * by a Y (the same argument holds for N) is 

equivalent, this means the conjunction of the other conditions implies 

a YES in this position. In this case it doesn't matter whether the 

corresponding rule in Q has a Y or a * (and these are the only two 

possibilities) this change cannot contribute to decreasing the size of 

the set of inputs accepted by the rule in Q. 

On the other hand if this change is not equivalent, D contains 

points which while satisfying the rule both satisfy and fail to 
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satisfy this particular condition. Both these must be accepted by the 

same rule in Q. Therefore Q must also have a * in this position. 

The only remaining possibility is that some rule in P has a Y (or 

N) and the corresponding position in Q has a *. This strictly 

increases the size of the set of inputs accepted by this rule, giving 

the result. 

Theorem 6: If test data (D) executes every rule and 
differentiates P from w, then D differentiates P from 9. 

proof: Let Pi be the set of inputs accepted by rule i in P. 

Since P is consistent, the Pi are disjoint. Since P is complete, they 

cover the entire space of inputs. Each corresponding rule in Q must 

accept at least the set accepted by the rule in P. Since Q is 

consistent, it can satisfy no more. 0 

2.2.1 Extensions and restrictions 

Notice the assumption that P is complete is not used in the proof 

of theorem 5. This might lead one to suspect that this restriction 

could be removed. To see that this is not the case, consider the 

three decision tables each consisting of a single rule, shown in 

figure 2-2. 

P M Q 
condition one Y Y * 

condition two * Y Y 

Figure 2-2: Example showing completeness is 
necessary in theorem 6 

Assume the satisfaction of condition one implies the satisfaction 

of condition two. This means the program P is equivalent to its 

Fa 
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mutant M, therefore the only test case we will generate will be one 

which merely executes the rule (say YY). Now consider the program Q. 

‘Theorem 5 states that any input which satisfies the rule in P must 

satisfy the rule in Q, and indeed this is the case. The converses 

however, is not true, as the input NY shows. 

Testing an inconsistent program is rather like looking for 

missing path errors (see section 4.2.3), in that for both cases the 

testing method must attempt to guess at something which should be, but 

is not, contained in the program. Given the great deal of uncertainty 

involved in this, it should not be surprising that the difficulties 

involved in testing these programs are considerable. 

We can, however, replace the assumption the P is complete with 

two weaker hypotheses: 1) that all the conditions are independent, 

that is, that all 2" possible inputs are feasible. (Notice this 

implies that none of the mutants constructed in the last section can 

be equivalent). and 2) that no program in $ can have more rules than 

are lu P. 

We can create a new type of mutant, by replacing each Y or N 

entry with a *, as long as by doing so we do not create an 

imccnsistent program. Notice that if P is complete, all such mutants 

create inconsistent programs. 

Theorem 7: If test data (D) executes every rule and 
differentiates P from w, then D differentiates P from 9. 

eS 8 
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proof: Theorem 5 still applies, and in fact can be strengthened, 

since there are no equivalent mutants of the first type. This means 

that for every * entry in P, the corresponding position in Q must also 

have a *. The only possible way to have an inequivalent program Q is 

for there to be some input X which satisfies rule j in Q but no rule 

in P, Let rule i be the rule in P with the same actions as rule j (a 

simple counting argument shows such a rule must exist). The only 

possible way for X to satisfy rule j and not rule i is for there to be 

a * entry in rule j and a Y (or N) in rule i which X fails. This 

means that the mutant which effects this same transformation cannot 

produce an inconsistent program (if rule i conflicted with some other 

rule in P it would have to conflict with the corresponding rule in Q). 

But therefore there must be some input which differentiates it from P. 

This means there is some input which is is rejected by i but satisfies 

the mutated rule. But this input must also satisfy rule j, 

contradicting the fact that Q tests equal to P.O 

Notice that if the test sets used in theorem 6 and 7 exist they 

are very small. As noted earlier the number of test cases is linear 

in the size of the program, even though the number of inputs may be 

exponential. 

Recall that theorem 4 implied we could form an adequate mutation 

set only if we could decide equivalence of P and each of its mutants. 

Obviously there are some cases where this is true, for example when 

all the conditions are independent and therefore none of the mutants 
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are equivalent. We can easily find examples where this is not true. 

This is the case whenever we have two conditions where the question of 

whether the first condition implies the second is undecidable. 

condition 1 ¥ 
condition 2 * 

Fieure 2-3: An example where equivalence is undecidable 
if the conditicns interact 

We can replace the * in the condition 2 row with a Y if and only 

if condition 1 always implies condition 2. In this fashion using any 

classic undecidable problem [50] we can construct a program with the 

property that the equivalence question for it and one of its mutants 

is undecidable. 

An assumption made in proving theorem 6 was that each rule had a 

distinct set of actions. We avoided the question of what happens if 

this is not the case by using the device of combining two such rules 

into one and adding a new condition entry. But this is simply moving 

part of the table into the condition entries, which we then proceed to 

assume are correct. To see that there are errors which might not be 

detected in this manner consider the two decision tables shown in 

figure 2-4. The two programs are not equivalent (they process the 

input NNYN differently) yet they agree on the set of test inputs 

{NNYY, NYYN, YYNN, YNNY, NNNN, NYNY, YYYY, YNYN}, which is sufficient 

to eliminate all the mutants of program 1. 

It 1s not clear whether the restriction to rules having distinct 

actions can be replaced with a weaker assumption, or if there is any 
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S PROGRAM 1 PROGRAM 2 
a N¥NY zk kk &k &* 

k k * * N Y WN Y 

Y WN Y * *& * &* 

* & & * YNN Y 

X X¥ O O Xx X O O 

0 0X X OO KX ZX 

Figure 2-4: A case not covered by the mutation test 

test method which can be used to demonstrate correctness in this case, 

other then trying all 2" possible inputs. 

2.3 LISP programs 

This section will consider programs written in the subset of LISP 

containing the functions CAR, CDR and CONS and the predicate ATOM*. A 

similar class of programs has been studied previously [44, 78, 84]. 

Associated with each S-Expression X we can construct a binary 

tree, which represents the structure of X. Call this tree the 

projection of X. 

We will define a relation <= as follows. Given two S-expressions 

X and Y we will say X <= Y if the projection of X is equal to the 

intersections of the projections of X and Y. 

We will make the convention that all S-Expressions (from now on 

we will use the less clumsy expression point) have unique atoms. 

Certainly if two programs agree on all such points they must agree on 

  

* . - . . . 
An earlier version of this section appeared in a paper presented at 

2 workskcp on software testing and test documentation [13] 
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- all inputs, hence we can do this without loss of generality. 

2.3el Straight line programs 

We will call a LISP program a selector program if it is composed 

of just CAR and CDR. We will inductively define a straight line 

program as a selector program or a program formed by the CONS of two 

other straight line programs. 

Theorem 8: If two selector programs return identical 

values on any input for which they are both defined, they must 
compute identical values on all points. 

proof: The only power a selector program has is to choose a 

subtree out of its input and return it. One can view this as simply 

selecting a position in the complete CAR/CDR tree and returning the 

subtree rooted at that position. Since there is a unique path from 

the root to this position, there is a unique predicate which selects 

it out. Since atoms are unique by merely observing the output one can 

infer the subtree which was selected. QO 

We will say a straight line program P(X) is well formed if for 

every occurrence of the construction CONS(A,B) it is the case that A 

and B do not share an immediate parent in X. The intuitive idea of 

the definition should be clear: a program is well formed if it is not 

doing any more work than it needs to. Notice that being well formed 

is an observable property of programs, independent of testing. 

We can define a measure of the complexity of a straight line 

program as follows: 

see 
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1)The CONS-depth of a selector program is zero. 

2)The CONS-depth of a straight line program 
P(X) = CONS(P1(X),P2(X)) 

Fr O23
 

1+MAX(CONS-depth(P1(X)) ,CONS~depth(P2(X))). 

Lemma 9: If two well formed selector programs compute 
identically on any point for which they are both defined, then 
they must have the same CONS-depth. 

proof: Assume we have two programs Pl and P2 and a point X such 

that P1(X) = P2(X) yet the CONS-depth(P1l) < CONS-depth(P2). This 

implies that there is at least one.subtree in the projection of P2 

which was produced by CONSing two straight line programs while the 

same subtree in P1(X) was produced by a selector. Sut then the 

objects PZ CONSed must have an immediate ancestor in X, contradicting 

the fact that P2 was well formed. 

Theorem 10: If two well formed straight line programs 
agree on any point X for which they are both defined, then 
they must agree on all points. 

proof: The proof will be by induction on the CONS-depth. By 

lemma 9 any two programs which agree at X must have the same 

CONS-depth. By theorem 8 the theorem is true for programs of 

CONS-depth zero. Hence we assume it is true for programs of 

CONS-depth n and show the case for ntl. 

If program Pl has CONS-depth ntl then it must be of the form 

CONS(P11,P12) where Pll and P12 have CONS-depth no greater than n. 

Assume we have two programs Pl and P2 in this fashion. Then for all 

Ys 
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P1(Y) = P2(Y) LFF 

CONS (P11(¥),P12(Y¥)) = CONS(P21(Y),P22(Y)) IFF 
P11(Y) = P21(Y) and P12(Y) = P22(yY) 

Hence by the induction hypothesis Pl and P2 must agree for all Y. 

One can easily generalize theorem 19 to the case where we have 

multiple inputs. Recall that each atom is unique, therefore given a 

vector of inputs we can form them into a list and the resulting 

structure will be a single input with unique atoms. Similarly a 

program with multiple arguments can be replaced by a program with a 

single argument by assuming the inputs are delivered iz the form of a 

list, and replacing references to argument names with selector 

functions accessing the appropriate positions in this list. Using 

this construction one can verify that if theorem 10 did not hold in 

the case of multiple arguments, we could construct two programs with a 

Single argument for which it did not hold, giving a contradiction. 

fo summarize this section, for any well formed straight line 

program, any unique atomic point for which the function is defined is 

adequate to differentiate the program from all other well formed 

straight line programs. 

2.3.2 Recursive programs 

The type of programs studied in this section can be described as 

follows: 

The input to the program will consist of selector variables, 
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denoted x» .-. X, and constructor variables, denoted y;» ««. Yp: A 

program will consist of program body and a recurser. A program body 

consists of n statements, each statement composed of a predicate of 

the form ATOM(t(x;)) where t is a selector function and x; a selector 

variable, and a straight line output function over the selector and 

constructor variables. A xecurser is divided into two parts. The 

constructor part is composed of p assignment statements for each of 

the p constructor variables where 5 1s assigned a straight line 

function over the selector variables and Ys. The selector part is 

composed of m assignment statements for the m selector variables where 

x; is assigned a selector function of itself. 

The example in figure 2-5 should give a more intuitive picture of 

this class of programs. 

Program P(x] 900+ XsYj see eYp) = 

IF p, (x1) THEN £1 (xy 200K peY] 20 0¥p) 

ELSE IF po(xj9) THEN £5(xys-+-%,syy2+0¥,) 

ELSE IF Py lXip) THEN £ (xy 200 Kp oVy 900 0¥p) 

ELSE 

y, 35 81 (yy 9X 9---X,) 

a Bp l¥peXy2++ +) 

xy := hy (x,) 

x = biG) 
P(x] 900 Xp2¥] 20+ °¥ 5) 

Figure 2-5: An example recursive program scheme 
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Given such a program, execution proceeds as follows: Each 

predicate is evaluated in turn. If any predicate is undefined so is 

the result of the execution, otherwise if any predicate is TRUE the 

result of execution 1s the associated output function. Otherwise if 

no predicate evaluates TRUE then the assignment statements in the 

recurser and constructor are performed and execution continues with 

these new values. 

the following restrictions we be assumed: 

1. All the recursion selector and recursion constructor 

functions must be non trivial (i.e. of depth one at least, 
is ruled out). so that Ki; 3= x; 

2. Every selector variable must be tested by at least one 
predicate. 

3. There is at least one output function which is not a 
constant. 

4. (freedom) for each 1<=k<=n and m>=0 there exists at least 
one input which causes the program to recurse m times 
before exiting with output function k. 

9. Each constructor variable appears totally in at least one 
output function. 

Let > be the set of all programs with the same number of selector 

and constructor variables as P, the same number of predicates, and 

output functions no deeper than some fixed limit olimit. Our goal is 

to construct a set of test cases (D) which differentiates P from all 

members of $. The mutants of P (w) will be defined as they become 

important to the proof. The argument will proceed in several small 

steps: 
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In section 2.3.2.1 basic definitions are given and some tools 

which will be used in later sections are derived. Section 2.3.2.2 

shows how to use testing to bound the depth of the selector functions. 

In section 2.3.2.3 we narrow the form of the selector functions still 

further, finally in section 2.3.2.4 showing they must exactly match P. 

Section 2.3.2.5 deals with the points tested by the predicates, and in 

section 2.3.2.6 the main theorem is given. Section 2.3.3 concludes 

with some comments on the difficulty of proving a program correct in 

this manner. 

2.3.2.1 Definitions and tools 

Capital letters from the end of the alphabet (X, Y and Z) will be 

used to represent vectors of inputs. Hence we can refer to P(X) 

rather than P(X] see eK ys¥y sees s¥p)- Similarly we will abbreviate the 

Simultaneous application of constructor functions by C(X) and 

recursion selectors by R(X). 

Letters from the start of the alphabet will be used to represent 

positions in a variable, where a position is defined by a finite 

CAR-CDR path from the root. When no confusion can arise we will 

frequently refer to "position a in X" whereby we mean position a in 

some x; or y; in X. We will sometimes refer to position b relative to 

position a, by which We mean to follow the path to a and starting from 

that point follow the path to b. 

The depth of a position will be the number of CARs or CDRs 

Pa 

ze 
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& necessary to reach the position starting from the root. Similarly the 

depth of a straight line function will be the deepest position it 

references, relative to its inputs. Let maxd be the maximum depth of 

any of the selector, constructor, recurser or output functions in P, 

The size of an input X will be the maximum depth of any of the 

atoms in X. 

We can extend the definition of <= to the space of inputs by 

saying X<=Y if and only if all the selector variables in X are smaller 

than their respective variables in Y, and similarly the constructor 

variables. 

We will say Y is X "pruned" at position a if Y is the largest 

input less than or equal to X in which a is atomic. This process can 

be viewed as simply taking the subtree in X rooted at a and replacing 

it by a unique aton. 

If a position (relative to the original input) is tested by some 

predicate we will say that the position in question has been touched. 

Call the n positions touched by the predicates of P without going into 

recursion the primary positions of P. 

The assumption of freedom asserts only the existence of inputs X 

which will cause the program to recurse a specific number of times and 

exit by a specific output function. Our first lemma shows that this 

can be made constructive. 
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Lemma 11: Given m>=0 and 1<=i<=n one can construct an 
input X so that P(X) is defined and when given X as an input P 
recurses m times before exiting by output function i. 

proof: Consider mtp infinite trees corresponding to the mp 

input variables. Mark in BLUE every position which is touched by a 

predicate function and found to be non-atomic in order for P to 

recurse m times and reach the predicate i. Then mark in RED the point 

touched by predicate i after recursing m times. 

The assumption of freedom implies that no blue vertex can appear 

in the infinite subtree rooted at the red vertex, and that the red 

vertex can not also be marked blue. 

Now mark in YELLOW all points which are used by constructor 

functions in recursing m times, and each position used by output 

function 1 after recursing m times. The assumption of freedom again 

tells us that no yellow vertex can appear in the infinite subtree 

rooted at the red vertex. The red vertex may, however, also be 

colored yellow, as may the blue vertices. 

It is a simple matter to then construct an input X so that 

1. all BLUE vertices are interior to X (non atomic), 

2. The RED vertex is atomic, and 

3. all YELLOW vertices are contained in X (they may be atomic) 

Notice that the procedure given in the proof of lemma 11 allows 
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one to find the smallest X such that the indicated conditions hold. 

If a is the position in question we will call this point the minimal a 

point. Freedom implies no point can be twice touched, hence the 

minimal a point is a well defined concept. 

Given an input X such that P(X) is defined, let F,(Z) be the 

Straight line function such that Fy(X) = P(X). Note that by theorem 

10, Fy is defined by this single point. 

Lemma 12: For any X for which P(X) is defined, one can 
construct an input Y with the properties that P(Y) is defined, 
Y >= X and Fy * Fy. x Y 

proof: Let m and i be the constants such that on input X, P 

recurses m times before exiting by output function i. Let the 

predicate Pp; test variable Xi° 

There are two cases. First assume f is not a constant function. 

Now it is possible that the position which would be tested by P; after 

recursing m+] times is an interior position in X, but since X is 

bounded there must be a smallest k > m such that the predicate 

pi(BM(x,)) is either true or undefined. Using lemma 11 we can find an 

input 2 which causes P to recurse k times before exiting by output 

function i. Let Y be the union of X and Z. Since Y >= Z, P must 

recurse at least as much on Y as it did on Z. Since the final point 

tested is still atomic P(Y) will recurse k times before exiting by 

output function i. Since £ (R(X) ,C™(Y)) z £; (RE(x),c*(x)) we have 
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The second case arises when f; is a constant function. By 

assumption 3 there is at least one output function which is not a 

constant function. Let f; be this function. Let the predicate P; 
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test variable X50 The same argument as before goes through with the 

exception that is may happen by chance the P(Y) = P(X) (i.e. PCY) 

returns the constant value). .In this case increment k by 1 and 

perform the same process and it cannot happen again that P(Y) = P(X). 
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Lemma 13: If P touches a location 4, then one can 
construct two inputs X and Y with the properties that P(X) and 
PCY) are defined, furthermore for any Q in $, if P(X) = Q(X) 
and P(Y) = Q(Y) then Q must touch a. 
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proof: Let Z be the minimal a point. Using lemma 12 we can 
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a construct an input X such that P(X) is defined, X >= Z and Fy # Fy. 

Let Y be X pruned at a. 
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First notice that P(Y) is defined and Fy = Fz. To see this note 

that every point which was tested by P in computing P(Z) and found to 

be non atomic is also non atomic in Y. Position a is atomic in both, 

and if the output function was defined on Z then it must be defined on 
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Y which is strictly larger. 

Suppose given input Y a program Q recurses m times before exiting 
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by output function i, but does not touch position a. Since X is 

Strictly larger than Y, on X Q must recurse at least as much and at 

least reach predicate i. Let the position in Y which was touched by 

predicate i and found to be atomic be b. Since position b is not the 
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game as position a, position b is also atomic in X. Therefore given 

input X Q will recurse m times and exit by output function i. But 
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this impiies by theorem 10 that F, = Fy, a contradiction. D 

2e3e2e2 Bounding the depth of the recursion and predicate functions 

Our first set of test inputs use the procedure given in lemma 13 

to demonstrate that each of the n primary positions in P are indeed 

. touched. 

Next, for each selector variable, use the procedure given in 

lemma 13 to show that the first ntl positions (by depth) must be 

touched. Let d be the maximum size of these m(n+l) positions. (We 

: can assume d is at least 3 and is larger than both 2*maxd and olimit.) 

Lemma 14: If Q is a program in $ which correctly 
a processes these 2m(n+1) points, then the recursion selectors 

1 of Q have depth d or less. 
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proof: Study each selector variable separately. At least one of 

the n+l points touched in that variable must have been touched after Q 

had recursed at least once. If the recursion selector had depth 

greater than d the program could not possibly have touched the point 

in question. [ 

Lemma 15: If Q is a program in $% which correctly 
processes these 2m(n+l) points, then none of the selector 
programs associated with the predicates of Q can have a depth 

greater than d. s
e
i
n
 

er
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proof: At least one of the inputs causes Q to recurse at least 

once, hence all the predicates must have evaluated FALSE and therefore 
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were defined. If any of the predicates did have a depth greater than 
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d, they would have been undefined on this input. QO 
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Since d>olimit we also have that d is a bound on the output 

functions of Q. 

We are now in a position to make a comment concerning the size of 

the points computed by the procedure given in lemma 13. Let a be the 

maximum depth of the "relative root" (the current variable positions 

relative to the original variable tree) at the time position a is 

touched. We know the minimal a tree is no larger than mtmaxd. This 

being the case to find an atomic or undefined point (as in the 

procedure associated with lemma 12) we will at worst have to recurse 

to a point mmaxd deep, but no more than m+maxd+d deep. Hence neither 

of the two points constructed in lemma 13 need be any larger than 
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mt2*maxd+d. This fact will be of use in proving lemma 18. 

2.3.2.3 Narrowing the form of the recursion selectors 

Say a selector function f factors a selector function g if g is 

e equivalent to £ composed with itself some number of times. For 

example CADR factors CADADADR. We will say that f is a simple factor 

of g if £ factors g and no function factors f, other than f itself. 

Denote by 85 i=1,..,m the simple factors of r;» the recursion 

nT
 

Selector functions. That is, for each variable i there is a constant 

m; so that the recursion selector rs is s; composed with itself m; 
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times. Let q be the greatest common divisor of all the m's. Hence 

the recursion selectors of P can be written as S% for some recursion 
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selector S. 
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We now construct a second set of data points in the following 

S
a
t
e
 

fashion: For each selector variable x;, let a be the first position 
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touched with depth greater than 2d* in Xie Using lemma 13 generate 

two points which demonstrate that position a must be touched. Let Dp 
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be the set containing all the (2n + 2m(ntl) + 2m) points computed so 

s
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. 

E far. 

_ Lemma 16: If Q is a program in $ which computes 

L correctly on Dp then recursion selector i of Q must be a power 

: of s;. i 
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proof: Assume the recursion selector of x; in Q is not a power of 

Si6 Recall that the depth of the selector cannot be any greater than 

d. Once it has recursed past the depth d it will be in a totally 

different subtree from the path taken by the recursion selector of P. 
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Since d>3 it is required that Q touch a point which has depth at 

B
w
 

least 3d. Q must therefore touch this point prior to recursing to the 
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depth d. By lemma 14 this is impossible. OU 
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We can, in fact, prove a slightly stronger result. 

Lemma 17: If Q is a program in $ which computes 
correctly on D, then there exists a constant r such that the 

recursion selectors of Q are exactly S*. 
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proof: We know by lemma 15 that the recursion selectors of Q must 

be powers of S;- For each selector construct the ratio of the power 

of s; in Q to that in P. Lemma 17 is equivalent to saying that all 

these ratios are the same, Assume they are different and let x; be 
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the variable with the smallest ratio and x, the variable with the 
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largest. 

Let X and Y be the two inputs which demonstrate that a position a 

of depth greater than 2d* in Xs is touched. Both P and Q must recurse 

at least 2d times on these inputs. In comparison to what P is doing, 

P x: is gaining at least one level every time Q recurses. By the time 

Xs is within range to touch a, x; will have gone 2d levels too far. 

~ Since 2d>d+2*maxd, x5 will have run off the end of its input, hence Q 

cannot have received the correct answer on X and Y. OC 

Lemma 13 gave us a method to demonstrate a position is touched. 

We now give the opposite: a way to demonstrate a position is not 

touched. 
t 

Lemma 18: If Q is a program in $ which computes 
correctly on all the test points so far constructed, then for 
any position a not touched by P one can construct two inputs X 
and Y so that if P(X)=Q(X) and PC(Y)=QC(Y) then Q does not touch 
ae 

proof: Let position a be in variable x;- Let m be the smallest 

number such that after recursing m times recursion selector i is 

deeper than the depth of a. Let h be the maximum depth of any 

recursion selectors at this point. Let X be the complete tree of 

: depth ht2d pruned at a. 

There are two cases: If P(X) is not defined, assume Q touches a. 

The relative roots of Q can not be deeper than htd at the time a is 
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touched. Hence the minimal a point is not any deeper than ht2d. 
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Since X is strictly larger than the minimal a point Q(X) must be 

defined, which contradicts the fact that P(X)=Q(X). 

The second case arises if P(X) is defined. Using lemma 12, 

construct on input Z>=X such that Fy#F,. Let f be Z pruned at a. 
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Assume Q touches.a. Since Y>=X, Q(Y) must be defined, so assume P(Y) 

is defined. By construction Fy=F>7F,. But since Q touched a, then 

Fy=Fy» which is a contradiction. 0 
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2.36224 the recursion selectors must be the same as P 

If Q is a program in which executes correctly on Dg then from 
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lemma 17 we know the recursion selectors of Q must be s* fcr some 

constant r. From lemma 14 we know the depth of S is no larger than d, 

hence there are at most d/(depth of S) possible alternatives. For 

each possible r (not equal to q, that is the value in P), construct a 

mutant program P* which is equal to P in all respects but the mutant 
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selectors, which are S*. 

In this section we will consider test cases as pairs of inputs, 
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generated using the procedure given in lemma 18, which return either 

the values YES, saying they were generated by the same straight line 

program, or NO, saying they weren't. Other than this we will not be 

concerned with the output of the mutants. 
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f If each mutant touches a point which P does not, then construct 

two points (using lemma 18) to demonstrate this. If any mutant 

touches only points which P itself touches, ther we will say P cannot 
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be shown correct by this testing method. This is the first example of 

testing by using mutant programs, Call this set of test inputs D). 
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Lemma 19: If Q is a program in $ which executes 

correctly on Dy and D, then the recursion selectors of Q must 

be exactly Ss‘. 
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proof: Assume not, and that the recursion selectors are S* for 

some constant r#q. No matter what the primary positions of Q ares we 

knew it must touch at some point the primary positions of P. It 

therefore must always touch the primary positions of P relative to the 
” 

position it has recursed to. But therefore it must at least touch the 

Lr 
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points which the mutant associated with r does. QO 

2.3.2.5 Testing the Primary Positions of P 

Consider each primary position separately. Assume that in some 

program Q in > the position is not primary, but that it is touched 

after having recursed m times. Let b be the position of a relative to 

si@, This means in Q that b is primary. Now b cannot even be touched 

(let alone be primary) in P because of the assumption of freedom. 

Using the procedure given in lemma 18, construct two points which 

demonstrate that b is not touched, Taken together, these test points 

insure that the primary positions of P must be primary in any other 

program. 

Notice carefully that we need to make no other assumptions about 

the other primary positions in Q, that is, we can treat each of them 

: independently. We therefore have at most n(d/(depth of S7)) mutant 

programs, hence at most twice this number of test points. Call this 

  
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49 

S
P
E
R
 

we
 X, 

test set Do» 

Lemma 20: If Q is a program in $ which executes 
correctly on Dy» D,, and D, then the primary positions of Q 
are exactly those of P. 
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Notice that by theorem 10 this also gives us the following 

Lemma 21; The output functions of Q are exactly those of 
P. 

2.3.2.6 Main Theorem 

Once we have the other elements fixed, the recursion constructors 

are almost given to us. Remember one of the assumptions made in the 

beginning was that each of the constructor variables appears in its 

entirety in at least one of the output functions. All we need do is 
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= to construct P data points so that data point i causes the program P 

to recurse once and exit using an output function which contains 
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constructor variable i. Call this set Dz. Using theorem 10 we then 

have 

Lemma 22: The recursion constructors of Q must be 
7 exactly those of P. 

The only remaining source of variation is the order in which the 

primary positions are tested. The only solution we have been able to 

find here (short of making more severe restrictions on $) is to try 

all possibilities. (If all the output functions are unique, this step 

is unnecessary, since Dy suffices to show the order.) There are nu! of 
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these, some of which may be equivalent to the original program. Let 

Dy be a set of data points which differentiates P from all non 

equivalent members of this set. 
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D Putting all of this together gives us the main theorem: 

Theorem 23: Given a program P in >, there exists a 
finite set of test cases which can be effectively constructed 
which have the property that for any program Q in $, if Q 
tests equal to P on these points, then P is equivalent to Q. 

i Proof: This follows directly from lemmas 14, 19, 20, and 22. 

ke Corollary: Either P is correct or no program in > realizes the 

: intended function. 

Corollary: If the competent programmer hypothesis holds then P is 

correct. 

2.303 Discussion   
Theorem 23 and the restrictions which were made in section 2.3.2 

in order to prove it demonstrate one very critical problem with this 

! approach. These restrictions were not made because they were in any 

sense natural or reasonable, but because they were necessary to the 

proof. While we cannot rule out the possibility that these 

restrictions could be removed or that a simpler proof could be found, 
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this does show that any such result is likely to be difficult to 
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discover. This severely weakens our hope that a theorem such as 23 
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could be proved for a more natural class of programs. This being the 

case, if one wants to analyze the type of programs which programmers 
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are more accustomed to using the empirical approach of chapter four 

must be used. 
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Note that although the class of programs studied here is small, 

it is not vacuous. Several examples previously studied by other 

authors [44, 78, 84] can be expressed in the form used here. 

: While it is known that the equivalence problem for linear 

recursive schemata is decidable [64], it is not clear what 

relationship this has to the present work. For one thing the programs 

: studied in the section on LISP are partial, not total as is assumed in 

the schemata results. Secondly while theorem 10 gives us some 

knowledge about how an output was derived from a given input, we 
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cannot a priori decide, for example, how many times the program 

recursed before providing this output. Finally note that, as opposed 
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to the finite case (theorem 4), it is not clear at all that merely 

having a decidable equivalence property is sufficient to show the 

f existence of a set which differentiates P from the infinite set 0. 

To see that > is infinite, we point out that even with the 

assumed bound on the depth of the output functions, we did not bound 

the number of CONS functions they could contain, hence there are an 

infinite number of programs in the set >. This is true even after we 
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have bounded the depth of the recursion selectors and the predicate 

selectors in lemma 15. 

The most important aspect of this result is not the proof (which, 
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in fact has rather limited applicability) but the method of the proof. 

Once we have fixed the recursion selectors via test set Dp» the 

remainder of the arguments are proved by constructing a small set of 

alternative programs (the mutants) and showing that cest data designed 

to distinguish these from the original actually will distinguish P 

from a much larger class of programs. In all we constructed 

f d(1/(depth of S) + n/(depth of S1)) + p + n! mutants, and proved that 

test data which distinguishes P from this set of mutants actually 

r distinguishes P from the infinite set of programs in >. 

Finally note that although the proof of che result given here is 

rather long and tedious, the end result is a procedure which is 

P entirely mechanical for proving correctness. The user of such a 

procedure need have no knowledge of the proof which was used to 
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validate the method, much like the user of a timesharing system need 

have no knowledge of how the operating system is implemented. This is 

the direction I feel research in testing should follow: finding 

mechanical methods which may be difficult to verify, but once verified 

b give en easy procedure for developing good test data. 
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f A FORTRAN MUTATION TESTING SYSTEM 

E During the summer of 1977 a system to perform mutation analysis 

s on FORTRAN programs was designed and constructed. This first system 

- was called PIMS, for PIlot Mutation System [11] and was implemented on 

. the PDP10 at Yale University. 

: The PIMS system allowed the user to test single ANSI standard 

L FORTRAN subroutines. The language FORTRAN was chosen for the initial 

implementation because it was (and still is) widely studied in the 

testing literature, it has a fairly simple semantics with few language 

i constructs, and it lends itself to considering large programs on a 

module by module basis. The last consideration was important because 

of the restriction to testing only single subroutines. 

A second important consideration in favor of FORTRAN was the fact 

that FORTRAN programs possess the important property that small 

Syntactic changes usually produce only small semantic changes. A 

higher level language, for instance APL, does not possess this 
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property. In APL even smali syntactic changes can produce radically 

different programs, hence we would expect very few of the syntax based 
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mutants to produce useful results for APL. On the other hand, much 

[CO
TES

 
a 
T
e
r
o
n
 

at
or
 

ay 

lower level languages, for example assembly code, possess this 

property to an even larger extent than FORTRAN. But mutating the 
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assembly code produces other problems; What may be a simple mutation 
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on the FORTRAN level may produce large changes in the assembly code, 

for example changing an AND operator to an OR operator where these are 

implemented with control structures. An even more important 

i consideration is psychological; A mutant described in FORTRAN has a 

quickly assimilable meaning, whereas a mutant described in assembly 

e language might require a significant amount of analysis on the part of 

i the human tester to decipher its consequences. Therefore in many 

respects, FORTRAN was a good choice for an experimental testing 

system. 
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Both the PIMS system and the later EXPER system operated by 

parsing the program into an internal form, which was interpreted, and 

producing the mutants at the internal form level. This method was 

used rather than parsing the program into assembly code for several 

reasons: If the mutants were produced at the source level, it would be 

necessary to recompile the program each time a mutant was to be 

executed. On the other hand if the mutants were produced at the 

assembly language level we would be restricted by the particular 

i structure of the PDP10: machine architecture. In any case the program 

would have to be parsed anyway in order to construct the mutants, so 

that half the interpretive system was already necessary. In addition 
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an interpreter based system allowed us greater control over program 

execution, which was important since many of the mutants were 

unstable, often resulting in infinite loops, zero divides or floating 

point interrupts. 

Several experiments were conducted on PIMS during the following 
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year, and it quickly became apparent that the restriction to a single 

hs subroutine was becoming a bottleneck. Accordingly in the spring of 

b. 1978 a second mutation system, which came to be called EXPER (for 

EXPERimental mutation system), was designed and built. Details of 

: EXPER are described in [14, 15]. The chief language limitations in 

this system were the absence of input/output statements (all 
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communication is through parameter and common variables), the lack of   
statement functions, and the lack of complex data types. The EXPER     system was used for all the studies described in chapter four.   
3.1 Mutant operators in the EXPER system 

The most important source of variation in the design of a system 

to implement mutation analysis is the choice of those programs which 

are to be considered mutants of the original program. The choice of 
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mutants is, in effect, what characterizes the system, and two systems 

which produce different mutants from the same source program may 

exhibit radically different behavior. This section will be devoted to 

describing the mutants produced by the EXPER system. 

Since the mutants are produced automatically they must be 
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produced by some fixed algorithm. In designing EXPER, therefores we 

qT
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chose to view the construction of the mutants as the application of a 

series of mutant operators to the original program. A mutant operator 

is a procedure which takes as input a program and produces as output a 

set of mutant descriptions. A mutant description is a short (3 
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computer words in the PDP20 implementation) encoding of the type of 
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mutation and its location in the original program. See [14] for more 
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details on the actual implementation. “T
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We can divide the mutant operators into three groups, depending 
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upon whether they affect operands, operators or statements as a whole. 

3.1.1 Source operand mutant operators 

E
E
N
 
SR

C 
R
E
N
T
 
T
E
D
L
 
E
N
E
 
P
U
T
 

Nes
 

The first set of mutant operators alter the basic data objects 

which are being manipulated by the program. We cam consider three 

different types of basic data objects: constants, scalar variables and 

array references. There are accordingly nine mutant operators which 

can be described by the form 
replace each x with each distinct occurrence of y 
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  where x and y range over constants, scalars and array references. 

Another operator takes each constant (even those which appear in 

DATA statements) and alters it slightly. Slightly means for integers 

plus or minus 1, for reals plus or minus 10% (or if the value is zero 
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-01), for logicals the logical complement, and for characters the 

first character in a string constant is replaced by the character's 

neighbors in the underlying ordinal scheme (e.g. 'cat' is replaced by     ee pe Ea aS EIN 
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"bat* and 'dat'). Of course it may be possible for this type of 

mutant to duplicate one produced by the first group, and a certain 

attempt is made to avoid this redundancy. 

A third type of source operand mutation takes the array name in 

S
O
T
O
 
N
A
P
E
 
R
U
E
 

TN
 E

E 
S
P
O
T
T
Y
 

RE
AR
 
PE

ER
Y.

 
ce 

R
D
 

Br
e 

te
 
SN
E 

EEE
 R

OD
 e
r
n
 

o
v
e
?
 

each occurrence of an array expression and changes it to all other 
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array names of the same dimensionality. 

3.1.2 Operator mutations 

In order to extend the error detection power of the mutations, 

the EXPER system adds several new operators to the usual FORTRAN 
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repertoire. These new operators cannot appear in the original 

program, but are produced in mutants. 

The first two are binary operators which can take the place of 

either arithmetic or logical operators. They are called Jeftop and 
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Zightop and their semantics is to evaluate both operands (this is an 

artifact of the stack type architecture of the interpreter) and to 

return either the left or right hand argument, ignoring the other 
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argument. 

A second pair of new operators are also binary and can take the 
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place of relational or logical operators. They are called trueop and 

falseop and their function is to evaluate both operands, and 
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regardless of their values return TRUE or FALSE, respectively. 
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There are also several unary operators which have been created. 

Twiddle (denoted ++ or --) is an operator which returns its argument     
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plus or minus one (if the argument is integer) or plus or minus .01Z 

or .01 (which ever is greater, if the argument is real). -ABS returns 

the negation of the absolute value of its argument. ZPUSH(X) returns 

X if nonzero, otherwise a TRAP error occurs and the mutant program is 

eliminated. The purpose of the last operator is to force the 

expression X to be zero. 

Having described these new operators, the procedures which 

construct the mutants can be characterized as follows: Arithmetic 

operator mutations are formed by taking each arithmetic operator and 
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leftop, rightop}. Relational operator mutations are formed by 

replacing each relational operator with other members of the set 

{.LE., .LT., .EQ., .NE., .GI., .GE., trueop, falseop}. Logical 

operator mutations are formed by replacing each logical operator with 

other members of the set {.OR., .AND., leftop, rightop, trueop, 

falseop}. Unary operator removals are made by deleting each unary 

operator. Unary operator insertions are formed by inserting the unary U
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operators {-, .NOT., ++, --, ABS, -ABS, ZPUSH} wherever they would be 

syntactically correct. 

Again, there is some possibility of creating redundant mutations 

(for example changing A - 1 to A * 1, which is the same as deleting 
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the - 1 clause altogether) or unnecessary mutants (such as ZPUSH(A*B), 
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t - since the effect will be achieved by placing the ZPUSH around the A 

and B separately). Some effort is made to avoid these. 
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3.1.3 Statement mutations 

: 
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A sequence of unlabelled, non-IF statements-is called a basic 

block [39]. Statements in a basic block have the property that if any 

one of the statements is executed they all must be executed. One type 

E
e
 

eT
 T
ER
 

ey
 T
E
 Of
 
S
T
 

of statement mutation operator replaces the initial statement of each 
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basic block with a TRAP statement. The semantics of the TRAP 

statement are that if it is ever executed it immediately causes the 

mutant to abort. On the other hand if such a mutant survives it 

implies that the basic block has never been executed. In this manner 
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Just because a statement can be reached does not mean that it is de
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performing a necessary part of the program being executed. A second 

mutant operator replaces each statement with a CONTINUE statement, 

effectively deleting the statement. 

i A third operator changes the labels on GOTO statements and 

arithmetic IF statements to other labels in the program. 

The final mutant operator has two parts. The first part changes 
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the ending statement label on DO loops to other labels which lie 
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between the do loop head and the end of the program. The second part 

changes the DO statement into a FOR statement, where a FOR statement 

differs from a DO statement in that if the ending value is smaller 

than the starting value the loop is not executed, in contrast to 
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3.2 A consideration of the power of the mutant operators 

One way to assess the capabilities of the mutant operators just 
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outlined is to select a set of programs with known errors and ask 
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which of the errors would be caught by this method. This information   
can then be compared with other testing methodologies which have been 

proposed in the literature, or used to direct the search for new 

mutant operators. Several studies of this nature will be reported on 
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in the next chapter. 
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A second way to evaluate this particular choice is to ask if the 
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operators force data to be constructed which achieves the goals of 

other testing methods. In this section a number of testing methods 
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will be examined, and we will see that in many cases mutation analysis 

does subsume their goals. 

: 32.1 Trivial errors 

If one of the mutants considered is indeed the correct program 

then of course the error will be discovered when an attempt is made to 

eliminate that particular mutant. Alternatively if the errors in the 

original program act in a reasonably independent manner and each error 

is individually captured by a single mutation then the errors will 

almost certainly be detected. 

Given the vast folklore about large systems failing for extremely 

trivial reasons [67], the ability to detect such simple errors in 

indeed a good starting place. However many errors do not correspond   I 
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exactly to the generated mutations, and multiple errors may interact 

in subtle fashions. This being the case, any realistic testing method 

must demonstrate a much more powerful error detecting capability. 

3.2.2 Statement analysis 

Many programming errors manifest themselves by sections of code 

being "dead", that is unexecutable, when they shouldn't be. Also many 

bugs are of such a serious nature that any data which executes the 

particular statement in error will cause the program to give incorrect 

results. These errors may persist for weeks or even years if the 

error occurs in a rarely executed section of code. 

Accordingly a reasonable first goal for a set of test cases is 

that every statement in the program is to be executed at least 

once [58]. 

Various authors have presented methods to achieve this 

goal [41, 82]. Usually these methods involve the insertion of 

counters into the straight line segments of code. When all counters 

register non-zero values every statement in the program has been 

executed at least once. 

In mutation analysis we take a different approach with the same 

objective. If a statement is never executed then obviously any change 

we produce in it will not cause the altered program to produce test 

answers differing from the original. However as a means of directing 

the programmers attention to these errors in a more direct and 
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unambiguous fashion the TRAP mutants described in section 3.1.3 are 

generated. Obviously these mutations are extremely unstable, since 
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any data which executes the replaced statement will cause the mutant 

to produce an incorrect result, and hence to be eliminated. The 

reverse, however, is also true. That is, if any of these mutants 

survive, then the statement which the mutation altered has never been 

executed. Hence an accounting of the survival of this class of 
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mutations gives important information about which sections of code 

have and have not been executed. 
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A statement can be executed and still not serve any useful 

purpose. In order to investigate this possibility we generate another 
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type of mutant which replaces every statement with a CONTINUE 

statement (a convenient FORTRAN statement with no semantic meaning). 

The survival or elimination of these mutations gives more information 

than merely whether the statement is executed or not, it indicates 

whether or not the statement is performing anything useful. If a 

statement can be deleted with no effect then at best it indicates a 

waste of machine time and at worst it is probably indicative of much 

f more serious errors. 

Merely being able to execute every statement in the program is no 

: guarantee that the code is correct [37, 52] Problems such as 

coincidental correctness or predicate errors may pass undetected even 

if the statement in error is executed repeatedly. In subsequent 

T
E
T
 

o
e
r
 

Sections we will see how mutation analysis deals with these problems. 

P
R
T
 

re   
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



  

63 

3.2.3 Branch analysis 

Some authors have pointed out [58] that an improvement over 

statement analysis can be achieved by insuring that every flowchart 

branch is executed at least once. For example the following program 
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é IF (condition) 

THEN B 
: Cc 

has two branches corresponding to the two flows A-B-C and A-C. All 

three statements A,B and C can be executed by a single test case. It 

is not true, however, that in this instance all branches have been 

executed. 

The requirement that every branch be taken is equivalent to 

requiring that every predicate expression evaluate both TRUE and 

FALSE. It is this formalization which is used in mutation analysis. 

(Sources of other branches are arithmetic IF statements and GOTO 

statements. Simple GOTO staterents are covered by the statement 

: analysis mutants described in the last section. Arithmetic IF and 

computed GOTO statements are covered by mutating the label portion of 

\ the statement). 

Among the mutants generated are ones which replace each 

relational expression and each logical expression by the logical 

i constants TRUE and FALSE. Of course, like the statement analysis 

mutations these are very unstable and easily eliminated by almost any 

E data. But if they survive they point directly and unambiguously to a 
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ei . . . . . Ee weakness 1n the test data which might shield a potential error. 
Fe 

ee By mutating each relation or lcgical expressicn independently we 
5 
t : . . FS actually achieve a stronger goal than that usually achieved by branch 

F- * 

fe analysis. 
[: 
E 
E Consider the compound predicate 

(A <= B AND C <= D) 

7
s
 

w
o
e
 

The usual branch analysis method would only require two test cases to 

test this predicate. If the test points were (A<B,C<D) and (A<B,C>D) 

this would have the effect of only testing the second clause, and not 

the first. This is because branch analysis fails to take into account 

the “hidden paths” [22], implicit in compound predicates. 
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In testing all the hidden paths mutation analysis would require 

at least four points to test this predicate. The four points 

correspond to the branches (A > B,C >D), (A> B, C <=D), (A <= B,C > 

D) and (A <= B, C <= D). (Predicate testing, as described in section 

3.2.5 would require us to construct,in addition, several more points.) 

As an example of how errors can be detected in this manner 

consider the program shown in figure 3-1, taken from an article by 

Geller [33]. The program is intended to derive number of days between 

two given days in a given year. The predicate which determines 

whether a year is a leap year or not is, however, incorrect in this 

version. Notice that if a year is divisible by 400 (year REM 400 = 0) 

it is necessarily also divisible by 100. Hence the logical expression   
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PROCEDURE calendar (INTEGER VALUE 
dayl, monthl, day2, month2, year); 

   

BEGIN 
INTEGER days$ 
IF month2 = monthl THEN days = day2 - dayl 

COMMENT if the dates are in the same month, we can 

compute the number of days between them immediately; 

ELSE 

BEGIN 

INTEGER ARRAY daysin (1 .. 12); 
daysin(1) := 31; daysin(3) := 31; daysin(4) := 30; 
daysin(5) := 31; daysin(6) := 30; daysin(7) := 31; 
daysin(8) := 31; daysin(9) := 30; daysin(10):= 31; 
daysin(11):= 30; daysin(12):= 31; 
COMMENT set daysin(2) according to whether or not 

. year is a leap year ; 
IF (Cyear REM 4) = 0) OR 

((year REM 100) = 0 AND (year REM 400) = 0) 
THEN daysin(2) := 28 
ELSE daysin(2) := 29; 

days := day2 + (daysin(monthl) - dayl); 
COMMENT this gives the correct number of days - 

days in complete intervening months); 
FOR i := monthi + 1 UNTIL month2 -1 DO 

days := daysin(i) + days; 
COMMENT add in the days in 

complete intervening months; 
END; 

WRITE( days) 
END; 

Figure 3-1: Program exhibiting an error 
caught by branch analysis 

formed by the conjunction of these two conditions is equivalent to 

just the second term alone. Alternatively, the expression 

year REM 100 = 0 can be replaced by the logical constant TRUE and the 

resulting mutant will be equivalent to the original. Since this is 

obviously not what the programmer had in mind the error is discovered. 

3.264 Data flow analysis 

During execution a program may access a variable in one of three 

ways [29]. A variable is defined if the result of a statement is to 

assign a value to the variable. A variable is referenced if the   i 

q 

r 

E 
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statement requires the value of the variable to be accessed. Finally 

a variable is undefined if the semantics of the language do not 

: explicitly give any other value to the variable. Examples of the 

- latter are the values of local variables on invocation or procedure 

return, or DO loop indices in FORTRAN on normal do loop termination. 
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Fosdick and Osterweil [29] have defined three types of data flow 

anomalies which are often indicative of program errors. These 

anomalies are consecutive accesses to a variable of the forms: 

1. undefined and then referenced 

2. defined and then undefined 

3. defined and then defined again 

The first is almost always indicative of an error, even if it 

occurs only on a single path between the place where the variable 

becomes undefined and the refererce place. The second and third, 

however, may not be indications of errors unless they occur on every 

path between the two statements. 

Although the first type of anomaly is not attacked by mutations 

per se it is attacked by the mutation system, which is a large 

interpretive system for automatically generating and testing mutants. 

Whenever the value of a variable becomes undefined it is given a 

special marking. Before every variable reference a check is performed 

to see if the variable has a value. If the variable does not an error 

is reported to the user, who can take corrective action.   i 
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The second and third types of anomalies are attacked more 

directly. If a variable is defined and not used then usually the 

statement can be eliminated with no obvious change (by the CONTINUE 

insertion mutations described in the last section). This may not be 

the case if, for example, in the course of defining the variable a 

function with side effects is invoked. In this case the definition 

can likely be mutated in any number of different ways which, while 

preserving the side effect, obviously result in the variable being 

| given different values. An attempt to remove these mutations will 

almost certainly result in the anomaly being discovered. 

3.2.5 Predicate testing 

Howden [52] has defined two broad categories of program errors 

under the names domain errors and computation errors. The notions are 

not precise and it is difficult with many errors to decide which 

category they belong in. Informally, however, a domain error occurs 

when a specific input follows the wrong path due to an error in a 

control statement. A computation error eccurs when an input follows 

the correct path but because of an error in computation statements the 

wrong function is computed for one or more of the output variables. 

Following Howden's study, several researchers examined the 

question of whether certain testing methodologies might reliably 

uncover errors in these or other classification schemes. A number of 

authors [6, 20] observed that points on or near a predicate border are 

most sensitive to domain errors. A testing method, called the domain 
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strategy [87], formalized this in that it is guaranteed to catch a 

F limited class of these types of errors. The original reference should 

be consulted for a more complete presentation of the several technical 

restrictions and applications of their method, but we can here give an 

informal description of how it works. 

If a program contains N input variables (including parameters, 

array elements and 1/0 variables) then a predicate can be described by 

a surface in the N dimensional input space. Often the predicate is 

linear, in which case the surface is an N dimensional hyperplane. Let 

us consider a simple two dimensional case where we have input 

variables I and J and the predicate in question is 
It2%J <= -3 

The domain strategy would tell us that in order to test his 

predicate we need three test points, two on the line I+2*J=-3 and one 

a small distance e from the line. Call the two points on the line A 

and B and the point off the line C. 

Assuming a correct outcome from these tests what have we 

discovered? We know the line of the predicate must cut the sections of 

the triangle AC and BC. Since e is quite small the chances of the 

predicate being one of these alternatives but not the original line is 

also small. Hence, although we don't have complete confidence that 

the predicate is correct, we do have a much larger degree of 

confidence than we could otherwise have attained. 

e
e
e
   Bs 
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To see how mutation analysis deals with the same problem we first 

R
S
s
 

c
r
e
 

observe that it really is not necessary to have both A and C be on the 

predicate line. If A is on the line and B and C are on opposite sides 

of the line the same result follows. We now described how mutations 

cause points with these properties to be generated. 

As an intuitive aid one can think of mutation analysis as posing 

certain alternatives to the predicate in question, and requiring the 

tester to supply reasons, in the form of test data, why the 

alternative predicate could not be used just as well in place of the 

original. These alternatives are constructed in various ways. 

A number of the alternatives are generated by changing relational 

Po operators. Changing an inequality operator to a strict inequality 

operator, or vice versa, generates a mutant which can only be 

eliminated by a test point which exactly satisfies the predicate. For 

example changing I+2*J <= -3 to I+2*J < -3 requires the tester to 

exhibit a point for which I+2*J = -3, hence which satisfies the first 

predicate but not the second. 

A second class of alternatives involves the introduction of the 

unary operator "twiddle" (denoted ++ or --), whose semantics were 

described in section 3.1.3. Graphically, the effect of introducing 

twiddle is to move the proposed constraint a small distance parallel 

to the original line. In order to eliminate these mutants a data 

point must be found which satisfies one constraint but not the other, 

F. 
F 

:   k 
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hence is very close to the original constraint line. 

Finally a third class of alternatives are constructed by changing 

each data reference into all other syntactically correct data 

references, and each operator into all other syntactically correct 

operators. The effects of these are related to the phenomenon of 

spoilers, which are described in section 3.2.9. 

The total effect achieved by so many alternatives is to cause the 

programmer to generate a large number of test inputs which are very 

closely tied to the particular form of the program. Hence by a 

process similar to that of White et al [87] we increase inductively 

our confidence that the predicate is indeed correct. 

READ I,J; 

IF I <= J+1 

THEN K 
ELSE K e

e
 

| 
ee
 H
+
 

+
 I 

2x 

IF K >= I+1 

THEN L 
ELSE L 

fF 

t+
 t
s 

e
o
 

w
t
 I + 

J- 

IF I=5 
THEN M 
ELSE M 

2*L + Kj 

L + 2*K -13 

WRITE M3; 

Figure 3-2: Example program from White [87] 

In order to more fully illustrate the construction of these 

alternatives and demonstrate their utility we will examine a small 

example. The program in figure 3-2 was taken from the paper 

describing this method. No specifications were given, but the program   
ik 
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can be compared against a presumably "correct" version. It is a good 

“t
T 

example because it only involves two input variables, hence the 

alternatives can be easily illustrated in a graphical manner. 

As one can see the program has three predicates: I <= J+l, 

K >= I+] and I = 5. Consider only the effects of changing the first. 

The EXPER system looks at 41 distinct alternatives for the 

predicate I <= J+1 [16]. In fact 45 choices are tried, however some 

of the choices are redundant, for example ++I <= J+l and I <= --J +1. 

These redundancies are created because the mutants are formed in an 

entirely mechanical way. It is our feeling that the processing time 

lost because of redundant mutations is much less than the time which 

would be required to eliminate them by preprocessing the alternatives, 

hence the presence of these redundancies is of little concern. 

In the paper from which the example program was taken the authors 

hypothesize that the program contains the following four errors. 

1. The predicate K >= I+] should be K >= I+2. 

2. The predicate I=5 should be I=5-J. 

3. The statement L=J-1 should be L=I-2. 

4. The statement K=I+J-1 should read 

THEN IF (2*J < -5*I -40) . 
THEN K = 3; 
ELSE K=I+J-1; 

It can be shown that the attempt to eliminate the alternative 

K >= I+2 must necessarily end with the discovery of the first error.   
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Note that this is not trivially the case since errors 1 and 4 can 
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interact in a subtle fashion. 

3.2.6 Error sensitive test cases (ESTCA) 

Another testing methodology directed specifically at detecting a 

certain type of error is the Error Sensitive Test Cases method 

proposed by Kenneth Foster [30]. The method is a procedure for 

deriving test cases specifically directed to detecting the following 

types of errors: 

l. Omitted or out of sequence operations or conditions. 

. 2. References to the wrong variables. 

3. Substitution of relations or conjunctions in simple or 
compound conditions (LT for LE, OR for AND). 

4, Missing or incorrectly placed parentheses, incorrect 
grouping of variables in an arithmetic expression. 

5. Substitution of arithmetic operations (* for **). 

6. Incerrect constant values as factors in arithmetic 
computations or as limit counters. 

7. Arithmetic operations on variables in the wrong sign form 

(load or store positive, negative, with complement sign, 
and so on). 

The method used in detecting these errors is quite similar to 

mutation analysis. That is, test data is derived which would be 

incorrectly processed were the program to contain an example of this 

type of error. This is precisely the same thing as requiring that all 

non equivalent mutants be eliminated. 

The major difficulty with Fosters method is its complexity. In 

order to include all the special cases which can arise in conjunction   
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73 

  

with these errors the procedure is, by necessity, quite detailed and. 

complex. Note that if, for example, we want to insure that a specific 

+ operator might not inadvertently be appearing where a * operator 

should it is not simply sufficient to find test data where the two 

expressions locally disagree, but we must continue to analyze the two 

programs until they halt to insure that different responses are 

produced. This distinction between local and global testing is 

discussed in more detail in section 5.1. 

The ESTCA method was designed to allow a human programmer to 

: construct test cases, but in so doing the amount of information which 

must be maintained and processed is exceedingly large. The danger is 

quite clear that one can lose sight of the forest for all the trees. 

This criticism is only partially alleviated by proposing to generate 

the test cases automatically (a proposal which in itself raises many 

more unanswered questions). 

er 

On the other hand the experience with the mutation system 

Suggests that the vast majority of changes of the type analyzed by 

ESTCA are likely to be detected by even the most rudimentary test 

cases. It is only a small number of changes which are subtle enough 

to require detailed investigation, and it is only these few changes 

which should require the human testers attention. Unfortunately 

discovering, a priori, which of these changes are important is an 

exceedingly difficult problem.   Ik 
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3.2.7 Domain pushing 

One very important rutation which was mentioned in the section on 

predicate errors concerns the introduction of unary operators into the 

program. These unary operators are introduced wherever they are 

syntactically correct according to the rules of FORTRAN expression 

construction. In addition to the operators ++ and -~ already 

discussed, the remaining unary operators are - (arithmetic negation) 

and a class of non FORTRAN operators ABS (absolute value), -ABS 

(negative absolute value) and ZPUSH (zero push). Only the actions of 

the last three will be described in this section. 

Consider the statement 

A=B+#+C 

in order to eliminate the mutants 
A = ABS(B) + C 
A= B+ ABS(C) 
A = ABS(B + C) | 

| 

we must generate a set of test points where B is negative (so that B+C 

will differ from ABS(B)+C), C is negative and the sum B+C is negative. 

Similarly negative absolute value insertion forces the test data to be 

positive, and ZPUSH forces it to be zero. We use the term domain 

pushing for this process, meaning the mutations push the tester into 

producing test cases where the domains satisfy the given requirements. 

Compound this process by every position where an absolute value 

sign can be inserted and one can observe a scattering effect, where 

the tester is forced to include test cases acting in various 

conditions in a multitude of domains. Very often in the presence of 
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an error this scattering effect will cause a test input to be 

generated which will demonstrate the error. 

Notice that if it is impossible for B to be negative then this 

example produces an equivalent mutation, that is the altered program 

is equivalent to the original. In this case the proliferation of 

: these alternative can either be a nuisance or an important 

documentation aid, depending upon their frequency and the testers 

point of view. The topic of equivalent mutants will be examined more 

fully in section 4.5. 

Recall again that one of the errors the program in section 3.2.5 

was presumed to contain altered the statement L = I-2 to L= J-l. One 

effect of this error is that any test input in the area I > J+l and 

I <= 0 will produce erroneous results. But this is precisely the area 

which the mutant K = 2*ABS(I) + 1 directs us to. This means that this 

error could not have gone undiscovered using mutation analysis. 

This process of pushing the programmer into producing data 

satisfying some criterion is often also accomplished by other 

mutations. Consider the program in figure 3-3, which is based on a 

program by Naur [71], and is one of the programs studied in section 

4.2.2. 

Consider the mutant which replaces the first statement FILL:= 

with the statement FILL:=1. The effect of this mutation is to force a 

test case to be defined in which the first word is less than MAXPOS   
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er alarm := FALSE 

bufpos := 0; 
fill := 0; 
REPEAT 

incharacter{cw) 
IF cw = BL or cw = NL 
THEN 

IF £111 + bufpos <= maxpos 
THEN BEGIN 

outcharacter(BL); 
END 

ELSE BEGIN 

outcharacter(NL); 
fill := 0 end; 

FOR k := 1 STEP 1 UNTIL bufpos DO 

outcharacter(bufferLk]); 
fill := fill + bufpos; 
bufpos := 0 END 

ELSE 

IF bufpos = maxpos 
THEN alarm := TRUE; 
ELSE BEGIN 

bufpos := bufpos + 1; 
buffer[bufpos] := cw END 

UNTIL alarm OR ecw = ET 

Figure 3-3: Example program from Naur [71] 

characters long (since the effect of the mutant must be manifest 

before FILL is redefined). This test case detects one of the five 

errors in the program [37]. The interesting observation is that the 

effect of this mutation is several statements distant from the 

statement in which the mutation takes place, again illustrating one 

aspect of the coupling effect. 

3.2.8 Special values testing 

Another form of testing which has been introduced by Howden [53], 

is called special values testing. Special values testing is defined 

by a number of rules , for example 

1. Every subexpression should be tested on at least one test 
case which forces the expression to be zero, together with 
one which forces it be be greater than zero, and one which   
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forces it to be less than zero. 

Ee 2. No two variables should always have equal values. 

: 3. A variable should assume more than one value during each 
E test case. 

4. Every subexpression should take on more than one value 
across all test cases. 

That the first rule is enforced by the zero push and absolute 

value mutations has already been discussed in the last section on 

domain pushing. 

That the second rule is important is undeniable. I£ two 

variables are always given the same value then they are not acting as 

"free variables" and a reference to one can be universally replaced 

with a reference to the second. In fact this is exactly what happens 

in this case, and the existence of these mutations enforces the goals 

of the distinct values rule. 

A similar argument could be made concerning the importance of the 

third rule, however in languages which do not have the ability to make 

labelled constants (such as FORTRAN), variables are often used in this 

fashion. This rule is not enforced by mutation analysis. 

The fourth rule is enforced for some special cases, for example 

predicates (section 3.2.3), and by substituting constants for scalars 

and array expressions. A more general method of enforcing this rule 

could be envisioned and is indeed implemented in a system similar to 

mutation analysis (see section 3.5). However there is at least some 

: 
E 
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: Goubt whether the more general capabilities would justify the 

increased costs involved in enforcing them. 

3.2.9 Coincidental correctness 

We say the result of evaluating a given test point is 

coincidentally correct if the result matches the intended value in 

spite of the fact that the function used to compute the value is 

incorrect. For example if all our test data results in a variable I 

having the values 2 or 0, then the computation J = I*2 could be 

coincidentally correct if what was intended was J = I**2. 

The problem of coincidental correctness is really central to 

program testing. Every programmer has encountered statements which 

were incorrect, but which produced the correct response for a 

surprising large number of inputs. Yet with the exception of mutation 

analysis no testing methodology in the authors knowledge deals 

directly with this problem. Some researches even go so far as to 

State that the problems of coincidental correctness are 

intractable [87]. 

In mutation analysis coincidental correctness is attacked by the 

use of spoilers. Spoilers implicitly remove from consideration data 

points for which the results could obviously be coincidentally 

correct, in a sense "spoiling" those data points. For example by 

explicitly making the mutation J = I*2 => J = I**2 we spoil those test 

cases for which I = 0 or I = 2, and require that at least one test   
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case have an alternative value. 

Often the fact that two expressions are coincidentally the same 

over the input data is an indication of program error or poor testing. 

For example the sorting program shown in figure 3-4, taken from a 

paper by Wirth [88], will perform correctly for a large number of 

input values. If, however, the statements following the IF statement 

are never executed for some loop iteration it is possible for R3 to be 

incorrectly set, and an incorrectly sorted array may be produced. 
Sort (R4) 
For Rl = 0 by 4 to N begin 

RO := a(R1) 
for R2 = Rl + 4 by 4 to N begin 

if a(R2) > RO then begin 
RO := a(R2) 
R3 := R2 

end 
end 
R2 := a(R1) 
a(R1) := R0 
a(R3) := R2 

end 

Figure 3-4: A program exhibiting a coincidental 
correctness error 

By constructing the mutant which replaces the statement a(R1):=R0 

with a(Rl):=a(R3) we point out that there are two ways of defining RO, 

only one of which is used in the test data. Therefore the error is 

uncovered. 

3.2.10 Missing path errors 

As identified by Howden [52], we can say a program contains a 

missing path error if a predicate is required which does not appear in 

the program under test, causing some data to computed by the same   i 
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function when really different functions are called for. These 

missing predicates can, however, be the result of two different 

problems, so we might consider the following definitions: A program 

contaiss a specificational missing path error if two cases which are 

treated differently in the specifications are incorrectly combined 

into a single function in the program. On the other hand 2 program 

contains a computational missing path error if within the domain of a 

single specification a path is missing which is required only because 

of the nature of the algorithm or data involved. 

An example of the first type is error number four from the 

example in section 3.2.5. Although this error might result from a 

specification, there is nothing in the code itself which would give 

any hint that the data in the range Z*J<-5*I-40 is to be handled any 

differently than given in the test program. 

For an example of the second class of error consider the 

subroutine shown in figure 3-5, which is one of the programs ztudied 

in section 4.2.1. The inputs are a sorted table of numbers and an 

element which may or may not be in the table. The only specification 

is that upon return X(LOW) <= A <= X(HIGH), and HIGH <= LOW +1. The 

problem arizes if the program is presented with a table of only one 

entry, in which case the program loops forever. 

Nothing in the specifications state that a table with only one 

entry is to behave any differently from a table with multiple entries, 
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SUBROUTINE BIN(X,N,A,LOW,HIGH) 
INTEGER X(N) ,N,A,LOW,HIGH 
INTEGER MID 

’ Low = 1 
HIGH = N 

6 IF(HIGH - LOW - 1) 7,12,7 
12 STOP 
7 MID = (LOW + HIGH) / 2 

IF (A - X(MID)) 9,10.10 
9 HIGH = MID 

GOTO 6 
10 LOW = MID 

GOTO 6 
END 

Figure 3-5: Program exhibiting a missing path error 

a - => 

it is only because of the algorithm used that this must be treated as 

a special case. 

Problems of the second type are usually caused by the necessity 

to treat certain values, for example negative numbers, differently 

from others. This being the case the process of data pushing and 

spoiling described in sections 3.2.7 and 3.2.9 will often lead to the 

detection of these errors. So it is in this case where an attempt to 

remove either of the following mutants will cause us to generate a 

test case with a single element. 
IF (HIGH - LOW - 1) 12,12,7 

MID = (LOW + HIGH) - 2 

Since mutation analysis, like most other testing methodologies, 

deals only with the program under test (as opposed to dealing with the 

specifications), the problems of detecting specificational missing 

path errors are much more difficult. Since mutation analysis causes 

the tester to generate a number of data points which exercise the 

program in a multiplicity of ways our chances of stumbling into the   i 
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area where the program misbehaves are high, but are by no means 

certain. 

So it is with the missing path error from the example in section 

3.2.5. It is possible to generate test data which passes our test 

criterion but which fails to detect the missing path error. We view 

this not, however, as a failure of mutation analysis but as a 

fundamental limitation in the testing process. In our view the only 

way that this type of error can be eliminated is to start with a core 

of test cases generated from the specifications, independent of the 

program implementation. This core of test cases can then be augmented 

to achieve goals such as those presented by mutation analysis. Some 

methods of generating test data from specifications have been 

discussed elsewhere [37, 73]. 

3-3 A discussion concerning the number of mutants generated by EXPER 

The most commonly made criticism of mutatior analysis is that it 

requires the execution of an inordinately large number of alternative 

programs. This section will analyze the number of mutants generated 

by a typical program. The question of whether this number is 

practical will be more fully addressed in section 4.4. 

What are some ways we can measure the size of a program? The 

easiest metric is just the number of executable statements, which we 

will denote by N. This number can, however, be deceptive. For 

example a single assignment statement can be simple (A = B) or   ‘ 
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extremely complex 
A=SQRT(B+SIN(ABS(B**5))/COS(B*B) ) 

Accordingly another measure we might use is the number of references 

made to constants, scalar variables, and arrays (X) or the number of 

these references which are ‘istinct (Y). 

Another element we : .tht wish to measure is the complexity of the 

control structure. McCabe has defined one commonly used measure of 

complexity [66], which we will denote V. Finally Halstead [28] has 

defined a general metric of program size, which he calls Effort (E). 

N M x Y E Vv 
12 2580 103 21 32033 1 
13 317 27 8 4071 5 
17 386 32 8 6928 4 
17 634 45 9 15246 7 
24 2716 72 40 17565 367 
26 646 40 11 16270 369 
33 859 55 13 41819 12 
33 23382 407 53 249701 1 
56 3657 129 23 138939 9 
66 2425 115 I5 170492 10 
67 5230 158 28 189585 15 
71 2888 135 16 166715 ii 
98 8457 227 32 365825 22 
112 16380 237 68 320331 26 
277 34657 = 545 63 3024488 122 
514 120000 1138 93 19267409 113 

Table 3-1: Number of mutants generated versus program size 

Table 3-1 gives, for 16 typical programs, a table of N, M, X, Y; 

E and V. Notice that the number of mutants is not particularly tied 

to the number of statements (the two programs with 33 statements are a 

good example of this). If we use a correlation coefficient [27] as a 

measure of relationship we can correlate the number of mutants with 

each of the other columns (plus the product of X and Y) and obtain the   
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statistics shown in table 3-2. As one can see the number of mutants 

seems to be most highly correlated with the product of X and Y. 
r N x Y XY E V 

950 978 826 999 975 798 

Table 3-2: Correlation coefficients for mutants 

This high relationship is undoubtedly related to the "replace 

every member of X with a member of Y" nature of the data mutations, 

since data mutations account for, on the average, 82% of all mutants 

generated (operator mutations making 5% and statement mutants 132). 

We therefore computed the correlation coefficients for each of the 

Major categories of mutants separately, obtaining the statistics shown 

in table 3-3. 

DATA OPERATOR STATE 

-946 -953 - 940 
999 ~953 977 
-980 ~993 921 
-836 -874 722 
-999 -961 -970 
-970 - 880 -999 
0/95 -880 -/64 

Table 3-3: Correlation coefficients by mutant type 

<
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We find that, as we suspected, the data mutants are most highly 

related to XY. However, the operator mutants correlated more highly 

with just X, and the statement mutants with E. Combining these 

figures together we found that the number of mutants can be 

approximated by the equation 

M= 79 + .766 XY + 4X + .0008 E 

This equation is, however, correlated only marginally better than the 

simple predictor XY (an increase of one in the fifth decimal place).   A 
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3.4 A sampling experiment 

It has been observed that there is a great deal of redundancy 

built into the mutants, in that several mutants, although acting 

differently, will often all have the same effect. Although it appears 

that much of this redundancy is unpredictable, we can still make use 

of it by randomly generating only a small percentage of the mutants. 

(Often these redundant mutants could be detected algorithmically, but 

would require a significant amount of analysis. In designing EXPER 

there was a conscious choice made to allow redundant mutants rather 

than expend the time to detect them). 

One experiment, designed by Sayward, was intended to measure the 

degree of this redundancy. In this experiment three programs where 

studied by three different subjects. Each subject analyzed each 

program generating 10% of the mutants for one, 25% for the second and 

50% for the third. Each program was studied at each percentage level. 

After adequate test data had been constructed which eliminated all the 

nonequivalent mutants at the lower percentage levels, the test data was 

used to execute all the mutants. The number of nonequivalent mutants 

not caught could then be expressed as a percentage of the total number 

of mutants. The results were as shown in table 3-4, 

PERCENT GENERATED 10 25 50 
PROGRAM A 0.632 0.37% 0.12% 
PROGRAM B 0.202 0.27% 0.28% 
PROGRAM C 0.82% 0.28% 0.272% 

Table 3-4: Results of a sampling experiment 

Even with test data generated using only 10% of the mutants no   i 
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more than 1% of the nonequivalent mutants were overlooked. The 

resulting percentages were much lower than expected. In order to 

investigate this further, all the programs analysed in the reliability 

study reported in section 4.2.3 were first analyzed using only 10% of 

the mutants. In each case it was found that test cases so developed 

eliminated over 994 of all nonequivalent mutants. This suggests very 

strongly that 1) more effort could be expended to delete and eliminate 

redundant mutants, and 2) generating even a small percentage of the 

mutants is a useful heuristic for evaluating and constructing test 

cases in practice. 

3.5 A discussion of a similar system 

Independent ly of the work on the mutation system at Yale, a 

system with several similar capabilities was being constructed at the 

University of Maryland by Richard Hamlet [40, 41]. Although there are 

Similarities in goals, there are several weior differences between 

EXPER and the Maryland systems. The mutation system was designed to 

be highly interactive and iterative, so that the programmer can enter 

a few test cases, observe their effect, and then enter more test 

cases. In contrast, Hamlet's system is based around a batch compiler; 

Test cases are typed as source statements along with the program and 

are executed by the complier, so that errors are reported much as 

syntax error would be. 

Since it was an experimental system, Hamlet's system was 

purposely a rather limited implementation. In particular the only   I 
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data types in the language which he processed (a version of ALGOL) 

were integers, and the routines to be tested were limited to integer 

functions with a single integer argument. Because test cases were 

entered alongside the source statements, it was necessary that the 

description of a test case be succinct, for this reason the 

restriction to single integers was significant. 

Hamlet's system operated by keeping a history of the values of 

expressions as they occured in the execution of the program on the 

test cases. In this respect the system is similar to the testing and 

debugging system created by Fairley [25]. After all the test cases 

have been executed, this history is then analyzed to check for several 

conditions, including a) every statement has been executed, b) every 

variable has taken on multiple values during its existence (this is 

looking at a single variable across ali the locations it is altered in 

the program), c) every expression has taken on multiple values across 

all test cases (this is looking at a single location in the program 

across all test cases). In addition, for each expression in the 

program the system does an exhaustive substitution of simpler 

expression, to insure that the full complexity of the expression is 

required. 

Some of these features are directly implemented in mutation 

apalysis, for example the ability to detect that every statement is 

executed. Some are partially implemented, for example the branch 

analysis mutants (section 3.2.3) insure that at least branch   
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expressions vary across all their values. It is significant that 

Hamlet singles out branch expressions as being the most important 

example of how errors are detected in this manner. 

A slightly more general method to achieve Hamlet's goal (c) could 

be envisioned for mutation analysis as follows: A special array 

exactly as large as the number of subexpressions computed in the 

program is kept, with two additional tag bits for each entry in this 

array. Initially all tag bits are off, indicating the array is 

uninitialized. As each subexpression is encountered in turn the value 

at that point is recorded in the array and the first tag bit is set. 

Subsequently when the subexpression is again encountered if the second 

tag bit is still off the current value of the expression is compared 

against the recorded value. If they differ the second tag bit is set. 

Otherwise no change is made. 

In this fashion by counting those expressions in which the second 

tag bit is OFF and the first ON one can infer which subexpression have 

not altered their value over the test case executions, and hence one 

can construct mutations to reveal this. However, in view of Hamlet's 

coments on the number of errors caught in this fashion, one might 

decide this was not worth the effort, 

An approximation to Hamlet's substitution of simpler expressions 

is achieved by the use of the operators leftop and rightop (described 

in section 3.1.2). Mutation analysis, however, makes the basic   
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assumption that the analysis of a small number of carefully chosen 

alternatives will actually achieve as much as an exhaustive analysis 

of all possible alternatives (the coupling effect). For this reason 

the mutation system examines far fewer alternatives. In one example 

program Hamlet's system generated around 8,000 alternatives, whereas 

the mutation system only considered about 350. 

  A 
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CHAPTER 4 

EMPIRICAL STUDIES 

It is highly unlikely that a concise theorem, of the type 

developed in chapter two, can ever be proved for a large set of 

natural errors in any realistic programming language like FORTRAN. 

This is not only due to the presence of a large number of formally 

undecidable problems [18, 31, 40, 52], but is also supported by much 

simpler arguments. 

1. To be tractable, a testing method cannot be exhaustive, in 

the sense of trying every possible state vector at every statement in 

the program. Assume we have a finite set of test inputs for a program 

containing the predicate C. As was done in section 2, consider 

testing to be a game played against an adversary. The adversary can 

look at the set of values of the state vectors at the point C was 

evaluated, and divide them into two sets: those where C evaluated 

TRUE and those where C evaluated FALSE. All the adversary need do to 

find a program which is close to the original (differs from it in 

only one place) and which is likely not equivalent to the originals 

but which agrees on the proposed test datas is to find a condition D 

90   
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which is independent of C but which also evaluates TRUE on the first 

set. The adversary can then reveal that in the “correct" program the 

predicate is (C AND D). 

The two programs are likely not equivalent, but are indeed very 

similar. Since FORTRAN is so expressive it is highly likely such a 

condition can be found. In our inductive modei of the world we have 

mo more reason to believe in the one than in the other. An example of 

this type of error is encountered in the NAUR program described in 

appendix C. 

2. One might suspect that predicates cause trouble, but even in 

the case of straight line programs we can have difficulty. Consider 

the two programs shown in figure 4-1 below. The programs are very 

similar to each other (they differ in only two places), and one might 

competently be considered an approximation to the other. Yet they 

are not equivalent. The programs compute the same answers on the set 

{0 000, 13 4 8, -1 -3 -4 -8}, furthermore these three inputs 

eliminate all mutants in the EXPER FORTRAN mutation system. Although 

this proves nothing, (other than being our first example of where 

EXPER can fail), it shows that even in the very restricted class of 

Straight line FORTRAN programs with only addition and subtraction 

tremendous difficulties can be encountered. 

What then saves us from a morass of intractability? 

The saving grace is that programmers are usually not adversaries,   
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FUNCTION E(A,B,C,D) FUNCTION E(A,B,C,D) 

F = BtC F = Bta 

G = 4-F G = A-F 

E = GtD E = GtD-B 

END END 

Figure 4-13; Twe programs which are close but not equivalent 

hiding inscrutable mistakes in obscure locations. Most errors a 

programmer makes are simple in forms well understood and classifiable. 

Furthermore we are willing to live with something less than assurances 

of total correctness. If we observe that the program works correctly 

‘ESL S’ Taree number of well designed inputs and that the program has 

been reasonably well exercised then we are usually willing to believe 

it is correct (always keeping in mind the small possibility we may be 

wrong). The fact that these goals are not perfect but are attainable 

is why testing has been and will continue to be established practice 

among programmers. 

Given a testing tool, like the EXPER system, which we know is not 

perfect, experimental studies are ef great importance in establishing 

how well we can expect the tool to work in practice. People are quite 

willing to live with non perfection, for example compilers that on 

tare occasions fail, as long as the number of failures are small in 

relation te the number of successes. Similarly the lack of perfection 

in the mutation system should not dishearten us, but rather should 

encourage us to examine how it works on the types of errors commonly   
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encountered, 

Notice that, as we saw in chapter one, the mutation methodology 

exists quite independently of the EXPER mutation system. Experimental 

studies must be of a specific system, in this case the EXPER system. 

These only roughly approximate an evaluation of the method in general. 

It is possible that an alternative system could be constructed using 

the mutation idea but with quite a different set of mutant operators. 

Such a system could perform in a radically different manner from 

EXPER, with a result that the empirical results reported here could be 

similarly changed. 

The selection of mutant operators described in the last chapter 

is also not static. Several of the operators mentioned in chapter 3 

were not present in the original implementation of EXPER, and were 

added as experience suggested they might be useful. There is no 

evidence that this trend has halted. Further experience with the 

system and its error detection capabilities will undoubtedly suggest 

new operators which might significantly alter the statistics reported 

here for experimental studies. 

4.1 An example of the coupling effect 

This section wiil illustrate a representative case of coupling in 

a FORTRAN program. The program is adapted from the IBM scientific 

subroutines package [59], a collection of statistical and scientific 

programs in common use. The error was artificially inserted in a   
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study by Gould and Drongowski [38]. The error occurs in the line 

which reads 

40 INN uB0(3) 

but which should read 

40 INN = UBO(2) 
SUBROUTINE TAB1(A,NV,NO,NINT.S,UBO,FREQ,PCT,STATS) 
INTEGER INTX 
REAL TEMP, SCNT, SINT 
INTEGER INN, J, IJ 
REAL VMAX, VMIN 
INTEGER I, NOVAR 
REAL WB0(3), STATS(5), PCT(NINT), FREQ(NINT) 
REAL UBO(3), S(NO) 
INTEGER NINT, NO, NV 
REAL A(600) 
NOVAR = 5 
DO 5 I=1, 3 

5 wWBOC(I) = UBO(T) 
VMIN = 0.1000000000E+11 
VMAX = -0.1000000000E+11 
IJ = NO * (NOVAR - 1) 
DO 30 J=1, NO 
IJ=IJ+1 
IF(S(J)) 10,30,10 

10 IFC(ACIJ) - VMIN) 15,20,20 
15 VMIN = A(IJ) 
20 IF(ACIJ) - VMAX) 30,30,25 
25 VMAX = A(IJ) 

t 

30 CONTINUE 
STATS(4) = VMIN 
STATS(5) = VMAX 
IF(UBO(1) - UBO(3)) 40,35,40 

35 UBO(1) = VMIN 
UBO(3} = VMAX 

40 INN = UB0(3) 
DO 45 I=l, INN 
FREQ(I) = 0.0000 

45 PCT(I) = 0.0000 
DO 50 I=l, 3 

50 STATSCI) = 0.0000 
SINT = ABS((UBO(3) ~ UBO(1)) / (UBO(2) - 2.0000)) 
SCNT = 0.0000 
IJ = NO * (NOVAR ~ 1) 
DO 75 J=1, NO 
Ij =IJ+1 
IF(S(J)) 55,75,55 

55 SCNT = SCNT + 1.0000 
STATS(1) = STATS(1) + A(IJ) 
STATS(3) = STATS(3) + ACIJ) * ACIJ)   Lh 
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TEMP = UBO(1) - SINT 
INTX = INN - l 
DO 60 I=l1, INTX 

TEMP = TEMP + SINT 
IF(ACIJ) ~ TEMP) 70,60,60 

60 CONTINUE 

65 FREQCINN) = FREQ(INN) + 2.0000 
GOTO 75 

70 FREQ(I) = FREQ(I) + 1.0000 
75 CONTINUE 

IF(SCNT) 79,105,79 
79 DO 80 I=l, INN 
80 PCT(I) = (FREQ(I) * 100.0000) / SCNT 

IF(SCNT - 1.0066) 85,85,90 
85 STATS(2) = STATS(1) 

STATS(3) = 0.0000 
GOTO 95 

90 STATS(2) = STATS(1) / SCNT 
STATS(3) = SQRT(ABS((STATS(3) - (STATS(1) * STATS(1)) 

* / SCNT) / (SCNT - 1.0000))) 
°95 DO 100 I=l, 3 
100 UBO(I) = WBOCTI) 
105 RETURN 

END 

There are a number of mutants which cause the programmer to 

generate test inputs which uncover this error. Consider, for example, 

the one which changes the statement 

IF (ACIS) - TEMP) 75,65,65 

to 

IF (ACIS) - 1.000) 75,65,65 

Control reaches this point only if A(IJ) is bigger than TEMP, so 

control always passes to 65. By tracing the flow of control we can 

discover that TEMP is equal to the value of the input parameter UBO(3) 

at this point. To eliminate this mutant then we must find a value 

where A(IJ) is less than one but larger than UBO(3). Therefore UBO(3) 

must be less than one. There is nothing in the specifications which   i 
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tules out UBO(3) being less than one, but the error causes UBO(3) to 

be assigned to the integer variable INN. All the feasible paths which 

go through the mutated statement also go through label 65, which 

references FREQ(INN). Since INN is less than or equal to zero, this 

is out of bounds, and the error is discovered. 

4.2 Reliability studies 

A method one might consider for evaluating a tcol such as the 

program mutation system would be to use an experiment similar to those 

used in psychological studies, such as the double blind technique. 

Using this method one has a group of subjects which varying levels of 

programming and testing skills and a group of programs which have zero 

or more errors known only to the experimenter. Each subject reports 

on the errors detected in trying to pass the mutant test. Analysis of 

variance or similar statistical techniques can then be used to 

evaluate the results. 

Unfortunately there are two serious difficulties which prevent 

one from using a technique such as the one just described. The first 

is the high cost of performing such controlled multi-subject 

experiments. The second, and more serious difficulty is the problem 

of factoring out those errors caught as a direct consequence of the 

method from errors caught by other means, such as merely reading the 

listing. (Holthouse et al [49] mention this difficulty and describe 

these errors as being caught by the 'peripheral vision’ of the human 

tester.)   
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In order to remove this second difficulty in comparing various 

testing methods we need a uniform notion of when a method has 

discovered a particular error. Howden calls this idea reliability and 

defines it as follows: 

If the use of a program testing technique is guaranteed 
to always reveal the presence of a particular error in a 
program, then the techniane is said to be reliable for the 
error. [53] (italics mine) 

We have taken the word guarantee as it is used here to mean that 

the method itself, no matter who applies it or their level of 

programming expertise, must somehow insure that the error will be 

discovered. 

Notice that there is a certain artificiality introduced 

concerning whether test data which shows the program is incorrect 

actually shows the presence of a particular error. As noted by 

Gannon [32], in the presence of such test data a possible, and indeed 

likely, outcome is that the wrong cause will be diagnosed and an 

incorrect fix applied. We have tried to avoid a discussion of this 

problem by making the definition that a set of test inputs (D) reveals 

the error E if upon removing or correcting E the test inputs D are 

correctly processed. 

in order to achieve this extremely stringent requirement, we 

devised the following experimental method: The goal of the method is 

to achieve one of two possible cutcomes. Either 

1. a set of test cases is developed which are processed   
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correctly by the erroneous pregram and which eliminate all 
non equivalent mutants (in which case we say the error is 
not reliably caught by mutation analysis), or 

2. a set of mutants is discovered with the property that the 
only inputs which cause an observable difference in the 
erroneous program and the mutant programs also cause an 
observable difference in the erroneous program and the 
correct program. In this case we say that mutation 
analysis would reliably uncover the error, since any data 
which eliminated one of these mutants would discover the 
error. 

The method used to achieve these goals was as follows: An 

experienced programmer would be given the incorrect program and would 

have total knowledge of the location and nature of the errors it 

contained. Choosing a mutant he would attempt to find a test case for 

which both the correct and erroneous program agreed but which 

differentiated the erroneous program from the mutant program. The 

construction of test data in this fashion puts mutation analysis in 

the worst possible light, in that the tester is forced to act as an 

adversary and find the least meaningful sets of inputs. Often this 

involves a detailed analysis of the effects of a certain error. For 

example, one of the programs in the second study computes statistics 

for vectors of inputs; For a vector of three numbers, the correct 

enswer is produced only if 5x*-5xyv45y2-5yz+5Z2-5zx=9. While it is 

possible that another test generation method would only construct 

inputs which satisfied this constraint, it seems extremely unlikely. 

(Because of the often significant amount of work which must be done to 

find this absolutely worst case inputs, Professor Sayward has coined 

the slightly more picturesque term Beat the System Experiments for   
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this type of study.) 

Having found test data to eliminate this mutant, the tester would 

then execute all the mutants on this test case (probably eliminating a 

large number of other mutants in the process). If it was not possible 

to find such a test case another mutant was chosen. This process was 

iterated until one of the two goals given above was achieved. This is 

a worst case type of analysis, in that any other method of generating 

test data must necessarily find at least the errors found in this 

fashion, and very likely many of the others also. 

This type of experiment is actually an extension of the 

reliability studies performed by Hamlet [42] and Howden [52]. These 

earlier studies, however, were directed at comparing two or more 

competing methodologies, and deriving statistical information of the 

form “on the following samples of programs method A discovered XZ of 

the errors and method B discovered YZ." In the following experiments 

we were much less concerned with the number of errors caught and much 

more concerned with the type of errors missed. Furthermore this 

information was not used to compare two methods but was designed to 

evaluate the mutation analysis system (EXPER) and to direct the search 

for new mutant operators which would improve the system. 

For example, several of the programs studied revealed that a 

significant number of errors in FORTRAN were caused by programmers 

treating the DO statement as if it were an ALGOL FOR statement,   
i 
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forgetting that no matter what the limits are, a DO statement will 

always (perhaps erroneously) execute the loop body at least once. The 

way we chose to detect these errors was to introduce a mutant which 

changed a DO statement into a FOR statement, bringing this fact to the 

programmers attention and forcing him to derive data which indicated 

he had knowledge of this potential pitfall. 

Using this methodology, several experiments were conducted 

measuring the reliability of mutation analysis. Both the first two 

studies were based on data from previous studies by Howden [54, 56]. 

4.2.1 An experiment using program fragments from Kernighan and Plauger 

This study was based on 12 program fragments from the "common 

blunders" chapter of Kernighan and Plaugers book The elements of 

programming style [60]. A description of each of the errors is 

contained in appendix A. 

William Howden had previously studied these program fragments in 

an attempt to compare the error detection capabilities of symbolic 

evaluation and path testing. In symbolic evaluation a program is 

executed symbolically rather than with numerical values and the user 

is given the symbolic output which can, presumably, be checked against 

a specification for correct output. The second method studied by 

Howden, path testing, involves finding data which executes every 

feasible path (up to iterations of loops) and which iterates each loop 

at least twice. For each such path test data was generated randomly.   I 
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By generating the test data randomly Howden's study was not, in the 

strict sense of the definition given in the last section, a 

reliability study. A reliability study is, however, an example of 

worst case analysis, in that any other method must necessarily give 

better results. Hence the figures reported by Howden can be 

considered as bounding what one would expect from a reliability study. 

Howden found that symbolic evaluation would detect 13 of the 22 

errors (15 if a more graphic method of presenting the symbolic output 

were used). Path testing would detect only 9. Combining the two 

method one would detect 16 of the 22 errors. Using the definition of 

reliability described in the last section we were able to demonstrate 

that mutation analysis would necessarily discover 20 of the 22 errors. 

These results are given in table 4-1, and further information on the 

particular errors and their discovery can be found in appendix A. 
SYMBOLIC EVALUATION 13/22 
PATH TESTING 9/22 
BOTH COMBINED 16/22 
MUTATION ANALYSIS 20/22 

Table 4-1: Howden's data combined with 
that for Mutation Analysis 

In [54] Howden describes some of the errors not caught by the two 

methods he studied. Fcr example in one case there is the computation 
J = MARKS(I)-1/10 +1 

where a pair of parenthesis have been erroneously omitted around the 

formula MARKS(I)-1. This is one of the errors which would not be 

detected by symbolic evaluation unless a special two dimensional 

output was used. To see how this error is caught by mutation analysis   l 
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note that in FORTRAN the expression 1/10 is equal to zero. By making 

the mutation which replaces 1/10 with 0/10 the error is quickly 

revealed. 

Another error not revealed by either symbolic evaluation or path 

testing involved the omission of an absolute value operator from an 

expression. One of the mutants generated is, however, exactly the 

correction needed to repair this error. Hence the error is again 

easily discovered. 

There are two errors which are not caught in this experiment. 

The first involves two adjacent statements which should be 

interchanged. Note that we could have chosen to make a mutant 

operator which interchanged statements, in which case this error would 

have been caught. Because in so many cases one can interchange 

statements with no effect on the program we chose nct to make this 

operator. This illustrates the fact that a slightly different set of 

operators could radically alter the results reported in these 

experiments. 

The second error involves strict equality being used with real 

variables when a fuzzy equality which avoids round off problems should 

be used. It is much more difficult to find a mutant operator which 

could conceivably discover this error.   
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4.2.2 An experiment using four programs from a study by Howden 

The four programs analyzed in this study were taken from the 

report on an experiment conducted by Howden for the National Bureau of 

Standards [56]. All the programs had previously appeared in the 

literature, and are described in appendix B. In this study Howden 

considered a number of different test data generation methods to 

determine which would reliably uncover errors in six different 

programs. 

It was our desire in undertaking this study that the data 

presented by Howder would serve as a useful benchmark by which the 

capabilities of mutation analysis could be evaluated, Unfortunately, 

two of the programs in Howden's study were written in COBOL and PL/1 

and depended heavily on Fixed Decimal, Picture type data, or ON 

conditions. The fact that these issues do not arise in FORTRAN and 

cannot be easily simulated meant that these two programs had to be 

excluded from this study. Even more disturbing was the fact that the 

two programs excluded accounted for 23 of the 28 errors (or 822) 

considered by Howden. (The COBOL program contained 2? errors, all of 

which are caught by branch analysis. Since mutation analysis subsumes 

branch analysis these would all have been caught by mutation analysis. 

Because of the presence of ON conditions the other PL/1 program could 

not be evaluated.) 

This left us with four programs containing a total of five 

errors. Although this sample was much too small for us to draw any   L 
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definitive conclusions, it is hoped that because of the number of 

methods studied by Howden some idea of the relative strengths of the 

methods can be gathered. 

Howden analysed six different testing methods: Path testing is a 

technique which requires that each executable path through the program 

be executed at least once. (This definition seems to differ from the 

definition used by Howden in the earlier study.) This technique is not 

practical since a program may have an infinite number of paths, but it 

does give an upper bound on the reliability of techniques that require 

testing of some subset of the set of all paths. Branch Testing 

requires that each branch be tested at least once for all its possible 

outcomes. Structured testing assumes that the program consists of a 

hierarchical structure of small functional modules. Each path through 

a functional module which executes loops less than 2 times is tested 

at least once. Special values testing is a collection of rules which 

experience indicates are important for finding good test data. 

Examples of such rules are that each expression should, if possible, 

evaluate to zero, that different elementary items in an input data 

Structure have distinct values, plus rules specific to the program 

under test. Anomaly Analysis does not execute the program but rather 

looks at the code for suspicious looking constructs. Finally, 

Specification Requirements constructs test cases only from the 

specifications, and not from the code itself. 

The single error in this study which mutation analysis failed to   
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PATH ANALYSIS 4/5 
BRANCH ANALYSIS 0/5 
STRUCTURED TESTING /5 
SPECIAL VALUES 4/5 
ANOMALY ANALYSIS 0/5 
SPECIFICATION REQUIREMENTS 3/5 
MUTATION ANALYSIS 4/5 

Table 4-2: Number of errors caught versus testing method 

detect (which is described in appendix B), can be characterized as a 

missing path error. For methods which, like mutation analysis, are 

based on an examination of the code, these are indeed the most 

difficult type of errors to detect. It is interesting to note that 

those methods which construct test data from a description of the 

program and not the code itself (specification requirements and 

special values testing) do well at discovering these errors. This 

would seem to imply that a combined method would be most desirable, 

where an initial core of test cases would be constructed just from the 

specifications, and then this core could be expanded to correct 

weaknesses as demonstrated by mutation analysis. Such a combined 

testing strategy might prove very effective. 

Appendix B contains more detailed information on each of the 

programs and how the errors are detected, 

4.2.3 Further reliability studies 

Mutation analysis is unique in that by an appropriate choice of 

new mutant operators the method can in practice be significantly 

improved. This notion of reliably uncovering errors gives us 

important information which can be used to help direct the search for 

these new operators. To understand this, note that in studying a   
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given program and a given set of errors, information is obtained no 

matter what the outcome: 

a) If the errors sre reliably found, insight is gained into why 

the method works. This is because the result is an actual set of 

mutants which force the discovery of the error. Some connection 

between mutants and errors can then be formulated. 

b) If the method fails to reliably find the error, then the 

weakness so shown can be used to direct the search for new mutant 

operators. 

It is in this manner that many of the mutant operators described 

in the last chapter have been discovered and added to the EXPER 

system. 

It is precisely because such a useful store of information can be 

discovered that we have continued to run these 

reliability experiments on other programs :* To date thirteen 

programs have been analyzed. These programs contained a total of 30 

errors. Of these 30 mutation analysis, as characterized by the EXPER 

system, would discover 25. Further information on the programs is 

contained in appendix C. 

  

“Several of the programs studied here were actually analyzed, under 
my direction, by Mr. Robert Hess. I am extremely grateful for his 
assistance.   
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It is difficult to construct a classification scheme for error 

types which is neither so specific that each error forms its own type 

nor so general that important patterns cannot be detected. If the 

classification is based on logical mistakes it is often hard to relate 

errors to mistakes in the code. On the other hand it seems difficult 

to base a scheme just on mistakes in the code, since often a single 

legical mistake will be responsible for changes in several locations 

in the program. Goodenough and Gerhart [37] and Howden [52] among 

others have attempted to construct a generally applicable system. 

Neither of these systems give a sufficiently intuitive picture of the 

errors in any particular class. Therefore we have chosen to group the 

errors in these thirteen programs into the following categories: 

Missing Path Errors: These are errors where a whole sequence of 

computations which should be performed in special circumstances are 

onitted. 

incorrect Predicate Errors: These are errors which arise when all 

important paths are contained in the program, but a predicate which 

determines which path to follow is incorrect. 

incorrect Computation Statement: These are errors which arise 

from a computation statement which is incorrect in some respect. 

Missing Computation Statement 

Missing Clause in Predicate: This is a special case of an   
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108 

incorrect predicate error, but since it is so hard to detect we give 

it special treatment. 

The 30 errors in these 13 programs range from simple to extremely 

subtle errors. Due to the worst case nature of reliability studies 

the fact that 5 errors are not discovered does not mean that these 

errors would always remain undiscovered if mutation analysis were 

used, merely that we cannot guarantee the discovery. Table 4-3 gives 

the number of errors detected by error type. Of these 30 errors, only 

11 would be caught using branch analysis. 

NUMBER CAUGHT 
MISSING PATH ERROR 7 6 
INCORRECT PREDICATE ERROR 4 3 
INCORRECT COMPUTATION STATEMENT 15 14 
MISSING COMPUTATION STATEMENT 3 2 
MISSING CLAUSE IN PREDICATE 1 0 

Table 4-3: Number of errors detected versus error type 

One can notice that in three of these categories the errors are 

caused by the lack of certain constructs in the program. Since the 

testing method is being asked to guess at something which is not in 

the program, we should be surprised that it does as well as indicated. 

None the less, missing path errors and missing clauses in predicates 

are probably the most difficult errors for any testing method to 

discover. 

Table 4-4 shows the number of errors which are detected broken 

down by operator type. Two figures are given for each mutant operator 

type; The first is the total number of errors detected by mutants of 

that type, and the second represents the number of errors identified   
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by this operator and only this operator. From this table we can gain 

some idea of the relative strengths of the mutant operators. 

TOTAL UNIQUE 
Constant replacement 5 

Scalar Variable Replacement 
Scalar Variable for Constant Replacement 
Constant for Scalar Variable Replacement 
Source Constant Replacement 
Array Reference for Constant Replacement 
Array Reference for Scalar Variable Replacement 
Comparable Array Name Replacement 
Constant for Array Reference Replacement 
Scalar Variable for Array Reference Replacement 
Array Reference for Array Reference Replacement 
Data Statement Alteration 
Unary Operator Insertion 
Arithmetic Operator Replacement 
Relational Operator Replacement 
Logical Connector Replacement 
Absolute Value Insertion 
Statement Analysis 
Statement Deletion 
Return Statement Replacement 
GOTO Label Replacement 
DO Statement End Replacement 

Table 4-4: Errors detected versus mutant classification 
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The low figures for logical connector replacement and data 

statement alteration are due more to the lack of these constructs in 

the programs being tested than to any fundamental weakness in these 

operations. The high figure for the number of errors caught only by 

statement analysis is due to the fact that the other mutant operators 

were enabled only after all statement analysis mutants were eliminated 

(i.e. all statements had been executed). 

The observation we can make is that we again see a strong 

redundancy in the mutant operators, particularly in the operand 

mutations. This redundancy is less noticeable, although still present   i 
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in some degree, in the operator and statement mutations. This remark 

might lead us to conclude that in sampling mutants (see section 3.4) 

we should weight the different mutant types; Perhaps generating all 

the statement and operator mutants and only sampling the operand 

mutations. 

We can envision using this data to construct a procedure which 

would minimize the expenditure of machine and human resources in the 

discovery of errors; However there is an important point to be noted 

in this regard, which is that while logically two mutants may have the 

same error detecting power, psychologically they may be vastly 

different. For example mutants which in effect say "this statement 

has never been executed", "this statement can be deleted", or "this 

relational or logical operator can be replaced with the constant TRUE" 

pinpoint an error much more directly and forcefully than one which 

says "This expression can be incremented by one and the same result 

will be produced." This psychological argument would seem to imply 

that the first mutant types to be enabled should be statement 

analysis, statement deletion, goto label replacement (used in branch 

analysis), and the arithmetic, relational and logical operator 

replacements. 

The choice of which mutant operators to apply next seems to be a 

trade off between human and machine resources. Operand mutations seem 

to have a much more immediately assimilable meaning than do either the 

remaining statement or operator mutations. On the other hand, operand   
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mutations typically comprise over 802% of all mutants generated. If we 

want to minimize machine resources (i.e. the number of mutants 

executed before an error is found), we would therefore enable first 

all the operator and statement mutants, and only once they have been 

analyzed consider the operand mutants. On the other hand if we want 

to minimize human resources (i.e. the amount of time the tester must 

spend analyzing mutants and constructing test cases), then we would do 

just the opposite. It seems difficult to decide without further 

information which order would be best in practice, as each individual 

Situation would dictate its own solution. 

4.3 Testing large systems 

In an attempt to discover if the testing of large hierarchies of 

programs presented any serious difficulties not encountered in testing 

small singie modules, several parts of the EXPER system were tested 

using the system on itself. These parts consisted of two large groups 

of subroutines from the parser, each approximately 1,000 statements in 

length (not counting comment cards). Because of time and space 

limitations not all the subroutines could be tested, hence only the 

most central and critical routines were selected (in all about half 

the total number of statements were tested). 

The experiment was quite rewarding as over a dozen errors were 

discovered in the EXPER system. The large number of errors was 

surprising since at the time the experiment was conducted the system 

had been in operation for over a year and a half. Examples of the   
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type of errors discovered were: passing the wrong number of parameters 

to procedures, or passing incorrect parameters, declaring variables 

the wrong type, referencing out of bounds array indices, getting stuck 

in infinite loops on error conditions, dead code which could not be 

executed, and a confusion over whether columns 72 to 80 could contain 

valid FORTRAN statements. 

The difficulties encountered in this experiment were much more a 

consequence of managing a large network of subroutines, and not 

particularly related to mutation analysis. Most of these difficulties 

have been noted previously by other authors [49]. Examples of the 

problems encountered are: 

A) Defensive coding. This is responsible for sections of code 

marked "Hope this never happens but if it does do the following." It 

seems clear that defensive coding encourages reliability, especially 

Since about half the time the assumption that the code can never be 

executed proves to be wrong. But if the assumption is right then the 

unexecuted parts of the code can be mutated in any fashion with no 

_ effect. 

B) Portions of code which, while executable, are difficult to 

reach because they require an inordinately large input space or too 

much CPU resources to duplicate. 

C) Routines which are also used by other sections of code not 

being tested. In one case during this experiment a predicate was   | 
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discovered which could not be forced to be true. A fix was then 

applied which removed the offending statement. A month later it was 

discovered that the subroutine in question was used elsewhere and the 

now absent predicate was of critical importance. 

D) Starting over again. Once testing has commenced the code is 

regarded as unalterable. If errors are discovered and the program 

must be changed, one is forced to start the entire testing process 

over again. This means that all the previously developed test cases 

must be rerun and all the previously eliminated mutants dealt with 

again. 

If one were at attempt to construct a commercially viable 

mutation testing system, all of these problems would have to be dealt 

with. In spite of these difficulties this experiment did prove that 

mutation analysis could be applied to medium to large software 

systems. The difficulties involved in using mutation analysis seem no 

more severe than those involved in any other testing method. 

4.4 The lifespan of an average mutant 

An important observation to keep in mind when considering the 

cost of mutation analysis is that about 80% of all mutants die the 

first time they are encountered, no matter how good or bad the test 

data is. This means that at worst only about 20% of the mutants 

generated will require lengthy investigation. 

The reason for this high attrition rate seems to be a striking   
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nonunifsrmity with regards to how mutants die in the various test 

cases. In the EXPER system there are eight ways a mutant can die: by 

computing the wrong answer, by receiving an arithmetic fault, by 

computing a subscript index out of bounds, by executing a trap 

statement, by referring to an undefined variable, by attempting to 

divide by zero, by running for too long, and by attempting to change a 

read only variable. We have observed that in the first few test cases 

a high percentage of mutants die by means other than getting the wrong 

answer. The situation is thereafter reversed, when almost every 

remaining mutant which dies does so because it computes an answer 

different from the original program. 

We have also observed that in achieving the goal of all non 

equivalent mutants being eliminated, about twice as many mutant 

executions are performed as there are mutants generated. This figure 

includes equivalent mutants which survive all test cases. If we 

eliminate these from consideration, then the average mutant survives 

about 1.5 test cases before being eliminated. 

The last few mutants to be eliminated are, however, extremely 

recalcitrant. It is these mutants which are probably the most 

difficult and the most important to remove since they give the 

greatest insight into the functioning of the program. Typically, the 

last 502 of test cases are used to eliminate the last 2-10% of the 

mutants.   
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4.5 The problem of equivalent mutants 

In the first chapter it was noted that a major stumbling block to 

the application of mutation analysis is the problem posed by mutants 

which are equivalent to the original program. In chapter two we saw 

that this same problem was of some concern in the theoretical studies. 

In practice equivalent mutants are a nuisance, but for an entirely 

different reason. It is not that equivalent mutants are difficult to 

discover, but that they are so prevalent and simple minded that they 

get in the way of the more important aspects of testing. 

Typically between 4 and 10% of the mutants generated are 

equivalent, with heavy clustering towards the 4. The equivalent 

mutants are not, however, distributed with the same ratios as all 

mutants. In fact, a very small number of mutant types account for a 

disproportionate number of equivalent mutants. The following table 

gives some typical figures. The first column gives the percentage of 

equivalent mutants which the equivalent mutants of the given type 

represent, and the second column gives the same percentage for all 

mutants. 

PERCENT OF EQUIVALENT OF ALL 
ABSOLUTE VALUE INSERTION 75 4.0 
GOTO REPLACEMENT 12 0.7 
RELATIONAL OPERATOR REPLACE 7.5 0.5 
ALL OTHER MUTATIONS 5.) 0.5 

Table 4-5: Percentage of equivalent mutants 
versus mutant type 

In order to investigate how difficult it would be to construct an 

automatic system to eliminate these mutants we defined several levels   
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of difficulty. An automatic system could easily be constructed to 

remove mutants of the first three levels, Mutants of level four 

could, in principle, be eliminated but the costs might be prohibitive. 

Mutants of level 5 probably could not be eliminated algorithmically. 

TYPE 1: These are mutants eliminable by 

a) noting that if a parameter has a variable upper bound, the value of 

the upper bound variable must be strictly positive, and 

b) Noticing the values on DO loop limits, for example if I=1,10 then 

for the extent of the loop I is positive and between 1 and 10. 

TYPE 2: These are mutants eliminable by examining the statements 

in the immediate proximity of the mutated statement, in particular no 

further removed then the last multiple entry point (labelled statement 

or DO loop start). 

TYPE 3: Eliminable by noting that if a variable is initialized to 

a non negative (strictly positive) value and always incremented then 

it will remain non negative (strictly positive). 

TYPE 4: These are mutants which are eliminable in theory but 

would require a symbolic executor system to trace a large number of 

feasible paths. 

TYPE 5: Finally, these are mutants which require a deep 

understanding of the algorithm, knowledge about number theory, or 

other real world knowledge generally beyond the scope of automatic   i 
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analysis. 

By level of difficulty, equivalent mutants typically group as 

shown in table 4-6. As can be seen, generally well over 70% of the 

equivalent mutants can be detected by the most rudimentary automatic 

procedures. Most of the remaining 30% could, in principle, be 

eliminated automatically hence are probably easy for humans to 

recognize. Generally less than 3% of the equivalent mutants (0.14% of 

all mutants) require a deep understanding of the program or 

programming process to be eliminated. 

LEVEL PERCENT OF EQUIVALENT OF ALL 

lL 31.1 2.3 
2 2.8 0.13 
3 40 .8 2.0 
4 22.9 1.4 
5 2.4 0.14 

Table 4-6: Percentages of mutants versus level number 

Baldwin and Sayward [3] have discussed the use of traditional 

program optimization methods in the detection of equivalent mutants. 

While powerful, these methods do not seem to be directly applicable to 

absolute value insertion mutations, which table 4-5 shows are the most 

common form. A simpler method would probably suffice. 

So as not to leave the impression that the problem of equivalent 

mutants is trivial, note that often those few mutants in the type 5 

category are extremely subtle. During the course of the sampling 

experiment discussed in section 3.4 there were several extended 

discussions concerning whether certain mutants were or were not 

equivalent. There is even a program containing two mutant changes   i 
a 
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which was published and asserted to be equivalent [65], however later 

investigation proved this not to be the case. The saving grace is 

that these examples are rare. 

  i 
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5 

DIRECTIONS FOR FUTURE RESEARCH 

oY 

Mutation analysis is a recent innovation. Because it represents 

a new solution to some very general problems, the method has numerous 

aspects which I have not pursued in this thesis. In this chapter I 

will specifically mention five areas of possible future research: 

1. The use of symbolic execution to generate test cases 
automatically. 

2. Preprocessing or postprocessing the program to reduce the 
number of mutants generated. 

3. Expanding the concept of test case to include more than 
just input/output behavior. 

4. The analysis of new and different mutant operators. 

3- The application of the mutation analysis paradigm to other 
problem domains. 

del Using symbolic execution to generate test cases 

Symbolic execution is another testing method which has been 

extensively studied [6, 20, 54]. In this method, variables are 

treated as algebraic unknowns, and a specific path through a program 

is interpreted symbolically, producing an equation (or several 

equations) expressed in terms of these unknowns. The equations can 

then be solved by some automatic means to derive test data which 

119   
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follows this path. In essence this is what a human tester must do, 

the difference being the machine is now used to derive the test data. 

Symbolic execution is costly and there are problems connected 

with solving the resultant equations, but a greater shortcoming is the 

fact that the goal is very weak. In most systems that have been 

proposed the goal is a set of test cases that execute every statement. 

4s I have discussed in section 3.2.2, a test set of this nature gives 

us very limited knowledge about whether the program is correct. This 

is most strikingly illustrated by the case of Straight line code, 

where often a test case consisting of all zero inputs can execute 

every statement while telling us next to nothing about the program. 

Some symbolic execution systems have slightly stronger goals, and 

the test cases they generate are slightly better. For example the 

ATTEST system [21] uses the symbolic information to preclude zero 

divide, index overflow or underflow, computed goto out of bounds, and 

variable dimension out of bounds. But problems such as predicate 

errors (section 3.2.5) and coincidental correctness (section 3.2.9) 

may still pass undetected. 

Mutation analysis provides a goal for symbolic execution systems 

that is significantly stronger. Each mutant, in effect, presents a 

different goal for the symbolic execution system: that of finding 

test data to differentiate it from the original program. That is, the 

symbolic execution system can be used to generate test data that   
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eliminates mutants, a task usually left to the human tester. In the 

case of equivalent mutants such a task is impossible, but it might be 

possible to use the information obtained to prove equivalence. It can 

happen that a mutated statement is not locally equivalent to the 

original. So a symbolic execution system would have to evaluate more 

then just local situations, txacing at least one program path from 

start to finish. 

The use of symbolic evaluation in conjunction with mutation 

analysis could both increase the capability of symbolic evaluation and 

ease the problem of generating test cases for mutation analysis. 

5-2 Reducing the number of mutants generated by EXPER 

The sampling experiment described in section 3.4 suggests that 

there is a large amount of redundancy in the mutants generated by 

EXPER. An interesting question is whether this redundancy is 

algorithmic, that is, whether it might be possible to decide a priori 

which mutants are redundant and therefore unnecessary. We made a very 

limited attempt at this type of analysis with EXPER, writing a number 

of different rules concerning when not to generate mutants [14]. 

These rules, however, examine only the immediate neighborhood of the 

mutated section of code. It is possible that with more global 

information (such as might be obtained from the symbolic execution 

System described in the last section) a large number of mutants might 

be eliminated without any need for test cases. On the other hand, it   i 
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is equally possible that the cost of this analysis might far outweigh 

the cost of executing the redundant mutants. 

5.3 Using more than input/output behavior in test cases. 

A testcase in EXPER is defined only by input/output behavior. 

But in many situations it is reasonable to assume that a user knows 

more than merely whether a given output is correct for a given input. 

For example he might be able to tell whether some intermediate values 

are correct, or he might be able to recognize a symbolic trace of the 

] correct computation. 

If we include this type of information the problems of testing 

may become significantly easier [4, 9, 57]. Recently Martin Brooks 

has analysed a testing procedure very similar to mutation analysis 

using program traces as an additional source of information [9]. 

5.4 New mutant operators 

It is a certainty that the set of mutant operators described in 

chapter three is not perfect, and that the process of discovering new 

mutant operators will continue. One new direction is indicated by the 

recently created zero push operator (section 3.1.2). Other 

push mutants that could be envisioned are one push, blank push for 

characters, and an arbitrary constant push where the constant values 

are taken from the program. For analysis of numerical software we 

might want a big number push and a small number push, to insure that 

quantities are both larger than some fixed limit and smaller (in 

absolute value) than some quantity.   
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Section 3.5 mentioned a new operator of a type not currently 

implemented in EXPER, which measured the values of an expression at a 

specific point. 

There is a danger in this game of making new mutant operators 

that we will significantly increase the cost of an analysis without 

significantly improving its capabilities. For this reason reliability 

studies of the type discussed in chapter four should be used in 

evaluating new operators, and a new operator should not be introduced 

unless it reliably detects at least one new error representing a class 

of errors committed in practice. 

Finally this research might introduce a completely different type 

of mutant operator. One possibility is based on the observation that 

all the current mutant operators manipulate the code, but an equally 

important part of the program is the data. For example one might 

consider a mutant operator that would alter an input parameter by 10% 

of its value. This type of operator might not help in finding errors, 

but would be useful in evaluating the robustness of a software system. 

55 Mutation analysis in other problem domains 

In chapter one the notion of weighing inductive evidence by using 

mutation analysis was introduced in a framework quite divorced from 

computers and computer programs, and it is possible that mutation 

analysis might be used to analyze some very general logical theories. 

On a practical levels, one might ask whether mutation analysis on   
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other languages would be significantly different from the analysis of 

FORTRAN presented in this thesis, I doubt very much that ALGOL-like 

languages would present any new insights, but totally different 

languages like LISP, SNOBOL, APL and SETL night produce some 

SUIprises. 

Various researchers are currently attempting to define a 

language that can be used to formally express the specifications of 

a program. Given such a language, one could conceive of a system that 

develops test cases using mutation analysis on the specifications, 

test cases that could then be used as a basis for generating more 

extensive data using mutation analysis of the program. 

Another interesting direction would be to apply mutation analysis 

to a totally different form of testing, for example the testing of 

logical circuits. Assume we have a model of either the logical or 

physical components of, say, an LSI chip, and we can interpret the 

actions of this model on certain inputs. We could then consider 

mutants that altered the model in some way, perhaps related to design 

or fabrication defects, and search for test data that would detect 

these errors. 

There is an interesting twist involved in the modelling of 

physical circuits: Because of the way circuits are made it is often 

not possible to insure that what is intended to be, for example, a .1 

ohm resistor will not actually be .05 or .15 ohms. Hence one must   4 
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attempt to design devices that are impervious to such changes. 

Mutants that produce these changes are just the opposite of those we 

have been considering. In the paradigm which I have described up to 

now an uneliminated mutant indicates a potential error. Here, since 

all such changes should be transparent, if such a mutant is eliminated 

it indicates an error. 

5.6 Summary 

This thesis has examined many issues related to the problem of 

program testing, all unified by the mutation analysis paradigm 

introduced in chapter one. To provide some sort of summary, chapter 

one introduced into the usual inductive procedure a method for 

weighing the importance of test case observations. The method is 

quite general, and may have interesting applications quite unrelated 

to computer programming. Chapter one discusses how in the particular 

case of testing computer programs this method can be strengthened even 

further by observing the coupling effect and the competent programmer 

hypothesis. 

Chapter two was devoted to showing that in some restricted 

domains the mutation analysis method can be used to formally prove the 

correctness of programs. In particular two examples, decision tables 

and limear recursive lisp programs, are studied in detail. 

While the results of chapter two may have some limited 

applicability, the type of programs analyzed by these methods are   q 
Fe 
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quite different from the type of program run on.a typical day on an 

average computer. I have argued (chapter 4) that it is extremely 

unlikely that a concise clear theorem of the type developed in chapter 

two can be proved for a reasonable class of errors in any general 

(that is, Turing complete) programming language. In order to examine 

exactly what the capabilities of mutation analysis are in these more 

general settings, in chapter three I describe a system which applies 

mutation analysis to FORTRAN programs. Also in this chapter I show 

how the particular mutant operators this system uses can mimic several 

other testing methods. 

Chapter four goes on to describe several experiments conducted 

with the aid of this system. I analyze the time and machine resources 

the system requires, difficulties involved in using it, its 

effectiveness in finding errors, and compare the method against other 

testing methodologies. I also show how the information obtained from 

these studies can be used to direct the search for new mutant 

operators, thereby improving the error detection capabilities of the 

system. 

Mutation analysis is a tool. It does not immediately solve ail 

the problems associated with testing, but it can be a significant help 

in the detection of errors and the testing of computer programs. It 

does provide something few other testing methods can, which is a 

quantitative estimate of test data adequacy. 

q 

i 
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The mutation analysis paradigm presented in this thesis is an 

example of an inductive, rather than the more widely studied 

deductive [43], means of increasing confidence in software. The field 

of inductive formalisms in computer testing is certainly not exhausted 

by this approach, and the need for discovery, comparison, and analysis 

of other test measurement methods should certainly provide an 

attractive research area for some time to come. 

  i 
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Appendix A 

Errors from Kernighan and Plaugers 

chapter on Common Blunders 

This appendix lists the 22 errors contained in the common 

blunders chapter of Kernighan and Plaugers book The Elements of 

Programming Style. All page numbers refer to the first edition. 

There are six general ways in which errors are detected: 

8 are caught merely as a consequence of the interpretation process, 

2 are caught by spoiling coincidentally correct expressions, 

2 are caught by the correct program being a mutant of the incorrect 

One» 

2 are caught by domain pushing (inserting ABS statements), 

2 are caught by predicate testing, 

I is caught by the branch analysis mutants. 

The 22 errors are as follows: 

1. Page 77. Sin routine, variable SUM is uninitialized. 
Caught by the interpreter. 

2. Page 78. Sin routine, DABS operator needed, caught since 
this is a mutant. 

3. Page 78. Sin routine, -1**(I/2) used instead of 
(-1)**(I/2). The exponent can be mutated to I/3 or I/1 or 
removed altogether with no noticeable effect. 

4. Page 78. Sin routine, two statements interchanged. This 
error is not necessarily caught by mutation analysis. 

2. Page 79. Current routine, uninitialized variable E. 

128   J 
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6. 

7. 

9. 

10. 

ll. 

12. 

13. 

14. 

15. 

16. 

17. 

18, 

19, 

20. 
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Caught by the interpreter. 

Page 79. Current routine, integer/real mismatch. Caught 
by the interpreter. 

Page 80. Current routine, variable C not reset. Caught by 
branch analysis mutations, since when SC+CI .LE. TC (which 
must happen to eliminate all branch analysis mutants) the 
wrong answer will be produced. 

Page 80. Current routine, fails to work when variable 
CI=0. Caught by zero push mutations. 

Page 81. Expression NUM should be NUM(1). Gives a 
compiler error. 

Page 81. Variables initialized with DATA statements are 
overridden. In EXPER variables jn DATA statements default 
to read only unless otherwise marked. 

Page 83. Program fails to work if exactly 46 transactions. 
Caught by changing the Greater than operator to Greater 
than or Equal. 

Page 84. Greater than instead of Greater than or Equal 
meeded. This is a mutation. 

Page 84. Possible reference to undefined variable LOW(2). 
Caught by changing DO 12 I=2,N to DO 12 I=1,N. 

Page 85. Possible error if B+C less than .01 . Caught by 
twiddling B+C by .01 . 

Page 85. Loop exits out of both side and botton. Caught 
by changing 60 to 61, forcing loop to go through 60 times. 

Page 87. Search Program. Uninitialized Variables. Caught 
by interpreter. 

Page 87. Search Program. Doesn't work for tables of one 
entry. Caught by changing (LOW+HIGH)/2 to (LOW+HIGH)-2. 

Page 87. Search Program. Doesn't work when match is in 
A(1). Caught same as previous error. 

Page 89. J=MARKS(I)-1/10 should be J=(MARKS(1I)-1)/10 
Caught by changing 1/10 to 0/10. 

Page 90. Parenthesis missing around expression AN - 1.0. 
This will be caught by almost any data, in particular when 
an attempt is made to force (SUMSQ - (SUMX**#2 / AN)) to be 
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Zero. 

21. Page 91. 10 times .1 is not 1. Any data will give wrong 
answer. 

22. Page 93. Equality should be fuzzy. This error is not 
caught by mutation analysis. 

} 

i 
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Appendix 5 

Details of the four programs from a study by Howden 

The first program is written in an ALGOL dialect and initially 

appeared in a paper by Henderson and Snowden [46]. It is intended to 

read and process a string of characters which represent a sequence of 

telegrams, where a telegram is any string terminated by the keywords 

"Z22Z 2Z2Z", The program scans for words longer than a fixed limit, 

and isolates and prints each telegram along with a count of the number 

of words contained therein, plus an indication of the presence or 

absence of over length words. The program has also been studied in 

Ledgart [63] and Gerhart and Yelowitz [34]. The program contains the 

following loop which is intended to insure that blank characters are 

skipped and that following the loop the variable LETTER contains a non 

blank character. 

WHILE input * emptystring AND FIRST(input) = * ! 
DO input := REST(input); 

IF input = emptystring THEN input = READ + * '; 
LETTER = FIRST(input); 

The WHILE loop terminates either on an empty string or a non 

blank character. If it terminates on an empty string and the first 

character in the buffer loaded by the READ instruction is blank, 

LETTER can contain a blank character. 

When this program is translated into FORTRAN and executed on the 

EXPER system the error is not necessarily caught. The reason for this 
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failure is not so much a failure of mutation testing as it is of 

FORTRAN. ALGOL treats strings as a basic type, whereas in FORTRAN 

they are simulated by arrays of integers. The fact that strings are 

basic to ALGOL means that if we were constructing a mutation system 

for ALGOL instead of FORTRAN we would have to consider a different set 

of mutant operators. A natural operator one would consider can be 

explained by noting that blanks play a role in string processing 

programs analogous to that played by zero in numbers. Hence we might 

hypothesize a blank push operator similar to the zero push operator 

in EXPER. If we had such an operator an attempt to force the 

expression FIRST(input) to blank would certainly reveal the error. 

The second program, also written in ALGOL, appeared in a paper by 

Naur [71] and has also been studied widely [30, 34, 37]. The program 

is intended to read a string of characters consisting of words 

separated by blanks and/or newline characters, and to output as many 

words as possible with a blank between every pair of words. There is 

a fixed limit on the size of each output line, and no word can be 

broken between two lines. 

There are two errors in this program, as studied by Howden. Each 

time a word is encountered which fits on the current line a blank is 

inserted to separate it from the preceding word. In the case of the 

first word in the file this causes an extra blank to be inserted, The 

second error occurs if the last word in the file is not followed by a 

blank or newline, in which case the word buffer area is not emptied   3 
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and the last word is not output. 

Goodenough and Gerhart [37] consider the fact that the program 

does not suppress multiple blanks between words to be a third error. 

I have also taken this position. 

If we attempt to eliminate mutants of the erroneous program, we 

find the following three mutants cannot be eliminated without causing 

the original program to fail: 

1. The first FILL := 0 statement can be replaced with FILL := 
1 

2. FILL never has the value zero in the statement FILL := FILL 
+] 

3. BUFPOS is always greater or equal to one in the loop FOR 
k=] ,BUFPOS (No data forces the execution of the hidden path 
in which the loop is never executed) 

If the first mutant is to be eliminated its effects must be 

noticed before the FILL := 0 statement following the writing of the 

newline character. This mutant can only be eliminated if the first 

imput character is a blank, newline or the start of a word of less 

than MAXPOS characters. If the first input character is a blank or 

newline an unnecessary blank will be output, revealing the multiple 

blanks error. If the first input character is the start of a word of 

less than MAXPOS characters, an unnecessary space will be output 

before the word and the initial blank error will be discovered, 

FILL can have the value zero in the statement FILL := FILL+1 only 

in the case we have just output a newline character (which may be the 
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initial newline). In this case the space is redundant and the initial 

blank error is revealed. 

The only way BUFPOS can equal zero in the FOR loop is in the 

event of two or more consecutive blank lines or newlines. This would 

reveal the multiple space error. 

Hence both the multiple spaces and the initial blank error will 

be discovered. If we correct those two errors and perform the 

reliability experiment again we discover that it is possible to 

eliminate all mutants using test cases which end in "newline,end of 

text" or "blank, end of text". These test cases do not reveal the 

last word error, hence mutation analysis cannot guarantee the 

discovery of this error. Note, however, that if the test cases are 

constructed randomly it is extremely unlikely that they would all end 

in one of these two forms. 

The third program appears in a paper by Wirth describing the 

language PL-360 [88]. It is intended to take a vector of N numbers 

and sort them into decreasing order. It was also studied by Gerhart 

and Yelowitz [34]. As the outer loop is incremented over the list of 

elements the inner loop is designed to find the maximum of the 

remaining elements, and set register R3 to the index of this maximum. 

If the position set in the outer loop is indeed the maximum, then R3 

will have an incorrect value and the three assignment statements 

ending the loop will give erroneous results. A listing of this   
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program is given in section 3.2.9. 

There are three mutants which cannot be eliminated without 

discovering this error. The first two change the statement RO := 

A(R1) into RO := A(R1)-1 and RO := -ABS(A(R1)) respectively. The 

third mutant changes the statement A(R1) := KO into A(R1) := A(R3). 

The final program is written in FORTRAN, and computes the total, 

average, minimum, maximum, and standard deviation for each variable in 

an observation matrix. The program is adapted from the IBM scientific 

subroutines package [59]. It was analyzed and three artificial errors 

inserted in a study by Gould and Drongowski [38]. In Howden's study 

only one of those errors was discussed. The error occurs in a loop 

which computes standard deviations. The program has the statement 

SD(I)=SQRT(ABS((SD(1)-( TOTAL(I)*TOTAL(I))/SCNT)/SCNT - 1 

A pair of parenthesis have been inadvertently left off the final SCNT 

- 1 expression. Let X stand for the quantity 
ABS(SD(I)-( TOTAL(I)*TOTAL(I) )/SCNT) 

The correct standard deviation is SQRT(X/(SCNTI-1)). The only way this 

can be made zero is for X to be zero. But the program containing the 

error computes the standard deviation as SQRT(1-X/SCNT). If X is zero 

this quantity is 1, hence the standard deviation is wrong. 

Alternatively, if the incorrect expression is forced to be zero, the 

correct standard deviation should be greater than one. Hence by 

forcing the standard deviation in this line to be zero the error is 

easily revealed.   4 
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Appendix C 

Programs analyzed in the third reliability study 

The 13 programs studied in section 4.2.3 consisted of 3 of the 4 

described in the preceding appendix (the telegraph program, the 

sorting program, and the statistics program) plus 10 other programs 

taken from the literature. These last 10 programs will be described 

here. 

The first program appeared in an article by Geller in the 

Communications of the ACM [33]. A source listing of this program is 

given in section 3.2.3, where the single error in the program is 

analysed. 

The second program computes the Euclidean greatest common divisor | 

of a vector of integers. It appeared in an article by Bradley in the 

Communications of the ACM [7]. The program contain: the following 

four errors: (1) I£ the last input number is the only non-zero 

number, and it is negative, then the greatest common divisor returned 

is negative. (2) If the greatest common divisor is not 1, then a loop 

index is used after the loop has completed normally, which is in error 

according to the FORTRAN standard. (3,4) There are two DO loops for 

which it is possible to construct data so that the upper limit is less 

than the lower limit, which causes the program to produce incorrect 

results since FORTRAN do loops always execute at least once. 

136   4 
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None of the errors are caught using branch analysis. All are 

caught with mutation analysis. 

The next three programs are adapted from the IBM Scientific 

Subroutines Package [59]. In each program three errors where 

artificially inserted in a study conducted by Gould and 

Drongowski [38]. 

The first program computes the first four moments of a vector of 

ofservations. One of the errors would be detected using branch 

analysis, the other two can be overlooked. All three errors would be 

discovered using mutation analvsis. 

The second program computes statistics from an observation table. 

Again one error would be discovered using branch analysis, but all 

three errors are discovered with mutation analysis. 

The third program computes correlation coefficients. In addition 

to the three artificial errors inserted by Gould and Drongowski, the 

program cont2ins a third error which is also present in the original 

program. This third error involves a variable which is saved and 

restored so that on returning from the subroutine it should have the 

same value as on entry. It is possible, however, for the value of 

this variable to change and not be restored. Two of the artificial 

errors and the naturally occuring error are detected with branch 

analysis. All four errors are detected using mutation analysis. 

q   
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The next program takes three sides of a triangle and decides if 

it is isosceles, scalene or equilateral. It first appeared in a paper 

by Brown and Lipow [10]. In [65] a bug is described where two 

occurrences of the constant 2 are replaced with the variable K. This 

bug is very subtle, however it can be detected with the test case 

6,3,3. Neither branch analysis or mutation analysis would force the 

discovery of this error. 

The seventh program is the FIND program from an article by 

C. A. R. Hoare [48]. The bug has been studied by the group developing 

the SELECT symbolic execution system [6]. The bug is very subtle and 

neither branch testing nor mutation analysis would guarantee its 

discovery. It would appear that the failure to detect this bug is an 

artifact of the worst case nature of this analysis, since the error 

was easily discovered during some early experiments on the coupling 

effect [22]. 

The eighth program is the text editor by Naur also described in 

the last appendix. In this case, however, we used the version studied 

by Goodenough and Gerhart [37] containing five errors. A listing is 

given in section 3.2.9. 

The ninth and tenth programs are an accounting program and a 

Student scores program from a technical report by S. Sheppard et 

al [79], issued by the Office of Naval Research. The first program 
wm 

contains three errors and the second a single error. All errors were   
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detected using mutation analysis. Only two would be caught using 

branch analysis. 
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