Geometric Applications of A Matrix Searching Algorithm

Alok Aggarwall
Maria M. Klawe2
Shlomo Moran'"*
Peter Shor’

Robert Wﬂber2

P WUN -

I. Intreduction

The all-farthest neighbor problem for a set of n
points in the plane, P, is to find for each point p; € P,
another point pj & Pwith j # i such that

d@; p)) = e d(@; px)

where d(p;, pj) denotes the Euclidean distance be-
tween p; and Pj The all-nearest neighbor problem
consists of finding the nearest point for every point
in the set. Shamos and Hoey (SH75) have shown
that 8(nlog n) is the optimal bound for the all-
nearest neighbor problem, and Toussaint and
Bhattacharya (TB81) as well as Preparata (Pr77)
have shown that ©(n log n) is also an optimal bound
for the all-farthest neighbor problem.

The Q(nlog n) bounds given in (SH76, TBS1,
Pr77) do not apply when the input set forms the
vertices of a convex polygon (say, given in clock-
wise order) rather than being an arbitrary set of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice s given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-194-6/86/0600/0285 $00.75

IBM T. J. Watson Center, Yorktown Heights
IBM Almaden Research Center, San Jose
Math. Sciences Research Institute, Berkeley
On leave from The Technion, Haifa, Israel.

points in the plane. In fact, using some geometric
properties of a convex polygon and the fact that any
point can be the nearest neighbor of at most six
other points in the plane, Lee and Preparata (LP78)
obtained a ®(n) algorithm for the ali-nearest neigh-
bor problem on a convex polygon. However, since
a single point could be the farthest point for all
n— 1 other points even if the points form the
vertices of a convex polygon, the algorithm pro-
posed by Lee and Preparata cannot be extended to
solve the all-farthest neighbor problem in linear
time,

A simple polygon is unimodal if for every vertex
Px the function defined by the Euclidean distance
between p; and the remaining vertices (traversed in
clockwise order) contains only one local maximum.
For any m > 1, this definition of unimodal polygons
can be extended to m-modal polygons, in a natural
manner. Somewhat contrary to one’s intuition,
Avis, Toussaint and Bhattacharya (ATB82) have
provided examples of convex polygons in which
n/2 vertices have n/4 local maxima in each of their
distance functions. The counter intuitive fact that
the distance functions can be multimodal has often
resulted either in incorrect algorithms or in in-
creased time complexities for some of them.
Aggarwal and Melville (AM83) have shown that
whether a convex polygon is m-modal can be deter-

285

mined in O(n x m) time and Toussaint (To82) has
provided a very simple and intuitive algorithm for
solving the all-farthest neighbor problem for a con-
vex unimodal polygon in O(n) time. Here we show
that the all-farthest neighbor problem can be solved
for a convex polygon in O(n) time, regardless of its
modality. We use the same method to speed up se-
veral other geometric algorithms by a factor of
log n.

This paper is divided into five sections. Section
Il discusses a combinatorial problem for matrices
under two kinds of constraints -- a *“‘weak” con-
straint and a “‘strong’ constraint. We show that
each instance of the all-farthest neighbor problem
for convex polygons is an instance of the matrix
problem under the strong constraint -- and thus also
an instance of the matrix problem under the weak
constraint. Section Il demonstrates that there is an
§2(m log n) lower bound for solving the problem on
n x m matrices subject only to the weak constraint.
Consequently, if one only makes wse of the weak
constraint in solving the all-farthest neighbor prob-
lem (in the manner used by researchers in the past),
then one cannot hope to achieve a linear time sol-
ution. Section IV shows that the matrix problem
with the strong constraint can be solved in O(m)
time when m > n. This yields a linear time solution
for the all-farthest neighbor problem on convex
polygons. Section V summarizes the improvements
that can be obtained over previous algorithms for
solving geometric optimization and computer aided
design problems. Because of the space constraint,
we only discuss the all-farthest neighbor problem
here and provide the details for the other problems
in the final version of the paper.

II. The Matrix Problem

Let 4 be an n x m matrix with real entries. We
will assume that all entries within a row of 4 are
distinct. Similarly, we assume that all distances be-
tween pairs of vertices in the farthest neighbor

problem are distinct. These restrictions can be re-
moved; we impose them to simplify the definitions
and algorithms. Let 4’ denote the j-th column of 4
and 4; denote the ith row of A.
Aliy, ..., i jis -, Ji) denotes the submatrix of
A4 that is formed of rows iy, ..., and columns
A+ -+ Jr . Givena matrix 4, the maximum problem
is to determine for each i, the column j(i) at which
A, has its maximum value. The matrix A4 is monotone
if for 1<iy<ihsn jiy) £ji). A is roally
monotone if every submatrix of 4 is monotone. It is
easy to verify that this is equivalent to having every
2 x 2 submatrix of 4 be monotone.

We now show that an instance of the all-farthest
neighbor problem on a convex polygon with n
vertices can be regarded as an instance of the maxi-
mum problem on an n x 2n — 1 totally monotone
matrix. Let py, ..., p, denote the vertices of a
convex polygon in clockwise order., Define an
n x 2n — 1 matrix 4 as follows. For any integer u
let ou ((u — 1) mod n) + 1. If
i<j<i+n—1 then A(i,j)=d(p,~,p°j). If j<i
then A(G,j)=j-n, and if j2i+n then

A(i, j) = —j. (The non-positive entries are set so as

denote

to make every value in a row distinct.) Now sup-
pose the 2 x 2 submatrix A[{,j; k,], withi < jand
k < 1, has only positive entries. Then we must have
i<j<k<I<i+n Inthis case the vertices p;, p;,
Pox » and p,; are in clockwise order around the
polygon. From the triangle inequality one can show
that d(p;, poy) 2 d(p;, po) or d(PijoD 2dPjpoy)s
or both. Since the distances are distinct the above
I Thus A[i,j; k, 1] is
monotone, The non-positive entries ensure that all

inequalities are strict.

other 2 x 2 submatrices of 4 are also monotone.
Thus A4 is totally monotone, and by solving the
maximum problem on 4 we can solve the all-
farthest neighbor problem for the polygon.

III. An Q(m log n) Lower Bound for the Maximum
Problem on Arbitrary Monotone Matrices

286

The maximum problem on a monotone n x m
matrix 4 can be solved by the following straightfor-
ward divide and conquer algorithm. Leti = [n/21
and in O(m) time find the column j at which 4, has

its maximum value. Recursively solve the maxi-

muin problem on the submatrices
Aly, ...,i=11, ...,j](when i>1 and j> 1)
and 4[i+ 1, ...,nJ, ...,m] (when i <n and

Jj < m). The time required by this algorithm is given
by the recurrence

fin,m) < m + max {f(Tn/21 = 1,)) +
s fln/21,m = j+ 1)},

with f(0, m) = f(n,1) = 0. Solving the recurrence,
we have f(n,m) = O(mlogn) . (All logarithms in
this section are base 2.) The best previously known
algorithms for the all-farthest neighbor problem on
convex polygons and for the problems described in
section V all contain a step that is essentially this
divide and conquer procedure. Note that this algo-
rithm works for arbitrary monotone matrices; the
much stronger property of total monotonicity is not
taken advantage of. In this section we show that
any algorithm that solves the maximum problem
for arbitrary monotone matrices must have a worst
case time of Q(m log n). So any improvement on the
simple divide and conquer algorithm for the matri-
ces corresponding to the applications must make es-
sential use of the fact that these matrices are totally
monotone,

The lower bound is on the number of cells of the
matrix that must be queried by any algorithm for
the maximum problem on monotone matrices.
Thus the bound applies even if all additional oper-
ations (such as comparisons) are free.
that of 2
(1/4)(m — 1)(1 + log n) queries must be made,
from which it follows that for arbitrary n at least
(1/4)(m — 1) log n queries are required. The proof
uses an adversary argument. The value of each cell

We prove

when n is a power at least

of the matrix is regarded as being indeterminate
until it is first queried, at which point an adversary

287

assigns a value subject to the condition that it must
be possible to position the maxima of the rows in a
way consistent with the values fixed so far and the
monotonicity condition.

Theorem 3.1: Let 4 be an n x m matrix, where nis
a power of 2. Let 4 be a positive integer and let
e=1orm. Setf=m+1—e. Supposethat upto
max{m — 2, 0) cells have already been queried (i.e.,
have been assigned fixed values). Also, suppose
that no cells have been queried in 47 , that any cells
that have been queried in A° have been set to 4, and
that all other queried cells have been set to values
less than 1. Then an adversary can answer any
queries for the remaining cells, in a way consistent
with the monotonicity condition, so that in order to
determine the positions of the maxima in each row
a total of at least (1/4)(m — 1)(1 + log n) cells must
be queried (including those that were initially que-
ried), and so that the maximum value in each row
is at least A.

Proof: We will assume throughout that m > 2, for
when m = 1 the claimed lower bound is 0 and there
is nothing to prove. When we say that the adver-
sary sets a cell to a Jow value that means that the
cell is set to some previously unused positive value
less than 1. Note that if m — 2 or fewer queries
have been made then there are at least two columns
with no queries, say At and 4%, The adversary can
answer future queries in these columns either by
setting all cells in A’ to h + 1 and all cells in 4% to
low values or by setting all cells in A% to low values
and all cells in 42 to h + 1. Either the maxima will
all be in 4/ or they will all be in Ah, and in either
case the maximum value in each row will be greater
than # . Thus when m — 2 or fewer queries have
been made the positions of the maxima have not yet
been determined.

We use induction on n.

Basis step: Suppose n < 4. By the observation
above, at least m — 1 queries must be made, and

when n<4, (1/4)(m — 1)(1 + logn) <m — 1. So
the claim is true in this case.

Induction step: Let n be a power of 2 greater
than or equal to 4 and assume that the theorem is
true for all powers of 2 less than n. We show that
the theorem is true for n. The sequence of queries
is divided into two stages. The first stage lasts until
a total of m — 1 cells have been queried (including
those cells that had been queried at the start). Since
at least m — 1 queries must be made, we do reach
the end of the first stage. Any query made after the
(m — 1)th query is in the second stage. For
1 <i<3,letr,=(in/4) + 1. The rules for answer-
ing a query to cell 4(i, j) during the first stage are
as follows.

la) If i< rand j=1thenif e = 1 set A(i,) to A,
otherwise set A(i,j))toh + 1.

1b) If i > r, and j = m then if ¢ = m set A(i, j) to A,
. otherwise set A(i,) to h + 1.

2) fi<rpand j# 1 orifi2r and j# m, set
A(i, /) to a low value.

When the first stage ends, exactly m — 1 cells of
A have been queried and the values fixed are con-
sistent with all maxima in rows 1 through r, ~ 1
being in column 1 and all maxima in rows r,
through n being in column m. Queried cells in col-
umns 2 through m — 1 all have values less than 1.

After the first stage is completed a column ¢ and
two submatrices L and R are selected as follows.
For 0 < j < m, let 5; be the number of queried cells
in columns 1 through j of 4 (sg = 0). Let ¢ be the
smallest integer in [1, m}such that s, = ¢ — 1 (there
is such an integer because s,, = m — 1). Using the
“act that the s;'s are a nondecreasing sequence of in-
tegers it is easy to show by induction that for all j in
[0,c—1], s; 2 j. In particular, s,_; 2 ¢ — 1. Since
S.—1 <5, we conclude that s,_;=s5.=c—1.
Therefore A° has no queried cells, the first ¢ — 1

columns of 4 contain ¢ — 1 queried cells, and the
last m — ¢ columns contain m — ¢ queried cells.

Let L be one of the two submatrices
ALY, ... =11, ..., c] or
A[rl_...,rz-—l; 1, ...
fewest queried cells. L has ¢ columns and at most
L(c —1)/2] £ max(c — 2, 0) queried cells. Let k;
be the index of the row of 4 containing the first row
of L (i.e., ky is equal to either 1 or ry), and let k; be
the index of the row of 4 containing the last row of

,c] , whichever has the

L (i.e., k, is equal to either y — 1 or r, — 1). Simi-

larly, let submatrix R be either
Alry, ...ors=1;¢, ..., m] or
Alry ...,n;¢c, ..., m], whichever has the fewest

queried cells. Let k3 be the index of the row of 4
containing the first row of R, and let k4 be the index
of the row of 4 containing the last row of R. R has
contains at most

m—~c+1 columns and

L(m = ¢)/2 1 < max(m — ¢ — 1, 0) queried cells.

Note that L satisfies the conditions of the theo-
rem, with parameters 4’ and ¢/, where ¢ = 1 and
W=hife=1and ¥ =h + 1if e = m. Similarly, R
satisfies the conditions of the theorem, with param-
eters A" and ¢, wheree”’ = m —c + 1and ¥’ = kif
e=mand i’ = h + 1if e= 1. In the second stage
queries of cells within L or R are handled by
recursively applying the adversary strategy to the
two submatrices, and queries to cells outside of L
and R are answered in such a way that they impose
no constraints upon the positions of the maxima
within L or R,

The rules for answering a query of cell 4(ij) are
as follows.

1) Ifi<kjandj= 1,o0rifi > kg and j = m, then set
A, Dtoh + 1.
2) If ky <i<kyand j= cthenset A(i,))toh + 2.

3a) If A(i, j) is in submatrix L then fix the value for
that cell by applying the adversary strategy

288

recursively to L, using the parameters ¢’ and
K.

3b) If A(i, j) is in submatrix R then fix the value for
that cell by applying the adversary strategy
recursively to R , using the parameters ¢’ and
B

4) For all other queries set .4(, j) to a low value.

Rule 1 ensures that the maxima in rows 1
through k; — 1 are in A" and that the maxima in
rows kg + 1 through n are in 4™. Rules 2 ensures
that the maxima in rows k; + 1 through k3 — 1 are

in A4S The values of cells in

Afky, ... ksic+ 1, ..., m] are all less than H,
and the values of cells in
Alky, ... kg1, ...,c~1] are all less than A",

By assumption the recursively applied strategy will
result in a maximum value of at least 4’ in each row
of L and of at least 4"’ in each row of R. Thus the
maxima for rows k; through k, of 4 will all be in
submatrix L, and the maxima for rows k3 through
k4 will all be in submatrix R. Thus, as claimed, no
external constraints are placed upon the positions
of the maxima within L and R, so the recursive use
of the adversary strategy in rules (3a) and (3b) is
valid.

Submatrices L and R each have n/4 rows. By
assumption, at least (1/4)(c — 1)(1 + log(n/4))
queries are needed to locate the maxima within L
and at least (1/4)(m — ¢)(1 + log(n/4)) queries are
needed to locate the maxima within R. In addition,
at the end of the first stage there are at least
(m — 1)/2 queries in 4 outside of L and R . So the
total number of queries needed to find the maxima
in A is at least

(m-1) 1 n
—-—-—2———+ —4’(0— nHa + logz—) +

%(m —c)(1 + log -—Z—) = %(m - 1)(1 + log n).

Also, the maximum value in each row is at least A.

a

When A4 has no initial queries the conditions of
the theorem are obviously met for any h > 1 and e
equal to either 1 or m, so we have the desired
2(m log n) tower bound.

IV. A Linear Time Algorithm for The Maximum
Problem on Totally Monotone Matrices

Here we show that by making use of the strict
constraints imposed by total monotonicity we can
solve the maximum problem in linear time. For
each i, let j(i) be such that 4(i, j(i)) is the maximum
element in 4;. The key component of the algorithm
is the subroutine REDUCE . It takes as input an
n x m totally monotone matrix 4, with m > n. The
value returned by REDUCE is an n x n submatrix
of A4, C, with the property that, for 1 < i < n, sub-
matrix C contains column 4°?. REDUCE does a
constant amount of work per comparison, and does

at most 2m — n — 1 comparisons, so runs in time
O(m) .

Say that an element A(i, j) is killed if, using the
results of any comparisons made so far and the total
monotonicity of 4, it can be shown that 4(j, j) is not
the maximum element in 4, i.e., j # j(i). A column
is killed if all of its elements are killed.

Lemma 4.1: Let 4 be a totally monotone matrix. If
A(r, j1) > A(r, jp) then the entries in
{43, j»): 1 £ i € r} are killed. On the other hand,
if A(,j)<A4(r,j) then the
{A(, j;): r < i £ n}arekilled.

entries in

Proof: The first claim follows from the fact that
Ali, r; ji, /2] is monotone for all 1 < i< r. Simi-
larly, the second claim follows from the fact that

Alr,i; j;,j»]is monotoneforallr<i<n. O

289

Let the index of C be the largest k such that for
all 1 £ j<kand 1 <i<j element C(i,) is killed.
Note that every matrix has index at least 1.

The algorithm REDUCE is as follows.

REDUCE(A4)
Ce—A; ke
while C has more than n columns do
case
Ctk, k) > Clk,k+ 1yand k < n:
kek + 1.
Clk, k) > Clk,k + 1)and k = n:
Delete column Ck'”.
Clk, k) < Clk,k +1):
Delete column Ck; keak ~1.
endcase
return(C)

The invariant maintained is that k is the index of C.
Also, only killed columns are deleted. 1t is easy to
see that these conditions hold. The invariant holds
initially because the index of C at the start is 1. If
C(k, k) > C(k,k + 1) then by Lemma 4.1 all ele-
ments of C**! in rows 1 through k are killed. Thus
if k < n the index of C increases by 1, and if k = n
column C**1is killed, and the index of C remains
the same. M C(k, k) < C(k, k + 1) then by Lemma
4.1 all elements of C* in columns k through n are
killed, and since the elements of ¢* in columns 1
through k — 1 were already killed, C* is killed. In
that case the index of C decreases by 1.

Theorem 4.2: In O(m) comparisons, algorithm RE-
DUCE reduces the maximum problem for an n x m
totally monotone matrix to the maximum problem
for an n x ntotally monotone matrix.

Proof: REDUCE terminates when C has n columns,
so the output is an n x n submatrix of 4. That C
contains all columns of A4 that have a maximum
value for some row of A4 follows from the above
discussion. For the time analysis, let a, b, and ¢ de-
note, respectively, the number of times the three

branches of the case statement are executed. A
column is deleted only in the last two cases, and
since a total of m — n columns are deleted we have
b + ¢ = m — n. The index increases in the first case
and decreases in the last case, and is unchanged in
the second case. Since the index starts at 1 and ends
no higher than n the net increase in the index is
a - ¢ £ n— 1. Combining these two facts, we have

timer=a+b+c<a+2b+c<2m-n-1.0

We now describe MAXCOMPUTE, which
solves the maximum problem on an n x m totally
monotone matrix, where m > n.

MAXCOMPUTE(A)
Be«- REDUCE(A)
if n=1 then return
CeB[2,4,...,2ln/21;1,2,...,n]
MAXCOMPUTE(C)
Using the bounds due to the known positions
of the maxima in the even rows of B, find the
maxima in the odd rows of B.

Theorem 4.3: When n £ m MAXCOMPUTE solves
the maximum problem on a totally monotone
n x m matrix in time O(m).

Proof: Let f(n,m) be the time taken by
MAXCOMPUTE on an n x m matrix. From Theo-
rem 4.2 we know that the call to REDUCE takes
time O(m) and that by finding the maxima in the
rows of the n x n matrix B we have found the
maxima in the rows of 4. The assignment of the
even rows of B to C is really just the manipulation
of a list of rows, and can be done in O(n) time. Cis
an n/2 x n totally monotone matrix so the recur-
sive call to MAXCOMPUTE takes time f(n/2, n) .
The last step can be done in O(n) time. Thus, for
suitable constants ¢; and ¢,, the time is

f(n,m) < cin+ com +f(%, n),

which has the solution f(n, m) < 2(c; + c3)n + com.
Since m > n. thisis O(m). O

290

We have also obtained tight bounds for the
maximum problem on totally monotone matrices in
the case where m < n, which we state here without
proof.

Theorem 4.4: When n > m the necessary and suffi-
cient time required to solve the maximum problem
on a totally monotone nxm matrix is

B8(m(1 + log(n/m))) .
V. Applications of the Matrix Searching Algorithm

Lee and Preparata have shown (LP78) that the
all-nearest neighbor problem for a convex polygon
can be solved in linear time. However, they
crucially use the fact that any point in the plane can
be the nearest neighbor of at most six other points.
Like the all-farthest neighbor problem, we can also
solve the all-nearest neighbor in linear time without
even using this fact, Furthermore, we can solve the
following problem in linear time. Given two convex
polygons, for every vertex in one polygon, find its
farthest (or its nearest) vertex in the other polygon.
Our algorithm improves the previous best known
solution for this problem by a factor of log n .

Boyce et al. (BDDG82) have shown that given a
convex n-gon, the maximum area (or maximum
perimeter) inscribed k-gon can be found in
O(knlogn + n logzn) time. Since the diameter
problem for a convex polygon can be regarded as
finding the maximum perimeter k-gon when k = 2,
it is not surprising that our linear time solution for
the matrix problem can be used to reduce the time
complexity of Boyce et al’s algorithm to
O(kn + nlog n). In particular, we can find a maxi-
mum area (or maximum perimeter) inscribed
quadrilateral in O(n log n) time. In a similar man-
ner, Aggarwal, Chang and Yap (ACY85) have
shown that the minimum area circumscribing k-gon
can be found in O(n> log k log n) time and we can
reduce the time complexity of their algorithm to
O(n* log k).

Finally, we discuss an application of our matrix
search algorithm to a wire routing problem. Con-
sider the problem of connecting n corresponding
terminals {P;} and {Q,} with wires. The P;'s are ar-
ranged in order by index along a horizontal row,
and the Q/’s are also arranged in order along a lower
horizontal row. The connecting wires must be sep-
arated by some minimum distance, and often there
are other constraints. For example, the wires may
be constrained to lie on a rectilinear grid or may be
constrained to consist of horizontal, vertical, or 45
degree angle segments. Assume that the Qs are
along the x axis with @ at the origin. Define the
offset to be the x coordinate of P; and call the y co-
ordinate of the Ps the separation . Given the design
rules, the separation problem is to find, for some
fixed offset, the minimum separation that permits a
legal wiring. The optimal offset problem is to find
the offset that allows the minimum separation.
Dolev et al. (DKSSU81) found a linear time algo-
rithm for the minimum separation problem in the
case where the wires are constrained to lie on a
rectilinear integer grid. Seigel and Dolev (SD81)
showea that for a very general class of design rules
the minimum separation problem can be solved in
O(nlog n) time. They also obtained linear bounds
for more general constraints than those used by
Dolev et al. (DKSSUS81), such as where the wires lie
on a quarter integer grid and consist of segments at
angles that are multiples of 45 degrees. However,
for some natural design rules, such as a wiring
scheme that permits arbitrarily shaped wires, with
a minimum separation of 1 unit, Seigel and Dolev
were not able to do any better than their generic
Of(nlog n) algorithm. The O(n log n) algorithm was
based upon a certain matrix being totally
monotone, so we can provide a linear time algo-
rithm for all design rules in the class they defined, in
particular for the case where the wires can have ar-
bitrary shapes. Also, they showed that in such
schemes the optimal offset problem can always be
solved in O(n logzn) time, and we can remove one
of the log n factors in that algorithm.

291

Acknowledgements: The authors thank Ashok K.
Chandra, Don Coppersmith, S. Rao Kosaraju, Ravi
Nair, and Martin Tompa for stimulating discussions.

References

(ACYS85) A. Aggarwal, J. S. Chang and C. K. Yap,

"Minimum Area Circumscribing
Polygons," Technical Report, Courant
Inst. of Math. Sciences, NYU, 1985. To

appear in The Visual Computer, 1986.

(AMS83) A. Aggarwal and R. C. Melville, "Fast
Modality of
Polygons," Proc. of the Conf. on Informa-

Computation of the

tion Sciences and Systems, The Johns
Hopkins University. To appear in the
Journal of Algorithms, 1986.

(ATB82) D. Avis, G. T. Toussaint and B. K.
Bhattacharya, "On the Multimodality of
Distance in Convex Polygons," Comp.
and Math. with Applications, Vol. 8, No.
2, pp. 153-156, 1982.

(BDDGS82) J. E. Boyce, D. P. Dobkin, R. L.
Drysdale, and L. J. Guibas, "Finding Ex-
tremal Polygons," SIAM J. of Computing,
pp. 134-147. Vol. 14, 1985. Also appears
in the Proc. STOC 1982.

(DKSSU81) D. Dolev, K. Karplus, A. Siegel, A.
Strong, and J. D. Ullman, "Optimal wiring
between rectangles," Thirteenth Annual
ACM Symposium on the Theory of Com-
puting, pp. 312-317, 1981.

(LP78) D. T. Lee and F. P. Preparata, "The All-
Nearest Neighbor Problem for Convex
Polygons,” Info. Proc. Letters, Vol. 7, No.
4, pp. 189-192, June 1978,

{LY85) D. T. Lee and Chee K. Yap, Private Com-
munication.

(MOS85) M. Mckenna, J. O'Rourke and S. Suri, "
Finding the Largest Rectangle in an
Orthogonal Polygon,” Tech. Report, The
Johns Hopkins University, 1985. Also ap-
pears in the Proc. of the Allerton Confer-
ence on Control, Communications and
Computing, 1985.

(Pr77) F. P. Preparata, "Minimum Spanning Cir-

cle,"

in Steps in Computational Geom-
etry, F. P. Preparata Ed., University of

Illinois, Urbana, pp. 3-5, 1977.

(SD81) A. Seigel and D. Dolev, '"The Separation for
General Single-Layer Wiring Barriers,"
Proc. of the CMU Conference on VLSI,
pp. 143-152, 1981.

(Sh75) M. l. Shamos, "Geometric Complexity,"”
Proc. 7th Annual Symposium on Theory
of Computing, pp. 224-233, May 1975.

(SH75) M. 1. Shamos and D. Hoey, "'Closest-point
Problems," Proc. 16th Annual IEEE
Symposium of Foundations of Computer
Science, pp. 151-162, October197s.

(To82) G. T. Toussaint, "Complexity, Convexity
and Unimodality," Proc. Second World
Conf. on Mathematics, Las Palmas, Spain,
1982. Also, appears in the Journal of
Computer and Information Sciences,
1983.

(To83) G. T. Toussaint, "The Symmetric All-
Furthest Neighbor Problem," Comp. and
Math. Applications, Vol. 9, No. 6, pp.
747-754, 1983.

(TB81) G. T. Toussaint and B. K. Bhattacharya,
"On Geometric Algorithms that Use the
Furthest-Neighbor Pair of a Finite Planar
Set,"” Tech. Report, School of Computer
Science, McGill University, Jan, 1981.

292

