
Geometric Applications of A Matrix Se~ching Algorithm

Alok Aggarwal 1

Maria M. Klawe 2

Shlomo Moran 1'4

Peter Shor 3

Robert WIlber 2

1. IBM T. J. Watson Center, Yorktown Heights

2. IBM Almaden Research Center, San Jose

3. Math. Sciences Research Institute, Berkeley

4. On leave from The Technion, Haifa, Israel.

I. Introduction

The all-farthest neighbor problem for a set of n

points in the plane, P, is to find for each point Pie P,

another point pj~ P with j # i such that

d(Pi, pj) - m a x d(p i, Pk)
l<_k<n

where d(Pi, Pj) denotes the Euclidean distance be-

tween Pi and pj. The all-nearest neighbor problem

consists of finding the nearest point for every point

in the set. Shamos and Hoey (SH75) have shown

that O(n log n) is the optimal bound for the all-

nearest neighbor problem, and Toussaint and

Bhattacharya (TB81) as well as Preparata (Pr77)

have shown that 0(n log n) is also an optimal bound

for the all-farthest neighbor problem.

The fl(n log n) bounds given in (SH76, TB81,

Pr77) do not apply when the input set forms the

vertices of a convex polygon (say, given in clock-

wise order) rather than being an arbitrary set of

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice "s given that copying is by
permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-194-6/86/0600/0285 $00.75

points in the plane. In fact, using some geometric

properties of a convex polygon and the fact that any

point can be the nearest neighbor of at most six

other points in the plane, Lee and Preparata (LP78)

obtained a O(n) algorithm for the all-nearest neigh-

bor problem on a convex polygon. However, since

a single point could be the farthest point for all

n - 1 other points even if the points form the

vertices of a convex polygon, the algorithm pro-

posed by Lee and Preparata cannot be extended to

solve the all-farthest neighbor problem in linear

time.

A simple polygon is unimodal if for every vertex

Pk the function defined by the Euclidean distance

between Pk and the remaining vertices (traversed in

clockwise order) contains only one local maximum.

For any m _> 1, this definition of unimodal polygons

can be extended to m-modal polygons, in a natural

manner. Somewhat contrary to one's intuition,

Avis, Toussaint and Bhattacharya (ATB82) have

provided examples of convex polygons in which

n/2 vertices have n/4 local maxima in each of their

distance functions. The counter intuitive fact that

the distance functions can be multimodal has often

resulted either in incorrect algorithms or in in-

creased time complexities for some of them.

Aggarwal and Melville (AM83) have shown that

whether a convex polygon is m-modal can be deter-

285

mined in O(n x m) time and Toussaint (To82) has

provided a very simple and intuitive algorithm for

solving the all-farthest neighbor problem for a con-

vex unimodal polygon in O(n) time. Here we show

that the all-farthest neighbor problem can be solved

for a convex polygon in O(n) time, regardless of its

modall ty. We use the same method to speed up se-

veral other geometric algorithms by a factor of

log n.

This paper is divided into five sections. Section

II discusses a combinatorial problem for matrices

under two kinds of constraints -- a " w e a k " con-

straint and a "s t rong" constraint. We show that

each instance of the all-farthest neighbor problem

for convex polygons is an instance of the matr ix

problem under the strong constraint -- and thus also

an instance of the matr ix problem under the weak

constraint. Section HI demonstrates that there is an

~2(m log n) lower bound for solving the problem on

n x rn matrices subject only to the weak constraint.

Consequently, if one only makes w e of the weak

constraint in solving the all-farthest neighbor prob-

lem (in the manner used by researchers in the past),

then one cannot hope to achieve a linear time sol-

ution. Section IV shows that the matr ix problem

with the strong constraint can be solved in O(m)

time when m _> n. This yields a linear time solution

for the all-farthest neighbor problem on convex

polygons. Section V summarizes the improvements

that can be obtained over previous algorithms for

solving geometric optimization and compute r aided

design problems. Because of the space constraint,

we only discuss the all-farthest neighbor problem

here and provide the details for the other problems

in the final version of the paper.

II. The Matrix Problem

Let A be an n x m matr ix with real entries. We

will assume that all entries within a row of A are

distinct. Similarly, we assume that all distances be-

tween pairs of vertices in the farthest neighbor

problem are distinct. These restrictions can be re-

moved; we impose them to simplify the definitions

and algorithms. Let A j denote the j - th column of A

and A i denote the i-th row of A.

A [i 1 ik ; Jl Jk] denotes the submatr ix of

A that is formed of rows i 1 i k and columns

Jl Jk • Given a matr ix A, the maximum problem

is to determine for each i, the column j (i) at which

A i has its m a x i m u m value. The matr ix A is monotone

if for 1 < i 1 < i 2 < n, j(i l) < j(i2)- A is totally

monotone if every submatr ix of A is monotone . It is

easy to verify that this is equivalent to having every

2 x 2 submatr ix of A be monotone.

We now show that an instance of the all-farthest

neighbor problem on a convex polygon with n

vertices can be regarded as an instance of the maxi-

m u m problem on an n x 2 n - 1 totally monotone

matrix. Let Pl ,Pn denote the vertices of a

convex polygon in clockwise order. Define an

n x 2n - 1 matr ix A as follows. For any integer u

let ou denote ((u - 1) mod n) + 1. If

i < j < i + n - - 1 then A (i , j) = d (P i , po j) . If j < i

then A (i , j) = j - n , and if j _ > i + n then

A (i,j) = --j. (The non-positive entries are set so as

to make every value in a row distinct.) N o w sup-

pose the 2 x 2 submatr ix A [4 J" ; k, l], with i < j and

k < 1, has only positive entries. Then we must have

i < j < k < I < i + n. In this case the vertices Pi, Pj,

P*k , and Pot are in clockwise order a round the

polygon. F rom the triangle inequality one can show

that d(Pi, P . k) >_. d(pi, p ° 1) or d(pj, Pel) > d(pj, Pok) ,

or both. Since the distances are distinct the above
/

inequalities are strict. Thus A [i, j ; k, 1] is

monotone. The non-positive entries ensure that all

other 2 x 2 submatrices of A are also monotone .

Thus A is totally monotone , and by solving the

max imum problem on A we can solve the all-

farthest neighbor problem for the polygon.

IIl. An fl(m log n) Lower Bound for the Maximum

Problem on Arbitrary Monotone Matrices

286

The m a x i m u m problem on a mono tone n x m

mat r ix A can be solved by the following s traightfor-

ward divide and conquer algorithm. Let i = I" n/2"1

and in O(m) t ime find the column j at which h i has

its m a x i m u m value. Recursively solve the max i -

m u m problem on the submatr ices

A l l i - - 1; 1 j '] (when i > 1 and j > 1)

and .4I ' i+ 1 n ; j , m] (when i < n and

j < m). The t ime required by this algori thm is given

by the recur rence

f (n , m) < m + m a x I f (r n / 2 1 - l , j) +

l<_/<_m f (L n / 2 J , m - j + 1)},

with f (0 , m) = f (n , l) = 0. Solving the recurrence,

we have f (n , m) = O(m log n) . (All logari thms in

this section are base 2.) The best previously known

algori thms for the al l-farthest neighbor problem on

convex polygons and for the problems described in

section V all contain a step that is essentially this

divide and conquer procedure. No te that this algo-

r i thm works for a rb i t r a ry mono tone matrices; the

much stronger p roper ty of total monotonic i ty is not

t aken advantage of. In this section we show that

any algori thm that solves the m a x i m u m problem

for a rb i t ra ry mono tone matr ices must have a wors t

case t ime of fl(m log n). So any i m p r o v e m e n t on the

simple divide and conquer algori thm for the mat r i -

ces corresponding to the applications must make es-

sential use of the fact that these matr ices are total ly

monotone .

The lower bound is on the n u m b e r of cells of the

ma t r i x tha t must be queried by any a lgor i thm for

the m a x i m u m problem on mono tone matrices.

Thus the bound applies even if all addit ional oper-

ations (such as comparisons) are free. We prove

that when n is a power of 2 at least

(1 / 4) (m - 1)(1 + Iog n) queries mus t be made,

f rom which it follows that for a rb i t r a ry n at least

(1 / 4) (m - 1) log n queries are required. The proof

uses an adve r sa ry a rgument . The value of each cell

of the ma t r ix is regarded as being inde termina te

unt~ it is first queried, at which point an adversa ry

assigns a value subject to the condit ion that it mus t

be possible to position the m a x i m a of the rows in a

way consistent with the values fixed so far and the

rnonotonici ty condition.

Theorem 3.1: Let A be an n x m matr ix , where n is

a power of 2. Le t h be a positive integer and let

e = 1 o r m . S e t f = m + 1 - e . Suppose that up to

m a x (m -- 2, 0) cells have a l ready been queried (i.e.,

have been assigned f ixed values). Also, suppose

that no cells have been queried in A f, that any cells

that have been queried in A e have been set to h, and

that all o ther queried cells have been set to values

less than 1. Then an adversa ry can answer any

queries for the remaining cells, in a way consistent

with the monotonic i ty condition, so that in order to

de te rmine the positions of the m a x i m a in each row

a total of at least (1 / 4) (m - 1)(1 + log n) cells mus t

be queried (including those that were initially que-

ried), and so that the m a x i m u m value in each row

is at least h.

Proof: We will assume throughout that rn > 2, for

when m = 1 the claimed lower bound is 0 and there

is nothing to prove. When we say that the adver -

sary sets a cell to a low value that means that the

cell is set to some previously unused positive value

less than 1. No te that if m - 2 or fewer queries

have been made then there are at least two columns

with no queries, say A "il and A h. The adversa ry can

answer fu ture queries in these columns either by

setting all cells in A "il to h + 1 and all cells in A h to

low values or by setting all cells in A la to low values

and all ceils in A N to h + 1. Ei ther the m a x i m a will

all be in A jl or they will all be in A h, and in ei ther

case the m a x i m u m value in each row will be grea ter

than h . Thus when m - 2 or fewer queries have

been made the positions of the m a x i m a have not yet

been de termined.

We use induction on n.

Basis step: Suppose n < 4. By the observat ion

above, at least r n - 1 queries must be made , and

287

w h e n n < 4, (1 / 4) (m - 1)(1 + log n) < m - 1. So

the c l a im is t r ue in this case.

c o l u m n s of .4 c o n t a i n c - 1 q u e r i e d cells , a n d t h e

last m - c c o l u m n s c o n t a i n m - c q u e r i e d cells.

I n d u c t i o n s tep : Le t n be a p o w e r of 2 g r e a t e r

t han o r equa l to 4 a n d a s s u m e tha t t he t h e o r e m is

t r ue for all p o w e r s of 2 less t h a n n. W e s h o w tha t

t he t h e o r e m is t r u e for n. T h e s e q u e n c e of que r i e s

is d i v i d e d in to t w o s tages . T h e f i rs t s t age lasts unt i l

a to ta l of m - 1 cells h a v e b e e n q u e r i e d (i nc lud ing

those cells t ha t had been q u e r i e d at t h e s t a r t) . S ince

a t leas t m - I que r i e s m u s t be m a d e , w e d o r e a c h

the end of t he first s tage . A n y q u e r y m a d e a f t e r t he

(m - l) t h q u e r y is in t he s e c o n d s tage . F o r

1 < i < 3, let r~ = (in~4) + 1. T h e rules for a n s w e r -

ing a q u e r y to cell A (i , j) d u r i n g the f i rs t s t age a r e

as fo l lows.

l a) If i < r 2 a n d j = 1 t hen if e = 1 set A (i , j) to h,

o t h e r w i s e set A (i, j) to h + 1.

l b) If i _> r 2 a n d j = m t h e n if e = m s e t A (i , j) to h,

• o t h e r w i s e set A (i, j) t o h + 1.

2) If i < r 2 a n d j # 1 or if i > r 2 a n d j # m , set

A (i, l) to a low va lue .

W h e n the f i rs t s t age ends , e x a c t l y m - 1 cells of

A h a v e been q u e r i e d a n d the va lues f i x e d a r e c o n -

s i s t en t w i th all m a x i m a in r o w s 1 t h r o u g h r 2 - 1

be ing in c o l u m n 1 a n d all m a x i m a in r o w s r 2

t h r o u g h n be ing in c o l u m n m. Q u e r i e d cel ls in co l -

u m n s 2 t h r o u g h m - 1 all h a v e va lues less t h a n 1.

A f t e r t h e f i rs t s t age is c o m p l e t e d a c o l u m n c a n d

t w o s u b m a t r i c e s L a n d R a r e s e l e c t e d as fo l lows .

F o r 0 _< j < m, let sj b e t h e n u m b e r of q u e r i e d cells

in c o l u m n s 1 t h r o u g h j of A (s o = 0) . L e t c be the

s m a l l e s t i n t ege r in [1, m] such t h a t s c = c - 1 (t h e r e

is such an in t ege r b e c a u s e S,n = m - 1). Us ing the

a c t t h a t t h e sj's a r e a n o n d e c r e a s i n g s e q u e n c e of in-

t ege r s it is e a s y to s h o w b y i n d u c t i o n t h a t fo r a l l j in

[0, c - 1], sj > j . In p a r t i c u l a r , s c_ 1 > c - 1. S ince

Sc-1 <so, w e c o n c l u d e t h a t Sc-l = sc = c - 1.

T h e r e f o r e A c has no q u e r i e d cells , t h e f i rs t c - 1

L e t L be one of t h e t w o s u b m a t r i c e s

A l l r 1 -- 1; 1 c] o r

A [r l , . . . , r 2 - 1; 1 c] , w h i c h e v e r has t h e

f ewes t q u e r i e d cells . L has c c o l u m n s a n d a t m o s t

/ (c - l) / 2 J 5 m a x (c - 2, 0) q u e r i e d cells. L e t k 1

be t h e i n d e x of t h e r o w of A c o n t a i n i n g the f i rs t r o w

of L (i.e., k 1 is equa l to e i t h e r 1 o r r l) , a n d le t k 2 b e

t he i n d e x of t h e r o w of A c o n t a i n i n g t h e last r o w of

L (i .e. , k 2 is equa l to e i t h e r r 1 - 1 o r r 2 - 1). S imi -

l a r ly , let s u b m a t r i x R b e e i t h e r

A f t , . . . , r 3 -- 1; c rn] o r

A [r 3 , . . . , n; c m] , w h i c h e v e r has t h e f e w e s t

q u e r i e d cells . L e t k 3 be t h e i n d e x of t he r o w of A

c o n t a i n i n g t h e f i rs t r o w of R, a n d let k 4 b e t h e i n d e x

of t he r o w of A c o n t a i n i n g the las t r o w of R. R has

m - c + 1 c o l u m n s a n d c o n t a i n s a t m o s t

L (m - c) / 2 J _< m a x (m - c - 1, 0) q u e r i e d cells .

N o t e t h a t L sat is f ies t he c o n d i t i o n s of t he t h e o -

r e m , w i t h p a r a m e t e r s h t a n d e t, w h e r e e ~ = 1 a n d

h r = h i f e = l a n d h ' - h + l i f e = m . S imi l a r ly , R

sat isf ies t he c o n d i t i o n s of t h e t h e o r e m , w i t h p a r a m -

e t e r s h" a n d e" , w h e r e e" = m - c + 1 a n d h" = h if

e = m a n d h ' = h + l i f e = 1. In t h e s e c o n d s t age

que r i e s of cel ls w i t h i n L or R a r e h a n d l e d b y

r e c u r s i v e l y a p p l y i n g t h e a d v e r s a r y s t r a t e g y to t h e

t w o s u b m a t r i c e s , a n d que r i e s to cel ls ou t s i de of L

a n d R a r e a n s w e r e d in such a w a y t h a t t h e y i m p o s e

n o c o n s t r a i n t s u p o n t h e pos i t ions of t he m a x i m a

w i t h i n L o r R.

T h e ru les fo r a n s w e r i n g a q u e r y of cel l A (id) a r e

as fo l lows .

1) If i < k 1 a n d j = 1, o r if i > k 4 a n d j = m, t h e n se t

A (i , j) to h + 1.

2) I f k 2 < i < k 3 a n d j = c t h e n s e t A (i , j) t o h + 2 .

3a) If A (i, j) is in s u b m a t r i x L t h e n f ix t h e v a l u e fo r

t h a t cel l b y a p p l y i n g t h e a d v e r s a r y s t r a t e g y

288

recursively to L, using the pa ramete r s e' and

h ' .

3b) If ,4 (i, j) is in submat r ix R then fix the value for

that cell by applying the adversa ry s t ra tegy

recursively to R , using the pa rame te r s e" and

h H .

4) For all o ther queries set `4 (i, j) to a low value.

Rule 1 ensures that the m a x i m a in rows 1

through k 1 - 1 are in .41 and that the m a x i m a in

r o w s k 4 + 1 through n are in A m . Rules 2 ensures

that the m a x i m a in rows k 2 + 1 through k 3 - 1 are

in .4 c. The values of cells in

`4[k I k2; c + 1 m] are all less than h',

and the values of cells in

`4[k3 k4; 1 c - 1] are all less than h".

By assumpt ion the recursively applied s t ra tegy will

result in a m a x i m u m value of at least h p in each row

of L and of at least h" in each row of R. Thus the

m a x i m a for rows k 1 through k 2 of A will all be in

subma t r ix L, and the m a x i m a for rows k 3 through

k 4 will all be in subma t r ix R. Thus, as claimed, no

externa l constraints a re placed upon the positions

of the m a x i m a within L and R, so the recursive use

of the adversa ry s t ra tegy in rules (3a) and (3b) is

valid.

Submatr ices L and R each have n[4 rows. By

assumption, at least (1 / 4) (c - 1)(I + log(n /4))

queries are needed to loca te the m a x i m a within L

and at least (1 / 4) (, , - c)(1 + log(n /4)) queries are

needed to locate the m a x i m a within R. In addition,

at the end of the first stage there are at least

(m - 1) /2 queries in .4 outside of L and R . So the

total n u m b e r of queries needed to find the m a x i m a

in A is at least

(m - 1) 1 n
+ ~- (c -- 1)(1 + log -~--) +

1 n 1
-~ (m -- c)(1 + log -~-) - ~ - (m -- 1)(1 + log n).

Also, the m a x i m u m value in each row is at least h.

[]

When A has no initial queries the conditions of

the t heo rem are obviously met for any h > 1 and e

equal to ei ther 1 or m, so we have the desired

fl(m log n) lower bound.

IV. A Linear Time Algorithm for The Maximum

Problem on Total ly Monotone Matr ices

Here we show that by making use of the strict

constraints imposed by total monotonic i ty we can

solve the m a x i m u m prob lem in linear time. For

each i, let j(i) be such that A(i, j(i)) is the m a x i m u m

element in A i. The key c o m p o n e n t of the a lgori thm

is the subrout ine REDUCE . It takes as input an

n x m total ly mono tone ma t r i x A, wi th m > n. The

value re turned by REDUCE is an n x n s u b m a t r i x

of A, C, with the p rope r ty that , for 1 _< i __. n, sub-

ma t r ix C contains co lumn A Ai). REDUCE does a

constant amoun t of work per compar ison, and does

at mos t 2 m - n - 1 comparisons, so runs in t ime

O (m) .

Say tha t an e lement A (i, j) is killed if, using the

results of any compar isons made so far and the total

monotonic i ty of A, it can be shown that A(i, j) is not

the m a x i m u m element in Ai, i.e., j ~ j(i). A column

is killed if all of its e lements are killed.

Lemma 4.1: Le t A be a total ly m o n o t o n e mat r ix . If

A (r, J l) > A (r, J2) then the entries in

|A(i, j2): 1 < i < r } are killed. On the other hand,

if A (r , A) < A(r, j2) then the entries in

{A(i, j l): r _< i < n } are killed.

Proof: The first c laim follows f rom the fact that

A [i, r ; J l , J2] is mono tone for all I < i < r . Simi-

larly, the second claim follows f rom the fact that

A [r, i ; J l , J2] is m o n o t o n e for all r < i _< n . []

289

L e t the index of C be the l a rges t k such t ha t for

all 1 < j < k a n d 1 < i < j , e l e m e n t C(i, j) is ki l led .

N o t e t ha t e v e r y m a t r i x has i n d e x a t leas t 1.

T h e a l g o r i t h m R E D U C E is as fo l lows.

RED UCE(A)

C ,~--A ; k.,--1

~ h i l e C has m o r e t h a n n c o l u m n s do

c a s e

C(k, k) > C(k, k + 1) a n d k < n:

k ~ - - k + 1.

C(k, k) > C(k, k + 1) a n d k = n:

De l e t e co lumn C k +l .

C (k , k) < C (k , k + 1):

D e l e t e c o l u m n Ck; k,~- k - 1 .

endcase

r e t u r n (C)

T h e i n v a r i a n t m a i n t a i n e d is t h a t k is the i n d e x of C.

Also , on ly k i l led c o l u m n s a r e d e l e t e d . I t is e a s y to

see tha t t he se c o n d i t i o n s ho ld . T h e i n v a r i a n t ho lds

in i t ia l ly b e c a u s e the i n d e x of C a t t he s t a r t is 1. If

C (k , k) > C (k , k + 1) t h e n b y L e m m a 4.1 all e le-

m e n t s of C k'+l in rows 1 t h r o u g h k a r e k i l led . Thus

if k < n the i n d e x of C inc reases b y 1, a n d if k = n

c o l u m n C k+l is k i l led , a n d the i n d e x of C r e m a i n s

t h e s a m e . If C(k, k) < C(k , k + 1) t h e n b y L e m m a

4.1 all e l e m e n t s of C k in c o l u m n s k t h r o u g h n a r e

k i l l ed , and s ince t he e l e m e n t s of C k in c o l u m n s 1

t h r o u g h k - 1 w e r e a l r e a d y k i l led , C k is k i l led . In

t h a t case t he i n d e x of C d e c r e a s e s b y 1.

T h e o r e m 4.2: In O(m) c o m p a r i s o n s , a l g o r i t h m RE-

D UCE r e d u c e s t he m a x i m u m p r o b l e m for a n n x m

to t a l l y m o n o t o n e m a t r i x to t h e m a x i m u m p r o b l e m

for an n x n t o t a l l y m o n o t o n e m a t r i x .

Proof : R E D U C E t e r m i n a t e s w h e n C has n c o l u m n s ,

so t he o u t p u t is an n x n s u b m a t r i x of A. T h a t C

c o n t a i n s all c o l u m n s of A t h a t h a v e a m a x i m u m

va lue for s o m e r o w of A fo l lows f r o m t h e a b o v e

d i scuss ion . F o r t h e t i m e ana lys i s , le t a, b, a n d c d e -

no t e , r e spec t i ve ly , t he n u m b e r of t imes the t h r e e

b r a n c h e s of t he case s t a t e m e n t a r e e x e c u t e d . A

c o l u m n is d e l e t e d on ly in t h e las t t w o cases , a n d

s ince a t o t a l of m - n c o l u m n s a r e d e l e t e d w e h a v e

b + c = m - n. T h e i n d e x inc reases in t he f i rs t case

a n d d e c r e a s e s in t he las t case , a n d is u n c h a n g e d in

t h e s e c o n d case. S ince the i n d e x s t a r t s a t 1 a n d ends

no h i g h e r t h a n n t he net i n c r e a s e in t he i n d e x is

a -- c < n -- 1. C o m b i n i n g these t w o fac ts , w e h a v e

t i m e t = a + b + c < a + 2b + c < 2 m - n - 1 . []

W e n o w d e s c r i b e M A X C O M P U T E , w h i c h

so lves t he m a x i m u m p r o b l e m on an n x m t o t a l l y

m o n o t o n e m a t r i x , w h e r e m >_ n.

M A X C O M P UTE(A)

B~-- R E D U C E (A)

i f n = 1 l h e n r e t u r n

C.-- B[2, 4 2Ln/2 j ; 1,2 n]

MAXCOMPUTE(C)

Using the b o u n d s d u e to t h e k n o w n pos i t ions

of t he m a x i m a in the even r o w s of B, f ind t h e

m a x i m a in t h e o d d rows of B.

T h e o r e m 4.3: W h e n n < m M A X C O M P U T E solves

t he m a x i m u m p r o b l e m on a t o t a l l y m o n o t o n e

n x m m a t r i x in t i m e O(m).

P r o o f : L e t f (n , m) be t h e t i m e t a k e n b y

M A X C O M P U T E on an n x m m a t r i x . F r o m T h e o -

r e m 4.2 w e k n o w t h a t t he ca l l to R E D U C E t a k e s

t i m e O(m) a n d t h a t b y f ind ing the m a x i m a in t h e

r o w s of t he n x n m a t r i x B w e h a v e f o u n d the

m a x i m a in t h e r o w s of A. T h e a s s i g n m e n t of t h e

e v e n r o w s of B to C is r e a l l y jus t t h e m a n i p u l a t i o n

of a list of rows , a n d c a n b e d o n e in O(n) t ime . C is

an n /2 x n t o t a l l y m o n o t o n e m a t r i x so t h e r e c u r -

s ive cal l to M A X C O M P U T E t a k e s t i m e f (n / 2 , n) .

T h e last s t ep c a n be d o n e in O(n) t ime . Thus , for

s u i t a b l e c o n s t a n t s c 1 a n d c2, t h e t i m e is

f (n , m) < cln + c2m + f(--~, n),

w h i c h has t h e so lu t i on f (n , m) < 2(c 1 + c2)n + c2m.

Since m >_ n. th is is O(m). []

290

We have also obtained tight bounds for the

max imum problem on totally monotone matrices in

the case where m < n, which we state here without

proof.

Theorem 4.4: When n > m the necessary and suffi-

cient time required to solve the max imum problem

on a totally monotone n × m mat r ix is

O(m(1 + log(n/m))) .

V. Applications of the Matrix Searching Algorithm

Lee and Preparata have shown (LP78) that the

all-nearest neighbor problem for a convex polygon

can be solved in linear time. However , they

crucially use the fact that any point in the plane can

be the nearest neighbor of at most six other points.

Like the all-farthest neighbor problem, we can also

solve the all-nearest neighbor in linear t ime without

even using this fact. Fur the rmore , we can solve the

following problem in linear time. Given two convex

polygons, for every ver tex in one polygon, find its

farthest (or its nearest) ver tex in the other polygon.

Our algorithm improves the previous best known

solution for this problem by a factor of log n .

Boyce et al. (BDDG82) have shown that given a

convex n-gon, the max imum area (or max imum

perimeter) inscribed k-gon can be found in

O(kn log n + n log2n) time. Since the diameter

problem for a convex polygon can be regarded as

finding the maximum per imeter k-gon when k = 2,

it is not surprising that our linear t ime solution for

the matr ix problem can be used to reduce the t ime

complexi ty of Boyce et al.'s algori thm to

O(kn + n log n). In particular, we can find a maxi-

mum area (or max imum per imeter) inscribed

quadrilateral in O(n log n) time. In a similar man-

ner, Aggarwal, Chang and Yap (ACY85) have

shown that the minimum area circumscribing k-gon

can be found in O(n 2 log k log n) t ime and we can

reduce the t ime complexi ty of their algorithm to

O(n 2 log k).

Finally, we discuss an application of our mat r ix

search algori thm to a wire routing problem. Con-

sider the problem of connecting n corresponding

terminals {Pi} and {Qi} with wires. The P/s are ar-

ranged in order by index along a horizontal row,

and the Qi's are also arranged in order along a lower

horizontal row. The connecting wires must be sep-

ara ted by some minimum distance, and often there

are other constraints. For example, the wires may

be constrained to lie on a rectil inear grid or may be

constrained to consist of horizontal , vertical, or 45

degree angle segments. Assume that the Qi's are

along the x axis with Q1 at the origin. Define the

offset to be the x coordinate of P1 and call the y co-

ordinate of the Pi's the separation. Given the design

rules, the separation problem is to find, for some

fixed offset, the minimum separation that permits a

legal wiring. The optimal offset problem is to find

the offset that allows the minimum separation.

Dolce et al. (DKSSU81) found a linear t ime algo-

r i thm for the minimum separation problem in the

case where the wires are constrained to lie on a

rectilinear integer grid. Seigel and Dolev (SDS1)

showea that for a very general class of design rules

the minimum separation problem can be solved in

O(n log n) time. They also obtained linear bounds

for more general constraints than those used by

Dolev et al. (DKSSU81), such as where the wires lie

on a quar ter integer grid and consist of segments at

angles that are multiples of 45 degrees. However ,

for some natural design rules, such as a wiring

scheme that permits arbi t rar i ly shaped wires, with

a minimum separation of 1 unit, Seigel and Dolev

were not able to do any bet te r than their generic

O(n log n) algorithm. The O(n log n) algori thm was

based upon a certain mat r ix being totally

monotone , so we can provide a linear t ime algo-

r i thm for all design rules in the class they defined, in

part icular for the case where the wires can have ar-

b i t rary shapes. Also, they showed that in such

schemes the optimal offset problem can always be

solved in O(n log2n) time, and we can remove one

of the log n factors in that algorithm.

291

Acknowledgements: The authors thank Ashok K.

Chandra, Don Coppersmith, S. Rao Kosaraju, Ravi

Nair, and Martin Tompa for stimulating discussions.

References

(ACY85) A. Aggarwal, J. S. Chang and C. K. Yap,

"Minimum Area Circumscribing

Polygons," Technical Report, Courant

Inst. of Math. Sciences, NYU, 1985. To

appear in The Visual Computer, 1986.

(AM83) A. Aggarwal and R. C. Melville, "Fast

Computation of the Modality of

Polygons," Proc. of the Conf. on Informa-

tion Sciences and Systems, The Johns

Hopkins University. To appear in the

Journal of Algorithms. 1986.

(ATB82) D. Avis, G. T. Toussaint and B. K.

Bhattacharya, "On the Multimodality of

Distance in Convex Polygons," Comp.

and Math. with Applications, Vol. 8, No.

2, pp. 153-156, 1982.

(BDDG82) J. E. Boyce, D. P. Dobkin, R. L.

Drysdale, and L. J. Guibas, "Finding Ex-

tremal Polygons," SIAM J. of Computing,

pp. 134-147. Vol. 14, 1985. Also appears

in the Prec. STOC 1982.

(DKSSU81) D. Dolev, K. Karplus, A. Siegel, A.

Strong, and J. D. Ullman. "Optimal wiring

between rectangles," Thirteenth Annual

ACM Symposium on the Theory of Com-

puting, pp. 312-317, 1981.

(LP78) D. T. Lee and F. P. Preparata, "The All-

Nearest Neighbor Problem for Convex

Polygons," Info. Prec. Letters, Vol. 7, No.

4, pp. 189-192, June 1978.

(LY85) D. T. Lee and Chee K. Yap, Private Com-

munication.

(MOS85) M. Mckenna, J. O'Rourke and S. Suri, "

Finding the Largest Rectangle in an

Orthogonal Polygon," Tech. Report, The

Johns Hopkins University, 1985. Also ap-

pears in the Prec. of the Allerton Confer-

ence on Control, Communications and

Computing, 1985.

(Pr77) F. P. Preparata, "Minimum Spanning Cir-

cle," in Steps in Computational Geom-

etry, F. P. Preparata Ed., University of

Illinois, Urbana, pp. 3-5, 1977.

(SD81) A. Seigel and D. Dolev, "The Separation for

General Single-Layer Wiring Barriers,"

Prec. of the CMU Conference on VLSI,

pp. 143-152, 1981.

(Sh75) M. I. Shames, "Geometric Complexity,"

Prec. 7th Annual Symposium on Theory

of Computing, pp. 224-233, May 1975.

(SH75) M. I. Shames and D. Hoey, "Closest-point

Problems," Prec. 16th Annual IEEE

Symposium of Foundations of Computer

Science, pp. 151-162, October l975.

(To82) G. T. Toussaint, "Complexity, Convexity

and Unimodality," Prec. Second World

Conf. on Mathematics, Las Palmas, Spain,

1982. Also, appears in the Journal of

Computer and Information Sciences,

1983.

(To83) G. T. Toussaint, "The Symmetric All-

Furthest Neighbor Problem," Comp. and

Math. Applications, Vol. 9, No. 6, pp.

747-754, 1983.

(TB81) G. T. Toussaint and B. K. Bhattacharya,

"On Geometric Algorithms that Use the

Furthest-Neighbor Pair of a Finite Planar

Set," Tech. Report, School of Computer

Science, McGill University, Jan. 1981.

292

