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I. Introduction 

The all-farthest neighbor problem for a set of n 

points in the plane, P, is to find for each point Pie P, 

another point pj~ P with j # i such that 

d(Pi, pj) - m a x  d(p i, Pk) 
l<_k<n 

where d(Pi, Pj) denotes the Euclidean distance be- 

tween Pi and pj. The all-nearest neighbor problem 

consists of finding the nearest point for every point 

in the set. Shamos and Hoey (SH75) have shown 

that O(n log n) is the optimal bound for the all- 

nearest neighbor problem, and Toussaint and 

Bhattacharya (TB81) as well as Preparata (Pr77) 

have shown that 0(n log n) is also an optimal bound 

for the all-farthest neighbor problem. 

The fl(n log n) bounds given in (SH76, TB81, 

Pr77) do not apply when the input set forms the 

vertices of a convex polygon (say, given in clock- 

wise order) rather than being an arbitrary set of 
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points in the plane. In fact, using some geometric 

properties of a convex polygon and the fact that any 

point can be the nearest neighbor of at most six 

other points in the plane, Lee and Preparata (LP78) 

obtained a O(n) algorithm for the all-nearest neigh- 

bor problem on a convex polygon. However, since 

a single point could be the farthest point for all 

n - 1  other points even if the points form the 

vertices of a convex polygon, the algorithm pro- 

posed by Lee and Preparata cannot be extended to 

solve the all-farthest neighbor problem in linear 

time. 

A simple polygon is unimodal if for every vertex 

Pk the function defined by the Euclidean distance 

between Pk and the remaining vertices (traversed in 

clockwise order) contains only one local maximum. 

For any m _> 1, this definition of unimodal polygons 

can be extended to m-modal polygons, in a natural 

manner. Somewhat contrary to one's intuition, 

Avis, Toussaint and Bhattacharya (ATB82) have 

provided examples of convex polygons in which 

n/2 vertices have n/4 local maxima in each of their 

distance functions. The counter intuitive fact that 

the distance functions can be multimodal has often 

resulted either in incorrect algorithms or in in- 

creased time complexities for some of them. 

Aggarwal and Melville (AM83) have shown that 

whether a convex polygon is m-modal can be deter- 
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mined in O(n x m) time and Toussaint (To82) has 

provided a very simple and intuitive algorithm for 

solving the all-farthest neighbor problem for a con- 

vex unimodal polygon in O(n) time. Here we show 

that the all-farthest neighbor problem can be solved 

for a convex polygon in O(n) time, regardless of its 

modall ty.  We use the same method to speed up se- 

veral other geometric algorithms by a factor  of 

log n. 

This paper is divided into five sections. Section 

II discusses a combinatorial  problem for matrices 

under two kinds of constraints -- a " w e a k "  con- 

straint and a "s t rong"  constraint.  We show that 

each instance of the all-farthest neighbor problem 

for convex polygons is an instance of the matr ix  

problem under the strong constraint -- and thus also 

an instance of the matr ix problem under  the weak 

constraint.  Section HI demonstrates  that there is an 

~2(m log n) lower bound for solving the problem on 

n x rn matrices subject only to the weak constraint.  

Consequently,  if one only makes w e  of the weak 

constraint in solving the all-farthest neighbor prob-  

lem (in the manner  used by researchers in the past), 

then one cannot  hope to achieve a linear time sol- 

ution. Section IV shows that the matr ix  problem 

with the strong constraint can be solved in O(m)  

time when m _> n. This yields a linear time solution 

for the all-farthest neighbor problem on convex 

polygons. Section V summarizes the improvements  

that can be obtained over previous algorithms for 

solving geometric optimization and compute r  aided 

design problems. Because of the space constraint,  

we only discuss the all-farthest neighbor problem 

here and provide the details for the other problems 

in the final version of the paper. 

II. The Matrix Problem 

Let  A be an n x m matr ix  with real entries. We 

will assume that  all entries within a row of A are 

distinct. Similarly, we assume that all distances be- 

tween pairs of vertices in the farthest  neighbor 

problem are distinct. These restrictions can be re- 

moved; we impose them to simplify the definitions 

and algorithms. Let A j denote the j - th  column of A 

and A i denote the i-th row of A. 

A [i 1 . . . . .  ik ; Jl . . . .  Jk ] denotes the submatr ix  of 

A that is formed of rows i 1 . . . . .  i k and columns 

Jl . . . . .  Jk • Given a matr ix  A, the maximum problem 

is to determine for each i, the column j ( i )  at which 

A i has its m a x i m u m  value. The matr ix  A is monotone 

if for 1 < i 1 < i 2 < n, j( i l)  < j(i2)- A is totally 

monotone if every submatr ix  of A is monotone .  It is 

easy to verify that this is equivalent to having every 

2 x 2 submatr ix  of A be monotone.  

We now show that an instance of the all-farthest 

neighbor problem on a convex polygon with n 

vertices can be regarded as an instance of the maxi-  

m u m  problem on an n x 2 n -  1 totally monotone  

matrix.  Let  Pl . . . .  ,Pn denote the vertices of a 

convex polygon in clockwise order. Define an 

n x 2n - 1 matr ix  A as follows. For  any  integer u 

let ou denote ((u - 1) mod n) + 1. If 

i < j < i + n - -  1 then A ( i , j ) = d ( P i ,  po j ) .  If j < i  

then A ( i , j ) = j - n ,  and if j _ > i + n  then 

A (i,j) = --j. (The non-positive entries are set so as 

to make  every value in a row distinct.) N o w  sup- 

pose the 2 x 2 submatr ix  A [4 J" ; k, l], with i < j and 

k < 1, has only positive entries. Then we must  have 

i < j < k < I < i + n. In this case the vertices Pi, Pj, 

P*k , and Pot  are in clockwise order a round  the 

polygon. F rom the triangle inequality one can show 

that d(Pi, P . k )  >_. d(pi, p °  1) or d(pj, Pel)  > d(pj, Pok) ,  

or both. Since the distances are distinct the above 
/ 

inequalities are strict. Thus A [i, j ; k, 1] is 

monotone.  The non-positive entries ensure that all 

other 2 x 2 submatrices of A are also monotone .  

Thus A is totally monotone ,  and by solving the 

max imum problem on A we can solve the all- 

farthest  neighbor problem for the polygon. 

IIl. An fl(m log n) Lower Bound for the Maximum 

Problem on Arbitrary Monotone Matrices 
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The m a x i m u m  problem on a mono tone  n x m 

mat r ix  A can be solved by the following s traightfor-  

ward  divide and conquer  algorithm. Let  i = I" n/2"1 

and in O(m)  t ime find the column j at which h i has 

its m a x i m u m  value. Recursively solve the max i -  

m u m  problem on the submatr ices  

A l l  . . . . .  i - -  1; 1 . . . . .  j ' ]  (when i >  1 and j >  1) 

and .4I ' i+  1 . . . . .  n ; j ,  . . . .  m ]  (when i < n  and 

j < m). The  t ime required by  this algori thm is given 

by the recur rence  

f ( n , m )  < m + m a x  I f ( r n / 2 1  - l , j )  + 

l<_/<_m f ( L n / 2 J , m - j +  1)}, 

with f (0 ,  m) = f (n , l )  = 0. Solving the recurrence,  

we have  f (n ,  m)  = O(m log n) . (All logari thms in 

this section are  base 2.) The best  previously known  

algori thms for the al l-farthest  neighbor problem on 

convex  polygons and for the problems described in 

section V all contain a step that  is essentially this 

divide and conquer  procedure.  No te  that  this algo- 

r i thm works  for a rb i t r a ry  mono tone  matrices;  the 

much  stronger  p roper ty  of total monotonic i ty  is not 

t aken  advantage  of. In this section we show that  

any  algori thm that  solves the m a x i m u m  problem 

for a rb i t ra ry  mono tone  matr ices  must  have a wors t  

case t ime of fl(m log n). So any  i m p r o v e m e n t  on the 

simple divide and conquer  algori thm for the mat r i -  

ces corresponding to the applications must  make  es- 

sential use of the fact that  these matr ices  are  total ly 

monotone .  

The  lower  bound is on the n u m b e r  of cells of the 

ma t r i x  tha t  must  be queried by  any  a lgor i thm for  

the m a x i m u m  problem on mono tone  matrices.  

Thus the bound applies even if all addit ional oper-  

ations (such as comparisons)  are free. We prove  

that  when n is a power  of 2 at least 

( 1 / 4 ) ( m -  1)(1 + Iog n) queries mus t  be made,  

f rom which it follows that  for a rb i t r a ry  n at  least 

( 1 / 4 ) ( m  - 1) log n queries are  required. The  proof  

uses an adve r sa ry  a rgument .  The value of each cell 

of the ma t r ix  is regarded as being inde termina te  

unt~ it is first queried, at which point an adversa ry  

assigns a value subject  to the condit ion that  it mus t  

be possible to position the m a x i m a  of the rows in a 

way  consistent with the values fixed so far  and the 

rnonotonici ty condition.  

Theorem 3.1: Let  A be an n x m matr ix ,  where  n is 

a power  of 2. Le t  h be a positive integer and let 

e =  1 o r m .  S e t f = m +  1 - e .  Suppose that  up to 

m a x ( m  -- 2, 0) cells have  a l ready been queried (i.e., 

have  been assigned f ixed values).  Also, suppose 

that  no cells have  been queried in A f, that  any  cells 

that  have  been queried in A e have  been set to h, and 

that  all o ther  queried cells have  been set to values 

less than  1. Then an adversa ry  can  answer  any  

queries for the remaining cells, in a way  consistent 

with the monotonic i ty  condition, so that  in order  to 

de te rmine  the positions of the m a x i m a  in each row 

a total  of at least ( 1 / 4 ) ( m  - 1)(1 + log n) cells mus t  

be queried (including those that  were  initially que- 

ried),  and so that  the m a x i m u m  value in each row 

is at  least h. 

Proof: We will assume throughout  that  rn > 2, for 

when  m = 1 the claimed lower  bound is 0 and  there 

is nothing to prove.  When we say that  the adver -  

sary sets a cell to a low value that  means  that  the 

cell is set to some previously unused positive value 

less than  1. No te  that  if m - 2  or fewer  queries 

have  been made  then  there  are at least two  columns 

with no queries, say A "il and A h.  The adversa ry  can 

answer  fu ture  queries in these columns either by  

setting all cells in A "il to h + 1 and all cells in A h to 

low values or by  setting all cells in A la to low values 

and all ceils in A N to h + 1. Ei ther  the m a x i m a  will 

all be in A jl or they  will all be in A h,  and in ei ther  

case the m a x i m u m  value in each row will be grea ter  

than h . Thus when m - 2 or fewer  queries have  

been made  the positions of the m a x i m a  have not yet 

been de termined.  

We use induction on n. 

Basis step: Suppose n < 4. By the observat ion 

above,  at least r n -  1 queries must  be made ,  and 
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w h e n  n < 4, ( 1 / 4 ) ( m  - 1)(1 + log n) < m - 1. So 

the  c l a im is t r ue  in this  case.  

c o l u m n s  of  .4 c o n t a i n  c -  1 q u e r i e d  cells ,  a n d  t h e  

last  m - c c o l u m n s  c o n t a i n  m - c q u e r i e d  cells.  

I n d u c t i o n  s tep :  Le t  n be  a p o w e r  of 2 g r e a t e r  

t han  o r  equa l  to  4 a n d  a s s u m e  tha t  t he  t h e o r e m  is 

t r ue  for  all p o w e r s  of 2 less t h a n  n. W e  s h o w  tha t  

t he  t h e o r e m  is t r u e  for  n. T h e  s e q u e n c e  of que r i e s  

is d i v i d e d  in to  t w o  s tages .  T h e  f i rs t  s t age  lasts  unt i l  

a to ta l  of m - 1 cells  h a v e  b e e n  q u e r i e d  ( i nc lud ing  

those  cells t ha t  had  been  q u e r i e d  at  t h e  s t a r t ) .  S ince  

a t  leas t  m - I que r i e s  m u s t  be  m a d e ,  w e  d o  r e a c h  

the  end  of t he  first  s tage .  A n y  q u e r y  m a d e  a f t e r  t he  

( m - l ) t h  q u e r y  is in t he  s e c o n d  s tage .  F o r  

1 < i < 3, let r~ = (in~4) + 1. T h e  rules  for  a n s w e r -  

ing a q u e r y  to  cell  A ( i , j )  d u r i n g  the  f i rs t  s t age  a r e  

as  fo l lows.  

l a )  If i < r 2 a n d  j =  1 t hen  if e = 1 set  A ( i , j )  to  h, 

o t h e r w i s e  set A (i, j )  to  h + 1. 

l b )  If i _> r 2 a n d  j =  m t h e n  if e = m s e t A ( i , j )  to  h, 

• o t h e r w i s e  set  A (i, j )  t o  h + 1. 

2) If i < r  2 a n d  j #  1 or  if i > r  2 a n d j # m ,  set  

A (i, l )  to  a low va lue .  

W h e n  the  f i rs t  s t age  ends ,  e x a c t l y  m - 1 cells of 

A h a v e  been  q u e r i e d  a n d  the  va lues  f i x e d  a r e  c o n -  

s i s t en t  w i th  all  m a x i m a  in r o w s  1 t h r o u g h  r 2 - 1 

be ing  in c o l u m n  1 a n d  all  m a x i m a  in r o w s  r 2 

t h r o u g h  n be ing  in c o l u m n  m. Q u e r i e d  cel ls  in co l -  

u m n s  2 t h r o u g h  m - 1 all  h a v e  va lues  less t h a n  1. 

A f t e r  t h e  f i rs t  s t age  is c o m p l e t e d  a c o l u m n  c a n d  

t w o  s u b m a t r i c e s  L a n d  R a r e  s e l e c t e d  as  fo l lows .  

F o r  0 _< j < m, let  sj b e  t h e  n u m b e r  of q u e r i e d  cells 

in c o l u m n s  1 t h r o u g h  j of A (s o = 0) .  L e t  c be  the  

s m a l l e s t  i n t ege r  in [ 1, m ] such  t h a t  s c = c - 1 ( t h e r e  

is such  an  in t ege r  b e c a u s e  S,n = m - 1 ). Us ing  the  

a c t  t h a t  t h e  sj's a r e  a n o n d e c r e a s i n g  s e q u e n c e  of  in-  

t ege r s  it  is e a s y  to  s h o w  b y  i n d u c t i o n  t h a t  fo r  a l l j  in 

[0, c - 1 ], sj > j .  In  p a r t i c u l a r ,  s c_ 1 > c - 1. S ince  

Sc-1 <so, w e  c o n c l u d e  t h a t  Sc-l  = sc = c -  1. 

T h e r e f o r e  A c has  no  q u e r i e d  cells ,  t h e  f i rs t  c -  1 

L e t  L be  one  of t h e  t w o  s u b m a t r i c e s  

A l l  . . . . .  r 1 --  1; 1 . . . . .  c ]  o r  

A [ r l , . . . , r  2 -  1; 1 . . . . .  c ]  , w h i c h e v e r  has  t h e  

f ewes t  q u e r i e d  cells .  L has  c c o l u m n s  a n d  a t  m o s t  

/ ( c  - l ) / 2 J  5 m a x ( c  - 2, 0)  q u e r i e d  cells.  L e t  k 1 

be  t h e  i n d e x  of t h e  r o w  of  A c o n t a i n i n g  the  f i rs t  r o w  

of L (i.e.,  k 1 is equa l  to  e i t h e r  1 o r  r l ) ,  a n d  le t  k 2 b e  

t he  i n d e x  of  t h e  r o w  of A c o n t a i n i n g  t h e  last  r o w  of  

L (i .e. ,  k 2 is equa l  to  e i t h e r  r 1 - 1 o r  r 2 - 1 ). S imi -  

l a r ly ,  let  s u b m a t r i x  R b e  e i t h e r  

A f t ,  . . . , r 3 --  1; c . . . . .  rn ]  o r  

A [ r 3 , . . . ,  n; c . . . . .  m ] , w h i c h e v e r  has  t h e  f e w e s t  

q u e r i e d  cells .  L e t  k 3 be  t h e  i n d e x  of t he  r o w  of  A 

c o n t a i n i n g  t h e  f i rs t  r o w  of  R,  a n d  let  k 4 b e  t h e  i n d e x  

of t he  r o w  of A c o n t a i n i n g  the  las t  r o w  of R.  R has  

m - c + 1 c o l u m n s  a n d  c o n t a i n s  a t  m o s t  

L (m - c ) / 2  J _< m a x ( m  - c - 1, 0)  q u e r i e d  cells .  

N o t e  t h a t  L sat is f ies  t he  c o n d i t i o n s  of  t he  t h e o -  

r e m ,  w i t h  p a r a m e t e r s  h t a n d  e t, w h e r e  e ~ = 1 a n d  

h r = h i f e =  l a n d h ' - h +  l i f e = m .  S imi l a r ly ,  R 

sat isf ies  t he  c o n d i t i o n s  of t h e  t h e o r e m ,  w i t h  p a r a m -  

e t e r s  h"  a n d  e" ,  w h e r e  e"  = m - c + 1 a n d  h"  = h if 

e = m a n d h ' = h +  l i f e =  1. In  t h e  s e c o n d  s t age  

que r i e s  of cel ls  w i t h i n  L or  R a r e  h a n d l e d  b y  

r e c u r s i v e l y  a p p l y i n g  t h e  a d v e r s a r y  s t r a t e g y  to  t h e  

t w o  s u b m a t r i c e s ,  a n d  que r i e s  to  cel ls  ou t s i de  of  L 

a n d  R a r e  a n s w e r e d  in such  a w a y  t h a t  t h e y  i m p o s e  

n o  c o n s t r a i n t s  u p o n  t h e  pos i t ions  of  t he  m a x i m a  

w i t h i n  L o r  R. 

T h e  ru les  fo r  a n s w e r i n g  a q u e r y  of  cel l  A ( id)  a r e  

as  fo l lows .  

1) If i < k 1 a n d j  = 1, o r  if i > k 4 a n d j  = m, t h e n  se t  

A ( i , j )  to  h + 1. 

2)  I f k  2 < i < k  3 a n d j = c t h e n s e t A ( i , j )  t o h + 2 .  

3a)  If  A (i, j )  is in s u b m a t r i x  L t h e n  f ix  t h e  v a l u e  fo r  

t h a t  cel l  b y  a p p l y i n g  t h e  a d v e r s a r y  s t r a t e g y  
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recursively to L, using the pa ramete r s  e' and 

h ' .  

3b) If ,4 (i, j )  is in submat r ix  R then fix the value for 

that  cell by  applying the adversa ry  s t ra tegy 

recursively to R , using the pa rame te r s  e" and 

h H . 

4) For all o ther  queries set `4 (i, j )  to a low value. 

Rule 1 ensures that  the m a x i m a  in rows 1 

through k 1 - 1 are in .41 and that  the m a x i m a  in 

r o w s k  4 +  1 through n are in A m . Rules 2 ensures 

that  the m a x i m a  in rows k 2 + 1 through k 3 - 1 are 

in .4 c. The values of cells in 

`4[k I . . . . .  k2; c + 1 . . . . .  m ]  are all less than h', 

and the values of cells in 

`4[k3 . . . . .  k4; 1 . . . . .  c -  1] are  all less than  h". 

By assumpt ion  the recursively applied s t ra tegy will 

result in a m a x i m u m  value of at least h p in each row 

of L and  of at least h" in each row of R. Thus the 

m a x i m a  for  rows k 1 through k 2 of A will all be in 

subma t r ix  L, and the m a x i m a  for rows k 3 through 

k 4 will all be  in subma t r ix  R. Thus,  as claimed, no 

externa l  constraints  a re  placed upon the positions 

of the m a x i m a  within L and R, so the recursive use 

of the adversa ry  s t ra tegy in rules (3a) and (3b) is 

valid. 

Submatr ices  L and R each have  n[4 rows.  By 

assumption,  at least ( 1 / 4 ) ( c -  1)(I  + log(n /4) )  

queries are  needed to loca te  the m a x i m a  within L 

and at least ( 1 / 4 ) ( , ,  - c)(1 + log(n /4) )  queries are  

needed to locate the m a x i m a  within R. In addition, 

at  the end of the first stage there  are  at  least 

(m - 1) /2  queries in .4 outside of L and R .  So the 

total n u m b e r  of queries needed to find the m a x i m a  

in A is at  least 

( m  - 1) 1 n 
+ ~- (c  -- 1)(1 + log -~--) + 

1 n 1 
-~ (m -- c)(1 + log -~-) - ~ - (m  -- 1)(1 + log n). 

Also, the m a x i m u m  value in each row is at  least h. 

[] 

When A has no initial queries the conditions of 

the t heo rem are  obviously met  for any  h > 1 and  e 

equal to ei ther  1 or m, so we  have  the desired 

fl(m log n) lower  bound.  

IV. A Linear Time Algorithm for The Maximum 

Problem on Total ly Monotone Matr ices  

Here  we show that  by  making  use of the strict 

constraints  imposed by  total  monotonic i ty  we can 

solve the m a x i m u m  prob lem in linear time. For  

each i, let j( i)  be  such that  A(i, j(i)) is the m a x i m u m  

element  in A i. The key  c o m p o n e n t  of the a lgori thm 

is the subrout ine  REDUCE . It  takes as input an  

n x m total ly mono tone  ma t r i x  A, wi th  m > n. The  

value re turned by  REDUCE is an n x n s u b m a t r i x  

of A, C, with the p rope r ty  that ,  for  1 _< i __. n, sub-  

ma t r ix  C contains co lumn A Ai). REDUCE does a 

constant  amoun t  of work  per compar ison,  and  does 

at  mos t  2 m -  n -  1 comparisons,  so runs in t ime 

O ( m )  . 

Say tha t  an e lement  A (i, j )  is killed if, using the 

results of any  compar isons  made  so far  and  the total  

monotonic i ty  of A, it can be shown that  A(i, j)  is not 

the m a x i m u m  element  in Ai, i.e., j ~ j(i). A column 

is killed if all of its e lements  are  killed. 

Lemma 4.1: Le t  A be a total ly m o n o t o n e  mat r ix .  If 

A (r, J l )  > A (r, J2) then  the entries in 

|A(i, j2): 1 < i < r } are  killed. On the other  hand,  

if A ( r , A )  < A(r, j2) then the entries in 

{A(i, j l ):  r _< i < n } are  killed. 

Proof: The  first c laim follows f rom the fact  that  

A [i, r ; J l ,  J2 ] is mono tone  for  all I < i < r .  Simi- 

larly, the  second claim follows f rom the fact  that  

A [r, i ; J l ,  J2 ] is m o n o t o n e  for all r < i _< n .  [ ]  
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L e t  the  index of C be  the  l a rges t  k such  t ha t  for  

all  1 < j < k a n d  1 < i < j ,  e l e m e n t  C(i, j )  is ki l led .  

N o t e  t ha t  e v e r y  m a t r i x  has  i n d e x  a t  leas t  1. 

T h e  a l g o r i t h m  R E D U C E  is as fo l lows.  

RED UCE(A) 

C ,~--A ; k.,--1 

~ h i l e  C has  m o r e  t h a n  n c o l u m n s  do 

c a s e  

C(k, k)  > C(k, k + 1) a n d  k < n: 

k ~ - - k +  1.  

C(k, k)  > C(k, k + 1) a n d  k = n: 

De l e t e  co lumn C k +l . 

C ( k , k )  < C ( k , k  + 1):  

D e l e t e  c o l u m n  Ck; k,~- k - 1 . 

endcase  

r e t u r n ( C )  

T h e  i n v a r i a n t  m a i n t a i n e d  is t h a t  k is the  i n d e x  of C. 

Also ,  on ly  k i l led  c o l u m n s  a r e  d e l e t e d .  I t  is e a s y  to  

see  tha t  t he se  c o n d i t i o n s  ho ld .  T h e  i n v a r i a n t  ho lds  

in i t ia l ly  b e c a u s e  the  i n d e x  of C a t  t he  s t a r t  is 1. If 

C ( k , k )  > C ( k , k  + 1) t h e n  b y  L e m m a  4.1 all  e le-  

m e n t s  of C k'+l in rows  1 t h r o u g h  k a r e  k i l led .  Thus  

if k < n the  i n d e x  of C inc reases  b y  1, a n d  if k = n 

c o l u m n  C k+l  is k i l led ,  a n d  the  i n d e x  of C r e m a i n s  

t h e  s a m e .  If C(k,  k)  < C(k ,  k + 1) t h e n  b y  L e m m a  

4.1 all e l e m e n t s  of C k in c o l u m n s  k t h r o u g h  n a r e  

k i l l ed ,  and  s ince  t he  e l e m e n t s  of C k in c o l u m n s  1 

t h r o u g h  k - 1 w e r e  a l r e a d y  k i l led ,  C k is k i l led .  In  

t h a t  case  t he  i n d e x  of C d e c r e a s e s  b y  1. 

T h e o r e m  4.2: In  O(m) c o m p a r i s o n s ,  a l g o r i t h m  RE- 

D UCE r e d u c e s  t he  m a x i m u m  p r o b l e m  for  a n  n x m 

to t a l l y  m o n o t o n e  m a t r i x  to  t h e  m a x i m u m  p r o b l e m  

for  an  n x n t o t a l l y  m o n o t o n e  m a t r i x .  

Proof :  R E D U C E  t e r m i n a t e s  w h e n  C has  n c o l u m n s ,  

so t he  o u t p u t  is an  n x n s u b m a t r i x  of A.  T h a t  C 

c o n t a i n s  all c o l u m n s  of  A t h a t  h a v e  a m a x i m u m  

va lue  for  s o m e  r o w  of A fo l lows  f r o m  t h e  a b o v e  

d i scuss ion .  F o r  t h e  t i m e  ana lys i s ,  le t  a,  b, a n d  c d e -  

no t e ,  r e spec t i ve ly ,  t he  n u m b e r  of t imes  the  t h r e e  

b r a n c h e s  of t he  case  s t a t e m e n t  a r e  e x e c u t e d .  A 

c o l u m n  is d e l e t e d  on ly  in t h e  las t  t w o  cases ,  a n d  

s ince  a t o t a l  of m - n c o l u m n s  a r e  d e l e t e d  w e  h a v e  

b + c = m - n. T h e  i n d e x  inc reases  in t he  f i rs t  case  

a n d  d e c r e a s e s  in t he  las t  case ,  a n d  is u n c h a n g e d  in 

t h e  s e c o n d  case.  S ince  the  i n d e x  s t a r t s  a t  1 a n d  ends  

no  h i g h e r  t h a n  n t he  net  i n c r e a s e  in t he  i n d e x  is 

a --  c < n --  1. C o m b i n i n g  these  t w o  fac ts ,  w e  h a v e  

t i m e t = a  + b + c < a  + 2b + c < 2 m - n - 1 .  [] 

W e  n o w  d e s c r i b e  M A X C O M P U T E ,  w h i c h  

so lves  t he  m a x i m u m  p r o b l e m  on an  n x m t o t a l l y  

m o n o t o n e  m a t r i x ,  w h e r e  m >_ n. 

M A X C O M  P UTE(A ) 

B~-- R E D U C E ( A )  

i f  n =  1 l h e n r e t u r n  

C.-- B[2,  4 . . . . .  2Ln/2  j ;  1,2 . . . . .  n ]  

MAXCOMPUTE( C) 

Using  the  b o u n d s  d u e  to  t h e  k n o w n  pos i t ions  

of t he  m a x i m a  in the  even  r o w s  of B,  f ind  t h e  

m a x i m a  in t h e  o d d  rows  of B. 

T h e o r e m  4.3: W h e n  n < m M A X C O M P U T E  solves  

t he  m a x i m u m  p r o b l e m  on a t o t a l l y  m o n o t o n e  

n x m m a t r i x  in t i m e  O(m).  

P r o o f :  L e t  f ( n , m )  be t h e  t i m e  t a k e n  b y  

M A X C O M P U T E  on an  n x m m a t r i x .  F r o m  T h e o -  

r e m  4.2 w e  k n o w  t h a t  t he  ca l l  to  R E D U C E  t a k e s  

t i m e  O(m) a n d  t h a t  b y  f ind ing  the  m a x i m a  in t h e  

r o w s  of t he  n x n m a t r i x  B w e  h a v e  f o u n d  the  

m a x i m a  in t h e  r o w s  of A.  T h e  a s s i g n m e n t  of t h e  

e v e n  r o w s  of B to  C is r e a l l y  jus t  t h e  m a n i p u l a t i o n  

of a list of rows ,  a n d  c a n  b e  d o n e  in O(n) t ime .  C is 

an  n /2  x n t o t a l l y  m o n o t o n e  m a t r i x  so  t h e  r e c u r -  

s ive  cal l  to  M A X C O M P U T E  t a k e s  t i m e  f ( n / 2 ,  n) . 

T h e  last  s t ep  c a n  be  d o n e  in O(n) t ime .  Thus ,  for  

s u i t a b l e  c o n s t a n t s  c 1 a n d  c2, t h e  t i m e  is 

f (n ,  m) < cln + c2m + f(--~, n), 

w h i c h  has  t h e  so lu t i on  f (n ,  m) < 2(c  1 + c2)n + c2m. 

Since  m >_ n. th is  is O(m).  [] 
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We have also obtained tight bounds for the 

max imum problem on totally monotone  matrices in 

the case where  m < n, which we state here  without  

proof. 

Theorem 4.4: When n > m the necessary and suffi- 

cient time required to solve the max imum problem 

on a totally monotone  n × m mat r ix  is 

O(m(1 + log(n/m))) . 

V. Applications of the Matrix Searching Algorithm 

Lee and Preparata  have shown (LP78) that the 

all-nearest neighbor problem for a convex  polygon 

can be solved in linear time. However ,  they 

crucially use the fact that  any point in the plane can 

be the nearest neighbor of at most six other  points. 

Like the all-farthest neighbor problem, we can also 

solve the all-nearest neighbor in linear t ime without  

even using this fact. Fur the rmore ,  we can solve the 

following problem in linear time. Given two convex  

polygons, for every  ver tex in one polygon, find its 

farthest  (or its nearest)  ver tex in the other  polygon. 

Our algorithm improves the previous best known 

solution for this problem by a factor  of log n .  

Boyce et al. (BDDG82) have shown that given a 

convex n-gon, the max imum area (or max imum 

perimeter)  inscribed k-gon can be found in 

O(kn log n + n log2n) time. Since the diameter  

problem for a convex  polygon can be regarded as 

finding the maximum per imeter  k-gon when k = 2, 

it is not surprising that  our linear t ime solution for 

the matr ix  problem can be used to reduce  the t ime 

complexi ty  of Boyce et al.'s algori thm to 

O(kn + n log n). In particular, we can find a maxi-  

mum area (or max imum per imeter)  inscribed 

quadrilateral  in O(n log n) time. In a similar man- 

ner, Aggarwal, Chang and Yap (ACY85)  have 

shown that the minimum area circumscribing k-gon 

can be found in O(n 2 log k log n) t ime and we can 

reduce the t ime complexi ty  of their algorithm to 

O(n 2 log k). 

Finally, we discuss an application of our mat r ix  

search algori thm to a wire routing problem. Con- 

sider the problem of connecting n corresponding 

terminals {Pi} and {Qi} with wires. The P/s are ar- 

ranged in order  by  index along a horizontal  row, 

and the Qi's are also arranged in order  along a lower 

horizontal  row. The connecting wires must  be sep- 

ara ted by some minimum distance, and often there  

are other  constraints.  For  example,  the wires may  

be constrained to lie on a rectil inear grid or may  be 

constrained to consist of horizontal ,  vertical, or 45 

degree angle segments. Assume that  the Qi's are 

along the x axis with Q1 at the origin. Define the 

offset to be the x coordinate  of P1 and call the y co- 

ordinate of the Pi's the separation. Given the design 

rules, the separation problem is to  find, for some 

fixed offset, the minimum separation that  permits a 

legal wiring. The optimal offset problem is to find 

the offset that  allows the minimum separation. 

Dolce et al. (DKSSU81) found a linear t ime algo- 

r i thm for the minimum separation problem in the 

case where  the wires are constrained to lie on a 

rectilinear integer grid. Seigel and Dolev (SDS1) 

showea  that  for  a very  general class of design rules 

the minimum separation problem can be solved in 

O(n log n) time. They  also obtained linear bounds 

for more  general constraints than those used by 

Dolev et al. (DKSSU81), such as where  the wires lie 

on a quar ter  integer grid and consist of segments at 

angles that  are  multiples of 45 degrees. However ,  

for  some natural  design rules, such as a wiring 

scheme that  permits arbi t rar i ly  shaped wires, with 

a minimum separation of 1 unit, Seigel and Dolev 

were  not  able to do any bet te r  than their  generic 

O(n log n) algorithm. The O(n log n) algori thm was 

based upon a certain mat r ix  being totally 

monotone ,  so we can provide a linear t ime algo- 

r i thm for all design rules in the class they defined, in 

part icular  for the case where  the wires can have ar- 

b i t rary  shapes. Also, they showed that  in such 

schemes the optimal offset problem can always be 

solved in O(n log2n) time, and we can remove  one 

of the log n factors in that algorithm. 
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