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Given any two distinct strings, there is a fiite automaton which accepti one but not the other and has a number of states 
much less than the length of either string. In the case of two strings of the same length, this considerably strengthens the best 
previously known result. 
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1. Mroduction 

In this paper we consider the question of how 
large a finite autcmaton may be necessary to 
separate two strings u and u each of length less 
than or equal to n, that is to accept one but not 
the other. This question arose in connection with 
work of H. Johnson on data compression [3] and 
has previously been studied by Goralcik and 
Koubek [l]. They established that @(log n) states 
are necessary and sufficient in the case of strings 
over a unrry alphabet or of strings of different 
lengths. They also showed that the result is inde- 
pendent of the alphabet size as soon as that size 
exceeds one. 

Thus we can limit our attention to two strings u 
and v of the same length n over the alphabet 
(0, 1 }, though for technical reasons connected with 
the definition of a “completion” of a string (Sec- 
tion 3), we actually consider the two strings U and 
V over (0, 1, # ) formed by appending the symbol 
# to u and v respectively. We use a notation such 
as u# for this operation of appending a symbol to 
a string. We denote the elements of U (V) by ui 
(Vi), i= I,..., n, U,= # (= u,,) and denote sub- 
strings as follows: ui..uj. Clearly U and V are 
exactly as easy or hard to separate as u and u. 

The main result to he proved is that U and I/ 
can be separated by a machine with 0( n2’510g3/5n) 
states. This result will be proved in Section 3. In 
Section 2 we give some definitions and prepara- 
tory results, including a simple proof that U 
and Y can be separated by a machine with O((n 
log n)‘12) states, a proof which will be modified 
to produce the main proof. 

2. A simple O((n log n)‘“) upper bound 

A concept which is of central importance is 
that of a “periodic” string. We first define this 
concept and then prove three simple lemmas. 

Definition. A string S (so..s,_l) has a period p if 
s* = s 1 

i+p for all i such that 0 < I < I - p. 

Definition. A string is “periodic” if it has a period 
not greater than half its length. 

In the sequel whenever “the” period of a string 
is mentioned, the least period is meant. 

Lemma 1. If SO (remember that this is S con- 
catenated with the symbol 0) is periodic, then S1 is 
not. 
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Proof. Assume the contrary and let pi be the 
period of Si and I the length of S. Now it is easy 
to show that s(~+~,,,)~~ PO = 1 for any integer a 
and similarly that +r+6p,)moa P1 = 0 for any integer 
b. Now choosing a and b so that ap, + bpO = 
gcd( p,,, pI) yields a contradiction. q 

Lemma 2. If S has period p and U contains two 
occurrences of S starting at ui and uj then 1 i -j 1 

2p* 

Proof. Immediate. 0 

Lemma 3. For every a < 1, ij’Ui..ui+l_l is nonperi- 
odic and 1~ na, there exists j such that 

ukw~uk+l-tz ui**ui+l-1 

for every k such that k # i but k = i (module j); 

0) 
moreover there exists a c depending only on a such 
that j may be chosen less than cn log n/l. 

Proof. By Lemma 2 the number of occurrences of 
Ui.*Ui+i-1 in U is bounded above by 2n/l. Each 
such occurrence can cause (1) to fail for less than 
(1 - a)-’ prime numbers j > n/l since n/l >, nlBa 
and 1 k - i 1 cannot have (1 - a)-l prime factors 
greater thar. ns-a . Thus there must be a j satisfy- 
ing (1) amongst the first 2n/l(l- a) primes greater 
than n/l. The conclusion follows by the prime 
number theorem (e.g. [2]). q 

We are now nearly ready to prove the simple 
uprer bound but first we need another definition. 

Definition. A machine M “finds ’ a string S on 
input S it enters an accepting state Q for the first 
time upon reading the last element of S. 

One significance of this definition is that the 
action of M on S is independent of its transition: 
from Q so that we can “compose” machines by 
identifying the Q of one machine with the start 
state of another and the composite machine will 
find the concatenation of the strings found by the 
individual machines. 

All the machines presented in tk;s paper will 
separate strings by the following technique. First 
find some prefix Uo..Ui of U with a machine M 
which does not accept Uo*.Ui. If M never enters the 
state Q on V then make M’s transition on Q be 
to always stay in Q and M already separates U 
and V. Otherwise if M first enters Q at vj, com- 
pose with M a machine which separates ui+ i.. u, 
and vj+l..vn; since these strings have different 
lengths we know that they can be separated by a 
machine with O(log n) states. 

Now comes the upper bound: 

Tht:rem 1. U and V can be separated by a machine 
with O(<y log n)‘j2) states. 

Proof. Suppose the first difference between U and 
V is Ui Z Vi. If i < (n log mp1’2 then trivially a 

Fig. 1. A 
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machine with (n log n)l12 states can find uo..ui 
and not accept uo..ui. Otherwise consider the two 
SUbStrings ~li-(n 10s ~)I/z**u~ and Ui_(n log n)l/2..Ui; by 
Lemma 1 at least one of these is not periodic; 
suppose it is in 0: Choose j for this substring 
according to Lemma 3. Mow a machine which 
locates the first occurrence of this substring start- 
ing at the appropriate position modulo j will find 
uo..ui but not accept uoc.ui. One such machine to 
do this is illustrated in Fig. 1 and has j + 
(n log n)*j2 states. This machine deals with the 
general case of finding the first occurence of a 
string B to occur starting at position k modulo j 
using j + 1 j3 1 states. It consists of two parts A 
and B where A simply counts symbols modulo j 
except that its “count = k ” state is identified with 
b. the start state of B which checks for an occur- 
rence of fl. When B finds a string y which it 
recognises as a nonprefix of B the correct succes- 
sor state is: 

I 

“(lvl+i)m~j if lyl <j,or 

the y’ successor of b. otherwise, 

where y’ is y with its first j symbols removed. 
cl 

Corollary 1. If Uj#u* then U and V can be sep- 
arated in 0(( j log j) ‘I2 + log n; states. 

Proof. Again let the first difference between U and 
V be at position i <j. The machine constructed 
as above to separate uo..ui and uo..ui will have 
O((i log i)‘j2) states and will find uo..ui. 0 

3. An improved upper bound 

The loweriug of the upper bound of Theorem 1 
stems from the observation that the submachine B 
of Fig. 1 accomplishes more than is required of it: 
it separates *the substring /3 from every other string 
except thlase of which /3 is a prefix whereas it only 
needs to separate it from those few strings which 
actually occur as substrings of U starting at the 
appropriate position modulo j. However we can- 
not hope to find uO..ui using a machine with fewer 
states than the nonperiodic substring ending at i 

as is clear from considering the nonperiodic s&g 
Qlk. These remarks motivate the following defti- 
tions. 

Definition. If a substring Si..Sj of S has a suffix 
with period p md sj-zp+l..~k+~ is the shortest 
substring of S starting at Sj_zp+i and not having 
period p, then Si..Sk+i is a “completion” Of Si*mSj 

(with respect to p); a substring is also a “comple- 
tion” of itself. 

Note that any substring of U or V which has a 
periodic suffix has a completion with respect to 
the period of that suffix because of the # con- 
catenated to u and u. 

Definition. A machine M “identifies” the prefix 
SO**Si- 1 of the string S (so..sJ with respect to the 
set of strings { tj 11 <j f m} if there exists a set IV 
of strings (wjll<j<n) and a set Q of distinct 
states ( Qj 11 <j 6 n } of M such that 

(i) input Wj causes M t0 enter Qj, 

(ii) no proper prefix of any Wj causes M to 
enter any state in Q, 

(iii) each tj has some element of W as a prefix, 
(iv) one Wj has the form so..sL for k >, i - 1. 

In other words, if given input S, .M reads at 
least the prefix before entering one of the states Q 
and knowing which Qj was first entered tells us 
exactly what symbols were read up to that point, 
on the assumption that the input provided was 
either S or some tjm In Fig. 1 submachine B could 
be replaced by any machine which identifies the 
prefix Ui_(n log n)1/2..Ui Of Ui_(n log n)VL.Un With re- 

spect to the other prefixes of U starting at con- 
gruent positions modulo j and the prefix of V 
Ui-(n log *)1/2”*Un* The states Qj would be identified 
with states of A or M as appropriate to the 
associated String Wj. 

We will prove an upper bound on the number 
of states needed to identify a string terms of the 
length of the string and the size m of the set of 
“other” strings. First we need a lemma on ma- 
chines which skip over periodic strings. 

Lemma 4. If S consists of k repetitions of a nonperi- 
o&c string s of length I, then a machine of < 2k + 1 
states can find the last element of S. 
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paoof. The machine simply needs to locate the 
first occurrence of s at the position (k - 1)1 mod- 
-ulo j for some j greater than or equal to k and 
having no factors in common with 1. There must 
be at least one such j in the range [k, k + d - I]. 
We call this machine SKIP(s, k). 0 

Theorem 2. For any posititse a the prefix SommSi-1 of 
the string 5 (s,,..s,_,#) can be identified with re- 
spect to the set ( tj#: 11 f j d m ) by a machine of 
o((im log n)‘j2 + m210g n + n”) states where n is 
the maximum of the lengths of S and the tj. 

Proof. We divide S into “parts” and associate 
with each part (regarded as a prefix of the re- 
mainder of S) a machine which identifies it with 
respect to all those tj# whose first difference from 
S lies within that part. Then the required machine 
is obtained by composing the machines for the 
parts. We define the parts iteratively. 

To obtain the “part” starting at s, (either a = 0 
01: the previous part ended at s,, 1) suppose that 
$, is the first point where any of the tj differs 
from S (excluding those that have already differed 
from S before s,). There are three cases to con- 
sider depending on the periodicity of the prefix P 
of s,..$,_l defined as P = Sb-l_((b_O) l,-,g ,,)‘/%.Sb_l. 

case A. P is not periodic. The “part” is s,.. $, 
and the machine to identify it is Constructed 
as in Section 1 to find s,..$,_1 and then switch 
on the next symbol. The number of states is 
O(((b - a) log n)‘12). 

Case B. P is periodic with period p and peri- 
odic pattern s. In this case we first find the 
smallest c such that SC+,_ 1 has period p; u&as 

c = a, sc_l*-sc+((b_a) log n)‘/2_2 is a noqxmdic 
substring of length ((6 - a) log n)*j2 and we 

locate that, again using O(((b - a) log n)‘j2) 
states. The continuation depends on p. 

Case BI. p > (i/m)‘j2. Agti the “part” is 
s,..$, and the continuation consists of SKIP(m, k) 
for k the number of occurrences of q remaining 
(k > (b - a)/p) followed by a straightforward 
machine to read the remaining <p symbols. The 
total number of states 

0 ((b- a) log n)1’2 + 

Case B2. p < (i/m)‘12. Here the “part” is the 
completion of s,+, with respect to p. Suppose 
that X of the tj differ from S for the first time 
within this part and that the numbers of repe- 
titions of q are 7 (0 < i < X) for S and these tj. 
First we choose a number q such that no Ti z 5 
(modulo 4) unless Ti = 5. We can choose such a q 
which is 0( X210g n + na) since each ri - 5 ’ must 
have fewer than a-’ prime factors greater than 
na. Now we construct a machine which counts 
occurrences of w modulo q with a check whenever 
the count is Ti for any i to confirm that the next p 
symbols actually are w or otherwise to enter an 
appropriate state Qj. Tithe modular counting pro- 
cess is accomplished by X + 2 SIUP(lr, (7 - q_1 
- 1) mod q) machines (assuming that the Ti are 
sorted modulo q, that r_ 1 = 0 and that 7x+1 = q 
+ 1). This machine is illustrated in Fig. 2. The 
number of states is 

X+1 

0 c (T-5-1 ) mod q+(X+2)p 
i=O 

=wq+xP) 

= 0( X210g n + n” + X(i/m)“2). 

Q Q . . . . Q 

Fig. 2. Counting occurrences of Q modulo q. 
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Now we sum the states over the machines for 
all the parts. 

Cases A and BI. For each part the number of 
states is 

0 ((b-a) log n)1’2+ 

The number of parts is at most m and the sum 
over all of them of (b - a) is at most i. The sum 
of (b - a)li2 will be maximised when there are 
exactly m equal values of (b - a). Thus the total 
number of states from these two cases is 

0 log1j2n m (i/m)“2 + 
( WA 

’ 1,2 
1 

= O((im log n)1’2). 

Case B2. For each part the number of states is 
0( X210g n + na + X(i/m)‘i2). X must be at least 
1 and the sum of the X over all these parts is at 
most m. This gives a total number of states of: 

0( m’log n + n” + m(i/m)‘/2) 

= < ( m210g n + na + ( im)1’2). 

Addiig the two bounds gives the result. 0 

Corollary 2. If the conditions of Theorem 2 are 
satisfied and also all except M of the strings tj# 
differ from S within their first i’ symbols, then the 
bound in Theorem 2 can be replaced by 
O((iM log n)‘i2 + M210g n + n” + i’). 

Proof. Ux a machine which has i’ states to check 
that its first i’ input symbols are those of S and 
then behaves like the machine given by Theorem 2 
for the remaining M strings (or more precisely for 
their suffixes after removing the first i’ symbols.) 
0 

Now we are ready to prove the main theorem. 

Theorem 3. Two distinct strings u and v of length n 
can be separated by a finite automaton with 0(n2j5 
log3/5n) states. 

Proof. We intend to use Corollary 2 with i, i’ and 
M respectively equal to n3/510g2’5n, n2j510g315n 

and (n/log n)li5. We could do this if we could 
find a substring S of U or V whose length was 
n3j510g2j5n, which was not periodic and whose 
prefix of length n 2’510g3’5n was also not periodic. 
Such a substring does not necessarily exist but if 
we relax the condition on the length and periodic- 
ity of S to allow any length in the range 
En 3’510g 2/5n, 2n3/510g2/5 n] while still allowhg any 
period greater than $z3/510g2’5n then we can 
always find an S except in one simple case where 
u and v are easily separated. We proceed as 
follows. First choose the nonperiodic substring S’ 
of length n 3’510g2/5n ending at the point i where 
U and V first differ and as in Theorem 1 assume 
that this is in U. If the prefix of S’ of the required 
length is nonperiodic then S’ is the desired S. 
Otherwise work back from the start of S’ until the 
periodicity of the prefix is broken; if this never 
happens then U and V are easy to separate so 
assume that it does happen at uk. If i - k < 
2n3’510g2/5n then Uk..Ui is the desired S; other- 

. 
mse uk..uk+p10g2/5,, is (note that in the latter 
case the nonperiodicity of S is guaranteed by 
Lemma l’s mirror image). 0 

Next we show that this substring S or a com- 
pletion of it can be found using the number of 
states asserted in the conclusion of the theorem. 
We choose an integer j obeying two conditions: 
firstly, as in the proof of Theorem 1, the chosen 
substring (in this case S) never occurs earlier in V 
at a position congruent modulo j to the real 
position; and secondly the prefix of S of length 
n2/510g3/5 n occurs in such positions at most 
(n/log n)1/5 times. We claim that we can choose 
a j satisfying these two conditions such that j = 
O(n2’510g3/5n). The reason is the limit on the 
periodicity of the string and the prefix; the string 

can occur at most 2(n/log n)2’5 times in U and 
the prefix at most 2(n/log n)3/5 times; each oc- 
currence of the string can rule out up to 2 primes 
j greater than n1j3 whereas it takes (n/log n)‘15 
occurrences of the prefix to rule out one prime 
and each occurrence can affect only 2 primes 
greater than n *I3 Thus there is a suitable j in the . 

first 4(n/log n)2/5 primes greater than n113. 
Now we use the same idea as illustrated in Fig. 

1. The machine A counts modulo j and whenever 
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it finds a count congruent to the start ,of S it starts 
machine B but now B is the machine guaranteed 
by Corollary 2 to identify the suffix of U starting 
with S with respect to all the earlier suffixes of U 
or Y starting at the congruent positions (including 
the suffix of V starting at the same position as S 
does in U). Each of the states Q of B associated 
with a string w (apart from the one actually 
reached when starting at S) is identified with a 
state of A or B as specified in the comments on 
Fig. 1. 

Finally, having found the end of S or of some 
completion of S, there are three possible conclu- 
sions: 

(i) if this is at the end of S’ we are already 
finished because this machine finds a prefix of U 
but does not accept the prefix of V of the same 
length; 

(ii) if it is after the end of S’ then this must be 
because some periodic pattern at the end of S’ 
continued in U but not in V and this machine 
would have entered one of its Q states at that 
point in Y giving us a machine which finds a 
prefix of Y but does not accept the corresponding 
prefix of U; 

(iii) otherwise this machine finds a point within 
a periodic pattern of period < n2/510g3’5, which 
continues to within S’ and is broken there; com- 
pose a machine to read until the first break in this 
periodic pattern reaching a position k within S’ 

and then compose a machine to separate the suf- 
fixes u&+~..u, and uk++, according to COrOlhiry 
1. In each case we obtain a machine which sep- 
arates U and V in O(n2/510g3’5n) states. 

The upper bound on the number of states re- 
quired by a finite automaton separatng two n-ele- 
ment strings has been substantially reduced from 
o(n) [l] to 0(122/510g3/5 n) but there is still a large 
gap between this upper bound and the known 
lower bound of &log n). Ch. Choffrut conjec- 
tures (in a private communication) that the upper 
bound can be reduced to O(nc) for any positive 4, 
a conjecture which this author regards as unlikely 
to be provable by the methods developed here. 
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