
Information Processing Letters 30 (1989) 209-214
North-Holland

27 February 1989

SEPARATING STRIJNGS WITH SMALL AUTOMATA

J.M. ROBSON
Computer Science Department, Australian National University, G.P.O. Box 4, Canberrq A.C.T. 2601, Australia

Communicated by P.C. Poole
Received 15 July 1988

Given any two distinct strings, there is a fiite automaton which accepti one but not the other and has a number of states
much less than the length of either string. In the case of two strings of the same length, this considerably strengthens the best
previously known result.

Keywwuk Finite automaton, separating strings, rational function

1. Mroduction

In this paper we consider the question of how
large a finite autcmaton may be necessary to
separate two strings u and u each of length less
than or equal to n, that is to accept one but not
the other. This question arose in connection with
work of H. Johnson on data compression [3] and
has previously been studied by Goralcik and
Koubek [l]. They established that @(log n) states
are necessary and sufficient in the case of strings
over a unrry alphabet or of strings of different
lengths. They also showed that the result is inde-
pendent of the alphabet size as soon as that size
exceeds one.

Thus we can limit our attention to two strings u
and v of the same length n over the alphabet
(0, 1 }, though for technical reasons connected with
the definition of a “completion” of a string (Sec-
tion 3), we actually consider the two strings U and
V over (0, 1, #) formed by appending the symbol
to u and v respectively. We use a notation such
as u# for this operation of appending a symbol to
a string. We denote the elements of U (V) by ui
(Vi), i= I,..., n, U,= # (= u,,) and denote sub-
strings as follows: ui..uj. Clearly U and V are
exactly as easy or hard to separate as u and u.

The main result to he proved is that U and I/
can be separated by a machine with 0(n2’510g3/5n)
states. This result will be proved in Section 3. In
Section 2 we give some definitions and prepara-
tory results, including a simple proof that U
and Y can be separated by a machine with O((n
log n)‘12) states, a proof which will be modified
to produce the main proof.

2. A simple O((n log n)‘“) upper bound

A concept which is of central importance is
that of a “periodic” string. We first define this
concept and then prove three simple lemmas.

Definition. A string S (so..s,_l) has a period p if
s* = s 1

i+p for all i such that 0 < I < I - p.

Definition. A string is “periodic” if it has a period
not greater than half its length.

In the sequel whenever “the” period of a string
is mentioned, the least period is meant.

Lemma 1. If SO (remember that this is S con-
catenated with the symbol 0) is periodic, then S1 is
not.

0020-0190/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland) 209

Volume 30. Number 4 IiiFORMATION PROCESSING LETTERS 27 February 1989

Proof. Assume the contrary and let pi be the
period of Si and I the length of S. Now it is easy
to show that s(~+~,,,)~~ PO = 1 for any integer a
and similarly that +r+6p,)moa P1 = 0 for any integer
b. Now choosing a and b so that ap, + bpO =
gcd(p,,, pI) yields a contradiction. q

Lemma 2. If S has period p and U contains two
occurrences of S starting at ui and uj then 1 i -j 1

2p*

Proof. Immediate. 0

Lemma 3. For every a < 1, ij’Ui..ui+l_l is nonperi-
odic and 1~ na, there exists j such that

ukw~uk+l-tz ui**ui+l-1

for every k such that k # i but k = i (module j);

0)
moreover there exists a c depending only on a such
that j may be chosen less than cn log n/l.

Proof. By Lemma 2 the number of occurrences of
Ui.*Ui+i-1 in U is bounded above by 2n/l. Each
such occurrence can cause (1) to fail for less than
(1 - a)-’ prime numbers j > n/l since n/l >, nlBa
and 1 k - i 1 cannot have (1 - a)-l prime factors
greater thar. ns-a . Thus there must be a j satisfy-
ing (1) amongst the first 2n/l(l- a) primes greater
than n/l. The conclusion follows by the prime
number theorem (e.g. [2]). q

We are now nearly ready to prove the simple
uprer bound but first we need another definition.

Definition. A machine M “finds ’ a string S on
input S it enters an accepting state Q for the first
time upon reading the last element of S.

One significance of this definition is that the
action of M on S is independent of its transition:
from Q so that we can “compose” machines by
identifying the Q of one machine with the start
state of another and the composite machine will
find the concatenation of the strings found by the
individual machines.

All the machines presented in tk;s paper will
separate strings by the following technique. First
find some prefix Uo..Ui of U with a machine M
which does not accept Uo*.Ui. If M never enters the
state Q on V then make M’s transition on Q be
to always stay in Q and M already separates U
and V. Otherwise if M first enters Q at vj, com-
pose with M a machine which separates ui+ i.. u,
and vj+l..vn; since these strings have different
lengths we know that they can be separated by a
machine with O(log n) states.

Now comes the upper bound:

Tht:rem 1. U and V can be separated by a machine
with O(<y log n)‘j2) states.

Proof. Suppose the first difference between U and
V is Ui Z Vi. If i < (n log mp1’2 then trivially a

Fig. 1. A

210

Q bs

AC
machine to find the first occurenc: of /3 starting at k modulo j, exemplified by the case fl = 011001 , k=l, j=3.

Volume 30, Number 4 INFORMATION PROCESSING EEmERS 27 February 1989

machine with (n log n)l12 states can find uo..ui
and not accept uo..ui. Otherwise consider the two
SUbStrings ~li-(n 10s ~)I/z**u~ and Ui_(n log n)l/2..Ui; by
Lemma 1 at least one of these is not periodic;
suppose it is in 0: Choose j for this substring
according to Lemma 3. Mow a machine which
locates the first occurrence of this substring start-
ing at the appropriate position modulo j will find
uo..ui but not accept uoc.ui. One such machine to
do this is illustrated in Fig. 1 and has j +
(n log n)*j2 states. This machine deals with the
general case of finding the first occurence of a
string B to occur starting at position k modulo j
using j + 1 j3 1 states. It consists of two parts A
and B where A simply counts symbols modulo j
except that its “count = k ” state is identified with
b. the start state of B which checks for an occur-
rence of fl. When B finds a string y which it
recognises as a nonprefix of B the correct succes-
sor state is:

I

“(lvl+i)m~j if lyl <j,or

the y’ successor of b. otherwise,

where y’ is y with its first j symbols removed.
cl

Corollary 1. If Uj#u* then U and V can be sep-
arated in 0((j log j) ‘I2 + log n; states.

Proof. Again let the first difference between U and
V be at position i <j. The machine constructed
as above to separate uo..ui and uo..ui will have
O((i log i)‘j2) states and will find uo..ui. 0

3. An improved upper bound

The loweriug of the upper bound of Theorem 1
stems from the observation that the submachine B
of Fig. 1 accomplishes more than is required of it:
it separates *the substring /3 from every other string
except thlase of which /3 is a prefix whereas it only
needs to separate it from those few strings which
actually occur as substrings of U starting at the
appropriate position modulo j. However we can-
not hope to find uO..ui using a machine with fewer
states than the nonperiodic substring ending at i

as is clear from considering the nonperiodic s&g
Qlk. These remarks motivate the following defti-
tions.

Definition. If a substring Si..Sj of S has a suffix
with period p md sj-zp+l..~k+~ is the shortest
substring of S starting at Sj_zp+i and not having
period p, then Si..Sk+i is a “completion” Of Si*mSj

(with respect to p); a substring is also a “comple-
tion” of itself.

Note that any substring of U or V which has a
periodic suffix has a completion with respect to
the period of that suffix because of the # con-
catenated to u and u.

Definition. A machine M “identifies” the prefix
SO**Si- 1 of the string S (so..sJ with respect to the
set of strings { tj 11 <j f m} if there exists a set IV
of strings (wjll<j<n) and a set Q of distinct
states (Qj 11 <j 6 n } of M such that

(i) input Wj causes M t0 enter Qj,

(ii) no proper prefix of any Wj causes M to
enter any state in Q,

(iii) each tj has some element of W as a prefix,
(iv) one Wj has the form so..sL for k >, i - 1.

In other words, if given input S, .M reads at
least the prefix before entering one of the states Q
and knowing which Qj was first entered tells us
exactly what symbols were read up to that point,
on the assumption that the input provided was
either S or some tjm In Fig. 1 submachine B could
be replaced by any machine which identifies the
prefix Ui_(n log n)1/2..Ui Of Ui_(n log n)VL.Un With re-

spect to the other prefixes of U starting at con-
gruent positions modulo j and the prefix of V
Ui-(n log *)1/2”*Un* The states Qj would be identified
with states of A or M as appropriate to the
associated String Wj.

We will prove an upper bound on the number
of states needed to identify a string terms of the
length of the string and the size m of the set of
“other” strings. First we need a lemma on ma-
chines which skip over periodic strings.

Lemma 4. If S consists of k repetitions of a nonperi-
o&c string s of length I, then a machine of < 2k + 1
states can find the last element of S.

211

Volume 30, Number 4 INFORMATION PROCESSING LETI’ERS 27 February 1989

paoof. The machine simply needs to locate the
first occurrence of s at the position (k - 1)1 mod-
-ulo j for some j greater than or equal to k and
having no factors in common with 1. There must
be at least one such j in the range [k, k + d - I].
We call this machine SKIP(s, k). 0

Theorem 2. For any posititse a the prefix SommSi-1 of
the string 5 (s,,..s,_,#) can be identified with re-
spect to the set (tj#: 11 f j d m) by a machine of
o((im log n)‘j2 + m210g n + n”) states where n is
the maximum of the lengths of S and the tj.

Proof. We divide S into “parts” and associate
with each part (regarded as a prefix of the re-
mainder of S) a machine which identifies it with
respect to all those tj# whose first difference from
S lies within that part. Then the required machine
is obtained by composing the machines for the
parts. We define the parts iteratively.

To obtain the “part” starting at s, (either a = 0
01: the previous part ended at s,, 1) suppose that
$, is the first point where any of the tj differs
from S (excluding those that have already differed
from S before s,). There are three cases to con-
sider depending on the periodicity of the prefix P
of s,..$,_l defined as P = Sb-l_((b_O) l,-,g ,,)‘/%.Sb_l.

case A. P is not periodic. The “part” is s,.. $,
and the machine to identify it is Constructed
as in Section 1 to find s,..$,_1 and then switch
on the next symbol. The number of states is
O(((b - a) log n)‘12).

Case B. P is periodic with period p and peri-
odic pattern s. In this case we first find the
smallest c such that SC+,_ 1 has period p; u&as

c = a, sc_l*-sc+((b_a) log n)‘/2_2 is a noqxmdic
substring of length ((6 - a) log n)*j2 and we

locate that, again using O(((b - a) log n)‘j2)
states. The continuation depends on p.

Case BI. p > (i/m)‘j2. Agti the “part” is
s,..$, and the continuation consists of SKIP(m, k)
for k the number of occurrences of q remaining
(k > (b - a)/p) followed by a straightforward
machine to read the remaining <p symbols. The
total number of states

0 ((b- a) log n)1’2 +

Case B2. p < (i/m)‘12. Here the “part” is the
completion of s,+, with respect to p. Suppose
that X of the tj differ from S for the first time
within this part and that the numbers of repe-
titions of q are 7 (0 < i < X) for S and these tj.
First we choose a number q such that no Ti z 5
(modulo 4) unless Ti = 5. We can choose such a q
which is 0(X210g n + na) since each ri - 5 ’ must
have fewer than a-’ prime factors greater than
na. Now we construct a machine which counts
occurrences of w modulo q with a check whenever
the count is Ti for any i to confirm that the next p
symbols actually are w or otherwise to enter an
appropriate state Qj. Tithe modular counting pro-
cess is accomplished by X + 2 SIUP(lr, (7 - q_1
- 1) mod q) machines (assuming that the Ti are
sorted modulo q, that r_ 1 = 0 and that 7x+1 = q
+ 1). This machine is illustrated in Fig. 2. The
number of states is

X+1

0 c (T-5-1) mod q+(X+2)p
i=O

=wq+xP)

= 0(X210g n + n” + X(i/m)“2).

Q Q Q

Fig. 2. Counting occurrences of Q modulo q.

212

Volume 30, Number 4 INFORMATION PROCESSING LETTERS 27 February I989

Now we sum the states over the machines for
all the parts.

Cases A and BI. For each part the number of
states is

0 ((b-a) log n)1’2+

The number of parts is at most m and the sum
over all of them of (b - a) is at most i. The sum
of (b - a)li2 will be maximised when there are
exactly m equal values of (b - a). Thus the total
number of states from these two cases is

0 log1j2n m (i/m)“2 +
(WA

’ 1,2
1

= O((im log n)1’2).

Case B2. For each part the number of states is
0(X210g n + na + X(i/m)‘i2). X must be at least
1 and the sum of the X over all these parts is at
most m. This gives a total number of states of:

0(m’log n + n” + m(i/m)‘/2)

= < (m210g n + na + (im)1’2).

Addiig the two bounds gives the result. 0

Corollary 2. If the conditions of Theorem 2 are
satisfied and also all except M of the strings tj#
differ from S within their first i’ symbols, then the
bound in Theorem 2 can be replaced by
O((iM log n)‘i2 + M210g n + n” + i’).

Proof. Ux a machine which has i’ states to check
that its first i’ input symbols are those of S and
then behaves like the machine given by Theorem 2
for the remaining M strings (or more precisely for
their suffixes after removing the first i’ symbols.)
0

Now we are ready to prove the main theorem.

Theorem 3. Two distinct strings u and v of length n
can be separated by a finite automaton with 0(n2j5
log3/5n) states.

Proof. We intend to use Corollary 2 with i, i’ and
M respectively equal to n3/510g2’5n, n2j510g315n

and (n/log n)li5. We could do this if we could
find a substring S of U or V whose length was
n3j510g2j5n, which was not periodic and whose
prefix of length n 2’510g3’5n was also not periodic.
Such a substring does not necessarily exist but if
we relax the condition on the length and periodic-
ity of S to allow any length in the range
En 3’510g 2/5n, 2n3/510g2/5 n] while still allowhg any
period greater than $z3/510g2’5n then we can
always find an S except in one simple case where
u and v are easily separated. We proceed as
follows. First choose the nonperiodic substring S’
of length n 3’510g2/5n ending at the point i where
U and V first differ and as in Theorem 1 assume
that this is in U. If the prefix of S’ of the required
length is nonperiodic then S’ is the desired S.
Otherwise work back from the start of S’ until the
periodicity of the prefix is broken; if this never
happens then U and V are easy to separate so
assume that it does happen at uk. If i - k <
2n3’510g2/5n then Uk..Ui is the desired S; other-

.
mse uk..uk+p10g2/5,, is (note that in the latter
case the nonperiodicity of S is guaranteed by
Lemma l’s mirror image). 0

Next we show that this substring S or a com-
pletion of it can be found using the number of
states asserted in the conclusion of the theorem.
We choose an integer j obeying two conditions:
firstly, as in the proof of Theorem 1, the chosen
substring (in this case S) never occurs earlier in V
at a position congruent modulo j to the real
position; and secondly the prefix of S of length
n2/510g3/5 n occurs in such positions at most
(n/log n)1/5 times. We claim that we can choose
a j satisfying these two conditions such that j =
O(n2’510g3/5n). The reason is the limit on the
periodicity of the string and the prefix; the string

can occur at most 2(n/log n)2’5 times in U and
the prefix at most 2(n/log n)3/5 times; each oc-
currence of the string can rule out up to 2 primes
j greater than n1j3 whereas it takes (n/log n)‘15
occurrences of the prefix to rule out one prime
and each occurrence can affect only 2 primes
greater than n *I3 Thus there is a suitable j in the .

first 4(n/log n)2/5 primes greater than n113.
Now we use the same idea as illustrated in Fig.

1. The machine A counts modulo j and whenever

213

Volume 30, Number 4 INFORMATION PROCESSING LETTERS 27 February 1989

it finds a count congruent to the start ,of S it starts
machine B but now B is the machine guaranteed
by Corollary 2 to identify the suffix of U starting
with S with respect to all the earlier suffixes of U
or Y starting at the congruent positions (including
the suffix of V starting at the same position as S
does in U). Each of the states Q of B associated
with a string w (apart from the one actually
reached when starting at S) is identified with a
state of A or B as specified in the comments on
Fig. 1.

Finally, having found the end of S or of some
completion of S, there are three possible conclu-
sions:

(i) if this is at the end of S’ we are already
finished because this machine finds a prefix of U
but does not accept the prefix of V of the same
length;

(ii) if it is after the end of S’ then this must be
because some periodic pattern at the end of S’
continued in U but not in V and this machine
would have entered one of its Q states at that
point in Y giving us a machine which finds a
prefix of Y but does not accept the corresponding
prefix of U;

(iii) otherwise this machine finds a point within
a periodic pattern of period < n2/510g3’5, which
continues to within S’ and is broken there; com-
pose a machine to read until the first break in this
periodic pattern reaching a position k within S’

and then compose a machine to separate the suf-
fixes u&+~..u, and uk++, according to COrOlhiry
1. In each case we obtain a machine which sep-
arates U and V in O(n2/510g3’5n) states.

The upper bound on the number of states re-
quired by a finite automaton separatng two n-ele-
ment strings has been substantially reduced from
o(n) [l] to 0(122/510g3/5 n) but there is still a large
gap between this upper bound and the known
lower bound of &log n). Ch. Choffrut conjec-
tures (in a private communication) that the upper
bound can be reduced to O(nc) for any positive 4,
a conjecture which this author regards as unlikely
to be provable by the methods developed here.

References

PI

PI

PI

P. Goralcik and V. Koubek, On discerning words by au-
tomata, 13th Internat. Colloquium on Automate Languages
and Programming, Lecture Notes Comput. Sci. 226
(Springer, Berlin, 1986) 116-122.
M.N. Huxley, The Distribution of Prime Numbers (Oxford,
1972).
J.H. Johnson, Rational equivalence relations, 13th Interna-
tional Colloquium on Automata, Languages and Program-
ming, Lecture Notes Comput. !3ci. 226 (Springer, Berlin,
1986) 167-176.

214

