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Abstract

This thesis presents and analyzes a simple principle for building systems: that there should be

a random component in all arbitrary decisions. If no randomness is used, system performance can

vary widely and unpredictably due to small changes in the system workload or configuration. This

makes measurements hard to reproduce and less meaningful as predictors of performance that

could be expected in similar situations.

To measure the sensitivity of non-randomized systems to slight configuration changes, we

measured the variation in performance of both TCP/IP and workstation memory systems as a

result of “small” configuration perturbations. By “small,” we mean within the range over which

things may change unintentionally due to other modifications being evaluated, or within the range

of accuracy that an independent researcher could reasonably achieve.

For TCP/IP, changes of a few percent in link propagation delays and other parameters caused

order of magnitude shifts in bandwidth allocation between competing connections. For memory

systems, changes in the essentially arbitrary order in which functions were arranged in memory

caused changes in runtime of tens of percent for single benchmarks, and of a few percent when

averaged across a suite of benchmarks. In both applications the measured variability is larger than

performance increases often reported for new improved designs, suggesting that many published

measurements of the benefits of new schemes may be erroneous or at least irreproducible.

To make TCP/IP and memory systems measurable enough to make benchmark results

meaningful and convincing, randomness must be added. Methods for adding randomness to

conventional program linkers, to linkers which try to optimize memory system performance by
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avoiding cache conflicts, and to TCP/IP are presented and analyzed. In all of the systems, various

amounts of randomness can be added in many different places. We show how to choose

reasonable amounts of randomness based on measuring configuration sensitivity, and propose

specific recipes for randomizing TCP/IP and memory systems. Substantial reductions in the

configuration sensitivity are demonstrated, making measurements much more robust and

meaningful. The accuracy of the results increases with the number of runs and thus is limited only

by the available computing resources.

When the overall performance of a system is strongly influenced by the worst case behavior,

reducing the sensitivity of the system can also make it perform better. Using average waiting time

as a metric, TCP/IP performance is shown to improve significantly when randomization is added

to the sending host’s congestion window calculations. Although the improvements are less than

those achieved by previously proposed schemes using randomized packet discard algorithms

inside the network, the proposed modifications can be implemented entirely in the sending host

and so can be deployed more easily.
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Chapter 1
Introduction

Arbitrary decisions should be made randomly. Applying this simple, fundamental

principle when designing systems makes performance measurements more robust and

reproducible, and can result in improved overall performance.

Of course, some decisions are more arbitrary than others. Randomizing completely

arbitrary decisions is straightforward: just choose randomly among the alternatives.

Decisions for which there exists some basis for preferring one alternative over another

should have some randomness added so that preferred alternatives are chosen with higher

probability, but not to the complete exclusion of other good alternatives. For instance, if a

heuristic function estimates an approximate cost of 1000 for alternative A and 1001 for

alternative B, A should be chosen with slightly higher probability than B. The probability

should be based on the difference in cost relative to the accuracy of the approximation.

Making it possible to make robust and reproducible performance measurements is not

merely of academic interest. When building a system of any complexity there are design

trade-offs which affect system performance and that cannot be made on a purely

theoretical basis. The only way to maximize system performance is through tuning:

iteratively trying different design alternatives and choosing the one that performs best.

When performance is highly sensitive to aspects of the system which can change

unintentionally due to some other modification being evaluated, performance results will
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be misleading, wrong choices will be made, and the system will not perform as well as it

could. Thus, the accuracy with which performance can be measured is as important as

high performance itself.

When arbitrary decisions are made deterministically based on small-scale properties

of the system, the overall performance of the system is likely to be highly sensitive to

slight changes in configuration, initial conditions, or the results of internal computations

of the system itself. For such a system, the graph of performance as a function of one or

more of its configuration parameters looks jagged, and a measurement with any given set

of configuration parameters may not be representative. If past decisions can affect future

decisions, the system may be chaotic, meaning that an arbitrarily small change in initial

conditions can cause an arbitrarily large change in the behavior of the system.

Highly sensitive deterministic systems have two disadvantages. First, it is hard to

make robust and reproducible measurements of them. These terms will be described

formally below, but intuitively, if the system performs radically better or worse due to

small changes in some aspect of the system, then any single measurement is a poor

predictor of the performance that could be expected in general.

The second disadvantage of highly sensitive deterministic systems is that they are

likely to fall into behavior patterns which repeat regularly on the small scale and result in

poor overall performance on the large scale. For example, a memoryless resource allocator

must decide to grant its resource to one user or another based only on the current set of

requests. If there is no random input to its decision making process, it may persistently

favor some users and starve others, resulting in poor overall performance.
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To avoid extreme sensitivity, arbitrary decisions should be randomized. When

randomness is added to highly sensitive systems and performance is reported as the

distribution across a large number of individual measurements, we show that performance

does not change radically with small changes in the initial conditions.

The following hypothetical example illustrates how extreme sensitivity leads to

misleading results and incorrect design decisions. Consider the problem of deciding

whether or not a particular compiler optimization improves performance (i.e. reduces the

runtime of the compiled program.) Suppose that the optimization eliminates some

redundant instructions, thereby reducing the number of instruction execution cycles by

2%. The eliminated instructions reduce the sizes of some procedures, and (as will be

shown in detail in chapter 4,) cache effects cause runtime to be highly sensitive to

procedure sizes. Although in general the optimization would be expected to reduce

memory system costs, suppose that changing cache conflicts cause it to increase memory

system costs by 10% on the particular benchmark being used by the compiler developer.

Thus a measurement would show an 8% performance decrease leading to a decision not to

include the optimization in the compiler. Note that if another optimization is added which

also affects procedure sizes, the memory system effects might be quite different.

Adding randomness to a system destroys the property that with identical initial

conditions, two runs of the system should give identical behavior. This can be a

disadvantage in some applications, and must be weighed against the benefit of better

performance measurements.
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1.1 Meaningful Measurements

The essence of a meaningful performance measurement is its ability to predict the

performance of similar systems. A common result of a research paper is of the form, “We

took system X and modified it to create system Y and on the set of tests we ran, Y

performed Z% better.” Assuming a system of sufficient complexity that the conditions

cannot be reproduced exactly, this result is of practical use only if it implies a likelihood

that system Y would perform better under most similar sets of conditions. Measurements

of highly sensitive systems can be misleading, because any particular choice of input or

configuration parameters may lead to measurements which are quite different from the

performance which can be expected of very similar systems.

More technically, a meaningful measurement of system performance should be:

• Robust. Small changes in configuration or initial conditions should not cause drastic

changes in results. Small unintentional changes to some part of the system as a result

of an intentional change to another part of the system should not affect performance

very much.

• Reproducible. An independent researcher should be able to build a similar system (to

the level of detail reported in a good conference paper) which performs similarly.

• Predictive. Qualitative performance comparisons should continue to hold for systems

built along similar principles.

There are two ways to get the above properties, both of which are used in this thesis. If

the system is not highly sensitive (perhaps because of randomization,) then a single

measurement is robust, reproducible, and predictive. If the system is highly sensitive, then
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no single measurement can accurately represent its performance, and performance must be

reported as a distribution in order to be meaningful. The distribution of performance

measurements across a large number of perturbed configurations is reproducible and

predictive, and the median of the distribution may be fairly robust.

1.2 Thesis Contributions

This thesis presents studies of congestion control algorithms and of computer memory

systems to show that the performance of these kinds of systems is extremely sensitive to

factors that cannot be effectively controlled, and therefore that performance results may

not be very robust or reproducible. Various mechanisms underlying this effect are

explored, and a metric is proposed to quantify the meaningfulness of performance results.

Then, new techniques for building systems that do not suffer from extreme sensitivity

are proposed and analyzed. Building randomization into the core decision making

processes of complex systems is shown to make them much easier to measure and

compare. When randomization is added, the performance of the system on a given input

becomes not a single number, but a probability distribution that can be sampled. It is

demonstrated that the center of the distribution characterizing the randomized system is

less sensitive than the single measurement characterizing the deterministic system, and

that the way the shape and position of the distribution changes as a function of the amount

of randomization added can provide additional insight into system behaviour.

Two applications are analyzed in detail. First, performance of programs on typical

workstation CPUs is shown to vary substantially as a result of small changes to the

program or compiler because of changing cache conflicts. Results presented show a
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potential systematic error of 10% in measurements of the effectiveness of new

optimizations. Even when averaging measurements across a substantial benchmark suite,

the error may be larger than the real improvement of many important optimizations.

Second, straightforward measurements of the performance of TCP/IP congestion

control schemes are shown to be susceptible to errors of up to an order of magnitude.

Well-known randomized packet dropping algorithms reduce the sensitivity to reasonable

levels. New ways of randomizing protocols are also proposed and shown to be effective.

Extreme sensitivity can result in low average performance when performance is

maximized by making smooth and steady progress. Thus, when randomness is added to

congestion control algorithms, average transfer time as well as fairness is shown to

improve significantly. This thesis proposes some techniques for improving TCP/IP

performance involving only modifications to the sending host, which may be easier to

deploy than previously proposed schemes for adding randomness in the network.

1.3 Outline of Dissertation

Chapter 2 discusses related work and provides some minimal background on

sensitivity analysis, TCP/IP, and compilers.

Chapter 3 develops the theoretical basis for adding randomization to systems. It

outlines the principles for estimating the sensitivity of complex systems, making

reproducible measurements of systems in spite of their sensitivity by reporting

distributions rather than single measurements, and for adding randomization to systems to

make them more amenable to making robust and reproducible measurements.
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Chapter 4 applies the theory to measuring the performance of CPU instruction caches

and of optimization algorithms designed to improve cache performance by relocating

related blocks of code to non-conflicting addresses. It is demonstrated that without

randomization, systematic errors of several percent are likely when measuring program

performance changes due to new optimization algorithms. It is shown that by adding

randomization to a profile-driven program layout system, much more accurate

performance measurements are possible.

Chapter 5 applies the theory to measuring the performance of TCP/IP’s congestion

control algorithms. It is demonstrated that in the absence of any techniques to combat it,

measurements of the fairness of competing connections can be misleading by multiple

orders of magnitude. Some previously known techniques are analyzed, and shown to be

somewhat effective in achieving valid results. Modifications to TCP are described that

enable reliable measurements to be made without any special techniques.

Chapter 6 develops several new ways of adding randomness to TCP/IP congestion

control systems, and analyses the performance impact of each. Random drop gateways,

previously proposed in the literature, are shown to yield substantial performance

improvements. Some of the new proposed techniques, although they yield slightly less

performance improvement, may be more practical to deploy since they can be

implemented by small changes to algorithms in the sending host rather than in network

routers.

Chapter 7 concludes with a summary of the results and lessons learned, and makes

some suggestions for using randomness in building and measuring new systems.
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Chapter 2
Background and Related Work

This thesis builds on previous work in the fields of sensitivity analysis, randomization,

memory system performance optimization, and TCP/IP performance, each of which is

described in turn below. At the end of this chapter, the connections between previous work

and the present work are discussed more generally.

2.1 Sensitivity Analysis

A primary theme in this thesis is exposing the sensitivity of complex software systems

to small changes in external parameters. Techniques for sensitivity analysis have been

explored for some other kinds of systems, and are briefly reviewed here.

The sensitivity of numerical algorithms to small errors in their inputs has been

discussed extensively in the numerical methods literature. A brief review of the standard

results on sensitivity and stability of numerical algorithms will be given here.

For systems of linear equations, the condition number provides a concise and useful

quantification of the sensitivity to input perturbations [27]. It provides metric for the

maximum change in the output of a system, as a function of amount of change in the input.

Thus, for linear systems the problem of quantifying the sensitivity can be considered

solved. For more complex systems, analysis is not so simple.
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2.1.1 Sensitivity Analysis of Complex Systems

In the design of analog circuits, some figure of merit of a system must be guaranteed

over the range of parameter variations of a large number of components. For instance, the

frequency of an oscillator may depend on dozens of component parameters, each of which

can vary in several ways over the range of operating voltage and temperature and between

manufacturing runs.

Because nontrivial circuits might have many dozens of parameters, it is common to

use Monte-Carlo simulation to estimate the probability distribution of the relevant figure

of merit [29]. The probability distribution of the figure of merit is sampled across a large

number of simulations, each with values for process or component parameters randomly

chosen from their respective probability distributions. The yield of acceptable parts can

thus be estimated. Well-designed circuits are not usually highly sensitive to parameter

variations. That is, the figure of merit usually varies smoothly and monotonically, if not

linearly, due to changes within the normal range of any one parameter, and usually not by

as much as an order of magnitude.

Ho and Cao [28] describe methods for approximate estimation of the sensitivity of

queuing systems to small changes in the capacities of queues without running multiple

simulations. The results are only accurate if events do not get reordered by the change. In

TCP/IP systems, queue overflows cause large changes in the sequence of future events;

thus the techniques are not applicable.
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2.2 Randomization

Randomization is used extensively in cryptographic and number-theoretic algorithms,

but these uses are not relevant to the present work. Here, we describe applications where

randomization is used in order to achieve performance goals.

Fair Tie Breaking. In systems where two or more entities compete for a shared

resource such as a network and queuing is not feasible, some requests must be rejected. A

naive solution would be to accept the entities with the lowest IDs (such as network

address) and reject all others. In times of heavy usage, entities with high ID numbers

would experience starvation. The best known solution is to choose winners and losers

randomly. The ALOHA packet radio system [24] used randomization to choose which of

multiple competing stations would transmit next by making each station wait a random

amount of time before starting to transmit. Ethernet [25] uses a similar scheme in the event

of collisions.

Avoiding Pathological Cases. A number of important algorithms have good average-

case performance, but poor worst-case performance. Randomization can be used to

guarantee (with very high probability) that worst-case behavior will not occur in practice.

The most familiar example of such an algorithm is the naive implementation of

Quicksort [3], which takes time O(n log n) on average, but can require O(n2) time in the

worst case. Unfortunately, in a naive implementation the worst case occurs when the input

is already sorted, a situation likely to occur in practice. The most appealing theoretical

solution to the problem is to choose pivot elements randomly. [5 §1] Then, the worst case
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behavior is extremely unlikely and cannot occur regularly in any real system. In practice,

more sophisticated deterministic methods of choosing pivot elements provide better

results [3].

Routing on hypercube parallel interconnection networks is another application where

straightforward deterministic algorithms have very bad worst-case performance. For this

application the worst-case input to the obvious non-randomized algorithm happens to be a

simple pattern likely to occur in practice [5 §4.2]. The solution is to route each message

through a randomly chosen intermediate node, adding a large degree of randomness to

message routing. Thus, worst case performance can be bounded with very high

probability.

Solicitation from Large Population. In some multicast systems, the sender must

adapt its sending rate according to how much bandwidth the receivers are capable of

receiving. This requires feedback from the recipients. Having every receiver send a

periodic status report to the sender would destroy the scaling properties of multicast, since

the sender would be overloaded by status reports. Statistical Acknowledgment, proposed

by Holbrook [26], solves this problem by soliciting acknowledgments from a small,

randomly chosen subset of receivers.

2.3 Memory System Performance Optimization

Modern computers use memory hierarchies in which fast but small memories are

placed near the CPU, and large but slow memories are more distant. Each level but the last

acts as a cache for the next level. The access time to a nearby memory might be 100 times

shorter than to a distant memory: thus, performance depends critically on effective cache
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management in order to keep frequently used data near the CPU. Sophisticated cache

management schemes, such as LRU (least recently used) are infeasible to implement in

fast hardware. Instead, many systems map each memory address to one possible locations

in any given level of cache. Thus, some pairs of addresses conflict (cannot be held

simultaneously in the cache) and some do not. For this reason, the mapping of portions of

the program to memory addresses affects performance. It is better if two parts of the

program which frequently alternate are placed at addresses which do not conflict in the

cache. Modifying any part of the program can shift large parts of the rest of the program

around in memory, and thus have a large effect on performance even if the modified

function itself is never used.

Chen [6] measured memory system behaviour under variants of the Mach operating

system, and showed that it is strongly affected by page mapping policy. On the machines

under study, page mapping affected performance by changing the way memory locations

conflict in the second level cache.

Chen’s work reports simulated performance with two page mapping strategies. The

“deterministic” strategy ensured that consecutive virtual pages are mapped to consecutive

locations in physical memory, modulo the L2 cache size. The “random” strategy maps

each virtual page independently to a physical page chosen from a free list. (Chen’s terms

“random” and “deterministic” do not mean the same thing as they do in the rest of this

thesis.) Performance for the “deterministic” and “random” strategies was measured, but

only a single experiment was made for the “random” strategy, so no distribution was

presented. Results varied between the two runs by as much as 55%: sometimes the

“deterministic” strategy ran faster; sometimes the “random” strategy ran faster.
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Under most operating systems, page placement is determined by the history of what

programs have been run before and paging activity. Memory layout often varies between

versions of the operating system and amount of physical memory present, and is highly

dependent on such “unimportant” factors as the order in which object modules are listed

on the linker command line. Thus, Chen’s results also suggest that performance

measurements may be hard to reproduce accurately by independent researchers.

By reordering memory regions at a procedure granularity rather than a page

granularity, similarly large effects on performance are demonstrated in Chapter 4.

More early evidence that there might be large effects of detailed program memory

layout on system performance was given by Quong [19]. He observed that cache miss

rates “typically vary by  10% of their relative value” for different program layouts, and as a

way of measuring the underlying loss rate of the program (independent of a particular

layout,) proposed a layout-independent way of estimating cache miss rates using a

statistical model of the intervals between references to blocks.

In contrast to a layout-independent cache miss rate estimate, this thesis presents

efficient ways of measuring the distribution of expected cache miss rates across all

layouts. I argue in chapter 4 that the distribution is more directly relevant to real-world

system performance, and provides additional information useful to researchers.

2.4 TCP/IP Performance

Network congestion control systems solve the problem of allocating a limited amount

of bandwidth available across a network link among all the connections which have data to

send. This thesis focuses on TCP/IP in particular. In TCP/IP, a host sends packets into the
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network and routers forward packets from link to link until they reach the receiving host.

When routers receive more than they can send or buffer, they drop packets. The receiving

host returns an acknowledgment for packets received. The sender limits the amount of

unacknowledged data to no more than its congestion window, which is increased when

packets are successfully delivered and decreased when packets are lost.

A great deal of work has been done on tuning the TCP congestion window algorithms.

As well as fundamental changes suggested by Jacobson [30], Brakmo [31], Lin [41] and

Morris [42], a number of minor improvements (summarized in Stevens [32]) have been

made over the years.

The sensitivity of TCP to network parameters has been remarked before, although

previous papers have pointed only to small variations. Brakmo and Peterson [17] reported

that fairness between competing TCPs could change by 15% due to small changes in the

start times of connections, and that total throughput could change by 34% due to a change

in the router buffer size of one packet. Much larger variations are demonstrated in chapter

5.

2.5 Summary

Sensitivity analysis, while considered essential in some fields, is rarely performed for

compiler & network performance measurement (the author has never found a published

example thereof.)
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Both Chen’s [6] and Quong’s [19] results suggest that memory layout could have a

large effect on system performance—larger than the improvements reported for many new

optimizations. Thus, it is clear that this phenomenon should be explored and quantified.

This is done in chapter 4, both for compiler systems which do not attempt to optimize

memory layout and for those which do.

Likewise, earlier work by the present author and others suggested that TCP/IP could

be highly sensitive to slight changes in some parameters, both in simulation and in

testbeds. The degree of sensitivity to all the parameters that could be isolated is

systematically analyzed in chapter 5.

A major contribution of this work is a precise and systematic analysis of the pitfalls

inherent in measuring highly sensitive systems. That these pitfalls existed in TCP/IP and

compiler algorithms was previously known to many researchers and could be inferred by

careful reading of published works, and, at least for TCP/IP, some techniques for avoiding

them were known and implemented in widely available simulators. I hope that the

systematic techniques presented here for measuring and avoiding these pitfalls will make

some kinds of measurement work less of a black art.
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Chapter 3
Randomizing Systems

This thesis is the result of applying a simple, fundamental principle to the design of

systems: that arbitrary decisions should be made randomly. In many current systems that

do not follow this principle, performance is highly sensitive to slight changes in

configuration, making it hard to make robust and reproducible measurements. Worse,

when the performance of such systems is dominated by repeating patterns of decisions,

overall performance is likely to be poor.

Some decisions are more arbitrary than others. Randomizing completely arbitrary

decisions is straightforward. Decisions for which some basis for preferring one alternative

exists should have some randomization added so that the preferred alternative is chosen

more often, but not to the complete exclusion of others.

This principle and its corollaries will be developed in detail in the rest of this chapter.

3.1 Measuring Complex Systems

Performance measurements can be misleading when the system exhibits a wide range

of behaviors and thus a wide range of performance levels even over a small range of input

conditions. This is demonstrated both for TCP congestion control and for program layout

in memory. In chapter 5, it is shown that two TCPs competing for bandwidth on a

bottleneck link, fairness varies by as much as an order of magnitude due to a change of

less than 1% in the propagation delay of a link. In chapter 4, it is shown that different

arbitrarily chosen layouts result in  4% differences in benchmark performance.
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Because both TCP and compilation/cache systems are deterministic (assuming a

sufficiently controlled experimental setup), repeated experiments will yield identical

results. However, these results may not be representative of performance in similar

configurations. Thus, it is easy to get results with large systematic errors, even though

common validity metrics such as the standard deviation of performance across ten runs of

the experiment indicates low variance.

This thesis proposes making performance comparisons based on the distribution of

performance results obtained by Monte Carlo sampling [9] of a small area of the space of

possible configurations around each benchmark input. In its most general form, the

principle can be stated thus:

P1. When measuring performance of a system, all configuration parameters that can

reasonably be varied should be perturbed by a small amount. Report performance as the

distribution across a large number of randomly chosen perturbed configurations.

To be more concrete, the following procedure is followed. Consider a configuration C

representing a benchmark configuration in which a given system is to be tested. In a

network simulation, for instance, C would specify the propagation delays of links, the size

of router buffers, etc. A perturbation procedure must be devised to randomly produce

values  that are similar to C. For instance,  might have the propagation delays of

each link multiplied by a random variable with mean 1 and small variance so that the

propagation delays in all the  vary randomly within 5% of the delays specified in C.

C

)

C

)

C

)
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The perturbation procedure should vary every aspect of C that can feasibly be varied.

Designing perturbation procedures is somewhat subtle. First, all the parameters must be

found. While many of the parameters are obvious, some may be buried implicitly inside

the system. Some may not be externally adjustable without extra implementation effort.

Second, it must be decided how much variation constitutes a small amount and what

sort of distribution is reasonable. For real-valued parameters such as propagation delays,

variations of +/- 5% was small enough to correspond to the range of situations that a

network planner would consider equivalent, but large enough to elicit a wide range of

different performance results from simple simulations. Some other situations are more

complex. Perturbed parameters must continue to be physically reasonable. For instance,

router buffer sizes must still be an integer number of packets after perturbation.

Propagation delays must not become negative.

The distribution of performance results obtained by following P1 is much more

informative than the single number produced by conventional benchmarking techniques.

The distribution indicates not only the average performance, but also the range of

performance values that can be expected in similar situations and hence the validity of any

single measurement, the probability of observing pathologically bad cases, and evidence

for potential improvement.

In this work, distributions are shown graphically as cumulative distribution functions.

Figure 1 illustrates how performance distributions change as a result of improving either

robustness or performance. When system performance is made more robust (for instance,
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by adding randomness,) the cumulative distribution function becomes more vertical,

spanning a narrower range of performance values. When system performance is improved,

the distribution shifts to the left, corresponding to lower runtimes.

If the range of the performance distribution is broad, as it was for many of the systems

analyzed in this thesis, it is strong evidence that performance results from any individual

simulation of a similar system may fail to be representative of typical values. This may

call previous results into question, or alternatively it may indicate that the extra

computational expense of performing large numbers of randomized simulations is not

0
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Runtime

Less sensitive
Single measurements
are less misleading
More stable

0
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Runtime
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Runtime

Higher performance

FIGURE 1. Comparing Performance Measurements. Distributions of runtime for a
hypothetical benchmark across many runs with randomly perturbed configurations are
shown as cumulative distribution functions. The performance variation is being reduced
in the top set, and the average runtime is being reduced in the bottom set.
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needed for some kinds of situations. It will be shown for two different kinds of systems in

chapters 4 and 5 that, based on the width of performance distributions, results are likely to

be grossly misleading unless randomized measurement techniques are used.

Many systems have some probability of producing spectacularly bad performance.

Network configurations with competing TCP sessions can sometimes have nearly

complete starvation of one or more connections. The probability of observing such

behavior in real world situations can be estimated by the present technique. For instance,

in chapter 5 it will be shown that there is a 7% probability (over the space of

configurations similar to the benchmark configuration) that one TCP session will receive

only 1/1000th of its fair share of bandwidth. This is clearly an important figure of merit

that is not captured by single performance numbers, or even by an average. A system that

was fair on average but for 7% of specific situations was grossly unfair might well be

considered unacceptable.

If the distribution of performance results includes some good results, it may suggest

that with some tuning the system could be made to perform well. This is particularly the

case for program memory layout, as will be shown in chapter 4. If high performance

results show up with low probability, it suggests that a better algorithm might be able to

achieve such good results in practice.

Following principle P1 adds random effects to measured performance numbers. Thus

it is logical to ask whether it may result in less accurate results. The answer to this

question must address just what is meant by accuracy of results.
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There is always a trade-off between accuracy and broad applicability of results.

Accuracy is often easier to obtain. For instance, a researcher could make a single

measurement of the height of some particular person, and report a statement such as “The

height of the subject is 71.243 in +/- 0.002 in1” This very accurate measurement may be

perfectly correct, but it is not very useful. No other researcher would be likely to get a

similar result. If another researcher measured the height of person from another city and

found a different height, it would not be an adequate basis for making any sort of

comparison.

On the other hand the researcher could measure the height of 1000 randomly selected

Bostonians and report, “The height of Bostonians is 68.1 in with a population variance of

3.2 in.” The second statement contains more information about the range of height of

people. Furthermore, another researcher should be able to do the same experiment with a

different random pool of 1000 Bostonians and get a very similar result. If yet another

researcher measured height of Cantabridgians and found that their height was 67.2 in with

a population variance of 3.2 in, it would probably be a sound basis for concluding that

people from Cambridge are shorter on average. A good discussion of some more

philosophical aspects of the meaningfulness of measurements may be found in Gould

[36].

In the systems analyzed in this thesis, applying principle P1 produces numbers that are

less repeatable, but more reproducible and with greater predictive value. The loss of

repeatability is more than compensated for by the other benefits.

1. There are no measurements behind these examples: they are purely made up.



22

3.2 Building Measurable Systems

The preceding section has reviewed some of the difficulties of making good

performance measurements of complex systems, and how randomized measurement

techniques can be used to achieve better results as well as an estimate of the validity of the

results. We now turn to the issue of designing systems that are inherently easier to

measure, and argue that such systems are to be preferred as being easier to tune and

perform other performance-related research on. Adding randomization to the internal

decision making algorithms of complex systems is the key.

The fundamental purpose of adding randomization to systems is to avoid making

decisions in a deterministic way based on insignificant factors. That is, there are some

decisions that must be made one way or another, but there is no clear basis for choosing. In

this case, the decision should be made randomly. For instance, a router in a congested

network must drop packets. In traditional routers, the decision as to which packet is to be

dropped is made based on the exact arrival pattern. The packet dropped is the one that

arrives when the queue is exactly at capacity. A very small change in any one of many

factors can shift the order in which packets from different connections arrive, and so can

affect which connections lose packets. A random-drop router [22], however, drops a

randomly chosen packet in the queue. Because the fraction of packets in the queue due to

each connection changes slowly (over time periods of the same order as the queue size

divided by the link rate), the system is less sensitive to small timing changes.
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Lack of extreme sensitivity is fundamentally a desirable property of systems. That is,

this thesis argues that given two systems that have equal average performance, the less

sensitive one should be preferred for the following two reasons.

First, most high-performance systems are the result of a lot of tuning. TCP, for

instance, has been improved in at least eight iterations since its first wide release in 1983

[10, 30], and many more proposed improvements exist [31]. Each improvement has been

based on careful measurement of the behavior of the previous system and comparison with

the new system. As is demonstrated in chapter 5, it is very difficult to measure TCP

performance even in very simple configurations. Thus, we hypothesize that although TCP

has many merits, its deterministic nature has made quantifying its performance so difficult

that even after more than ten years, researchers are still arguing about what modifications

might improve its performance further.

More basic research as to which kinds of system architectures perform better would

also be facilitated by building less sensitive systems. When comparing two different flow

control architectures (e.g. rate-based vs. credit-based [34,35]) it would be much easier if

both systems would yield reliable, repeatable performance numbers in tests.

Another reason why less sensitive systems should be preferred is to facilitate end-user

selection of the best system for a given task. For instance, someone wanting to purchase a

workstation to run specific simulations could run performance tests on several competing

workstations and choose the best price/performance. To the extent that program

performance is strongly and deterministically dependent on ephemeral compilation
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conditions, as is demonstrated of real systems in chapters 4 and 5, any such measurements

are likely to give the wrong answer, or at least an answer that will no longer be correct if

any small changes are made to the compiler, linker, or simulation code.

Thus, this thesis proposes the following system design principles as an aid to building

systems of which robust, reproducible, and predictive performance measurements may be

made.

P2. For every decision, if there is no clear basis for making it one way or another, it

should be made randomly rather than arbitrarily.

P3. For decisions based on a cost function, a small amount of randomness should be

added to the values of the cost function before choosing the best. The amount of

randomness to be added should be settable by the user.

P4. Values computed based on approximate or estimated values should be chosen

randomly from a probability distribution reflecting the real accuracy of the values.

Principle P2 can be considered a special case of principle P3, where the cost function

is zero for all choices.

We can summarize the difference between measuring complex randomized and

deterministic systems in the following table. Although deterministic systems measured

under identical conditions should give the same results, measurements under slightly

different conditions may give very different results. The randomized systems described

below, however, are less sensitive to their conditions. Thus, in order to reproduce a result,
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another researcher need not set up an identical experiment, but only a similar one. Because

simulations never exactly match the real world, simulations of randomized systems are

more likely to match real-world behavior than simulations of deterministic systems.

It should be remembered that these conclusions apply to complex systems where

performance-impacting decisions are made somewhat arbitrarily. Systems where the

factors affecting performance are simple enough can be measured without special

techniques. The techniques of randomized measurement presented earlier can be used to

decide whether a system’s performance is complex enough to warrant randomization. If a

large number of measurements made under randomly perturbed conditions are all similar,

then individual measurements should be sufficiently accurate.

3.3 Benchmarking Randomized Systems

Figures 2, 3, and 4 illustrate the process of benchmarking deterministic and

randomized systems. True system performance can best be defined as the average

performance across all possible inputs to the program, with each input weighted according

to how often it will occur in practice. Even if the frequency of occurrence of each input

were known, this would not lead to a feasible benchmarking system because for any

interesting program the space of possible inputs is infinite.

Performance Results From

Deterministic System Randomized System

Identical Conditions: Same Similar distribution

Similar Conditions: Possibly very different Similar distribution
TABLE 1.
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FIGURE 2. True System Performance is the average, appropriately weighted, across
the entire space of inputs. The space of inputs is usually infinite, so this is not a feasible
measurement.
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FIGURE 3. Benchmarking a system maps a few points in the space of inputs onto
performance measurements. The average of the measurements is typically used to make
comparisons.
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FIGURE 4. Performance of Randomized Systems is a probability distribution for
each input. Running time distributions are averaged, and the resulting distribution
function is used to compare different versions of a system.
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3.4 System Tuning

Optimizing, or “tuning” systems for good performance is considered something of a

black art in the computer science community. Superficially, system tuning is done by

making small modifications to a system and comparing performance before and after the

change. There are two difficult aspects to this job: conceiving of changes that are likely to

improve system performance (a task best left to human experience and intuition), and

making an accurate comparison between old and new systems. Conventionally, accurate

comparisons of competing systems are made by averaging performance over a large suite

of benchmarks. There are two limitations of this approach.

The first limitation is that a large set of test inputs must be assembled. For some

applications, convenient sets of benchmarks exist, such as SPEC CPU95 for general-

purpose C and Fortran compilation on POSIX-like machines. For other applications, such

as congestion control algorithms, time must be spent developing benchmarks. For some

other applications, such as compiler optimizations for particular operating system

modules, only one benchmark may exist.

The second limitation of aggregating results from a large set of inputs is that

information is lost. If an algorithm performs better on some class of inputs and worse on

another, that fact is likely to be useful to the algorithm designer. However, aggregate

performance tends to conceal such differences. On practical benchmark sizes, testing for

large numbers of potential performance differences leads to many false positive results

that are time-consuming to track down.
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3.5 Meaningfulness of Results

Consider a result that is a performance comparison between two different versions of

some system. Nine out of ten papers in systems conferences report such measurements

[Small97]. Meaningful results are repeatable, robust, reproducible, and have broad

applicability. These characteristics are discussed in detail below, in order of increasing

amount of difference over which the results are still valid. Repeatable results are valid for

the same system, same parameters, at a different time, whereas broadly applicable results

should be valid for similar systems, similar parameters, and at different times.

Repeatability. Repeatability is the degree to which successive measurements of a

system with the same parameters are close to one another. All but the very simplest

systems do not have perfect repeatability.

Variation in the measured performance of a system has both exogenous and

endogenous components. Exogenous performance variation is bad. It is due to imperfect

controls on the experimental setup and can generally be avoided by sufficiently careful

attention to detail.

Endogenous variation is due to nondeterminism inherent in the system being

measured. Many standard components of systems contain significant amounts of

nondeterminism, and therefore contribute to endogenous performance variation.

Contention in CSMA network protocols [33], disk seek times, and interrupt timing

interactions are common sources of endogenous nondeterminism.
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Robustness. Robust results are not highly sensitive to the test configuration. That is,

very small changes in parameter values do not often produce large variations in measured

performance. The graph of performance as a function of any parameter is relatively

smooth.

The robustness of a system can be determined by doing a sensitivity analysis to

determine the amount by which the measured performance varies over a small range of

variation in parameter values.

Robustness is important when some aspects of the system cannot be perfectly

controlled. As an example, any compiler optimization which avoids unnecessary

instructions is likely to change the memory layout of the program as well as reducing the

instruction count, and these indirect, unwanted, and irreproducible effects can be larger

than the direct effect of the optimization which the researcher wants to measure and

therefore make comparison of performance with and without the optimization unreliable.

Reproducibility. Reproducible results are those for which another researcher could

construct a similar (but not, of course, precisely identical) experimental setup, and

produce similar results. Many results are not reproducible from their published description

because details are missing, but we do not consider this human aspect of reproducibility

here. We are concerned only with the reproducibility of the system itself.

Robustness is a necessary condition for reproducibility, because in general parameter

values may be interpreted slightly differently by a different system. But reproducibility

also requires that small changes in the system do not greatly affect the nature of the

results.
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Predictive Value. For results that have predictive value, applying them to a different

but related system would produce a qualitatively similar effect on performance.

3.6 Discovering Significant Differences

Knowing that a proposed modification to an algorithm improves performance on some

class of inputs more than on another class can be very useful. It can help researchers

understand where there is room for improvement. It can lead to a hybrid algorithm that

performs well on both classes. It can provide insight into what causes the algorithm to

make suboptimal choices.

If a researcher can propose a partitioning of the available input set into two classes, it

is usually straightforward to separately compute performance on the two classes and make

a comparison. A large difference probably indicates a phenomenon worthy of exploration,

whereas a small difference could be due to noise.

When only a few partitionings are to be tested, the researcher can explore all observed

differences. For instance, general-purpose compiler benchmarks are conventionally

partitioned into integer-intensive vs. floating-point-intensive classes, and into ALU-

intensive vs. memory-intensive classes. A researcher can investigate in detail any observed

differences across these two partitionings.

If many partitionings are to be tested, it is important to investigate only the ones that

have statistically significant differences. The number of potentially interesting

partitionings is limited only by the researcher’s imagination. For instance, it might be the

case that a new instruction scheduling algorithm performs better on blocks with chained
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multiply-add-store instructions, but does not perform better overall. There are an

enormous number of hypotheses at this level of detail. If such a proposition could be

shown to be valid, it would be valuable information.

For instance, consider 1000 hypotheses of the form “The modified algorithm performs

relatively better on class A than class B,” none of which are actually valid. When tested

against real data, however, one would expect about 5%, or 50 of them to be accepted at a

95% confidence level. It would be a great waste of time to investigate 50 invalid

hypotheses about the system. Thus, to discover interesting detailed properties about the

system, it is vital to have results with high statistical significance.

If the input set is divided into two classes, it may be the case that a proposed algorithm

performs relatively well on one class and relatively poorly on the other. If this dichotomy

can be discovered, it may help the researcher understand the limitations of each algorithm,

and guide him toward a hybrid that combines the good features of each.

The number of potential performance dichotomies is enormous. Any criterion for

dividing the set of inputs into two classes could reveal a significant performance

difference.

When many results must be aggregated in order to filter out variations due to extreme

sensitivities, it is hard to discover such dichotomies. Randomized measurement can make

it easier to discover such facts.
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For instance, it commonly happens that performance of a particular compiler

optimization technique is different for floating-point-intensive programs than for integer

programs. Such a performance differential is reasonably likely to be discovered, because it

is easy to categorize programs as integer or floating point, and because researchers know

from experience to expect such differences, and are looking for them.

Consider a hypothesis about a new technique that increases performance overall, such

as, “The average performance on blocks containing a multiply-add-multiply sequence

decreases.” Such a state of affairs is certainly possible, and the hypothesis can be tested in

a straightforward manner. However, because a combinatorially large number of similar

hypotheses exist, only hypotheses with a very high confidence factor can be tested. For

instance, if one million hypothesis are generated, there will be about ten thousand for

which false positives can be found at a 99% confidence level.
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Chapter 4
Randomness and Memory System Performance

The location of code and data in memory can have a significant impact on system

performance, because some sets of memory addresses conflict in the memory cache.

Traditionally, the layout of memory is determined by some simple formula, without much

consideration for performance. Measurements made on such systems are strongly affected

by the arbitrary choices made by the programmer, compiler, and operating system. We

show that the variation in runtime due to arbitrary choices can be 20% or more, and that

these ephemeral effects can fool developers into making wrong choices. Sampling many

randomly chosen memory layouts yields far more robust and reproducible results.

4.1 Background

When compiling and executing code, most systems impose few limitations on where

code and data objects can be placed. Code and static data objects can generally be placed

in any order, with any amount of padding between them. Basic blocks (sequences of

consecutive instructions with a single entry point) inside functions can be laid out in any

order, although some orders are better than others. Within a function, local variables can

be assigned to stack locations in any order. Virtual memory pages can be independently

mapped to physical pages. Static data objects can be rearranged and padded. Each

dynamically allocated data object can be independently placed in memory. All these

arbitrary decisions are candidates for randomization.
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The high performance of modern CPUs depends upon fast caches, on or close to the

CPU, satisfying the majority of memory accesses. Each access to main memory takes

dozens of instruction cycles, during which the CPU cannot accomplish much. When data

is available from the cache, it can generally be accessed in one or two cycles. It is

reasonable to expect this effect to become more important over time, since CPU clock

speeds have a long history of increasing more rapidly than main memory access times

[43].

In a cache, each memory address is mapped to a line in the cache. Each cache line can

hold some fixed, small number of memory locations simultaneously. In a direct-mapped

cache, the most popular design for reasons of speed and cost, each cache line holds only a

single entry. If two memory locations both map to the same entry in the cache, they are

said to conflict. If a program is laid out in memory such that two frequently accessed

functions or variables are assigned to conflicting memory locations, the program will run

more slowly.

Conventional compilers that do not employ any special techniques to lay out

procedures in order to minimize cache miss rates must still make a decision as to where

each procedure will reside in memory. Conventional C compilers for Unix systems lay out

individual functions within object files adjacent to each other in the same order in which

they appear in the corresponding source files. Then, the executable contents of object files

are placed adjacent to one another in the executable according to the order in which the .o

files are listed on the linker command line.
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At runtime, the executable image is mapped linearly into virtual memory at some fixed

starting address. Between functions within object files and again between object files,

padding is generally added to align the beginning of each function to a multiple of the

cache line size, such as 16 or 32 bytes. Padding is done so that no function spans more

cache lines than necessary, and because some processors incur a fetch penalty when

jumping to an address not aligned on a certain power of two boundary. For instance, the

Alpha 21164 [38] performs best when jumping to addresses divisible by 16.

Virtual memory may or may not map linearly onto large physically indexed caches

depending on the operating system. Chen describes this phenomenon in detail [6]. If the

mapping is not deterministic, as is the case in the Mach 3.0 OS, separate runs of the

program may produce different cache behaviour.

The ordering of procedures within source files is typically chosen for readability, or at

least reflects the order in which they occurred to the author. The order in which .o files

are listed in the makefile (compilation script) is similar. These choices have a strong

effect on the measured “before” performance — i.e., the null hypothesis against which the

performance of the new algorithm is to be compared. Furthermore, the effects are fixed.

Compiling and running the program 100 times will give the same result.

4.2 Sensitivity Errors due to Cache Effects

Because program execution time depends on program memory layout, and because

there is no well-defined “standard” layout, measurements of program performance with

any particular memory layout can introduce a systematic error into the measurements. In

general, increasing the code size increases the miss rate, and decreasing the code size
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decreases the miss rate. However, a program compiled with varying degrees of code

expansion is subject to changing patterns of cache interference. Thus, any one particular

ordering does not represent the general case, and therefore results may be misleading and

irreproducible.

One time-honored way to avoid this problem is to simulate the program on a machine

with an idealized memory system that never has cache misses. However, modern

microprocessor performance is so dependent on cache performance that this old technique

has limited validity.

It is even more important to include memory system effects when the optimization

under study makes explicit trade-offs between memory size and instruction cycle count.

For instance, the static correlated branch prediction algorithms described by Young [18]

rearrange and make copies of basic blocks in order to reduce the number of cycles lost due

to mispredicted branches. However, the size of the frequently executed code increases.

Thus the processor wastes fewer cycles due to branches, but may incur more cache misses.

Work by others has focussed on reducing the footprint of code to improve performance.

Mosberger [37] found that removing rarely executed code from the contiguous block of

memory occupied by a function significantly reduced memory system stalls. Studies of

these and other optimizations need robust and reproducible measurements of memory

system costs.
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To estimate the magnitude of the potential for error, cache simulations were run on

hundreds of versions of SPECint95 benchmark programs where the procedure orderings

were as produced by the default compilation script, but where the code was expanded by

factors ranging from 0.5 (compaction) to 1.5 (expansion.)

Simulations were performed for the Alpha 21064 cache architecture, with an 8 KB L1

cache and 256 KB L2 cache, both direct mapped with 32 byte lines. The 21064 has a fairly

complex cache miss handling system, but for simplicity we use an approximate measure

of memory system costs. The metric only include memory effects due to instruction

references, since randomizing the placement of data is beyond the scope of this work.

Costs are expressed as MCPI (memory cycles per instruction,) using estimated penalties

of 10 cycles for a L1 cache miss, and 100 cycles for an L2 cache miss.

Figure 5 shows the results of 512 cache simulations for the xlisp benchmark from

the SPECint95 benchmark suite. The smaller test input set was used rather than the

reference input, because running a large number of cache simulations on a large

benchmark is very time consuming. The figure shows graphically how for the Xlisp

benchmark there is a significant probability of being misled as to the real performance

impact of code expansion. Figure 5 presents similar results for the other benchmarks in the

SPECint95 suite. The floating point suite was not tested.

Some large features appearing in some of the graphs deserve explanation. For

instance, the large spike in miss rate for the go benchmark at an expansion factor of 1.4 is

due to a conflict between two small procedures located about 5800 bytes apart and called

frequently by the inner loop of the program. At an expansion factor of 1.4, they conflict in
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the primary cache. The periodic spikes in ijpeg at intervals of about 0.1 on the X axis

correspond to conflicts between two small frequently procedures located about 80 KB

apart in the original program, and which therefore shift by 8 KB (the size of the primary

cache) for each change of 0.1 in the expansion factor.

We can estimate the potential systematic error in the cache miss rate metric that would

result from testing with only a single program layout as follows. Assume that across the

space of all layouts, miss rate varies approximately linearly with expansion factor, at least

within the narrow range of [0.5 .. 1.5]. There is no strong theoretical basis for this

assumption — it is based on the linear appearance of the graphs. A straight line is fitted to

the data using a Chi-square estimator to give the line with least squared error. An error
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FIGURE 5. Cache Miss Rate vs Code Expansion. Benchmark is SPEC95 lisp
interpreter. Upward trend is visible, but the results show extreme sensitivity.
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value is calculated for each point as the distance from the point to the fitted line, and the

width of the 90% confidence interval for measurements with the given error distribution is

reported.

The effect of cache misses on program runtime is highly dependent on the specific

processor, and is not a linear function of the number of misses. However, we can make a

rough estimate for a typical modern workstation by assuming that an instruction costs 0.5

cycles, a L1 cache miss costs 5 cycles and an L2 cache miss costs 50 cycles. Based on this

CPU model, we can compute the error in runtime measurements due to error in cache miss

rates. These numbers are all presented in Table 2.

The potential measurement errors are quite large. Most of the benchmarks yield error

bounds for total runtime of more than  10%. The benchmarks that have narrow confidence

intervals for runtime are those that are so small that they fit entirely in the cache for any

layout. But all programs with significant instruction cache activity (miss rate larger than

1%) demonstrated large error potential.

The width of the 90% confidence interval when the results of all the programs are

averaged together using the geometric mean is  3.7%. For a comparison between two

programs, the 90% confidence interval becomes. Thus, results showing an improvement of

up to 8.0% in SPECint95 performance as a result of adding some optimization may be

purely due to hypersensitivity to cache effects. In the absence of the techniques presented
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in the next section, performance comparisons of new compiler techniques that change the

memory layout of the program (it is hard to imagine optimizations that do not) should be

reported with error bars in the  8% range, depending on the relative cost of cache misses.

One approach to achieving good results is to average performance across a larger

number of benchmark programs. Assuming a normal distribution, the variation decreases

approximately as the square root of the number of programs. Thus, averaging performance

across 800 programs instead of the 8 included in SPECint95 would reduce the error by a

factor of 10, to a tolerable 0.8%. There are a few drawbacks to this approach. First,

collecting a large suite of benchmarks may not even be possible for some problem

Benchmark Estimated CPI
CPI measurement
comparison error

(90% confidence interval)

ijpeg 0.512  1.1%

li 0.603  16.7%

perl 0.800  18.8%

go 0.730  15.1%

compress 0.501  0.1%

m88ksim 0.729  20.0%

cc1 0.891  7.2%

vortex 0.920  21.7%

Geometric Mean 0.691  3.7%
TABLE 2. Miss Rates and Error values. For each benchmark, the estimated true
miss rate at unity expansion and the probable error are given. The width of the 90%
confidence interval for the difference between two measurements is reported both as
an error in MCPI and as the corresponding error in runtime for the simple CPU
described in the text.
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domains. For instance, some compiler work is specifically focussed on optimizing kernel

implementations of networking protocols for which there may exist only a handful of

implementations.

Making experimental compilers work on a large set of programs is hard. Anecdotal

evidence suggests that the extra effort required to take a research compiler that can handle

most of the SPECint95 suite and make it correctly compile a large range of programs is

substantial.

Having to average performance results over a large suite of programs makes it harder

to identify interesting differences between programs. For instance, it might be very

illuminating to discover that a particular optimization improved performance on a

benchmark with many small procedures, but decreased performance on another with a few

large procedures. If the large amount of error present in the measurement for each

program can only be reduced to an acceptable level by averaging together all the available

programs, it is impossible to reliably detect such phenomena.

More sophisticated techniques are necessary to achieve meaningful memory system

performance results. The next section proposes such a technique.

4.3 Comparing Optimizations using Randomized Memory Layout

The previous section demonstrated the large systematic errors possible when

measuring two slightly different versions of a program. Here, we describe a technique for

reducing the sensitivity of such measurements to arbitrary cache effects by measuring the

distribution of performance results across a large number of randomized memory layouts.
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Two different implementations of program layout randomization were used in this

work. The first uses Atom [44] to convert a binary executable into one that simulates its

cache performance by adding calls to simulation code at the start of each basic block. This

system was used for all measurements presented here except where noted.

The second layout randomizer randomizes the layout of the program itself to allow

measurements of real (not simulated) runtime. In a prototype implementation for Digital

Unix, the compiler is made to output the entire program as an assembly file, and a simple

program reads in the assembly file, identifies procedure boundaries, randomly permutes

the procedures, and writes out a new assembly file. The linker converts this to a running

executable. Implementation is particularly easy for Digital Unix where the globally

optimizing C compiler outputs a single assembly file for all the code. On a system that

produces separate assembly files for each module some renaming might be necessary to

isolate static variables with the same name in different files. The prototype

implementation consists of less than 100 lines of code.
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Figure 7 shows measured runtimes (not from a simulator, as are other results in this

chapter) for Xlisp using 125 random procedure orderings. The results show similar

variability to the runtime measurement comparison error reported in the previous table.

Randomized procedure placements can be used to get a more accurate picture of the

effect of code expansion on performance. Figure 8 shows the same measurement as in

Figure 4, but using the median CPI value across 384 different layouts. The results no

longer show extreme sensitivity.
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FIGURE 7. Cumulative Distribution of Measured Runtimes for Random
Program Layouts for Xlisp. 125 layouts were used, and each layout was run 3 times
with less than 1% variation in runtime between the 3 runs. The spread of the center
90% is about  5%, which corresponds well to the layout-to-layout variation of  11.1%
reported in table 2. The program is SPEC95 li running on the reference data set on a
DEC 3000/400.
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This thesis proposes that all measurements of compiler optimizations in systems that

do not include layout optimizations be reported based on the median of the distributions of

runtime with random procedure orderings. Otherwise, as has been demonstrated for the

programs most often used for benchmarking, systematic errors more than  %10 of runtime

are to be expected.
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FIGURE 8. Cache Miss Rate vs Code Expansion using Random Layouts. Values
for simulated Alpha 21064 with 8KB L1 cache and 256 KB L2 cache running SPEC95
xlisp on the training input. Compare to Figure 4. Each data point is the median CPI
across 384 runs, each with an independent random memory layout. Using the average
instead of the median gives a similar, but slightly more irregular curve. The dip at
unity expansion occurs because cache line alignment of loop entry points is preserved
through long procedures.



46

4.4 Randomized Layout Optimization

The preceding sections discussed the problem of measuring program performance

when there is no reason to prefer the default program layout over any other. However,

some new compiler systems include layout optimizers that use profile data to place

interrelated procedures at non-conflicting addresses. In these systems, the layout optimizer

produces an approximation to the best possible procedure layout or, so it is reasonable to

wonder if the concepts in the preceding sections no longer apply.

We show that layout optimizers do make a large number of arbitrary or nearly arbitrary

deterministic decisions that have large effects on program performance. Thus, adding

randomization to the layout optimizer can facilitate performance evaluation not only of the

program and the rest of the compiler, but of the layout optimizer itself.

The canonical approach to layout optimization is due to Pettis and Hansen [45]. The

basic P&H procedure positioning scheme uses a call graph profile. First, the program is

instrumented to record all procedure calls. Considering the procedures to be nodes of a

graph, weights are assigned to edges according to how many times a call occurred

between pairs of procedures. Then, the optimization algorithm tries to place pairs of

procedures with high-weight edges (i.e. procedures that call each other frequently) close

together. If two procedures are adjacent, and their total size is less than the size of the

(direct mapped) cache, then they will not conflict. As well as reducing instruction cache

misses, the technique has other benefits. On some architectures, long branches are more

expensive than short branches. Also, it is likely to reduce the number of TLB misses and

page faults. Here, however, we only consider the effect on the primary instruction cache.
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The algorithm proceeds by finding the edge with the largest weight, and merging the

two corresponding nodes. The new node represents a chain of procedures. The algorithm

repeats until no edges remain in the graph.

The result of the algorithm is not in general uniquely determined. The final order of

independent procedure chains is unspecified. Each individual chain can be flipped

backwards. There may have been identical edge weights in the original graph — such ties

are broken arbitrarily. Not only are these decisions not specified in the P&H algorithm or

any improved versions thereof, but there is no obvious “right” way to do it. Given the edge

weights shown below, it is clear that A and D should be adjacent. However, either B or C

is an equally good choice for being the other procedure adjacent to A.

Recent work in code layout optimizations has focused on path profiling [15]. In the

standard algorithm, whenever a procedure is entered, weight is added to the edge between

the entered procedure and the last procedure to be active. Path profiling adds weight to

edges between the entered procedure and the last several procedures to be active.

A

B C D

100
100

500
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Path profiling avoids some potential procedure conflicts that are not detected by the

standard algorithm. For instance, if procedure A calls both B and C, the standard

algorithm does not add weight to the edge between B and C, and may place them in

conflicting positions. Path profiling will add weight to the B-C edge, because B will have

been recently active when C is called.

A system implementing the union of the two approaches was developed. Profiling

works as follows. A queue of recently active procedures is maintained. When a procedure

is entered in any way (call, return or any other mechanism such as longjmp,) the value

 is added to the edge between the new procedure and the nth most recent procedure in

the queue, for all . Then the new procedure is pushed onto the head of the queue.

The constant a is a tuning parameter less than one. Setting  yields the standard

algorithm with no path history. An efficient implementation of this algorithm drops

procedures from the tail of the queue for which .

During initial performance measurements of the system, the improved algorithm

produced a program that produced 10% more instruction cache misses than the baseline,

suggesting that perhaps it is not superior after all. This was shown to be a systematic error

in measurement which could be avoided by randomized tie breaking, as explained below.

The cache conflict profile is a matrix that gives an estimate for every pair of

procedures of the cost of placing them in locations that conflict in the instruction cache.

The matrix is used as input to a greedy layout heuristic that repeatedly finds the largest

entry in the matrix for which one of the procedures has not already been placed, and tries

to put those procedures in non-conflicting positions. In using the technique, a list of

an

n 0≥

a 0=

an 0.01<
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procedure pairs is sorted according to profile information. There are many cases where

two procedure pairs have the same metric, and so the sorted order is arbitrary. When these

ties are broken randomly rather than arbitrarily, several runs of the optimizer will produce

programs with different performance characteristics. The table below shows the results of

ten such experiments, each comparing the performance of a run with history and a run

without.

Clearly, any single measurement can seriously misrepresent the value of the technique.

Making the variation visible in the experimental setup eliminates a source of systematic

error, and converts it into a sampling error.

Sampling errors are much less troublesome than systematic errors. For one, they

provide an estimate of the statistical significance of any comparison. Whereas many

papers on compiler techniques consider a 10% change in some performance metric to be a

cause for celebration, in this experiment at least a single measurement showing 10%

change is virtually meaningless.

Experiment # Change in Miss Rate
1 -18%
2 0%
3 -17%
4 +10%
5 -18%
6 -10%
7 -38%
8 -7%
9 -20%

10 +9%
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Sampling errors can also be reduced by averaging together many independent

samples. To try to get a clearer picture of how the algorithm performs, ten thousand

experiments were run. The results are summarized below.

The averaged numbers may be enough to conclude that the technique does in fact

improve performance.

4.5 Randomization

Two degrees of randomization are considered here in an effort to convert sources of

systematic error into sources of sampling error. The first is simply to break ties randomly.

That is, if the edges A-B and A-C have equal weight, the decision of which pair to make

adjacent is decided randomly. The graph below shows a set of call graph edge weights for

which there is a tie, and the four equally good orderings.

Change in Miss Rate
Average -17%

Maximum +10%
Minimum -39%

A

B C D

100
100

500 D - A - B - C
D - A - C - B
C - B - A - D
B - C - A - D

Call Graph Edge Weights Possible P&H Orderings
(all equally likely
with randomized

tie-breaking)
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The second level of randomization is to add noise to the edge weights. The edge

weights measured in a profiling run are based on a small set of inputs (often just one),

whereas the goal is to optimize performance across all future inputs to the program. Thus,

measured profile data constitutes a small sample out of a very large space of edge weights

for all possible program inputs. There is a substantial amount of error between the

measured data and the “universal” profile. By adding noise to the sampled data, the results

can be made less dependent on the statistically insignificant properties of the sample.

For example, the weighed call graph below is similar to the last, but with the A-B edge

increased to 101. It is doubtful that this small change in the edge weights genuinely

supports the choice of D-A-B-C over D-A-C-B.

The formula used for randomizing edge weights is shown in Equation [1]. The

constant C is used to vary the amount of randomness. The multiplicative formulation has

the advantages of being self-scaling, and of not producing negative weights.

(EQ 1)

A

B C D

101
100

500 D - A - B - C

C - B - A - D

Possible P&H Orderings
(all equally likely
with randomized

tie-breaking)

Call Graph Edge Weights

W W eCZ
⋅= Z is normal random deviate, mean=0, variance=1

)
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When evaluating the benefit of code layout schemes (for instance, to determine

whether they are worth the development effort) they must be compared against a system

without any special code layout algorithms. In such systems, procedures are typically laid

out in the order the linker encounters the procedures, which is dependent on the order in

which object files are specified on the linker command line, and the order in which

procedures appear within source files. Neither of these orderings is very fundamental.

Therefore, the baseline scheme against which all results are compared uses random

procedure ordering. In this scheme, every procedure is placed at an independently

randomly chosen address (but overlapping is prohibited).

4.6 Results

With randomization, the results for each scheme are not a single number, but a

probability distribution of performance values. These are presented as cumulative

distribution functions. The results shown here are the measured distribution across 128

runs of each program, each with an independently generated procedure layout. Here, we

switch from CPI to cache miss rate because with the optimization, the cache miss rate is

low enough that differences are hard to discern from graphs of CPI.

Figure 9 shows results for the Xlisp program from the SPECint95 benchmark suite. A

number of observations can be made from the graphs. All the cache layout algorithms

produce much better performance than a purely random layout, with benefits up to more

than an order of magnitude.
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FIGURE 9. Distributions of Primary (8 KB) I-Cache Miss Rate for Xlisp across
Different Layout Algorithms. Each graph shows the distribution of primary instruction
cache miss rate across 128 runs with independently generated layouts. Each row
corresponds to a layout algorithm. For all but the top row, the amount of randomness
increases from left to right; top row shows a completely random layout. The parameter a
controls how much weight is given to procedures which execute not consecutively but
closely spaced in time. When a=0, only consecutive procedures are counted.
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The width of the distribution of miss rate for the purely random layout is +/- 54%

(geometrically1) at the 10th and 90th percentiles. The width of the distribution for the

a=0.5 case without noise added to the edge weights (r=0) is +/- 18%. Multiplying these

ratios (1.54 and 1.18) gives an estimate of the potential systematic error if randomized

techniques were not used: +/- 81%. (The probability of an error this large is 2%, since both

measurements must be outside the center 80% of the distribution). As is shown in Table 2,

xlisp exhibits the highest sensitivity to layout, but most of the other benchmarks are not

far behind. The least sensitive benchmark, cc1,

Adding 1% of random noise to the edge weights used in standard P&H layout has a

dramatic effect on the primary I-cache miss rate, increasing it by more than a factor of two

on average. Variants of the P&H algorithm that consider path history are much more

robust, their performance deteriorating only slightly with 100% multiplicative random

noise.

With a large amount of error added to the edge weights (r=5), the standard algorithm

(a=0) can perform worse than a purely random layout. However, the algorithms that make

use of path history still provide close to an order of magnitude improvement in miss rate

even with multiplicative randomness of 500%.

The best results are achieved for a=0.7. This probably reflects how likely it is that a

recently active procedure is still in the cache after N more procedures have been entered.

1. All ranges are given geometrically. That is, +/- 54% implies that the true value is between 1.54 times the measurement
and 1/1.54 times the measurement.
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Considering the a=0.5 case, performance of the layout algorithm does not degrade

significantly with increasing added noise until r > 2.0. Adding +/- 200% noise does not

degrade performance but adding +/- 500% noise does. Similar results were obtained for

the GCC and Go programs from SPECint95. Thus we conclude that edge weights need

only be measured to within a factor of two, suggesting that random sampling is probably

adequate for profiling.

The width of the distributions is large enough that it may be beneficial, when no

expense is to be spared in order to generate the very best possible code, to generate several

independent layouts (using a moderate amount of noise in the edge weights) and pick the

one that performs best overall.

4.7 Conclusions

This chapter has presented results from some well-known benchmarks that

demonstrate the following claims:

• Non-randomized comparisons of compiler optimizations that affect code size (as

almost all optimizations do) can have substantial systematic errors. A  10% error in

runtime is typical, and up to  22% error was demonstrated for one common bench-

mark. These errors increase in proportion to the relative importance of cache effects,

which some researchers expect to increase on future CPUs.

• Using randomization reveals how large the systematic errors may be, and allows for

statistically significant comparisons.

• Code layout optimizations algorithms also exhibit hypersensitivity, and should be

randomized. Breaking ties randomly demonstrates some of the variability.
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• Adding noise to the edge weights of a profile before using it for layout optimization

exposes much more variability, and is the recommended technique for evaluating

code layout optimizations.

• The code layout algorithms that consider path history perform better than the stan-

dard algorithm, and are more robust in the face of inaccurate edge weights. The stan-

dard P&H algorithm depends critically on the exact values of the edge weights, such

that adding 1% noise can seriously degrade its performance. Variants that consider

path history do not have the same problem.

• Systems that use statistical sampling to gather approximate call graph profiles

should heed the conclusion that the standard P&H algorithm, without path history,

may perform badly when there are small sampling errors in the profile data.

• Compiler optimizations that contain arbitrarily made decisions are subject to large

systematic errors. Results were shown for code layout schemes that showed a one in

five chance of having errors as large as a factor of two. The potential magnitude of

these errors has not previously been reported.

We remark that all the problems and solutions proposed in this chapter are a result of

caches being not fully associative. That is, a fully associative cache with LRU replacement

would not exhibit high sensitivity to layout, and would not require the techniques

described here. However, there are no serious proposals for making instruction caches

fully associative.
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There is reason to believe that many other compiler algorithms have similarly high

sensitivity. Any algorithm that contains a step of the form “Choose an available X”, where

X might be a register, execution unit, processor, memory block or other resource, is

subject to large sensitivity errors if this choice is made arbitrarily but deterministically. It

would be valuable to characterize the magnitude of the potential error in measuring the

effectiveness of other kinds of compiler optimizations.

Many other algorithms contain a step of the form “Choose the X with the largest

F(X)”, where F(X) is a heuristic function that guides the algorithm toward good choices.

At a minimum, distributions should be measured with randomized tie-breaking — that is,

if multiple Xs have identical values for F(X), one should be chosen randomly. To go one

step further, one value of F(X) should only be always chosen over another if the difference

is statistically significant. The approach used here of adding varying amounts of noise to

the heuristic function (i.e. the measured call graph edge weights) not only provided

valuable estimates of the error bars and isolated the results from sensitivity errors, but

highlighted some undesirable behavior in the standard P&H algorithm.
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Chapter 5
Randomizing TCP/IP to Improve Measurability

There is a long history of networking research that suggests that tuning congestion

control protocols for good performance takes a long time. TCP, as originally proposed,

suffered from a number of performance problems that were corrected over a period of

many years based on extensive measurement and observation. In addition, there are

several proposed new congestion control algorithms competing for inclusion in future

standard implementations. The main obstacle to standardization may be the difficulty in

accurately measuring the relative merits of each.

It is therefore proposed that ease of making accurate performance measurements

should be considered an important attribute of any protocol. Because tuning protocols

takes a long time, and much of that time is spent trying to decide whether various

proposed modifications are really beneficial or not, we posit that a protocol that is easy to

measure will achieve higher performance more quickly than a protocol that is harder to

measure. It is therefore proposed that network protocols that are inherently amenable to

robust performance measurements should be preferred over ones that are not, as they

facilitate evolutionary improvement by the network research community.

We show in this chapter that it is hard to make meaningful measurements of TCP

performance without randomization. The deterministic algorithms in TCP and router

queue management make the system highly sensitive to slight parameter variations. This

chapter will present results from systems that exhibit performance changes of more than

an order of magnitude due to changes in simulation parameters of less than 1%.
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Randomness can be added in four ways. First, when simulating a deterministic

network, many simulations can be run with small random perturbations to the

configuration parameters. Second, random traffic sources can be used to drive simulations

instead of deterministic ones. Third, randomization can be added to the router

implementations, for instance to drop randomly chosen packets when the queue overflows.

Fourth, randomness can be added to the end-system implementations, by modifying the

congestion control algorithms.

All the above techniques are shown to have a useful role in the quest for meaningful

results. Randomly perturbing the network configuration gives a fairly direct measurement

of how reproducible and how broadly applicable the results of measurements are. Adding

random traffic sources can make the system less sensitive to slight configuration changes,

and may be closer to real-world behavior. Randomized network protocols are inherently

easy to measure, and less likely to show extreme behavior.

5.1 Introduction

This chapter presents measurements of the fairness between competing TCP sessions,

using the network configuration shown in Figure 10. The network has two TCP

connections competing for bandwidth on a single bottleneck link. In all cases, TCP’s

maximum window size is set to 32 KB, and packets are 552 bytes. It has been shown [40]

that TCP is unfair to connections with long access links relative to ones with short access

links — this configuration represents a relatively mild difference in length, but where

noticeable unfairness might reasonably be expected. All simulation results in this chapter

were generated by the NS [21] simulator.
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Two metrics are used to report performance of TCP implementations in various

network configurations: unfairness, and delay time.

Unfairness is measured as the log (base 10) of the ratio of application-level throughput

between the two sessions. That is, we report , with goodput

metrics  and  measured as the largest ACK sequence number received by the

corresponding sender. A value of +1.0 implies that the A-Y connection got ten times as

much bandwidth as the B-Y connection. This metric can be generalized to more than two

sessions by comparing the best and worst performing TCP.

In many places in this chapter, we will want to vary a parameter randomly “by a few

percent”. The following definition makes precise how parameters are varied. Most real-

valued parameters are measurements of quantities for which negative values do not make

sense. Propagation delay is an example. In this chapter, “X% randomness was added to a

10 mS 1.5 Mb/s

10 mS 10 Mb/s

10 mS 10 Mb/s

A

B

X Y

FIGURE 10. Simple Fairness Testing Configuration. Two TCP sessions are set up: A
to Y, and B to Y. Both are greedy. Baseline configuration parameters are shown. The
bandwidth delay products for both kinds of links are shown in units of 552-byte packets.

Queue limit = 25 pkts

(Bandwidth-delay product(Bandwidth-delay product
is 22.6 packets) is 6.8 packets)

10 DAY DBY÷( )log

DAY DBY
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parameter P” means that the parameter is perturbed according to EQ 2, where C is the

amount of randomness (X/100) and Z is a random variable from the standard normal

distribution, with mean 0 and variance 1. For small values of C, this is similar to the

approximation in EQ 3.

(EQ 2)

(for small values of C) (EQ 3)

5.2 Perturbing Network Configurations

This section presents the results of a number of network simulations on the same

network topology, as shown in Figure 10.

In all cases presented here, total throughput and utilization of the bottleneck link was

very high — above 90% of capacity. However, in many situations one TCP got most of the

bandwidth, while the other got little.

P P eCZ
⋅=

)

P P PeCZ+≅

)
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The two tables below show the results of two very similar simulations. The only

difference is a change of about 2% in the propagation delay of one of the links. However,

the results change dramatically. In the first, the longer link is favored by about a factor of

3. In the other, the shorter link is favored by more than a factor of 3. This large level of

unfairness is frustrating to network users.

Router Queue Drop incoming when >= 25 pkts

Access Links 10 Mb/S

Congested Link 1.5 Mb/S

Tax, Tbx, Txy 10 mS, 30 mS, 10 mS

TCP Tahoe

Sim Time 60 S

-0.47 (ratio of 1 : 2.9)
TABLE 3. Simulation Results. This result suggests that TCP Tahoe with drop-tail
routers may be somewhat unfair. The TCP on the longer link gets more than its fair
share.

Router Queue Drop incoming when >= 25 pkts

Access Links 10 Mb/S

Congested Link 1.5 Mb/S

Tax, Tbx, Txy 10 mS, 30.7 mS, 10 mS

TCP Tahoe

Sim Time 60 S

+0.51 (ratio of 3.3 : 1)
TABLE 4. Simulation Results. A very slightly different propagation delay (29.8
instead of 30.0 mS) creates vastly different results. This time, the TCP on the shorter
link gets more than 3 times as much as the TCP on the shorter link.

10 DAY DBY÷( )log

10 DAY DBY÷( )log
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Clearly, either of the two results in isolation would be misleading. Even considering

both results is not very illuminating, except that it is clear that the system is highly

sensitive to slight parameter variations.

We now consider a number of ways of adding randomness to experimental setups for

measuring network performance. In each subsection below, we show the distribution of

results obtained by randomizing one aspect of the experimental setup. At the end, we

consider the cumulative effect of using all the techniques. The parameters preoccupied

are: propagation delay, queue size, receiver window size, and relative start time of the

connections. Perturbing propagation delay is the most effective technique in this instance;

however since all of these parameters are arbitrary within a small range, they should all be

perturbed for maximum generality.

The goal in perturbing parameters is to not change the simulation configuration very

much. For instance the configurations in Tables 3 and 4 are the same for all practical

purposes, but a simulation with Tbx = 100 mS would not be. Thus, we will only modify

parameters by a few percent.

5.2.1 Perturbing Propagation Delay

Elaborating on the sketch results above, we show in this subsection that TCP fairness

experiments exhibit extreme sensitivity to small changes in propagation delay.

For practical as well as theoretical reasons, results that are highly dependent on the

exact value of the propagation delay must be considered suspect. A somewhat specious

argument why propagation delays should not be fixed too accurately is as follows. The

speed of signal propagation in twisted pair network links (such as 10Base-T) is variable.
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The Category 5 specification allows as much as 1.2% change in propagation delay over the

rated temperature range [8], so it is possible that results on the same physical network

would be irreproducible during different seasons.

Figure 11 plots the fairness between two TCPs in the configuration from Table 3,

varying only Tbx. The graph confirms the hypothesis that fairness changes greatly due to

small variations in the propagation delay. This graph is qualitatively similar to one

produced by Floyd and Jacobson [23], and corroborates their results on a similar network

topology, but with different parameters.

1:11:1

1:2

2:1

1:5

5:1

1:10

10:1

5 10 15 20 25 30 35 40 45 50
Propagation Delay b-x

FIGURE 11. Fairness vs. Propagation Delay. Fairness changes dramatically over a
range of propagation delays as small as 1.0 mS. A repeating pattern is evident,
presumably due to resonances between the two TCPs at certain round trip times.
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To determine the distribution of results expected across small variations in propagation

delay, simulations were done with random perturbations of 5% added to the propagation

delays for all three links. One thousand simulations were done with independent random

perturbations; the results are summarized as cumulative distribution functions. The

distribution of fairness results is shown in Figure 12.

A number of conclusions can be drawn from the distribution graphs. The worst case

unfairness is about 0.85 — that is, a factor of 7:1. The system has a somewhat high chance

(67%) of favoring the short connection, but the graph is not as asymmetric as might be

expected from the 3:1 different in access link propagation delays.

The above observations show that it is possible to make interesting statements about

TCP’s fairness properties when the simulation configuration is randomized by perturbing

link propagation delays slightly. It was not possible to reliably make such observations

when specific values of all these parameters were used, as shown in Tables 3 and 4.
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FIGURE 12. Cumulative distribution of fairness with 5%
random perturbation in link propagation delays. Other
parameters from Table 3..
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5.2.2 Perturbing Queue Sizes

The queue size at the bottleneck router is another logical candidate for randomization.

Here we are considering drop-tail routers with the queue length fixed for each simulation;

random dropping strategies require modifications to the congestion control algorithms

themselves and are considered later.

The queue length for the configurations presented so far has been 25. If the results are

substantially different with a queue length of 24 or 26, that would be worth knowing.

Even the interpretation of the queue length is not completely clear. Does a packet

currently being sent get counted in the queue length? Is the overflow check made at the

start of a new arriving packet, or at the end? These factors can alter the effective queue

length by one or two packets.

Figure 13 shows the effect of randomizing the queue size on fairness.
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FIGURE 13. Cumulative distribution of log fairness with 5%
random perturbation in router queue size. Other parameters from
Table 3. The effect is much smaller than that of randomizing the
links, and is not a substitute for randomizing propagation delays.
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While this technique may be worthwhile in combination with the other techniques, by

itself it is not enough to avoid the kind of meaningless results found in Tables 3 and 4.

5.2.3 Perturbing Window Size

TCP maximum window size is an adjustable parameter that is set (in real

implementations) before the connection is opened. Hypersensitivity to window size is

suggestive of irreproducible results.

5.2.4 Perturbing Start Time

Figure 15 shows the effect of adding a uniformly distributed random variable with

standard deviation 50 mS (roughly equal to one round trip time) to the start times of one of

the connections. While the differing start times clearly have an effect, it is not enough to
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FIGURE 14. Cumulative distribution of log fairness with 5%
random perturbation in window size. Window size is quantized to
a multiple of the packet size (512 bytes.)
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overcome the other deterministic effects. Presumably, while differing start times can affect

the simulation slightly in the beginning, after a few seconds this single injection of

randomness has been lost and the system reaches a stable state.
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FIGURE 15. Cumulative distribution of log fairness with 50 mS
random offset in start time of one connection.
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5.2.5 Multiple Techniques

The techniques described above can be used in combination. Figure 16 shows the

effect of varying all the configuration parameters together.

The distribution of results obtained from varying all the configuration parameters is

only slightly broader than that obtained by varying just the link propagation delays.

Perturbing the queue sizes, window sizes, and start times each exposed some of the range

of potential variation in results, but not nearly as much as was found by varying

propagation delays.

Although it appears from the results presented here that varying propagation delays is

the only worthwhile technique, this may not apply to other systems. In this system, the

major cause of hypersensitivity was the precise timing relationships that caused one TCP

to consistently choose a worse time to increase its window than the other, and thus the
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FIGURE 16. Cumulative distribution of log fairness with 5%
random perturbation in all parameters. Link propagation delays,
queue sizes, start time offsets, and window sizes are all randomly
perturbed by 5%. Distribution is only slightly wider than that shown
in Figure 12, where only propagation delays are varied.
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system is hypersensitive to propagation delay. However, it is possible that different

systems would be sensitive to other parameters, and so it is recommended that all available

configuration parameters be perturbed.

5.2.6 Summary

This section has developed techniques for discovering the range of performance

results obtained across a small range of perturbations to network configurations. For

simple situations such as the simple fairness configuration described here, 5% changes to

configuration parameters can affect the results by more than five orders of magnitude.

We conclude that any conclusion drawn from a single simulation of such a network is

essentially meaningless. Analyzing the distribution of results has shown the amount by

which single simulations can be misleading, and has also shown the range of potential

results that might be encountered on real networks similar to the idealized network.

5.3 Randomizing Network Activity

We have addressed some ways in which the simulation configuration can be perturbed

somewhat. Now we turn our attention to ways in which the network activity itself can be

randomized.

All of these techniques described here to randomize network activity have been used

in published measurements. The new contribution here is to demonstrate a procedure for

determining the right amount of randomization to add. It is important to be able to
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estimate the necessary level of random network activity correctly. Too little can lead to

meaningless results; too much can change the character of the network traffic being

studied.

The sensitivity analysis methodology developed above will prove useful in estimating

reasonable amounts of randomization. We will be able to determine how much random

network activity must be added to effectively isolate the system from spurious

determinism by measuring the sensitivity of the system to small configuration changes

with varying amounts of random network activity.

5.3.1 Randomizing Traffic Sources

When testing network control algorithms (TCP, router scheduling policies,) a traffic

source must be supplied. This traffic source is external to the algorithm in question, and in

some cases randomness can be added to the traffic model to explore a small range of

possibilities.

In the network configuration described here, the traffic sources are greedy — that is,

they always send as fast as they can. Thus, once they have started, no random decisions are

possible. Start time was varied as a parameter in the previous section, and had a modest

effect.

5.3.2 Adding Random Background Traffic

A technique used by some researchers to avoid misleading deterministic effects is to

add small amounts of background traffic. Floyd & Jacobson report that traffic phase

effects are largely eliminated when 15% of the packets through a gateway are 40-byte
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packets sent at random, exponentially distributed intervals [23]. Traffic from interactive

telnet sessions is claimed to be similar to this — thus this source of randomization also

reflects a realistic real-world phenomenon.

In this section we extend Floyd & Jacobson’s work by quantifying the amount of

background traffic needed. The crucial question is how much background traffic is enough

to eliminate systematic errors due to spurious determinism?

Background traffic was added in the form of small (40-byte) packets sent as part of

TCP sessions, with exponentially distributed interarrival times (i.e. Poisson traffic

sources.) The amount of background traffic is specified as a fraction of the link that it uses;

thus in the simple fairness configuration with 1.5 Mb/s links, 1% background traffic

corresponds to an average rate of 15 Kb/s.

Background traffic is injected at nodes A, B, and X in the simulation configuration, all

terminating at Y (see Figure 10.) A characteristic of the simulation package used is that

this kind of traffic must use TCP connections. To prevent TCP from throttling the

background traffic, 10 TCP sources were placed at each node. Thus, there are 30

background TCP connections competing with the 2 connections of primary interest.

Analysis of the traces showed that TCP’s congestion control mechanisms did not

significantly change the nature of the background traffic from the source’s Poisson

behavior.

Figure 17 shows the effect of increasing background traffic, while keeping

configuration parameters constant. With no traffic, there is a large systematic error that

gives a median log fairness value of -1.0. (With slightly different configuration
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parameters, the log fairness value could have been quite different.) With increasing

amounts of background traffic, the median log fairness shifts right as far as +0.5, and then

back towards the center as the background traffic reaches 20%. Further analysis presented

below suggests that as much as 20% background traffic may be necessary to avoid

systematic errors.

“Enough” background traffic can be defined as the level of background traffic at which

the distribution of fairness results is relatively independent of small perturbations in the

network configuration.

For a given amount of background traffic, the following algorithm was used to

determine whether it is sufficient to isolate the results from the exact choice of network

configuration parameters.

The algorithm reports N results, each the distribution of simulating M times with a

given perturbed configuration. We consider that if the N distributions reported by the

algorithm are similar, then the system is insensitive to small changes in the configuration.

In the results presented here, N and M were both set to 100. Because it is hard to plot the

distribution of a set of distributions, the median of each set of M simulations is taken, and

the distribution of the medians is graphed.

repeat N times {

Choose a randomly perturbed configuration

repeat M times {

simulate (yields a single log fairness result)

}

report distribution of above log fairness results

}

Measuring Configuration Sensitivity
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FIGURE 17. Adding increasing amounts of background traffic (40-byte
packets). Graphs, left to right and top to bottom, have 0.1%, 0.2%, 0.5%, 1%, 2%, 5%,
10%, and 20% background traffic (as a fraction of bytes, not packets) added. The
distribution is narrow at all amounts of randomness. The center of the distribution
shifts to the right with up to 2% random traffic, and then shifts back toward the center.
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The distributions for several amounts of background traffic are shown in Figure 18,

and the amount of variation is quantified in Table 5. It appears that 5.0% background

traffic is sufficient to reduce the variance due to configuration perturbations to nearly as

small a value as 20% background traffic. However, with 2.0% background traffic the

results are more than twice as sensitive to configuration perturbations. Thus, we conclude

that 5.0% background traffic is a good practical choice.

It is noteworthy that even 0.05% background traffic dramatically reduces the range of

unfairness. With no background traffic, log fairness values of +/- 2.0 are reasonably likely;

with 0.05% background traffic the range of log fairness drops to +/- 1.0. 0.05%

background traffic corresponds to 140 packets over the 60 seconds of simulated time.

Floyd & Jacobson’s [23] study recommended values for the background traffic that

correspond to about 0.5% of the capacity of the bottleneck link. This value is an order of

magnitude lower than the one suggested by the results presented here. As shown in the

third graph in Figure 18, a background traffic level of 0.5% still allows 5% changes in

configuration parameters to generate a variation in log fairness with standard deviation

0.474, or a factor of 3.0 in fairness.

Background Traffic Level
Sensitivity

(Std. dev. of log fairness with
5% configuration parameter

variation)

none 0.453

0.05% 0.427
TABLE 5. Decrease in sensitivity to configuration perturbations with
increasing background traffic level. Summarizes information in Figure 18.
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FIGURE 18. Decrease in sensitivity to configuration perturbations with increasing
background traffic (40-byte packets). Each graph shows the cumulative distribution of
median values for log fairness over the range of perturbed configurations. Graphs show
different values for the amount of background traffic (large label), increasing left to right
and top to bottom.
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5.3.3 Randomizing Processing Time

Floyd and Jacobson [23] also suggested the addition of random delays to the packet

processing time as a way of avoiding phase effects. We quantify the effect of this approach

here, similarly to the previous section, by determining how much random delay must be

added to make the system relatively insensitive to small configuration perturbations. This

is modeled by delaying each call to tcp_output by a random time, uniformly

distributed in some range. Here, the range is expressed as a fraction of the time required to

send a a full-size data packet on the output link. A value larger than 1.0 would limit the

maximum rate of the TCP to less than the link rate, thus we only show results for random

delays with a maximum value of one packet transmission time.

0.1% 0.403

0.2% 0.374

0.5% 0.314

1.0% 0.238

2.0% 0.143

5.0% 0.073

10% 0.032

20% 0.020

Background Traffic Level
Sensitivity

(Std. dev. of log fairness with
5% configuration parameter

variation)

TABLE 5. Decrease in sensitivity to configuration perturbations with
increasing background traffic level. Summarizes information in Figure 18.
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Figure 19 shows the decreasing sensitivity to configuration perturbations with

increasing amounts of random delay. When a large fraction of a packet transmission time

is added, sensitivity to the configuration drops sharply. Table 6 shows the sampled

standard deviation of log fairness as a function of amount of random processing delays.

5.3.4 Summary

Adding random background traffic and adding random processing delays have both

been shown to reduce the sensitivity of a simple test network to small configuration

changes. The amounts of randomness needed are small: either 5% background traffic, and

one packet transmission time are sufficient to reduce the variation in log fairness due to

configuration perturbations from multiple orders of magnitude to several percent.

Random Processing Delay
(% of packet transmission

time)

Sensitivity
(Std. dev. of log fairness
with 5% configuration
parameter variation)

none 0.453

20% 0.362

40% 0.250

60% 0.148

80% 0.079

100% 0.057
TABLE 6. Decrease in sensitivity to configuration perturbations with
increasing random delays added to host processing time. Summarizes
information in Figure 19.
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The techniques described here are analogous to effects found in the real world,

although they are not very exact models. Low level background traffic probably exists in

most real-world networks. Processing delay in hosts can vary, depending on interrupt

conflicts, cache effects, collisions in multiple access protocols such as Ethernet, and many

other phenomena. Neither model is very realistic: background traffic is not Poisson and

processing time is not uniformly distributed. However, there is no particular reason to
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FIGURE 19. Decrease in sensitivity to configuration perturbations with
increasing random processing delays. Each graph shows the cumulative distribution
of median values for log fairness over the range of perturbed configurations. Graphs
show different values for the amount of added random processing delay (large label),
increasing left to right and top to bottom.
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believe that more realistic models of background traffic or processing delay would yield

more meaningful results. However, 5% background traffic seems like a more realistic

assumption than 100% random processing delay.

We return to the question that the network configuration is designed to test: does TCP

share bandwidth fairly when the competing sessions have different-length access links?

Table 7 shows the average and standard deviation (across configuration perturbations) of

the median (across many tests) of log fairness. Both techniques give similar values, and we

conclude that in this configuration, a reasonable value for log fairness is +0.23. This

corresponds to the short connection getting 1.7 times as much bandwidth as the long

connection.

5.4 Randomizing Network Protocols for Measurability

The first subsection of this chapter showed that randomly perturbing network

configurations could expose the range of spurious determinism that could lead to

systematic errors. The second section showed how random effects, often present in the

real world, could be included in simulated network models. This section will discuss the

design of network control algorithms with substantial built-in randomness, and show that

Methodology Log Fairness

100% random packet delay +0.221 +/- 0.059

5% background traffic +0.244 +/- 0.082
TABLE 7. Log fairness values with standard deviations over perturbed
configuration space for two recommended methodologies.
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such protocols are inherently more amenable to making robust, reproducible, and broadly

applicable measurements of their performance in any scenario, not just scenarios with

carefully constructed background traffic or other forms of injecting randomness.

This section discusses TCP/IP systems. There are three parts to TCP/IP’s network

control protocol: the TCP sender algorithm, the TCP ack algorithm, and the router

scheduling & packet dropping algorithm. Each has potential for randomization.

Conventionally, TCP/IP systems implement the following things deterministically:

• Packet dropping. An arriving packet is dropped at a router if and only if the current

queue length is greater than some fixed threshold.

• Timer Expiry. Berkeley-derived TCP implementations periodically check for timer

expiration every few hundred milliseconds. The accuracy of these timers is high

enough that two workstations can remain synchronized for long periods of time.

• Round trip time estimation. Round trip times are calculated by subtracting two

timestamps, both of which are quantized to an integral multiple of the TCP timer

granularity, typically 500 mS.

• Window limits. TCP will only send a packet if it fits inside the current congestion

window, which is measured in bytes. This results in deterministic quantization error

equal to half the size of a packet.

• Window increase/decrease. TCP increases its window a deterministic amount

when data is acknowledged, and decreases it a deterministic amount when packet

loss is detected.
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Each of these deterministically made decisions can have a large impact on system

performance. In this work, we discuss only the first. Randomizing other aspects of TCP/IP

appears to be a promising direction for future research.

Random drop and random early detection gateways have been proposed in the

literature [22] as a way of improving fairness. Both involve randomizing the decision as to

which packets to drop under congestion, but they do it in different ways.

Random drop gateways, rather than dropping newly arrived packets when the queue is

full, replace a randomly chosen packet already in the queue in order to make room for a

newly arrived packet.

Random early detection gateways drop newly arriving packets with some probability

based on the queue length or a smoothed version of the queue length. Typically, no packets

are dropped when the queue is less than half full. When the queue is at least half full,

incoming packets are randomly dropped with a probability that increases from zero when

the queue is half full, to a few percent when the queue is nearly full.

Figure 20 shows how random drop gateways are much less sensitive to configuration

perturbation than are conventional drop-tail gateways. The average log fairness is +0.146

with standard deviation 0.0239, which is slightly more fair, and has substantially less

configuration sensitivity than the results shown in Table 7 for a drop-tail gateway with 5%

background traffic or 100% random packet delay.
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5.5 Conclusions

Extreme sensitivity to small perturbations in network configurations is an indicator of

irreproducible, non-robust results. The first section of this chapter developed several

methods for perturbing networks, and derived estimates of how much perturbation was

necessary to elicit the full range of behaviours from almost identical systems. Adding 5%

randomness to link lengths, start times, queue sizes, and window sizes is recommended as

0

0.2

0.4

0.6

0.8

1

1:11:11:2 2:11:5 5:11:10 10:1

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

Throughput(ay) : Throughput(by))

0

0.2

0.4

0.6

0.8

1

1:11:11:2 2:11:5 5:11:10 10:1

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

Throughput(ay) : Throughput(by))

FIGURE 20. Random-drop gateways make the system less sensitive to
configuration perturbations. Drop-tail gateway is never fair within about an order of
magnitude, but random drop gateway is consistently close to fair, with the shorter link
having a slight advantage. Each graph shows the cumulative distribution of median
values for log fairness over the range of perturbed configurations. Top graph is
(deterministic) drop-tail; bottom graph is random drop.

drop-tail

random drop
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a starting point. It may be that some systems require more randomness than this;

experimentation may be required to find the best value. Not too much precision will be

lost in measurements of systems which require less randomization than this.

Adding random traffic to the network was shown to be a fruitful technique for making

networks less sensitive to configuration changes. Adding 5% background traffic, or 100%

random packet delay, caused the system to become much more fair, and the results much

more reproducible, robust, and broadly applicable.

Although deterministic networks can be measured fairly accurately by carefully

adding background traffic and/or random packet delays, it was shown that networks that

are inherently random can be measured at least as accurately without any extra effort.

With a random drop gateway, not only did fairness increase slightly, but sensitivity to

configuration perturbations decreased.

The advantage of building randomized network protocols is clear. Randomized

networks have been shown to be fair, and measurements of them to be broadly applicable,

with or without carefully constructed background traffic.

In real-world WANs, amounts of background traffic adequate to avoid the repeatable

phase effects evident without any background traffic may exist. On LANs, however, no

background traffic may exist for long periods of time, and thus randomized networks may

confer a major practical advantage for LAN applications.
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Random drop gateways are a convenient way to add randomness to a network, and

they also have performance advantages as described in the next chapter. However, the

benefits of randomized networks can also be achieved by modifying the congestion

control algorithms in the end-system TCP implementations.
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Chapter 6
Randomizing TCP/IP for Improved Performance

The preceding chapter demonstrated that randomization could make TCP/IP less

sensitive to small configuration changes, and therefore easier to make robust performance

measurements of. In this chapter, it is shown that randomized versions of TCP/IP can

perform significantly better, on average, than conventional implementations.

It has been shown previously by Floyd and Jacobson [22] that adding randomization to

the packet dropping algorithm at routers can make starvation (where one connection gets

much less than its fair share) much less likely. Here we corroborate these results by

showing that the average transfer time is significantly reduced for random-drop gateways.

In addition, this chapter describes some new techniques for randomizing host

implementations, and shows that benefits similar to randomizing router implementations

can be achieved. This may be an attractive alternative to changing router implementations,

both because it is more in keeping with the “end-to-end” philosophy behind TCP/IP, and

because in practice host implementations are easier to change. One proposed modification,

that requires only small modifications to a conventional TCP implementation, is shown to

improve performance almost as much as random-drop gateways.

6.1 Introduction

The simulation configuration used throughout this chapter is shown below in Figure

21. A number of senders all compete to transmit through a bottleneck link with rate

proportional to the number of senders.
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The delay time metric is a measure of the average time spent waiting for network

transfers to complete. In order to have fixed-time simulations, it is computed according to

EQ 4. For each sender, the simulation time is divided by the amount of data it was able to

transfer (measured by the largest acknowledgment sequence number received by the

sender) and the average of these numbers is taken. The metric reflects the expected waiting

time of a sender in a large population to send a document, in seconds per packet worth of

document size. Thus, it corresponds directly to how long users must wait for results.

(EQ 4)

Lower values of this metric are better. The metric tends to give better scores to

algorithms that share the link fairly, because this minimizes the sum of the inverse

bandwidth terms. This corresponds to the fact that an unfair system reduces some users

waiting time a little, but increases others by a lot.

10 mS, N * 256 kb/s

10 mS 10 Mb/s

10 mS 10 Mb/s

1

N

X Y

FIGURE 21. Simple Performance Testing Configuration. N TCP sessions are set up:
A1 to Y through AN to Y. All senders are greedy. Baseline configuration parameters are
shown.

Queue limit = 25 pkts

1
N
---- sim time

DiY
--------------------

i 1=

N

∑
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6.2 Randomizing Window Computations at Sender

In the TCP implementation, there are several computations to compute the window

size based on acknowledgment arrivals and detected losses. In conventional

implementations, all these computations are simple deterministic formulas. This section

explores the effect on performance of adding randomization at various points in the

computation.

All the changes described here require no architectural changes to the code. They

simply involve replacing non-randomized formulas with randomized ones.

6.2.1 Poisson Window Increase

In TCP Tahoe and most others, the congestion window is increased according to the

following algorithm during congestion-avoidance mode. Cwnd is the congestion window,

measured in bytes, and MSS (maximum segment size) is the usual size of a data packet.

Since the throughput of the system is approximately one congestion window of data

per round trip time, the net effect is to increase the window by one packet per RTT.

Although cwnd is represented in bytes, under normal conditions it is only the

corresponding number of packets that affects the sending algorithm. Thus, rounding cwnd

down to the nearest multiple of the segment size (typically 512 bytes) would not affect

packet transmission.

When normal in-sequence acknowledgment received:

cwnd = cwnd + MSS2/cwnd;

Conventional (Tahoe) Window Increase Algorithm
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In the standard algorithm, the congestion window increases at regular, deterministic

intervals. In scenarios with a small number of TCPs, increasing the congestion window is

usually the direct cause of packet loss. Thus, deterministic phasing between the window

increase algorithms of two competing connections is a potential cause of persistent

unfairness and poor performance.

The window increase algorithm can be randomized in various ways. First, we

experimented with increasing it in increments of the MSS, at exponentially-distributed

intervals, but at the same average rate. The algorithm is as follows:

That is, with probability MSS/cwnd, the congestion window is increased by one

packet. We refer to this scheme as Poisson window increase. This can be implemented

very efficiently.

Results are shown in Figure 22 as cumulative distributions of total delay time, using

the simulation topology from the beginning of this chapter except that both access links

are 10 mS long.

When normal in-sequence acknowledgment received:

if (random(0..cwnd) <= MSS)

cwnd = cwnd + MSS;

}

Poisson Window Increase Algorithm
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6.2.2 Randomized Slow Start

A potential place to add randomness to TCP’s congestion control algorithm is by

picking a random rate of increase each time the connection enters the slow-start phase.

Experiments were made with these modifications, but no statistically significant effects on

performance could be discerned.

6.2.3 Randomized Window Limit

The improved performance of the Poisson Window Increase scheme suggests that

smooth increases in the number of outstanding packets may not be optimal. An intuitive

reason for this is that by increasing the window smoothly, a TCP can maintain a full queue

at a router for a long period of time, which tends to ensure large numbers of lost packets if

another TCP recovers from timeout and begins slow-start.

Sending packets in somewhat irregular bursts may cause individual packet losses

before he router queue becomes completely full, allowing the sender to detect congestion

and recover using TCP’s fast recovery mechanism. In effect, randomness added to the

window size can simulate the effect of Random Early Detection [22], by causing

occasional packet drops before the queue is full.
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FIGURE 22. Performance Results: Poisson Window Increase Algorithm for 2, 5,
10, 20, and 50 TCP connections. Graphs show cumulative distributions of total
transfer time across 100 simulations, with 5% random parameter variation and
different seeds for the random number generators. In each row, the graph with the line
farthest left has the best performance (lowest transfer time.) Average transfer time for
(reported in lower right corner of each graph) drops by as much as 25% at lower
numbers of TCPs. With 50 TCPs, performance improvement is only 2%.
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To experiment with this system, the sending algorithm was modified. The Tahoe

algorithm is essentially as shown below.

The expression unacked_data is calculated as the difference between the starting

sequence number of the next data packet to be sent, and the largest received ACK

sequence number. It is increased by MSS every time a data packet is sent. Wnd is the

window limit provided by the receiver, which is large enough that it does have any effect.

To add some random noise to the window, the following modified algorithm was used.

It adds a uniform random variable to the current window every time the system is about to

send one or more packets.

When in-sequence ACK received:

w=cwnd

w=min(w,wnd)

while (data available && unacked_data + MSS <= w) {

send next data packet

}

Conventional (Tahoe) Sending Algorithm

When in-sequence ACK received:

w=cwnd + MSS*random(-wnd_noise .. +wnd_noise)

w=min(w,wnd)

while (data available && unacked_data + MSS <= w) {

send next data packet

}

Noisy Window Sending Algorithm
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A range of values for wnd_noise were simulated, and the results are presented in

Figure 23. Although significant reductions in total delay are achieved with multiple

packets of added randomness, there are likely to be undesirable effects with small

windows.

To add some burstiness to the window, the following modified algorithm was used.

The modified algorithm uses a window that is larger by one packet, with a probability of

bump_prob. The intent is to provoke a loss before the router buffer becomes persistently

full. This scheme can be used alone, or with the Poisson Window Increase scheme.

A range of values for bump_prob were simulated, and the results are presented in

Figure 24.

6.3 Randomizing Gateway Drop Policies

Ample evidence has already been presented [22] that random drop gateways improve

fairness, and therefore should exhibit lower average transfer times. In this section we

present the results of simulations that corroborate these results, mainly for the purpose of

allowing a side-by-side comparison with the performance achievable by adding

randomization to the sender implementation.

When in-sequence ACK received:

w=cwnd + ((random(0..1) < bump_prob) ? MSS:0)

w=min(w,wnd)

while (data available && unacked_data + MSS <= w) {

send next data packet

}

Bursty Window Sending Algorithm
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FIGURE 23. Performance Results: Noisy Window Sending Algorithm with 2
connections and varying amounts of noise. Benefit is small below wnd_noise of 0.5,
but substantial performance increases are seen at larger values. However, large values of
wnd_noise probably have undesirable effects that are not evident here.
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FIGURE 24. Performance Results: Bursty Window Sending Algorithm. Probability
of using larger-by-one window increases left-to-right, top-to-bottom. Best results are
obtained with P=0.1 or P=0.2. Probabilities less than 0.01 have little effect. Best
performance increase is 25%, somewhat better than the Poisson Window Increase
Algorithm.
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Random-drop gateways differ from standard FIFO gateways in the way they choose

the packet to be dropped. A conventional gateway will only buffer a finite number of

packets; when a packet arrives and the queue is full, the arriving packet is dropped. A

random-drop gateway instead always queues received packets, but drops a randomly

chosen packet from the queue if the queue is full.

Using random-drop gateways improves average transfer time significantly. Figure 25

shows how the distribution of average transfer time differs for random-drop

configurations.

6.4 Comparison of All Randomized Schemes

This section presents overall performance comparisons for each of the schemes

previously described in this chapter. For the Bursty Window scheme, the value of P used is

0.1, which the results in Figure 24 indicate to be the best choice. For the Noisy Window

scheme, the amount of noise is 2.0 packets.

Figure 26 shows performance results for the various schemes across a range of

numbers of competing connections. Random-drop gateways are the clear winner. They

perform near the theoretical maximum performance for all numbers of connections.

6.5 Conclusions

The results presented in this chapter show that both randomizing the window increase

algorithm in the sender and using random drop gateways produce substantial performance

benefits of up to 37% reduction in average transfer time. The improvements are more

significant with smaller numbers of connections.
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FIGURE 25. Performance Results: Random Drop Gateways for 2, 5, 10, 20, and
50 TCP connections. Graphs show cumulative distributions of total transfer time
across 100 simulations, with 5% random parameter variation and different seeds for
the random number generators. In each row, the graph with the line farthest left has the
best performance (lowest transfer time.) Average transfer time for (reported in lower
right corner of each graph) drops by as much as 37% on average. Improvement is
larger with smaller numbers of connections.
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The most aesthetically appealing of the algorithms presented is the Poisson Window

Increase algorithm. This extremely simple algorithm can be implemented in a few lines of

code, and does not change the average-case behavior of the window increase algorithm.

The Noisy Window algorithm gives the most performance improvement of all the

host-based algorithms, and also exhibits a very smooth variation with number of

connections. The Bursty Window algorithm performs slightly better than the Poisson

Window Increase algorithm, but probably not enough to justify its complexity and difficult

analysis.
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FIGURE 26. Overall Performance Comparison of All Randomized Schemes.
Performance values are 1/average transfer time. Number of TCP sessions varies from 2
through 50. Best performance is from random drop gateways, but randomized
congestion window schemes come close.
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None of the host schemes, however, perform as well as the gateway-based scheme.

However, the host schemes are still interesting for the following reasons.

First, there is some historical evidence that it is easier to change host implementations

than router implementations. Although there are many more hosts than routers, host

software is upgraded frequently for other reasons. In a research environment, it is often

very easy to experiment with new TCP implementations in various Unix derivatives with

freely available source.

Second, the host-based schemes follows the end-to-end principle [39], which says that

anything that can be done in the end-systems should be done there, rather than in the

network. Rather than citing philosophical justifications for this principle, we simply point

to its success as a core principle of the most successful data network ever.

As a project for future work, a real implementation of the various schemes in the BSD

kernel would be a valuable contribution. Each of the various degrees of randomness

should be tunable to allow the most convenient experimentation. “TCP Monte Carlo” is

proposed as a name for this implementation.
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Chapter 7
Conclusions

By injecting randomization into otherwise deterministic systems according to some

simple principles, this thesis has proposed improved ways of measuring both congestion

control and memory system performance, and has also demonstrated ways in which the

performance of the TCP/IP congestion control system can be improved using

randomization.

First, several techniques to add randomness to congestion control simulation

configurations and to program memory layout optimization systems were developed and

evaluated.

Robust, reproducible, and predictive performance measurements are important, but it

is difficult to make such good measurements of complex systems. One reason is that very

small changes in any aspect of the system or its experimental configuration can cause large

variations in performance. Worse, measurements of the change in performance when a

new technique is applied are subject to the sum of two variations in performance.

Although each measurement may be repeatable in the sense that running the experiment or

simulation again produces the same result, the results are hard for other researchers to

reproduce, not broadly applicable, and may change due to any other small change in the

system.
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For simulation-based TCP/IP performance research, specific guidelines specifying

appropriate amounts of each kind of randomization were proposed that should help

produce robust, reproducible, and predictive results.

For both systems, randomized methods were shown to reduce dramatically reduce

sensitivity and therefore the error to be expected in measurements. In TCP/IP systems,

random perturbation can be used to expose the configuration sensitivity of congestion

control simulations. Comparing the performance distributions over a hundred slightly

perturbed configuration was shown to be more meaningful and reproducible than

comparing individual performance results. In measuring memory system performance, the

median performance over a large number of runs with random procedure ordering was

shown to be a much more reliable performance metric.

The randomization techniques also provide an estimate of the error that should be

expected if the techniques are not used: that is, if measurements are reported for single,

deterministic simulations. Error estimates for a common simulation configurations suggest

that deterministic simulations under these conditions may include fairly large errors.

Fairness in congestion control systems was shown to vary by more than an order of

magnitude due to insignificant changes in link propagation delays. Runtime of most

SPEC95 benchmarks exhibited more than  10% variation (all variations are reported as the

90% confidence interval.) When all eight integer benchmarks are averaged, the variation is

still  3.5%, leading to a  8.0% error in comparing two versions of a program or compiler at

90% confidence.
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A second contribution of this thesis has been to describe ways of building

randomization into the core of TCP/IP congestion control algorithms so that future

performance measurements of these systems would be inherently free of large systematic

errors. Although it probably does not make sense to redesign TCP in this light, it is

recommended as a design principle for new network protocols.

A third contribution of this thesis has been to demonstrate that the randomized

versions of TCP perform better, because reducing the variation in bandwidth allocation

between connections reduces the average transfer time across all connections. Based on

simulation results, levels of randomness were selected that gave the best performance in

terms of average transfer time.

By modifying the congestion window computation algorithm in the sender,

performance improvements of up to 32% were achieved over a conventional

implementation (TCP Tahoe). The above-mentioned figure is the average across a wide

range of numbers of competing greedy connections. The largest benefits were seen with

20 connections or less. The most promising algorithm adds a uniformly distributed

number to the value of the congestion window before using it to limit the sending

algorithm. Various other algorithms were proposed and analyzed, showing lower but still

encouraging performance improvements.

Random drop gateways, originally proposed by Floyd & Jacobson [22], improve

performance even more, by an average of 37% across the simulations performed in

Chapter 7. However, because the practical networking community has been much slower
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to adopt changes to routers than changes to host implementations, the randomized window

computations (which can be implemented purely in the sender) may prove to be an easier

path to improved performance.

7.1 Lessons Learned

Based on the present author’s experience in implementing several randomized systems

for making the performance measurements reported in this thesis, it is not hard to add

randomization to existing systems. Thus, it is highly recommended as a tool to improve

measurability as well as overall performance.

When randomization is added to a system, individual experiments are not repeatable.

On the whole, I argue that it is worthwhile to sacrifice repeatability for reproducibility and

robustness. Adding randomness may make it much more difficult to create repeatable test

sequences in order to track down problems. Possible solutions to this problem include

means for specifying initial random seeds and flags for turning off randomness. These

considerations are important in compiler development, but probably not in networks

where there is usually unavoidable randomness.

When applied to compiler optimizations, randomness may have an interesting

advantage which seems worthy of further research. In most programming languages, it is

possible to write programs which are ambiguous: i.e. can be interpreted in multiple

different ways by the compiler. “Correct” programs would perform correctly under any

valid interpretation. Examples of ambiguous constructs in C include writing past the end

of an array (where the memory could be empty, or nonexistent, or contain another

important data structure) and hidden memory aliases (the ANSI C specification allows
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memory references through incompatible pointer types to be reordered.) If the compiler

used in development happens to choose a benign interpretation of an incorrect ambiguous

construct, the bug may not be noticed until the compiler is upgraded, or the program is

ported to a new machine. Because bugs get more difficult to fix as time elapses since the

code was written, a randomized compiler which found bugs earlier might improve the

development process. Best results would come from testing programs with the

randomness level set very high, and comparing outputs against normal operation.

A further benefit in system development is that a given set of test cases can exercise a

larger range of system states when randomness is added. This may reduce the amount of

work needed to assemble an acceptably comprehensive test suite.

For compiler development, repeatability can be achieved by careful management of

pseudorandom seeds. A suggestion is to accept a seed on the command line, and generate

a seed for each function based on a hash function of the command line seed and the

function name. The seed information should be stored in the object file produced so that

results can be repeated if necessary.

7.2 Future Work

It is likely that randomness can be profitably applied to many more systems than

congestion control and program memory layout optimization. In earlier unpublished work

by the present author, encouraging results were obtained for adding randomness to a RISC

instruction scheduler. Tuning the instruction selection heuristic function, which weighs the
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effects of each instruction on register pressure, cycle count, and progress on the critical

path was significantly aided by randomness. In general, algorithms driven by heuristic

functions may benefit from adding random noise to the result of the function.

7.3 Summary

This thesis presented a simple principle, that arbitrary decisions should be made

randomly, and applied it to network congestion control and compiler memory layout

systems in which many more or less arbitrary decisions were previously made

deterministically. In both cases, system performance became more reproducible and

robust.
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