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PREFACE

I like to work in a variety of �elds

in order to spread my mistakes more thinly.

| VICTOR KLEE (1999)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the

�eld, in hopes that they 
an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for


ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet rea
hed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3

were at the time of their �rst printings. And those 
arefully-
he
ked volumes,

alas, were subsequently found to 
ontain thousands of mistakes.

Given this 
aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be dis
ouraged from reading the material 
arefully.

I did try to make it both interesting and authoritative, as far as it goes. But the

�eld is so vast, I 
annot hope to have surrounded it enough to 
orral it 
ompletely.

Therefore I beg you to let me know about any de�
ien
ies you dis
over.

To put the material in 
ontext, this is Se
tion 7.2.1.7 of a long, long 
hapter

on 
ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namely

Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will

begin with a short review of graph theory, with emphasis on some highlights

of signi�
ant graphs in the Stanford GraphBase, from whi
h I will be drawing

many examples. Then 
omes Se
tion 7.1, whi
h deals with the topi
 of bitwise

manipulations. (I drafted about 60 pages about that subje
t in 1977, but

those pages need extensive revision; meanwhile I've de
ided to work for awhile

on the material that follows it, so that I 
an get a better feel for how mu
h

to 
ut.) Se
tion 7.2 is about generating all possibilities, and it begins with

Se
tion 7.2.1: Generating Basi
 Combinatorial Patterns|whi
h, in turn, begins

with Se
tion 7.2.1.1, \Generating all n-tuples," Se
tion 7.2.1.2, \Generating all

permutations," : : : , Se
tion 7.2.1.6, \Generating all trees." (Readers of the

present booklet should have already looked at those se
tions, drafts of whi
h are

available as Pre-Fas
i
les 2A, 2B, 3A, 3B, and 4A.) The stage is now set for the

main 
ontents of this booklet, Se
tion 7.2.1.7: \History and further referen
es."

Se
tion 7.2.2 will deal with ba
ktra
king in general. And so it will 
ontinue, if

all goes well; an outline of the entire Chapter 7 as 
urrently envisaged appears

on the tao
p webpage that is 
ited on page ii.

iii
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iv PREFACE

Writing about history is extraordinarily diÆ
ult, not only be
ause the sour
e

materials are widely s
attered but also be
ause I must operate at the limit of my

ability to understand languages other than English. Furthermore, fa
ts about

real life are mu
h more 
ompli
ated than fa
ts about mathemati
s. No summary


an adequately 
onvey the true feelings of an era or the true spirit of a 
ulture,

yet the story that I'm trying to tell in this se
tion 
overs many 
enturies of

development in many di�erent parts of the world. The story is fas
inating, and

many parts of it do not seem to have been told before, at least not in English.

Therefore I'm keen to have professional historians of mathemati
s take a look at

what I've been able to pie
e together, hoping that they will not be too sho
ked

by blunders that have resulted from my present ignoran
e and/or in
ompeten
e.

I hope also to get advi
e from people of many di�erent 
ultures who know of

relevant traditions that have not yet been well studied by professional historians.

The answer to exer
ise 6 poses two histori
al problems that I haven't been

able to resolve. I urgently need your help also with respe
t to some exer
ises that

I made up as I was preparing this material. I 
ertainly don't like to re
eive 
redit

for things that have already been published by others, and most of these results

are quite natural \fruits" that were just waiting to be \plu
ked." Therefore

please tell me if you know who deserves to be 
redited, with respe
t to the ideas

found in exer
ises 2, 8, 10, 17, 20, 26, and/or 27.

I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is

�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, if

you �nd a better solution to an exer
ise, I'll a
tually reward you with immortal

glory instead of mere money, by publishing your name in the eventual book:�)

Cross referen
es to yet-unwritten material sometimes appear as `00'; this

impossible value is a pla
eholder for the a
tual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

12 O
tober 2004
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0 COMBINATORIAL ALGORITHMS (F4B)

[This subje
t℄ has a relation

to almost every spe
ies of useful knowledge

that the mind of man 
an be employed upon.

| JAMES BERNOULLI, Ars Conje
tandi (1713)

7.2.1.7. History and further referen
es. Early work on the generation of


ombinatorial patterns began as 
ivilization itself was taking shape. The story

is quite fas
inating, and we will see that it spans many 
ultures in many parts of

the world, with ties to poetry, musi
, and religion. There is spa
e here to dis
uss

only some of the prin
ipal highlights; but perhaps a few glimpses into the past

will stimulate the reader to dig deeper into the roots of the subje
t, as the world

gets ever smaller and as global s
holarship 
ontinues to advan
e.

Lists of binary n-tuples 
an be tra
ed ba
k thousands of years to an
ient

China, India, and Gree
e. The most notable sour
e|be
ause it still is a best-

selling book in modern translations| is the Chinese I Ching or Yijing, whose

name means \the Bible of Changes." This book, whi
h is one of the �ve 
lassi
s

of Confu
ian wisdom, 
onsists essentially of 2

6

= 64 
hapters; and ea
h 
hapter

is symbolized by a hexagram formed from six lines, ea
h of whi
h is either

(\yin") or (\yang"). For example, hexagram 1 is pure yang, ; hexagram 2

is pure yin, ; and hexagram 64 intermixes yin and yang, with yang on top: .

Here is the 
omplete list:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

(1)

This arrangement of the 64 possibilities is 
alled King Wen's ordering, be
ause

the basi
 text of the I Ching has traditionally been as
ribed to King Wen (
. 1100

B.C.), the legendary progenitor of the Chou dynasty. An
ient texts are, however,

notoriously diÆ
ult to date reliably, and modern historians have found no solid

eviden
e that anyone a
tually 
ompiled su
h a list of hexagrams before the third


entury B.C.

Noti
e that the hexagrams of (1) o

ur in pairs: Those with odd numbers are

immediately followed by their top-to-bottom re
e
tions, ex
ept when re
e
tion

would make no 
hange; and the eight symmetri
al diagrams are paired with

their 
omplements (1 = 2, 27 = 28, 29 = 30, 61 = 62). Hexagrams that are


omposed from two trigrams that represent the four basi
 elements heaven ( ),

earth ( ), �re ( ), and water ( ) have also been pla
ed judi
iously. Otherwise

the arrangement appears to be essentially random, as if a person untrained in

mathemati
s kept listing di�erent possibilities until being unable to 
ome up

with any more. A few intriguing patterns do exist between the pairs, but no

more than are present by 
oin
iden
e in the digits of � (see 3.3{(1)).

0



7.2.1.7 HISTORY AND FURTHER REFERENCES 1

Yin and yang represent 
omplementary aspe
ts of the elementary for
es of

nature, always in tension, always 
hanging. The I Ching is somewhat analogous

to a thesaurus in whi
h the hexagrams serve as an index to a

umulated wisdom

about fundamental 
on
epts like giving ( ), re
eiving ( ), modesty ( ), joy

( ), fellowship ( ), withdrawal ( ), pea
e ( ), 
on
i
t ( ), organization

( ), 
orruption ( ), immaturity ( ), elegan
e ( ), et
. One 
an 
hoose

a pair of hexagrams at random, obtaining the se
ond from the �rst by, say,

independently 
hanging ea
h yin to yang (or vi
e versa) with probability 1/4;

this te
hnique yields 4096 ways to ponder existential mysteries, as well as a

Markov pro
ess by whi
h 
hange itself might perhaps give meaning to life.

A stri
tly logi
al way to arrange the hexagrams was eventually introdu
ed

about A.D. 1060 by Shao Yung. His ordering, whi
h pro
eeded lexi
ographi
ally

from to to to to to � � � to to (reading ea
h hexagram from

bottom to top), was mu
h more user-friendly than the King Wen order, be
ause

a random pattern 
ould now be found qui
kly. When G. W. Leibniz learned

about this sequen
e of hexagrams in 1702, he jumped to the erroneous 
on
lusion

that Chinese mathemati
ians had on
e been familiar with binary arithmeti
.

[See Frank Swetz, Mathemati
s Magazine 76 (2003), 276{291. Further details

about the I Ching 
an be found, for example, in Joseph Needham's S
ien
e and

Civilisation in China 2 (Cambridge University Press, 1956), 304{345; R. J. Lynn,

The Classi
 of Changes (New York: Columbia University Press, 1994).℄

Another an
ient Chinese philosopher, Yang Hsiung, proposed a system based

on 81 ternary tetragrams instead of 64 binary hexagrams. His Canon of Supreme

Mystery, written 
. 2 B.C., has re
ently been translated into English by Mi
hael

Nylan (Albany, New York: 1993). Yang des
ribed a 
omplete, hierar
hi
al ter-

nary tree stru
ture in whi
h there are 3 regions, with 3 provin
es in ea
h region,

3 departments in ea
h provin
e, 3 families in ea
h department, and 9 short poems


alled \appraisals" for ea
h family, hen
e 729 appraisals in all|making almost

exa
tly 2 appraisals for every day in the year. His tetragrams were arranged in

stri
t lexi
ographi
 order when read top-to-bottom: , , , , , , ,

: : : , . In fa
t, as explained on page 28 of Nylan's book, Yang presented a simple

way to 
ompute the rank of ea
h tetragram, as if using a radix-3 number system.

Thus he would not have been surprised or impressed by Shao Yung's systemati


ordering of binary hexagrams, although Shao lived more than 1000 years later.

Indian prosody. Binary n-tuples were studied in a 
ompletely di�erent 
ontext

by pundits in an
ient India, who investigated the poeti
 meters of sa
red Vedi



hants. Syllables in Sanskrit are either short (. ) or long (_), and the study

of syllable patterns is 
alled \prosody." Modern writers use the symbols ^

and �� instead of . and _. A typi
al Vedi
 verse 
onsists of four lines with

n syllables per line, for some n � 8; prosodists therefore sought a way to 
lassify

all 2

n

possibilities. The 
lassi
 work Chandah

.

�s�astra by Pi _ngala, written before

A.D. 400 and probably mu
h earlier (the exa
t date is quite un
ertain), des
ribed

pro
edures by whi
h one 
ould readily �nd the index k of any given pattern of

^s and ��s, as well as to �nd the kth pattern, given k. In other words, Pi _ngala

explained how to rank any given pattern as well as to unrank any given index;

1



2 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

thus he went beyond the work of Yang Hsiung, who had 
onsidered ranking but

not unranking. Pi _ngala's methods were also related to exponentiation, as we

have noted earlier in 
onne
tion with Algorithm 4.6.3A.

The next important step was taken by a prosodist named Ked�ara in his

work Vr

.

ttaratn�akara, thought to have been written in the 8th 
entury. Ked�ara

gave a step-by-step pro
edure for listing all the n-tuples from ������ : : :�� to

^���� : : :�� to ��^�� : : :�� to ^^�� : : :�� to ����^: : :�� to ^��^: : :��

to � � � to ^^^: : :^, essentially Algorithm 7.2.1.1M in the 
ase of radix 2. His

method may well have been the �rst-ever expli
it algorithm for 
ombinatorial

sequen
e generation. [See B. van Nooten, J. Indian Philos. 21 (1993), 31{50.℄

Poeti
 meters 
an also be regarded as rhythms, with one beat for ea
h ^

and two beats for ea
h ��. An n-syllable pattern 
an involve between n and 2n

beats, but musi
al rhythms suitable for mar
hing or dan
ing generally are based

on a �xed number of beats. Therefore it was natural to 
onsider the set of all

sequen
es of ^s and ��s that have exa
tly m beats, for �xed m. Su
h patterns

are now 
alled Morse 
ode sequen
es of length m, and we know from exer
ise

4.5.3{32 that there are exa
tly F

m+1

of them. For example, the 21 sequen
es

when m = 7 are

^������, ��^����, ^^^����, ����^��, ^^��^��,

^��^^��, ��^^^��, ^^^^^��, ������^,

^^����^, ^��^��^, ��^^��^, ^^^^��^,

^����^^, ��^��^^, ^^^��^^, ����^^^,

^^��^^^, ^��^^^^, ��^^^^^, ^^^^^^^.

(2)

In this way Indian prosodists were led to dis
over the Fibona

i sequen
e, as we

have observed in Se
tion 1.2.8.

Moreover, the anonymous author of Pr�akr

.

ta Pai�ngala (
. 1320) dis
overed

elegant algorithms for ranking and unranking with respe
t to m-beat rhythms.

To �nd the kth pattern, one starts by writing down m ^s, then expresses the

di�eren
e d = F

m+1

� k as a sum of Fibona

i numbers F

j

1

+ � � �+F

j

t

; here F

j

1

is the largest Fibona

i number that is � d and F

j

2

is the largest � d�F

j

1

, et
.,


ontinuing until the remainder is zero. Then beats j�1 and j are to be 
hanged

from ^^ to ��, for j = j

1

, : : : , j

t

. For example, to get the 5th element of (2)

we 
ompute 21� 5 = 16 = 13 + 3 = F

7

+ F

4

; the answer is ^^��^��.

A few years later, N�ar�ayan

.

a Pan

.

d

.

ita treated the more general problem of

�nding all 
ompositions of m whose parts are � q, where q is any given posi-

tive integer. As a 
onsequen
e he dis
overed the qth-order Fibona

i sequen
e

5.4.2{(4), whi
h was destined to be used 600 years later in polyphase sorting;

he also developed the 
orresponding ranking and unranking algorithms. [See

Parmanand Singh, Historia Mathemati
a 12 (1985), 229{244, and exer
ise 16.℄

Pi _ngala gave spe
ial 
ode-names to all the three-syllable meters,

������ = m (m), ����^ = t (t),

^���� = y (y), ^��^ = j (j),

��^�� = r (r), ��^^ = B (bh),

^^�� = s (s), ^^^ = n (n),

(3)

2



7.2.1.7 HISTORY AND FURTHER REFERENCES 3

and students of Sanskrit have been expe
ted to memorize them ever sin
e.

Somebody long ago devised a 
lever way to re
all these 
odes, by inventing

the nonsense word yam�at�ar�ajabh�anasalag�am (ymAtArAjBAnslgAm); the point

is that the ten syllables of this word 
an be written

ya

^

m�a

��

t�a

��

r�a

��

ja

^

bh�a

��

na

^

sa

^

la

^

g�am

��

(4)

and ea
h three-syllable pattern o

urs just after its 
ode name. The origin of

yam�a : : : lag�am is obs
ure, but Subhash Kak [Indian J. History of S
ien
e 35

(2000), 123{127℄ has tra
ed it ba
k at least to C. P. Brown's Sanskrit Prosody

(1869), page 28; thus it quali�es as the earliest known appearan
e of a \de Bruijn


y
le" that en
odes binary n-tuples.

Meanwhile, in Europe. In a similar way, 
lassi
 Greek poetry was based on

groups of short and/or long syllables 
alled \metri
al feet," analogous to bars of

musi
. Ea
h basi
 type of foot a
quired a Greek name; for example, two short

syllables `^^' were 
alled a pyrrhi
, and two long syllables `����' were 
alled a

spondee, be
ause those rhythms were used respe
tively in a song of war (purr�qh)

or a song of pea
e (sponda�). Greek names for metri
 feet were soon assimilated

into Latin and eventually into modern languages, in
luding English:

^ arsis

�� thesis

^^ pyrrhi


^�� iambus

��^ tro
hee

���� spondee

^^^ tribra
h

^^�� anapest

^��^ amphibra
h

^���� ba

hius

��^^ da
tyl

��^�� amphima
er

����^ palimba

hius

������ molossus

^^^^ pro
eleusmati


^^^�� fourth p�on

^^��^ third p�on

^^���� minor ioni


^��^^ se
ond p�on

^��^�� diiambus

^����^ antispast

^������ �rst epitrite

��^^^ �rst p�on

��^^�� 
horiambus

��^��^ ditro
hee

��^���� se
ond epitrite

����^^ major ioni


����^�� third epitrite

������^ fourth epitrite

�������� dispondee

(5)

Alternative names, like \
horee" instead of \tro
hee," or \
reti
" instead of

\amphima
er," were also in 
ommon use. Moreover, by the time Diomedes wrote

his Latin grammar (approximately A.D. 375), ea
h of the 32 �ve-syllable feet

had a
quired at least one name. Diomedes also pointed out the relation between


omplementary patterns; he stated for example that tribra
h and molossus are

\
ontrarius," as are amphibra
h and amphima
er. But he also regarded da
tyl

as the 
ontrary of anapest, and ba

hius as the 
ontrary of palimba

hius, al-

though the literal meaning of palimba

hius is a
tually \reverse ba

hius." Greek

prosodists had no standard order in whi
h to list the individual possibilities, and

3



4 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

the form of the names makes it 
lear that no 
onne
tion to a radix-two number

system was 
ontemplated. [See H. Keil, Grammati
i Latini 1 (1857), 474{482;

W. von Christ, Metrik der Grie
hen und R�omer (1879), 78{79.℄

Surviving fragments of a work by Aristoxenus 
alled Elements of Rhythm

(
. 325 B.C.) show that the same terminology was applied also to musi
. And

indeed, the same traditions lived on after the Renaissan
e; for example, we �nd

on page 32 of Athanasius Kir
her's Musurgia Universalis 2 (Rome: 1650), and

Kir
her went on to des
ribe all of the three-note and four-note rhythms of (5).

Early lists of permutations. We've tra
ed the history of formulas for 
ounting

permutations in Se
tion 5.1.2; but nontrivial lists of permutations were not

published until hundreds of years after the formula n! was dis
overed. The �rst

su
h tabulation 
urrently known was 
ompiled by the Italian physi
ian Shabbetai

Donnolo in his 
ommentary on the kabbalisti
 Sefer Yetzirah, written in A.D. 946.

Table 1 shows his list for n = 5 as it was subsequently printed in Warsaw (1884).

(The Hebrew letters in this table are typeset in a rabbini
al font traditionally

used for 
ommentaries; noti
e that the letter 
hanges its shape to when it

appears at the left end of a word.) Donnolo went on to list 120 permutations

of the six-letter word , all beginning with shin ( ); then he noted that

120 more 
ould be obtained with ea
h of the other �ve letters in front, making

720 in all. His lists involved groupings of six permutations, but in a haphazard

fashion that led him into error (see exer
ise 4). Although he knew how many

permutations there were supposed to be, and how many should start with a given

letter, he evidently didn't have an algorithm for generating them.

Table 1

A MEDIEVAL LIST OF PERMUTATIONS

A 
omplete list of all 720 permutations of fa; b; 
; d; e; fg appeared on pages

668{671 of Jeremias Drexel's Orbis Pha�ethon (Muni
h: 1629; also on pages 526{

531 of the Cologne edition in 1631). He o�ered it as proof that a man with six

guests 
ould seat them di�erently at lun
h and dinner every day for a year|

4



7.2.1.7 HISTORY AND FURTHER REFERENCES 5

altogether 360 days, be
ause there were �ve days of fasting during Holy Week.

Shortly afterwards, Marin Mersenne exhibited all 720 permutations of the six

tones fut; re;mi; fa; sol; lag, on pages 111{115 of his Traitez de la Voix et des

Chants (Volume 2 of Harmonie Universelle, 1636); then on pages 117{128 he

presented the same data in musi
al notation:

Drexel's table was organized lexi
ographi
ally by 
olumns; Mersenne's tables

were lexi
ographi
 with respe
t to the order ut < re < mi < fa < sol < la, begin-

ning with \ut,re,mi,fa,sol,la" and ending with \la,sol,fa,mi,re,ut." Mersenne also

prepared a \grand et immense" manus
ript that listed all 40,320 permutations

of eight notes on 672 folio pages, followed by ranking and unranking algorithms

[Biblioth�eque nationale de Fran
e, Fonds Fran�
ais, no. 24256℄.

We saw in Se
tion 7.2.1.2 that the important idea of plain 
hanges, Algo-

rithm 7.2.1.2P, was invented in England a few years later.

Methods for listing all permutations of a multiset with repeated elements

were often misunderstood by early authors. For example, when Bh�askara exhib-

ited the permutations of f4; 5; 5; 5; 8g in se
tion 271 of his L

�

�l�avat

�

� (
. 1150), he

gave them in the following order:

48555 84555 54855 58455 55485

55845 55548 55584 45855 45585

45558 85455 85545 85554 54585

58545 55458 55854 54558 58554

(6)

Mersenne used a slightly more sensible but not 
ompletely systemati
 order on

page 131 of his book when he listed sixty anagrams of the Latin name IESVS.

When Athanasius Kir
her wanted to illustrate the 30 permutations of a �ve-

note melody on pages 10 and 11 of Musurgia Universalis 2 (1650), this la
k of a

system got him into trouble (see exer
ise 5):

(7)

But John Wallis knew better. On page 117 of his Dis
ourse of Combinations

(1685) he 
orre
tly listed the 60 anagrams of \messes" in lexi
ographi
 order, if

we let m < e < s ; and on page 126 he re
ommended respe
ting alphabeti
 order

\that we may be the more sure, not to miss any."

We will see later that the Indian mathemati
ian N�ar�ayan

.

a Pan

.

d

.

ita had al-

ready developed a theory of permutation generation in the 14th 
entury, although

his work remained almost totally unknown.

5



6 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Seki's list. Takakazu Seki (1642{1708) was a 
harismati
 tea
her and resear
her

who revolutionized the study of mathemati
s in 17th-
entury Japan. While he

was studying the elimination of variables from simultaneous homogeneous equa-

tions, he was led to expressions su
h as a

1

b

2

� a

2

b

1

and a

1

b

2




3

� a

1

b

3




2

+

a

2

b

3




1

� a

2

b

1




3

+ a

3

b

1




2

� a

3

b

2




1

, whi
h we now re
ognize as determinants.

In 1683 he published a booklet about this dis
overy, introdu
ing an ingenious

s
heme for listing all permutations in su
h a way that half of them were \alive"

(even) and the other half were \dead" (odd). Starting with the 
ase n = 2, when

`12' was alive and `21' was dead, he formulated the following rules for n > 2:

1) Take every live permutation for n�1, in
rease all its elements by 1, and insert

1 in front. This rule produ
es (n�1)!=2 \basi
 permutations" of f1; : : : ; ng.

2) From ea
h basi
 permutation, form 2n others by rotation and re
e
tion:

a

1

a

2

: : : a

n�1

a

n

; a

2

: : : a

n�1

a

n

a

1

; : : : ; a

n

a

1

a

2

: : : a

n�1

; (8)

a

n

a

n�1

: : : a

2

a

1

; a

1

a

n

a

n�1

: : : a

2

; : : : ; a

n�1

: : : a

2

a

1

a

n

: (9)

If n is odd, those in the �rst row are alive and those in the se
ond are dead;

if n is even, those in ea
h row are alternatively alive, dead, : : : , alive, dead.

For example, when n = 3 the only basi
 permutation is 123. Thus 123, 231,

312 are alive while 321, 132, 213 are dead, and we've su

essfully generated the

six terms of a 3 � 3 determinant. The basi
 permutations for n = 4 are 1234,

1342, 1423; and from, say, 1342 we get a set of eight, namely

+ 1342� 3421 + 4213� 2134 + 2431� 1243 + 3124� 4321; (10)

alternately alive (+) and dead (�). A 4 � 4 determinant therefore in
ludes the

terms a

1

b

3




4

d

2

� a

3

b

4




2

d

1

+ � � � � a

4

b

3




2

d

1

and sixteen others.

Seki's rule for permutation generation is quite pretty, but unfortunately it

has a serious problem: It doesn't work when n > 4. His error seems to have

gone unre
ognized for hundreds of years. [See Y. Mikami, The Development of

Mathemati
s in China and Japan (1913), 191{199; Takakazu Seki's Colle
ted

Works (Osaka: 1974), 18{20, : : ; and exer
ises 7{8.℄

Lists of 
ombinations. The earliest exhaustive list of 
ombinations known to

have survived the ravages of time appears in the last book of Su�sruta's well-known

Sanskrit treatise on medi
ine, Chapter 63, written before A.D. 600 and perhaps

mu
h earlier. Noting that medi
ine 
an be sweet, sour, salty, peppery, bitter,

and/or astringent, Su�sruta's book diligently listed the (15; 20; 15; 6; 1; 6) 
ases

that arise when those qualities o

ur two, three, four, �ve, six, and one at a time.

Bh�askara repeated this example in se
tions 110{114 of L

�

�l�avat

�

�, and observed

that the same reasoning applies to six-syllable poeti
 meters with a given number

of long syllables. But he simply mentioned the totals, (6; 15; 20; 15; 6; 1), without

listing the 
ombinations themselves. In se
tions 274 and 275, he observed that

the numbers (n)(n� 1) : : : (n� k + 1)=(k(k � 1) : : : (1)) enumerate 
ompositions

(that is, ordered partitions) as well as 
ombinations; again he gave no list.

To avoid prolixity this is treated in a brief manner;

for the s
ien
e of 
al
ulation is an o
ean without bounds.

| Bh�askara (
. 1150)

6



7.2.1.7 HISTORY AND FURTHER REFERENCES 7

An isolated but interesting list of 
ombinations appeared in the remarkable

algebra text Al-B�ahir �'l-h

.

is�ab (The Shining Book of Cal
ulation), written by

al-Samaw'al of Baghdad when he was only 19 years old (1144). In the 
losing

part of that work he presented a list of

�

10

6

�

= 210 simultaneous linear equations

in 10 unknowns:

Al-Samaw'al's Arabi
 original Equivalent modern notation

65 654321 m (1) x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

6

= 65

70 754321 o (2) x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

7

= 70

75 854321 ~ (3) x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

8

= 75

.

.

.

.

.

.

91 1098764 ¢ � (209) x

4

+ x

6

+ x

7

+ x

8

+ x

9

+ x

10

= 91

100 1098765 Ý � (210) x

5

+ x

6

+ x

7

+ x

8

+ x

9

+ x

10

= 100

(11)

Ea
h 
ombination of ten things taken six at a time yielded one of his equa-

tions. His purpose was evidently to demonstrate that over-determined equations


an still have a unique solution|whi
h in this 
ase was (x

1

; x

2

; : : : ; x

10

) =

(1; 4; 9; 16; 25; 10; 15; 20; 25; 5). [Salah Ahmad and Roshdi Rashed, Al-B�ahir en

Alg�ebre d'As-Samaw'al (Damas
us: 1972), 77{82, 248{231.℄

Rolling di
e. Some glimmerings of elementary 
ombinatori
s arose also in

medieval Europe, espe
ially in 
onne
tion with the question of listing all possible

out
omes when three di
e are thrown. There are, of 
ourse,

�

8

3

�

= 56 ways to


hoose 3 things from 6 when repetitions are allowed. Gambling was oÆ
ially pro-

hibited; yet these 56 ways be
ame rather well known. In about A.D. 965, Bishop

Wibold of Cambrai in northern Fran
e devised a game 
alled Ludus Cleri
alis,

so that members of the 
lergy 
ould enjoy rolling di
e while remaining pious.

His idea was to asso
iate ea
h possible roll with one of 56 virtues, a

ording to

the following table:

q q q

love

q

q

q

q

q

q

q

q

q

q

perseveran
e q

q

q

q

q

q

q

qq

q hospitality q

q

q

q

qq

q q

q

q

q

q

q

morti�
ation

q q

q

q

faith

q

q

qq

q q

qq

q kindness q

q

q

q

q

q

q

q

q

q

q

e
onomy q

q

q

q

q

qq

q q

q

qq

q inno
en
e

q q

q

q

q

hope

q

q

qq

q q

q

qq

q modesty q

q

q

qq

q q

qq

q patien
e q

q

q

q

q

qq

q q

q

q

q

q

q


ontrition

q q

q

qq

q justi
e

q

q

qq

q q

q

q

q

q

q

resignation q

q

q

qq

q q

q

qq

q zeal q

q

q

q

q

q

q

q

q

q

q

q

q

q

q


onfession

q q

q

q

qq

q pruden
e

q

q

q

qq

q q

q

qq

q gentleness q

q

q

qq

q q

q

q

q

q

q

poverty q

qq

q q

qq

q q

qq

q maturity

q q

q

q

q

q

q

q

temperan
e

q

q

q

qq

q q

q

q

q

q

q

generosity q

q

q

q

qq

q q

q

qq

q softness q

qq

q q

qq

q q

q

qq

q soli
itude

q

q

q

q

q


ourage

q

q

q

q

q

q

q

q

q

q

q

q

q

wisdom q

q

q

q

qq

q q

q

q

q

q

q

virginity q

qq

q q

qq

q q

q

q

q

q

q


onstan
y

q

q

q

q

q

q

pea
e q

q

q

q

q

q

remorse q

q

q

q

q

q

q

q

q

q

q

q

q

q

respe
t q

qq

q q

q

qq

q q

q

qq

q intelligen
e

q

q

q

q

qq

q 
hastity q

q

q

q

q

q

q

joy q

q

q

q

q

q

q

q

q

piety q

qq

q q

q

qq

q q

q

q

q

q

q

sighing

q

q

q

q

q

qq

q mer
y q

q

q

q

q

qq

q sobriety q

q

q

q

q

q

q

qq

q indulgen
e q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

weeping

q

q

q

q

q

q

q

q

q

obedien
e q

q

q

q

q

q

qq

q satisfa
tion q

q

q

q

q

q

q

q

qq

q prayer q

q

qq

q q

q

qq

q q

q

qq

q 
heerfulness

q

q

q

q

q

q

q

fear q

q

q

q

q

q

q

q

q

q

sweetness q

q

q

q

q

q

q

q

q

q

q

q

a�e
tion q

q

qq

q q

q

qq

q q

q

q

q

q

q


ompassion

q

q

q

q

q

qq

q foresight q

q

q

q

q

q

q

q


leverness q

q

q

q

qq

q q

qq

q judgment q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

self-
ontrol

q

q

q

q

q

q

qq

q dis
retion q

q

q

q

q

q

qq

q simpli
ity q

q

q

q

qq

q q

q

qq

q vigilan
e q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

humility

Players took turns, and the �rst to roll ea
h virtue a
quired it. After all possibil-

ities had arisen, the most virtuous player won. Wibold noted that love (
aritas)

is the best virtue of all. He gave a 
ompli
ated s
oring system by whi
h two

virtues 
ould be 
ombined if the sum of pips on all six of their di
e was 21; for

7



8 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

example, love + humility or 
hastity + intelligen
e 
ould be paired in this way,

and su
h 
ombinations ranked above any individual virtue. He also 
onsidered

more 
omplex variants of the game in whi
h vowels appeared on the di
e instead

of spots, so that virtues 
ould be 
laimed if their vowels were thrown.

Wibold's table of virtues was presented in lexi
ographi
 order, as above,

when it was �rst des
ribed by Bald�eri
 in his Chroni
on Camera
ense, about

150 years later. [Patrologia Latina 134 (Paris: 1884), 1007{1016.℄ But another

medieval manus
ript presented the possible di
e rolls in quite a di�erent order:

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

qq

q q

q

qq

q q

qq

q q

qq

q q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

qq

q q

q

q

q

q

q

q

q

qq

q q

q

qq

q q

qq

q q

q

qq

q q

q

qq

q q

q

q

q

q

qq

q q

q

qq

q q

q

q

q

qq

q q

q

qq

q

q

q

qq

q q

qq

q q

q

q

q

q

q

q

qq

q q

qq

q q

q

qq

q q

qq

q q

qq

q q

q

q

q

qq

q q

qq

q q

q

q

qq

q q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q q q

q

q

q

q

q

q

q q

q

q

qq

q

q q

q

qq

q

q q

q

q

q

q q

q

q

q

q

q

q

q

q

q

q

qq

q q

qq

q q

q

qq

q q

qq

q q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

qq

q q

q

q

q

q

qq

q q

qq

q q

q

q

q

qq

q q

qq

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

(12)

In this 
ase the author knew how to deal with repeated values, but had a very


ompli
ated, ad ho
 way to handle the 
ases in whi
h all di
e were di�erent. [See

D. R. Bellhouse, International Statisti
al Review 68 (2000), 123{136.℄

An amusing poem entitled \Chaun
e of the Dyse," attributed to John

Lydgate, was written in the early 1400s for use at parties. Its opening verses

invite ea
h person to throw three di
e; then the remaining verses, whi
h are

indexed in de
reasing lexi
ographi
 order from q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

to q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q to � � � to

q q q

,

give 56 
hara
ter sket
hes that light-heartedly des
ribe the thrower. [The full

text was published by E. P. Hammond in Englis
he Studien 59 (1925), 1{16;

a translation into modern English would be desirable.℄

I pray to god that euery wight may 
aste

Vpon three dyse ryght as is in hys herte

Whether he be re
helesse or stedfaste

So moote he lawghen outher elles smerte

He that is gilty his lyfe to 
onverte

They that in trouthe haue su�red many a throwe

Moote ther 
haun
e fal as they moote be knowe.

| The Chaun
e of the Dyse (
. 1410)

Ramon Llull. Signi�
ant ripples of 
ombinatorial 
on
epts also emanated

from an energeti
 and quixoti
 Catalan poet, novelist, en
y
lopedist, edu
ator,

mysti
, and missionary named Ramon Llull (
. 1232{1316). Llull's approa
h to

knowledge was essentially to identify basi
 prin
iples and then to 
ontemplate


ombining them in all possible ways.

For example, one 
hapter in his Ars Compendiosa Inveniendi Veritatem

(
. 1274) began by enumerating sixteen attributes of God: Goodness, greatness,

eternity, power, wisdom, love, virtue, truth, glory, perfe
tion, justi
e, generosity,

mer
y, humility, sovereignty, and patien
e. Then Llull wrote

�

16

2

�

= 120 short

essays of about 80 words ea
h, 
onsidering God's goodness as related to greatness,

8



7.2.1.7 HISTORY AND FURTHER REFERENCES 9

God's goodness as related to eternity, and so on, ending with God's sovereignty as

related to patien
e. In another 
hapter he 
onsidered seven virtues (faith, hope,


harity, justi
e, pruden
e, fortitude, temperan
e) and seven vi
es (gluttony, lust,

greed, sloth, pride, envy, anger), with

�

14

2

�

= 91 sub
hapters to deal with ea
h

pair in turn. Other 
hapters were systemati
ally divided in a similar way, into

�

8

2

�

= 28,

�

15

2

�

= 105,

�

4

2

�

= 6, and

�

16

2

�

= 120 subse
tions. (One wonders what

might have happened if he had been familiar with Wibold's list of 56 virtues;

would he have produ
ed 
ommentaries on all

�

56

2

�

= 1540 of their pairs?)

Fig. 44. Illustrations in a manus
ript presented by Ramon Llull to

the doge of Veni
e in 1280. [From his Ars Demonstrativa, Bibliote
a

Mar
iana, VI 200, folio 3

v

.℄

Llull illustrated his methodology by drawing 
ir
ular diagrams like those in

Figure 44. The left-hand 
ir
le in this illustration, Deus, names sixteen divine

attributes|essentially the same sixteen listed earlier, ex
ept that love (amor)

was now 
alled will (voluntas), and the �nal four were now respe
tively simpli
ity,

rank, mer
y, and sovereignty. Ea
h attribute is assigned a 
ode letter, and

the illustration depi
ts their interrelations as the 
omplete graph K

16

on ver-

ti
es (B;C;D;E;F;G;H; I;K;L;M;N;O;P;Q;R). The right-hand �gure, virtutes

et vitia, shows the seven virtues (b; 
; d; e; f; g; h) interleaved with the seven vi
es

(i; k; l;m; n; o; p); in the original manus
ript virtues appeared in blue ink while

vi
es appeared in red. Noti
e that in this 
ase his illustration depi
ted two

independent 
omplete graphs K

7

, one of ea
h 
olor. (He no longer bothered to


ompare ea
h individual virtue with ea
h individual vi
e, sin
e every virtue was


learly better than every vi
e.)

Llull used the same approa
h to write about medi
ine: Instead of juxta-

posing theologi
al 
on
epts, his Liber Prin
ipiorum Medi
in� (
. 1275) 
on-

sidered 
ombinations of symptoms and treatments. And he also wrote books

9



10 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Fig. 45. Llullian illustrations

from a manus
ript presented to

the queen of Fran
e, 
. 1325.

[Badis
he Landesbibliothek Karls-

ruhe, Codex St. Peter perg. 92,

folios 28

v

and 39

v

.℄

on philosophy, logi
, jurispruden
e, astrology, zoology, geometry, rhetori
, and


hivalry|more than 200 works in all. It must be admitted, however, that mu
h

of this material was highly repetitive; modern data 
ompression te
hniques would

probably redu
e Llull's output to a size mu
h less than that of, say, Aristotle.

He eventually de
ided to simplify his system by working primarily with

groups of nine things. See, for example, Fig. 45, where 
ir
le A now lists only the

�rst nine of God's attributes (B;C;D;E;F;G;H; I;K). The

�

9

2

�

= 36 asso
iated

pairs (BC;BD; : : : ; IK) appear in the stairstep 
hart at the right of that 
ir
le. By

adding two more virtues, namely patien
e and 
ompassion|as well as two more

vi
es, namely lying and in
onsisten
y|he 
ould treat virtues vis-�a-vis virtues

and vi
es vis-�a-vis vi
es with the same 
hart. He also proposed using the same


hart to 
arry out an interesting s
heme for voting, in an ele
tion with nine


andidates [see I. M
Lean and J. London, Studia Lulliana 32 (1992), 21{37℄.

The en
ir
led triangles at the lower left of Fig. 45 illustrate another key

aspe
t of Llull's approa
h. Triangle (B;C;D) stands for (di�eren
e, 
on
ordan
e,


ontrariness); triangle (E;F;G) stands for (beginning, middle, ending); and trian-

gle (H; I;K) stands for (greater, equal, less). These three interleaved appearan
es

of K

3

represent three kinds of three-valued logi
. Llull had experimented earlier

with other su
h triplets, notably `(true, unknown, false)'. We 
an get an idea

10
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of how he used the triangles by 
onsidering how he dealt with 
ombinations of

the four basi
 elements (earth, air, �re, water): All four elements are di�erent;

earth is 
on
ordant with �re, whi
h 
on
ords with air, whi
h 
on
ords with

water, whi
h 
on
ords with earth; earth is 
ontrary to air, and �re is 
ontrary

to water; these 
onsiderations 
omplete an analysis with respe
t to triangle

(B;C;D). Turning to triangle (E;F;G), he noted that various pro
esses in nature

begin with one element dominating another; then a transition or middle state

o

urs, until a goal is rea
hed, like air be
oming warm. For triangle (H; I;K) he

said that in general we have �re > air > water > earth with respe
t to their

\spheres," their \velo
ities," and their \nobilities"; nevertheless we also have,

for example, air > �re with respe
t to supporting life, while air and �re have

equal value when they are working together.

Llull provided the verti
al table at the right of Fig. 45 as a further aid. (See

exer
ise 11 below.) He also introdu
ed movable 
on
entri
 wheels, labeled with

the letters (B;C;D;E;F;G;H; I;K) and with other names, so that many things


ould be 
ontemplated simultaneously. In this way a faithful pra
titioner of

the Llullian art 
ould be sure to have all the bases 
overed. [Llull may have

seen similar wheels that were used in nearby Jewish 
ommunities; see M. Idel,

J. Warburg and Courtauld Institutes 51 (1988), 170{174 and plates 16{17.℄

Several 
enturies later, Athanasius Kir
her published an extension of Llull's

system as part of a large tome entitled Ars Magna S
iendi sive Combinatoria

(Amsterdam: 1669), with �ve movable wheels a

ompanying page 173 of that

book. Kir
her also extended Llull's repertoire of 
omplete graphs K

n

by provid-

ing illustrations of 
omplete bipartite graphs K

m;n

; for example, Fig. 46 is taken

from page 171 of Kir
her's book, and his page 170 
ontains a glorious pi
ture

of K

18;18

.

Fig. 46. K

9;9

as pre-

sented by Athanasius

Kir
her in 1669.

It is an investigative and inventive art.

When ideas are 
ombined in all possible ways,

the new 
ombinations start the mind thinking along novel 
hannels

and one is led to dis
over fresh truths and arguments.

| MARTIN GARDNER, Logi
 Ma
hines and Diagrams (1958)

The most extensive modern development of Llull-like methods is perhaps

The S
hillinger System of Musi
al Composition by Joseph S
hillinger (New York:

11
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Carl Fis
her, 1946), a remarkable two-volume work that presents theories of

rhythm, melody, harmony, 
ounterpoint, 
omposition, or
hestration, et
., from

a 
ombinatorial perspe
tive. On page 56, for example, S
hillinger lists the 24

permutations of fa; b; 
; dg in the Gray-
ode order of plain 
hanges (Algorithm

7.2.1.2P); then on page 57 he applies them not to pit
hes but rather to rhythms,

to the durations of notes. On page 364 he exhibits the symmetri
al 
y
le

(2; 0; 3; 4; 2; 5; 6; 4; 0; 1; 6; 2; 3; 1; 4; 5; 3; 6; 0; 5; 1); (13)

a universal 
y
le of 2-
ombinations for the seven obje
ts f0; 1; 2; 3; 4; 5; 6g; in

other words, (13) is an Eulerian trail in K

7

: All

�

7

2

�

= 21 pairs of digits o

ur

exa
tly on
e. Su
h patterns are grist for a 
omposer's mill. But we 
an be

grateful that S
hillinger's better students (like George Gershwin) did not 
ommit

themselves entirely to a stri
tly mathemati
al sense of aestheti
s.

Ta
quet, van S
hooten, and Izquierdo. Three additional books related to

our story were published during the 1650s. Andr�e Ta
quet wrote a popular text,

Arithmeti
� Theoria et Praxis (Louvain: 1656), that was reprinted and revised

often during the next �fty years. Near the end, on pages 376 and 377, he gave a

pro
edure for listing 
ombinations two at a time, then three at a time, et
.

Frans van S
hooten's Exer
itationes Mathemati
� (Leiden: 1657) was more

advan
ed. On page 373 he listed all 
ombinations in an appealing layout

a

b: ab


: a
: b
: ab


d: ad: bd: abd: 
d: a
d: b
d: ab
d

(14)

and he pro
eeded on the next few pages to extend this pattern to the letters e,

f , g, h, i, k, \et si
 in in�nitum." On page 376 he observed that one 
an repla
e

(a; b; 
; d) by (2; 3; 5; 7) in (14) to get the divisors of 210 that ex
eed unity:

2

3 6

5 10 15 30

7 14 21 42 35 70 105 210

(15)

And on the following page he extended the idea to

a

a: aa

b: ab: aab


: a
: aa
: b
: ab
: aab


(16)

thereby allowing two a's. He didn't really understand this extension, though; his

next example

a

a: aa

a: aaa

b: ab: aab: aaab

b: bb: abb: aabb: aaabb

(17)

was bot
hed, indi
ating the limits of his knowledge at the time. (See exer
ise 13.)

12
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On page 411 van S
hooten observed that the weights (a; b; 
; d) = (1; 2; 4; 8)


ould be assigned in (14), leading to

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(18)

after addition. But he didn't see the 
onne
tion with radix-2 arithmeti
.

Sebasti�an Izquierdo's two-volume work Pharus S
ientiarum (Lyon: 1659),

\The Lighthouse of S
ien
e," in
luded a ni
ely organized dis
ussion of 
ombina-

tori
s entitled Disputatio 29, De Combinatione. He gave a detailed dis
ussion of

four key parts of Stanley's Twelvefold Way, namely the n-tuples, n-variations,

n-multi
ombinations, and n-
ombinations of m obje
ts that appear in the �rst

two rows and the �rst two 
olumns of Table 7.2.1.4{1.

In Se
tions 81{84 of De Combinatione he listed all 
ombinations of m letters

taken n at a time, for 2 � n � 5 and n � m � 9, always in lexi
ographi
 order;

he also tabulated them for m = 10 and 20 in the 
ases n = 2 and 3. But when

he listed the m

n

variations of m things taken n at a time, he 
hose a more


ompli
ated ordering (see exer
ise 14).

Izquierdo was �rst to dis
over the formula

�

m+n�1

n

�

for 
ombinations of m

things taken n at a time with unlimited repetition; this rule appeared in x48{x51

of his work. But in x105, when he attempted to list all su
h 
ombinations in the


ase n = 3, he didn't know that there was a simple way to do it. In fa
t, his

listing of the 56 
ases form = 6 was rather like the old, awkward ordering of (12).

Combinations with repetition were not well understood until James Ber-

noulli's Ars Conje
tandi, \The Art of Guessing," 
ame out in 1713. In Part 2,

Chapter 5, Bernoulli simply listed the possibilities in lexi
ographi
 order, and

showed that the formula

�

m+n�1

n

�

follows by indu
tion as an easy 
onsequen
e.

[Ni

ol�o Tartaglia had, in
identally, 
ome 
lose to dis
overing this formula in his

General trattato di numeri, et misure 2 (Veni
e: 1556), 17

r

and 69

v

; so had the

Maghrebi mathemati
ian Ibn Mun`im in his 13th-
entury Fiqh al-H

.

is�ab.℄

The null 
ase. Before we 
on
lude our dis
ussion of early work on 
ombinations,

we should not forget a small yet noble step taken by John Wallis on page 110

of his Dis
ourse of Combinations (1685), where he spe
i�
ally 
onsidered the


ombination of m things taken 0 at a time: \It is manifest, That, if we would

take None, that is, if we would leave All ; there 
an be but one 
ase thereof, what

ever be the Number of things exposed." Furthermore, on page 113, he knew that

�

0

0

�

= 1: \(for, here, to take all, or to leave all, is but one and the same 
ase.)"

However, when he gave a table of n! for n � 24, he did not go so far as to

point out that 0! = 1, or that there is exa
tly one permutation of the empty set.

The work of N�ar�ayan

.

a. A remarkable monograph entitled Gan

.

ita Kaumud��

(\Treatise on Cal
ulation"), written by N�ar�ayan

.

a Pan

.

d

.

ita in 1356, has re
ently

be
ome known in detail to s
holars outside of India for the �rst time, thanks

to an English translation by Parmanand Singh [Gan

.

ita Bh�arat�� 20 (1998), 25{

82; 21 (1999), 10{73; 22 (2000), 19{85; 23 (2001), 18{82; 24 (2002), 35{98℄.

13



14 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Chapter 13 of his work, subtitled A_nka P�a�sa (\Con
atenation of Numbers"), was

devoted to 
ombinatorial generation. Indeed, although the 97 \sutras" of this


hapter were rather 
rypti
, they presented a 
omprehensive theory of the subje
t

that anti
ipated developments in the rest of the world by several hundred years.

For example, N�ar�ayan

.

a dealt with permutation generation in sutras 49{55a,

where he gave algorithms to list all permutations of a set in de
reasing 
olex or-

der, together with algorithms to rank a given permutation and to unrank a given

serial number. In this way he essentially dis
overed the fa
torial representation

of positive integers. Then in sutras 57{60 he extended the algorithms to handle

general multisets; for example, he listed the permutations of f1; 1; 2; 4g as

1124; 1214; 2114; 1142; 1412; 4112; 1241; 2141; 1421; 4121; 2411; 4211;

again in de
reasing 
olex order.

N�ar�ayan

.

a's sutras 88{92 dealt with systemati
 generation of 
ombinations.

Besides illustrating the 
ombinations of f1; : : : ; 8g taken 3 at a time, namely

(678; 578; 478; : : : ; 134; 124; 123);

he also 
onsidered a bit-string representation of these 
ombinations in the reverse

order (in
reasing 
olex):

(11100000; 11010000; 10110000; : : : ; 00010011; 00001011; 00000111):

He almost, but not quite, dis
overed Theorem 7.2.1.3L.

Thus we 
an legitimately regard N�ar�ayan

.

a Pan

.

d

.

ita as the founder of the

s
ien
e of 
ombinatorial generation|even though, like many other pioneers who

were signi�
antly \ahead of their time," his work on the subje
t never be
ame

well known even in his own 
ountry.

Permutable poetry. Let's turn now to a 
urious question that attra
ted

the attention of several prominent mathemati
ians in the seventeenth 
entury,

be
ause it sheds 
onsiderable light on the state of 
ombinatorial knowledge in

Europe at that time. A Jesuit priest named Bernard Bauhuis had 
omposed a

famous one-line tribute to the Virgin Mary, in Latin hexameter:

Tot tibi sunt dotes, Virgo, quot sidera 
�lo. (19)

[\Thou hast as many virtues, O Virgin, as there are stars in heaven"; see

his Epigrammatum Libri V (Cologne: 1615), 49.℄ His verse inspired Ery
ius

Puteanus, a professor at the University of Louvain, to write a book entitled

Pietatis Thaumata (Antwerp: 1617), presenting 1022 permutations of Bauhuis's

words. For example, Puteanus wrote

107 Tot dotes tibi, quot 
�lo sunt sidera, Virgo.

270 Dotes tot, 
�lo sunt sidera quot, tibi Virgo.

329 Dotes, 
�lo sunt quot sidera, Virgo tibi tot.

384 Sidera quot 
�lo, tot sunt Virgo tibi dotes.

725 Quot 
�lo sunt sidera, tot Virgo tibi dotes.

949 Sunt dotes Virgo, quot sidera, tot tibi 
�lo.

1022 Sunt 
�lo tot Virgo tibi, quot sidera, dotes.

(20)

14
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He stopped at 1022, be
ause 1022 was the number of visible stars in Ptolemy's

well-known 
atalog of the heavens.

The idea of permuting words in this way was well known at the time; su
h

wordplay was what Julius S
aliger had 
alled \Proteus verses" in his Poeti
es

Libri Septem (Lyon: 1561), Book 2, Chapter 30. The Latin language lends itself

to permutations like (20), be
ause Latin word endings tend to de�ne the fun
tion

of ea
h noun, making the relative word order mu
h less important to the meaning

of a senten
e than it is in English. Puteanus did state, however, that he had

spe
i�
ally avoided unsuitable permutations su
h as

Sidera tot 
�lo, Virgo, quot sunt tibi dotes, (21)

be
ause they would pla
e an upper bound on the Virgin's virtues rather than a

lower bound. [See pages 12 and 103 of his book.℄

Of 
ourse there are 8! = 40;320 ways to permute the words of (19). But

that wasn't the point; most of those ways don't \s
an." Ea
h of Puteanus's 1022

verses obeyed the stri
t rules of 
lassi
al hexameter, the rules that had been

followed by Greek and Latin poets sin
e the days of Homer and Vergil, namely:

i) Ea
h word 
onsists of syllables that are either long (��) or short (^);

ii) The syllables of ea
h line belong to one of 32 patterns,

n

��^^

����

o n

��^^

����

o n

��^^

����

o n

��^^

����

o

��^^

n

��^

����

o

: (22)

In other words there are six metri
al feet, where ea
h of the �rst four is either a

da
tyl or a spondee in the terminology of (5); the �fth foot should be a da
tyl,

and the last is either tro
hee or spondee.

The rules for long versus short syllables in Latin poetry are somewhat tri
ky

in general, but the eight words of Bauhuis's verse 
an be 
hara
terized by the

following patterns:

tot = ��; tibi =

n

^^

^��

o

; sunt = ��; dotes = ����;

Virgo =

n

��^

����

o

; quot = ��; sidera = ��^^; 
�lo = ����: (23)

Noti
e that poets had two 
hoi
es when they used the words `tibi' or `Virgo'.

Thus, for example, (19) �ts the hexameter pattern

��

Tot

^

ti-

^

bi

��

sunt

��

do-

��

tes,

��

Vir-

��

go,

��

quot

��

si-

^

de-

^

ra

��


�-

��

lo.

(24)

(Da
tyl, spondee, spondee, spondee, da
tyl, spondee; \dum-diddy dum-dum

dum-dum dum-dum dum-diddy dum-dum." The 
ommas represent slight pauses,


alled \
�suras," when the words are read; they don't 
on
ern us here, although

Puteanus inserted them 
arefully into ea
h of his 1022 permutations.)

A natural question now arises: If we permute Bauhuis's words at random,

what are the odds that they s
an? In other words, how many of the permutations

obey rules (i) and (ii), given the syllable patterns in (23)? G. W. Leibniz raised

15



16 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

this question, among others, in his Dissertatio de Arte Combinatoria (1666), a

work published when he was applying for a position at the University of Leipzig.

At this time Leibniz was just 19 years old, largely self-taught, and his under-

standing of 
ombinatori
s was quite limited; for example, he believed that there

are 600 permutations of fut; ut; re;mi; fa; solg and 480 of fut; ut; re; re;mi; fag,

and he even stated that (22) represents 76 possibilities instead of 32. [See x5 and

x8 in his Problem 6.℄

But Leibniz did realize that it would be worthwhile to develop general

methods for 
ounting all permutations that are \useful," in situations when

many permutations are \useless." He 
onsidered several examples of Proteus

verses, enumerating some of the simpler ones 
orre
tly but making many errors

when the words were 
ompli
ated. Although he mentioned Puteanus's work, he

didn't attempt to enumerate the s
annable permutations of (19).

A mu
h more su

essful approa
h was introdu
ed a few years later by Jean

Prestet in his

�

El�emens des Math�ematiques (Paris: 1675), 342{438. Prestet gave

a 
lear exposition leading to the 
on
lusion that exa
tly 2196 permutations of

Bauhuis's verse would yield a proper hexameter. However, he soon realized that

he had forgotten to 
ount quite a few 
ases| in
luding those numbered 270,

384, and 725 in (20). So he 
ompletely rewrote this material when he published

Nouveaux

�

El�emens des Math�ematiques in 1689. Pages 127{133 of Prestet's new

book were devoted to showing that the true number of s
annable permutations

was 3276, almost 50% larger than his previous total.

Meanwhile John Wallis had treated the problem in his Dis
ourse of Combi-

nations (London: 1685), 118{119, published as a supplement to his Treatise of

Algebra. After explaining why he believed the 
orre
t number to be 3096, Wallis

admitted that he may have overlooked some possibilities and/or 
ounted some


ases more than on
e; \but I do not, at present, dis
ern either the one and other."

An anonymous reviewer of Wallis's work remarked that the true number of

metri
ally 
orre
t permutations was a
tually 2580|but he gave no proof [A
ta

Eruditorum 5 (1686), 289℄. The reviewer was almost 
ertainly G. W. Leibniz

himself, although no 
lue to the reasoning behind the number 2580 has been

found among Leibniz's voluminous unpublished notes.

Finally James Bernoulli entered the pi
ture. In his inaugural le
ture as

Dean of Philosophy at the University of Basel, 1692, he mentioned the tot-

tibi enumeration problem and stated that a 
areful analysis is ne
essary to

obtain the 
orre
t answer|whi
h, he said, was 3312(!). His proof appeared

posthumously in the �rst edition of his Ars Conje
tandi (1713), 79{81. [Those

pages were, in
identally, omitted from later editions of that famous book, and

from his 
olle
ted works, be
ause he didn't a
tually intend them for publi
ation;

a proofreader had inserted them by mistake. See Die Werke von Jakob Bernoulli

3 (Basel: Birkh�auser, 1975), 78, 98{106, 108, 154{155.℄

So who was right? Are there 2196 s
annable permutations, or 3276, or 3096,

or 2580, or 3312? W. A. Whitworth and W. E. Hartley 
onsidered the question

anew in The Mathemati
al Gazette 2 (1902), 227{228, where they ea
h presented

elegant arguments and 
on
luded that the true total was in fa
t none of the

16
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above. Their joint answer, 2880, represented the �rst time that any two math-

emati
ians had independently 
ome to the same 
on
lusion about this problem.

But exer
ises 21 and 22, below, reveal the truth: Bernoulli is vindi
ated,

and everybody else was wrong. Moreover, a study of Bernoulli's systemati


and 
arefully indented 3-page derivation indi
ates that he was su

essful 
hie
y

be
ause he adhered faithfully to a dis
ipline that we now 
all the ba
ktra
k

method. We shall study the ba
ktra
k method thoroughly in Se
tion 7.2.2, where

we will also see that the tot-tibi question is readily solved as a spe
ial 
ase of

the exa
t 
over problem.

Even the wisest and most prudent people often su�er from

what Logi
ians 
all insuÆ
ient enumeration of 
ases.

| JAMES BERNOULLI (1692)

Set partitions. The partitions of a set seem to have been studied �rst in Japan,

where a parlor game 
alled genji-ko (\Genji in
ense") be
ame popular among

upper
lass people about A.D. 1500. The host of a gathering would se
retly sele
t

�ve pa
kets of in
ense, some of whi
h might be identi
al, and he would burn

them one at a time. The guests would try to dis
ern whi
h of the s
ents were

the same and whi
h were di�erent; in other words, they would try to guess whi
h

of the $

5

= 52 partitions of f1; 2; 3; 4; 5g had been 
hosen by their host.

Fig. 47. Diagrams used to represent set partitions

in 16th 
entury Japan. [From a 
opy in the 
olle
-

tion of Tamaki Yano at Saitama University.℄

Soon it be
ame 
ustomary to represent the 52 possible out
omes by diagrams

like those in Fig. 47. For example, the uppermost diagram of that illustration,

when read from right to left, would indi
ate that the �rst two s
ents are identi
al

and so are the last three; thus the partition is 12 j345. The other two diagrams,

similarly, are pi
torial ways to represent the respe
tive partitions 124 j35 and

1 j24 j35. As an aid to memory, ea
h of the 52 patterns was named after a


hapter of Lady Murasaki's famous 11th-
entury Tale of Genji, a

ording to the

following sequen
e [En
y
lopedia Japoni
� (Tokyo: Sanseido, 1910), 1299℄:

(25)

(On
e again, as we've seen in many other examples, the possibilities were not

arranged in any parti
ularly logi
al order.)

17
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The appealing nature of these genji-ko patterns led many families to adopt

them as heraldi
 
rests. For example, the following stylized variants of (25) were

found in standard 
atalogs of kimono patterns early in the 20th 
entury:

[See Fumie Ada
hi, Japanese Design Motifs (New York: Dover, 1972), 150{153.℄

Early in the 1700s, Takakazu Seki and his students began to investigate the

number of set partitions $

n

for arbitrary n, inspired by the known result that

$

5

= 52. Yoshisuke Matsunaga found formulas for the number of set partitions

when there are k

j

subsets of size n

j

for 1 � j � t, with k

1

n

1

+ � � � + k

t

n

t

= n

(see the answer to exer
ise 1.2.5{21). He also dis
overed the basi
 re
urren
e

relation 7.2.1.5{(14), namely

$

n+1

=

�

n

0

�

$

n

+

�

n

1

�

$

n�1

+

�

n

2

�

$

n�2

+ � � �+

�

n

n

�

$

0

; (26)

by whi
h the values of $

n


an readily be 
omputed.

Matsunaga's dis
overies remained unpublished until Yoriyuki Arima's book

Sh�uki Sanp�o 
ame out in 1769. Problem 56 of that book asked the reader to

solve the equation \$

n

= 678570" for n; and Arima's answer, worked out in

detail (with 
redit duly given to Matsunaga), was n = 11.

Shortly afterwards, Masanobu Saka studied the number

�

n

k

	

of ways that

an n-set 
an be partitioned into k subsets, in his work Sanp�o-Gakkai (1782). He

dis
overed the re
urren
e formula

n

n+ 1

k

o

= k

n

n

k

o

+

n

n

k � 1

o

; (27)

and tabulated the results for n � 11. James Stirling, in his Methodus Di�eren-

tialis (1730), had dis
overed the numbers

�

n

k

	

in a purely algebrai
 
ontext; thus

Saka was the �rst person to realize their 
ombinatorial signi�
an
e.

An interesting algorithm for listing set partitions was subsequently devised

by Toshiaki Honda (see exer
ise 24). Further details about genji-ko and its rela-

tion to the history of mathemati
s 
an be found in Japanese arti
les by Tamaki

Yano, Sugaku Seminar 34, 11 (Nov. 1995), 58{61; 34, 12 (De
. 1995), 56{60.

Set partitions remained virtually unknown in Europe until mu
h later, ex-


ept for three isolated in
idents. First, George and/or Ri
hard Puttenham

published The Arte of English Poesie in 1589, and pages 70{72 of that book

18
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ontain diagrams similar to those of genji-ko. For example, the seven diagrams

(28)

were used to illustrate possible rhyme s
hemes for 5-line poems, \whereof some

of them be harsher and unpleasaunter to the eare then other some be." But this

visually appealing list was in
omplete (see exer
ise 25).

Se
ond, an unpublished manus
ript of G. W. Leibniz from the late 1600s

shows that he had tried to 
ount the number of ways to partition f1; : : : ; ng

into three or four subsets, but with almost no su

ess. He enumerated

�

n

2

	

by

a very 
umbersome method, whi
h would not have led him to see readily that

�

n

2

	

= 2

n�1

� 1. He attempted to 
ompute

�

n

3

	

and

�

n

4

	

only for n � 5, and

made several numeri
al slips leading to in
orre
t answers. [See E. Knoblo
h,

Studia Leibnitiana Supplementa 11 (1973), 229{233; 16 (1976), 316{321.℄

The third European appearan
e of set partitions had a 
ompletely di�erent


hara
ter. John Wallis devoted the third 
hapter of his Dis
ourse of Combina-

tions (1685) to questions about \aliquot parts," the proper divisors of numbers,

and in parti
ular he studied the set of all ways to fa
torize a given integer. This

question is equivalent to the study of multiset partitions; for example, the fa
tor-

izations of p

3

q

2

r are essentially the same as the partitions of fp; p; p; q; q; rg, when

p, q, and r are prime numbers. Wallis devised an ex
ellent algorithm for listing

all fa
torizations of a given integer n, essentially anti
ipating Algorithm 7.2.1.5M

(see exer
ise 28). But he didn't investigate the important spe
ial 
ases that arise

when n is the power of a prime (equivalent to integer partitions) or when n is

squarefree (equivalent to set partitions). Thus, although Wallis was able to solve

the more general problem, its 
omplexities paradoxi
ally de
e
ted him from dis-


overing partition numbers, Bell numbers, or Stirling subset numbers, or from de-

vising simple algorithms that would generate integer partitions or set partitions.

Integer partitions. Partitions of integers arrived on the s
ene even more

slowly. Bishop Wibold (
. 965) knew the partitions of n into exa
tly three

parts � 6. So did Galileo, who wrote a memo about them (
. 1627) and also

studied their frequen
y of o

urren
e as rolls of three di
e. [\Sopra le s
operte de

i dadi," in Galileo's Opere, Volume 8, 591{594; he listed partitions in de
reasing

lexi
ographi
 order.℄

Mersenne listed the partitions of 9 into any number of parts, on page 130 of

his Traitez de la Voix et des Chants (1636). With ea
h partition 9 = a

1

+ � � �+a

k

he also 
omputed the multinomial 
oeÆ
ient 9!=(a

1

! : : : a

k

!); as we've seen earlier,

he was interested in 
ounting various melodies, and he knew for example that

there are 9!=(3!3!3!) = 1680 melodies on the nine notes fa; a; a; b; b; b; 
; 
; 
g.

But he failed to mention the 
ases 8 + 1 and 3 + 2 + 1 + 1 + 1 + 1, probably

be
ause he hadn't listed the possibilities in any systemati
 way.

Leibniz 
onsidered two-part partitions in Problem 3 of his Dissertatio de

Arte Combinatoria (1666), and his unpublished notes show that he subsequently

spent 
onsiderable time trying to enumerate the partitions that have three or
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20 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

more summands. He 
alled them \dis
erptions," or (less frequently) \divul-

sions"| in Latin of 
ourse|or sometimes \se
tions" or \dispersions" or even

\partitions." He was interested in them primarily be
ause of their 
onne
tion

with the monomial symmetri
 fun
tions

P

x

a

1

i

1

x

a

2

i

2

: : : . But his many attempts

led to almost total failure, ex
ept in the 
ase of three summands, when he almost

(but not quite) dis
overed the formula for

�

�

n

3

�

�

in exer
ise 7.2.1.4{31. For example,

he 
arelessly 
ounted only 21 partitions of 8, forgetting the 
ase 2+2+2+1+1;

and he got only 26 for p(9), after missing 3 + 2 + 2 + 2, 3 + 2 + 2 + 1 + 1,

2 + 2 + 2 + 1 + 1 + 1, and 2 + 2 + 1 + 1 + 1 + 1 + 1| in spite of the fa
t that

he was trying to list partitions systemati
ally in de
reasing lexi
ographi
 order.

[See E. Knoblo
h, Studia Leibnitiana Supplementa 11 (1973), 91{258; 16 (1976),

255{337; Historia Mathemati
a 1 (1974), 409{430.℄

Abraham de Moivre had the �rst real su

ess with partitions, in his paper

\A Method of Raising an in�nite Multinomial to any given Power, or Extra
ting

any given Root of the same" [Philosophi
al Transa
tions 19 (1697), 619{625 and

Fig. 5℄. He proved that the 
oeÆ
ient of z

m+n

in (az + bz

2

+ 
z

3

+ � � � )

m

has

one term for ea
h partition of n; for example, the 
oeÆ
ient of z

m+6

is

�

m

6

�

a

m�6

b

6

+ 5

�

m

5

�

a

m�5

b

4


+ 4

�

m

4

�

a

m�4

b

3

d+ 6

�

m

4

�

a

m�4

b

2




2

+ 3

�

m

3

�

a

m�3

b

2

e+ 6

�

m

3

�

a

m�3

b
d+ 2

�

m

2

�

a

m�2

bf +

�

m

3

�

a

m�3




3

+ 2

�

m

2

�

a

m�2


e+

�

m

2

�

a

m�2

d

2

+

�

m

1

�

a

m�1

g: (29)

If we set a = 1, the term with exponents b

i




j

d

k

e

l

: : : 
orresponds to the partition

with i 1s, j 2s, k 3s, l 4s, et
. Thus, for example, when n = 6 he essentially

presented the partitions in the order

111111; 11112; 1113; 1122; 114; 123; 15; 222; 24; 33; 6: (30)

He explained how to list the partitions re
ursively, as follows (but in di�erent

language related to his own notation): For k = 1, 2, : : : , n, start with k and

append the (previously listed) partitions of n� k whose smallest part is � k.

[My solution℄ was ordered to be published in the Transa
tions,

not so mu
h as a matter relating to Play,

but as 
ontaining some general Spe
ulations

not unworthy to be 
onsidered by the Lovers of Truth.

| ABRAHAM DE MOIVRE (1717)

P. R. de Montmort tabulated all partitions of numbers � 9 into � 6 parts

in his Essay d'Analyse sur les Jeux de Hazard (1708), in 
onne
tion with di
e

problems. His partitions were listed in a di�erent order from (30); for example,

111111; 21111; 2211; 222; 3111; 321; 33; 411; 42; 51; 6: (31)

He probably was unaware of de Moivre's prior work.

So far almost none of the authors we've been dis
ussing a
tually des
ribed

the pro
edures by whi
h they generated 
ombinatorial patterns. We 
an only

infer their methods, or la
k thereof, by studying the lists that they a
tually pub-

lished. Furthermore, in rare 
ases su
h as de Moivre's paper where a tabulation

20
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method was expli
itly des
ribed, the author assumed that all patterns for the

�rst 
ases 1, 2, : : : , n� 1 had been listed before it was time to ta
kle the 
ase of

order n. No method for generating patterns \on the 
y," moving dire
tly from

one pattern to its su

essor without looking at auxiliary tables, was a
tually

explained by any of the authors we have en
ountered, ex
ept for Ked�ara and

N�ar�ayan

.

a. Today's 
omputer programmers naturally prefer methods that are

more dire
t and need little memory.

Roger Joseph Bos
ovi
h published the �rst dire
t algorithm for partition

generation in Giornale de' Letterati (Rome, 1747), on pages 393{404 together

with two foldout tables fa
ing page 404. His method, whi
h produ
es for n = 6

the respe
tive outputs

111111; 11112; 1122; 222; 1113; 123; 33; 114; 24; 15; 6; (32)

generates partitions in pre
isely the reverse order from whi
h they are visited by

Algorithm 7.2.1.4P; and his method would indeed have been featured in Se
tion

7.2.1.4, ex
ept for the fa
t that the reverse order turns out to be slightly easier

and faster than the order that he had 
hosen.

Bos
ovi
h published sequels in Giornale de' Letterati (Rome, 1748), 12{27

and 84{99, extending his algorithm in two ways. First, he 
onsidered generating

only partitions whose parts belong to a given set S, so that symboli
 multinomials

with sparse 
oeÆ
ients 
ould be raised to the mth power. (He said that the g
d

of all elements of S should be 1; in fa
t, however, his method 
ould fail if 1 =2 S.)

Se
ond, he introdu
ed an algorithm for generating partitions of n into m parts,

given m and n. Again he was unlu
ky: A slightly better way to do that task,

Algorithm 7.2.1.4H, was found subsequently, diminishing his 
han
es for fame.

Hindenburg's hype. The inventor of Algorithm 7.2.1.4H was Carl Friedri
h

Hindenburg, who also redis
overed N�ar�ayan

.

a's Algorithm 7.2.1.2L, a winning

te
hnique for generating multiset permutations. Unfortunately, these small su
-


esses led him to believe that he had made revolutionary advan
es in mathemat-

i
s|although he did 
ondes
end to remark that other people su
h as de Moivre,

Euler, and Lambert had 
ome 
lose to making similar dis
overies.

Hindenburg was a prototypi
al overa
hiever, extremely energeti
 if not in-

spired. He founded or 
ofounded Germany's �rst professional journals of math-

emati
s (published 1786{1789 and 1794{1800), and 
ontributed long arti
les to

ea
h. He served several times as a
ademi
 dean at the University of Leipzig,

where he was also the Re
tor in 1792. If he had been a better mathemati
ian,

German mathemati
s might well have 
ourished more in Leipzig than in Berlin

or G�ottingen.

But his �rst mathemati
al work, Bes
hreibung einer ganz neuen Art, na
h

einem bekannten Gesetze fortgehende Zahlen dur
h Abz�ahlen oder Abmessen

bequem und si
her zu �nden (Leipzig: 1776), amply foreshadowed what was to


ome: His \ganz neue" (
ompletely new) idea in that booklet was simply to give


ombinatorial signi�
an
e to the digits of numbers written in de
imal notation.

In
redibly, he 
on
luded his monograph with large foldout sheets that 
ontained
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22 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

a table of the numbers 0000 through 9999| followed by two other tables that

listed the even numbers and odd numbers separately(!).

Hindenburg published letters from people who praised his work, and invited

them to 
ontribute to his journals. In 1796 he edited Sammlung 
ombinatoris
h-

analytis
her Abhandlungen, whose subtitle stated (in German) that de Moivre's

multinomial theorem was \the most important proposition in all of mathemati
al

analysis." About a dozen people joined for
es to form what be
ame known as

Hindenburg's Combinatorial S
hool, and they published thousands of pages �lled

with esoteri
 symbolism that must have impressed many nonmathemati
ians.

The work of this S
hool was not 
ompletely trivial from the standpoint

of 
omputer s
ien
e. For example, H. A. Rothe, who was Hindenburg's best

student, noti
ed that there is a simple way to go from a Morse 
ode sequen
e

to its lexi
ographi
 su

essor or prede
essor. Another student, J. C. Burkhardt,

observed that Morse 
ode sequen
es of length n 
ould also be generated easily

by �rst 
onsidering those with no dashes, then one dash, then two, et
. Their

motivation was not to tabulate poeti
 meters of n beats, as it had been in India,

but rather to list the terms of the 
ontinuant polynomials K(x

1

; x

2

; : : : ; x

n

),

Eq. 4.5.3{(4). [See Ar
hiv f�ur reine und angewandte Mathematik 1 (1794), 154{

194.℄ Furthermore, on page 53 of Hindenburg's 1796 Sammlung 
ited above,

G. S. Kl�ugel introdu
ed a way to list all permutations that has subsequently

be
ome known as Ord-Smith's algorithm; see Eqs. (23){(26) in Se
tion 7.2.1.2.

Hindenburg believed that his methods deserved equal time with algebra,

geometry, and 
al
ulus in the standard 
urri
ulum. But he and his dis
iples

were 
ombinatorialists who only made 
ombinatorial lists. Burying themselves

in formulas and formalisms, they rarely dis
overed any new mathemati
s of real

interest. Eugen Netto has admirably summarized their work in M. Cantor's

Ges
hi
hte der Mathematik 4 (1908), 201{219. \For a while they 
ontrolled

the German market; however, most of what they dug up soon sank into a not-

entirely-deserved oblivion."

The sad out
ome was that 
ombinatorial studies in general got a bad name.

G�osta Mittag-Le�er, who assembled a magni�
ent library of mathemati
al lit-

erature about 100 years after Hindenburg's death, de
ided to pla
e all su
h

work on a spe
ial shelf marked \Dekadenter." And this 
ategory still persists

in the library of Sweden's Institut Mittag-Le�er today, even as that institute

attra
ts world-
lass 
ombinatorial mathemati
ians whose resear
h is anything

but de
adent.

Looking on the bright side, we may note that at least one good book did

emerge from all of this a
tivity. Andreas von Ettingshausen's Die 
ombina-

toris
he Analysis (Vienna: 1826) is noteworthy as the �rst text to dis
uss 
om-

binatorial generation methods in a perspi
uous way. He dis
ussed the general

prin
iples of lexi
ographi
 generation in x8, and applied them to 
onstru
t good

ways to list all permutations (x11), 
ombinations (x30), and partitions (x41{x44).

Where were the trees? We've now seen that lists of tuples, permutations,


ombinations, and partitions were 
ompiled rather early in human history, by

22
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interested and interesting resear
hers. Thus we've a

ounted for the evolution

of the topi
s studied in Se
tions 7.2.1.1 through 7.2.1.5, and our story will be


omplete if we 
an tra
e the origins of tree generation, Se
tion 7.2.1.6.

But the histori
al re
ord of that topi
 before the advent of 
omputers is

virtually a blank page, with the ex
eption of a few 19th-
entury papers by Arthur

Cayley. Cayley's major work on trees, originally published in 1875 and reprinted

on pages 427{460 of his Colle
ted Mathemati
al Papers, Volume 4, was 
limaxed

by a large foldout illustration that exhibited all the free trees with 9 or fewer

unlabeled verti
es. Earlier in that paper he had also illustrated the nine oriented

trees with 5 verti
es. The methods he used to produ
e those lists were quite


ompli
ated, 
ompletely di�erent from Algorithm 7.2.1.6O and exer
ise 7.2.1.6{

90. All free trees with up to 10 verti
es were listed many years later by F. Harary

and G. Prins [A
ta Math. 101 (1958), 158{162℄, who also went up to n = 12 in

the 
ases of free trees with no nodes of degree 2 or with no symmetries.

The trees most dearly beloved by 
omputer s
ientists|binary trees or the

equivalent ordered forests or nested parentheses|are however strangely absent

from the literature. We saw in Se
tion 2.3.4.5 that many mathemati
ians of the

1700s and 1800s had learned how to 
ount binary trees, and we also know that

the Catalan numbers C

n

enumerate dozens of di�erent kinds of 
ombinatorial

obje
ts. Yet nobody seems to have published an a
tual list of the C

4

= 14

obje
ts of order 4 in any of these guises, mu
h less the C

5

= 42 obje
ts of

order 5, before 1950. (Ex
ept indire
tly: The 42 genji-ko diagrams in (25) that

have no interse
ting lines turn out to be equivalent to the 5-node binary trees

and forests. But this fa
t was not learned until the 20th 
entury.)

There are a few isolated instan
es where authors of yore did prepare lists of

C

3

= 5 Catalan-related obje
ts. Cayley, again, was �rst; he illustrated the binary

trees with 3 internal nodes and 4 leaves as follows in Philosophi
al Magazine 18

(1859), 374{378:

(33)

(That same paper also illustrated another spe
ies of tree, equivalent to so-
alled

weak orderings.) Then, in 1901, E. Netto listed the �ve ways to insert parentheses

into the expression `a+ b+ 
+ d':

(a+b)+(
+d); [(a+b)+
℄+d; [a+(b+
)℄+d; a+[(b+
)+d℄; a+[b+(
+d)℄: (34)

[Lehrbu
h der Combinatorik, x122.℄ And the �ve permutations of f+1;+1;+1;

�1;�1;�1g whose partial sums are nonnegative were listed in the following way

by Paul Erd}os and Irving Kaplansky [S
ripta Math. 12 (1946), 73{75℄:

1+1+1�1�1�1; 1+1�1+1�1�1; 1+1�1�1+1�1;

1�1+1+1�1�1; 1�1+1�1+1�1: (35)

Even though only �ve obje
ts are involved, we 
an see that the orderings in (33)

and (34) were basi
ally 
at
h-as-
at
h-
an; only (35), whi
h mat
hes Algorithm

7.2.1.6P, was systemati
 and lexi
ographi
.
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We should also note brie
y the work of Walther von Dy
k, sin
e many re
ent

papers use the term \Dy
k words" to refer to strings of nested parentheses. Dy
k

was an edu
ator known for 
o-founding the Deuts
hes Museum in Muni
h, among

other things. He wrote two pioneering papers about the theory of free groups

[Math. Annalen 20 (1882), 1{44; 22 (1883), 70{108℄. Yet the so-
alled Dy
k

words have at best a tenuous 
onne
tion to his a
tual resear
h: He studied the

words on fx

1

; x

�1

1

; : : : ; x

k

; x

�1

k

g that redu
e to the empty string after repeatedly

erasing adja
ent letter-pairs of the forms x

i

x

�1

i

or x

�1

i

x

i

; the 
onne
tion with

parentheses and trees arises only when we limit erasures to the �rst 
ase, x

i

x

�1

i

.

Thus we may 
on
lude that, although an explosion of interest in binary trees

and their 
ousins o

urred after 1950, su
h trees represent the only aspe
t of our

story whose histori
al roots are rather shallow.

After 1950. Of 
ourse the arrival of ele
troni
 
omputers 
hanged everything.

The �rst 
omputer-oriented publi
ation about 
ombinatorial generation methods

was a note by C. B. Tompkins, \Ma
hine atta
ks on problems whose variables

are permutations" [Pro
. Symp. Applied Math. 6 (1956), 202{205℄. Thousands

more were destined to follow.

Several arti
les by D. H. Lehmer, espe
ially his \Tea
hing 
ombinatorial

tri
ks to a 
omputer" in Pro
. Symp. Applied Math. 10 (1960), 179{193, proved

to be extremely in
uential in the early days. [See also Pro
. 1957 Canadian

Math. Congress (1959), 160{173; Pro
. IBM S
ienti�
 Computing Symposium

on Combinatorial Problems (1964), 23{30; and Chapter 1 of Applied Combina-

torial Mathemati
s, edited by E. F. Be
kenba
h (Wiley, 1964), 5{31.℄ Lehmer

represented an important link to previous generations. For example, Stanford's

library re
ords show that he had 
he
ked out Netto's Lehrbu
h der Combinatorik

in January of 1932.

The main publi
ations relevant to parti
ular algorithms that we've studied

have already been 
ited in previous se
tions, so there is no need to repeat them

here. But textbooks and monographs that �rst put pie
es of the subje
t together

in a 
oherent framework were also of great importan
e. Three books, in parti
-

ular, were espe
ially noteworthy with respe
t to establishing general prin
iples:

� Elements of Combinatorial Computing by Mark B. Wells (Pergamon Press,

1971), espe
ially Chapter 5.

� Combinatorial Algorithms by Albert Nijenhuis and Herbert S. Wilf (A
a-

demi
 Press, 1975). A se
ond edition was published in 1978, 
ontaining

additional material, and Wilf subsequently wrote Combinatorial Algorithms:

An Update (Philadelphia: SIAM, 1989).

� Combinatorial Algorithms: Theory and Pra
ti
e by Edward M. Reingold,

Jurg Nievergelt, and Narsingh Deo (Prenti
e{Hall, 1977), espe
ially the

material in Chapter 5.

Robert Sedgewi
k 
ompiled the �rst extensive survey of permutation generation

methods in Computing Surveys 9 (1977), 137{164, 314. Carla Savage's survey

arti
le about Gray 
odes in SIAM Review 39 (1997), 605{629, was another

milestone.
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We noted above that algorithms to generate Catalan-
ounted obje
ts were

not invented until 
omputer programmers developed an appetite for them. The

�rst su
h algorithms to be published were not 
ited in Se
tion 7.2.1.6 be
ause

they have been superseded by better te
hniques; but it is appropriate to list

them here. First, H. I. S
oins gave two re
ursive algorithms for ordered tree

generation, in the same paper we have 
ited with respe
t to the generation of

oriented trees [Ma
hine Intelligen
e 3 (1968), 43{60℄. His algorithms dealt with

binary trees represented as bit strings that were essentially equivalent to Polish

pre�x notation or to nested parentheses. Then Mark Wells, in Se
tion 5.5.4 of his

book 
ited above, generated binary trees by representing them as non
rossing

set partitions. And Gary Knott [CACM 20 (1977), 113{115℄ gave re
ursive

ranking and unranking algorithms for binary trees, representing them via the

inorder-to-preorder permutations q

1

: : : q

n

of Table 7.2.1.6{3.

Algorithms to generate all spanning trees of a given graph have been pub-

lished by numerous authors ever sin
e the 1950s, motivated originally by the

study of ele
tri
al networks. Among the earliest su
h papers were works of

N. Nakagawa, IRE Trans. CT-5 (1958), 122{127; W. Mayeda, IRE Trans.

CT-6 (1959), 136{137, 394; H. Watanabe, IRE Trans. CT-7 (1960), 296{302;

S. Hakimi, J. Franklin Institute 272 (1961), 347{359.

A re
ent introdu
tion to the entire subje
t 
an be found in Chapters 2

and 3 of Combinatorial Algorithms: Generation, Enumeration, and Sear
h by

Donald L. Kreher and Douglas R. Stinson (CRC Press, 1999).

Frank Ruskey is preparing a book entitled Combinatorial Generation that

will 
ontain a thorough treatment and a 
omprehensive bibliography. He has

made working drafts of several 
hapters available on the Internet.

EXERCISES

Many of the exer
ises below ask a modern reader to �nd and/or to 
orre
t errors in

the literature of bygone days. The point is not to gloat over how smart we are in the

21st 
entury; the point is rather to understand that even the pioneers of a subje
t 
an

stumble. One good way to learn that a set of ideas is not really as simple as it might

seem to today's 
omputer s
ientists and mathemati
ians is to observe that some of the

world's leading thinkers had to struggle with the 
on
epts when they were new.

1. [15 ℄ Does the notion of \
omputing" arise in the I Ching?

x 2. [M30 ℄ (The geneti
 
ode.) DNA mole
ules are strings of \nu
leotides" on the

4-letter alphabet fT; C; A; Gg, and most protein mole
ules are strings of \amino a
ids" on

the 20-letter alphabet fA;C;D;E;F;G;H; I;K;L;M;N;P;Q;R;S;T;V;W;Yg. Three


onse
utive nu
leotides xyz form a \
odon," and a strand x

1

y

1

z

1

x

2

y

2

z

2

: : : of DNA

spe
i�es the protein f(x

1

; y

1

; z

1

)f(x

2

; y

2

; z

2

) : : : , where f(x; y; z) is the element in row z

and 
olumn y of matrix x in the array

0

B

�

F S Y C

F S Y C

L S � �

L S � W

1

C

A

0

B

�

L P H R

L P H R

L P Q R

L P Q R

1

C

A

0

B

�

I T N S

I T N S

I T K R

M T K R

1

C

A

0

B

�

V A D G

V A D G

V A E G

V A E G

1

C

A

.

(Here (T; C; A; G) = (1; 2; 3; 4); for example, f(CAT) is the element in row 1 and 
olumn 3

of matrix 2, namely H.) En
oding pro
eeds until a 
odon leads to the stopper `�'.

25



26 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

a) Show that there is a simple way to map ea
h 
odon into a hexagram of the I Ching,

with the property that the 21 possible out
omes fA;C;D; : : : ;W;Y;�g 
orrespond

to 21 
onse
utive hexagrams of the King Wen ordering (1).

b) Is that a sensational dis
overy?

3. [20 ℄ What is the millionth meter that has 30 beats, in 
olex ordering analogous

to (2)? What is the rank of ^^^��^����^^^^����^^^^^^^��^��?

4. [19 ℄ Analyze the imperfe
tions of Donnolo's list of permutations in Table 1.

5. [16 ℄ What's wrong with Kir
her's list of �ve-note permutations in (7)?

6. [25 ℄ Mersenne published a table of the �rst 64 fa
torials on pages 108{110 of his

Traitez de la Voix et des Chants (1636). His value for 64! was � 2:2�10

89

; but it should

have been � 1:3� 10

89

. Find a 
opy of his book and try to �gure out where he erred.

7. [20 ℄ What permutations of f1; 2; 3; 4; 5g are \alive" and \dead" a

ording to Seki's

rules (8) and (9)?

x 8. [M27 ℄ Make a pat
h to (9) so that Seki's pro
edure will be 
orre
t.

9. [15 ℄ From (11), dedu
e the Arabi
 way to write the Arabi
 numerals (0; 1; :::; 9).

x 10. [HM27 ℄ In Ludus Cleri
alis, what is the expe
ted number of times the three di
e

are rolled before all possible virtues are a
quired?

11. [21 ℄ De
ipher Llull's verti
al table at the right of Fig. 45. What 20 
ombinatorial

obje
ts does it represent? Hint: Don't be misled by typographi
 errors.

12. [M20 ℄ Relate S
hillinger's universal 
y
le (13) to the universal 
y
le of Poinsot in

exer
ise 7.2.1.3{106.

13. [21 ℄ What should van S
hooten have written, instead of (17)? Give also the


orresponding tableau for 
ombinations of the multiset fa; a; a; b; b; 
g.

x 14. [20 ℄ Complete the following sequen
e, from x95 of Izquierdo's De Combinatione:

ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB : : : .

15. [15 ℄ If all n-
ombinations of f1; : : : ;mg with repetition are listed in lexi
ographi


order, how many of them begin with the number j?

16. [20 ℄ (N�ar�ayan

.

a Pan

.

d

.

ita, 1356.) Design an algorithm to generate all 
ompositions

of n into parts � q, namely all ordered partitions n = a

1

+ � � �+ a

t

, where 1 � a

j

� q

for 1 � j � t and t is arbitrary. Illustrate your method when n = 7 and q = 3.

17. [HM27 ℄ Analyze the algorithm of exer
ise 15.

18. [10 ℄ Tri
k question: Leibniz published his Dissertatio de Arte Combinatoria in

1666. Why was that a parti
ularly auspi
ious year, permutationwise?

19. [17 ℄ In whi
h of Puteanus's verses (20) is `tibi' treated as ^�� instead of ^^?

20. [M25 ℄ To 
ommemorate the visit of three illustrious noblemen to Dresden in 1617,

a poet published 1617 permutations of the hexameter verse

Dant tria jam Dresd�, 
eu sol dat, lumina lu
em.

\Three give now to Dresden, as the sun gives, lights to light." [Gregor Kleppis, Proteus

Poeti
us (Leipzig: 1617).℄ How many permutations of those words would a
tually s
an

properly? Hint: The verse has da
tyls in the �rst and �fth feet, spondees elsewhere.

26
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21. [HM30 ℄ Let f(p; q; r; s; t) be the number of ways to make (o

p

; o

q

; o

r

) by 
on
ate-

nating the strings fs � o; t � oog, when p+ q+ r = s+2t. For example, f(2; 3; 2; 3; 2) = 5

be
ause the �ve ways are

(oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo):

a) Show that f(p; q; r; s; t) = [u

p

v

q

w

r

z

s

℄ 1=((1� zu� u

2

)(1� zv� v

2

)(1� zw�w

2

)).

b) Use the fun
tion f to enumerate the s
annable permutations of (19), subje
t to

the additional 
ondition that the �fth foot doesn't begin in the middle of a word.


) Now enumerate the remaining 
ases.

x 22. [M40 ℄ Look up the original dis
ussions of the tot-tibi problem that were published

by Prestet, Wallis, Whitworth, and Hartley. What errors did they make?

23. [20 ℄ What order of the 52 genji-ko diagrams 
orresponds to Algorithm 7.2.1.5H?

x 24. [23 ℄ Early in the 1800s,Toshiaki Honda gave a re
ursive rule for generating all par-

titions of f1; : : : ; ng. His algorithm produ
ed them in the following order when n= 4:

Can you guess the 
orresponding order for n = 5? Hint: See (26).

25. [15 ℄ The 16th-
entury author of The Arte of English Poesie was interested only in

rhyme s
hemes that are \
omplete" in the sense of exer
ise 7.2.1.5{35; in other words,

every line should rhyme with at least one other. Furthermore, the s
heme should

be \inde
omposable" in the sense of exer
ise 7.2.1.2{100: A partition like 12 j345

de
omposes into a 2-line poem followed by a 3-line poem. And the s
heme shouldn't


onsist trivially of lines that all rhyme with ea
h other. Under these 
onditions, is (28)

a 
omplete list of 5-line rhyme s
hemes?

x 26. [HM25 ℄ How many n-line rhyme s
hemes satisfy the 
onstraints of exer
ise 24?

x 27. [HM31 ℄ The set partition 14 j25 j36 
an be represented by a genji-ko diagram su
h

as ; but every su
h diagram for this partition must have at least three pla
es where

lines 
ross, and 
rossings are sometimes 
onsidered undesirable. How many partitions

of f1; : : : ; ng have a genji-ko diagram in whi
h the lines 
ross at most on
e?

x 28. [25 ℄ Let a, b, and 
 be prime numbers. JohnWallis listed all possible fa
torizations

of a

3

b

2


 as follows: 
bbaaa, 
bbaa � a, b
aaa � b, bbaaa � 
, 
bba � aa, 
bba � a � a, 
baa � ba,


baa � b � a, bbaa � 
a, bbaa � 
 � a, 
aaa � bb, 
aaa � b � b, baaa � 
b, baaa � 
 � b, 
bb � aaa,


bb � aa � a, 
bb � a � a � a, 
ba � baa, 
ba � ba � a, 
ba � aa � b, 
ba � b � a � a, bba � 
aa, bba � 
a � a,

bba �aa � 
, bba � 
 �a �a, 
aa � bb �a, 
aa � ba � b, 
aa � b � b �a, baa � 
b �a, baa � 
a � b, baa � ba � 
,

baa � 
 � b � a, aaa � 
b � b, aaa � bb � 
, aaa � 
 � b � b, 
b � ba � aa, 
b � ba � a � a, 
b � aa � b � a,


b � b � a � a � a, bb � 
a � aa, bb � 
a � a � a, bb � aa � 
 � a, bb � 
 � a � a � a, 
a � ba � ba, 
a � ba � b � a,


a � aa � b � b, 
a � b � b � a � a, ba � ba � 
 � a, ba � aa � 
 � b, ba � 
 � b � a � a, aa � 
 � b � b � a,


 � b � b � a � a � a. What algorithm did he use to generate them in this order?

x 29. [24 ℄ In what order would Wallis have generated all fa
torizations of the number

ab
de = 5 � 7 � 11 � 13 � 17? Give your answer as a sequen
e of genji-ko diagrams.

30. [M20 ℄ What is the 
oeÆ
ient of a

i

1

1

a

i

2

2

: : : z

m+n

in (a

0

z + a

1

z

2

+ a

2

z

3

+ � � � )

m

?

(See (29).)

31. [20 ℄ Compare de Moivre's and de Montmort's orders for partitions, (30) and (31),

with Algorithm 7.2.1.4P.

32. [21 ℄ (R. J. Bos
ovi
h, 1748.) List all partitions of 20 for whi
h all parts are 1, 7,

or 10. Also design an algorithm that lists all su
h partitions of any given integer n > 0.
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SECTION 7.2.1.7

1. Perhaps under hexagram 21, \
run
hing" ( ); however, the an
ient 
ommentators

related this hexagram more to law enfor
ement than to the intera
tion of ele
trons.

2. (a) For the �rst nu
leotide in the 
odon, let (T; C; A; G) be respe
tively represented

by (

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

); represent the se
ond nu
leotide, similarly, by (

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

); repre-

sent the third by (

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

); and superimpose those three representations. Thus,

for example, hexagram number 34 is =

. .

. .

. .

. .

+

. .

. .

. .

. .

+

. .

. .

. .

. .

; it represents the 
odon TTC,

whi
h maps to the amino a
id F. Under this 
orresponden
e, hexagrams 34 through 54

in
lusive map into the respe
tive values (F;G;L;Q;W;D; S;�;P;Y;K;A; I;T;N;H;M;

R;V;E;C). Moreover, the three hexagrams that map to `�' are numbers 1, 9, and 41,

namely , , and , whi
h mean \
reation", \taming," and \removal of ex
ess" in

the I Ching|all quite appropriate for the notion of 
ompleting a protein.

(b) Consider the

�

64

6;6;6;4;4;4;4;4;3;3;2;2;2;2;2;2;2;2;2;1;1

�

� 2:3 � 10

69

ways to permute

the elements of the 4� 4� 4 geneti
 
ode array. Exa
tly

2402880402175789790003993681964551328451668718750185553920000000� 2:4� 10

63

of them 
ontain at least one run of 21 distin
t 
onse
utive elements. [Using the prin
iple

of in
lusion and ex
lusion one 
an show that any multiset f(n

1

+1) �x

1

; : : : ; (n

r

+1) �x

r

g

with r distin
t elements and n

r

= 0 has exa
tly

(n+1)

�

n

n

1

; : : : ; n

r

�

r!�

r

X

k=1

(n+1�k)k!(r�k)! a

k

X

0�d

1

;:::;d

r

�1

d

1

+���+d

r

=k

�

n� k

n

1

� d

1

; : : : ; n

r

� d

r

�

su
h permutations, where n = n

1

+ � � � + n

r

and a

k

is the number of inde
omposable

permutations with k elements (exer
ise 7.2.1.2{100).℄ Thus only about one out of every

million permutations has the stated property.

But there are 4!

3

�

6

2;2;2

�

= 1244160 ways to represent 
odons as in part (a), and

most of them 
orrespond to di�erent permutations of the amino a
ids (ex
ept for

inter
hanging the representations of T and C in third position).

Empiri
ally, in fa
t, about 31% of all permutations of the 64 hexagrams turn out

to have suitable 
odon mappings. Thus the 
onstru
tion in part (a) gives no reason to

believe that the authors of the I Ching anti
ipated the geneti
 
ode in any way.

3. Sin
e F

31

� 10

6

= F

28

+ F

22

+ F

20

+ F

18

+ F

16

+ F

14

+ F

9

, the millionth is

^^^^^^^��^^^����������^^^^��^^:

Going the other way is easier: F

31

� (F

5

+F

8

+F

10

+F

16

+F

18

+F

27

+F

30

) = 314159.

4. One of the two appearan
es of on line 4 should be ; this glit
h may

simply be a typographi
al error. Similarly, one on line 8 should be . But

the six 
ases with rightmost letters appear twi
e, in lines 3 and 4, while the 
ases

with rightmost are missing. Donnolo himself must be responsible for this 
aw.

5. The last one should have been , not .

6. The nth value m

n

in Mersenne's list agrees with n! only for 1 � n � 13 and

15 � n � 38. Mersenne knew that 14! = 87178291200 6= m

14

= 8778291200, be
ause he

inserted the missing `1' in his personal 
opy of the book (now owned by the Biblioth�eque

Nationale; a fa
simile was published in 1975). But the other errors in his table were not

merely typographi
al, be
ause they propagated into subsequent entries, ex
ept in the


ase of m

50

: m

39

= 39!+ 10

26

� 10

10

; m

40

= 40m

39

; m

41

= 41m

40

� 4 � 10

25

� 14 � 10

11

;

28



7.2.1.7 ANSWERS TO EXERCISES 29

m

n

= nm

n�1

for n = 42, 43, 44, 46, 47, 48, 49, 55, 60, and 62; m

50

= 50m

49

+ 10

66

;

m

51

= 51 � 50 �m

49

. When he 
omputed m

45

= 9 � 45 �m

44

� 10

40

+10

29

, he apparently

de
ided to take a short
ut, be
ause it's easy to multiply by 5 or by 9; but he multiplied

twi
e by 9. Most of his errors indi
ate an unreliable multipli
ation te
hnique, whi
h

may have depended on an aba
us: m

52

= 52m

51

+ 5 � 10

56

� 2 � 10

47

+ 10

34

; m

53

=

53m

52

� 4 � 10

29

; m

54

= 54m

53

+ 10

16

; m

57

= 57m

56

+ 10

33

+ 10

24

; m

58

= 58m

57

+

10

67

�10

35

+10

32

+11 �10

26

; m

59

= 59m

58

+10

66

+10

49

�10

28

; m

61

= 61m

60

�5 �10

81

;

m

63

= 63m

62

+ 10

82

� 10

74

; m

64

= 64m

63

+ 3 � 10

81

+ 10

67

+ 2 � 10

38

� 2 � 10

33

� 10

23

.

The remaining 
ase, m

56

� 10:912m

55

is ba�ing; it is � 56m

55

(modulo 10

17

), but

its other digits seem to satisfy neither rhyme nor reason. Can they be easily explained?

Notes: Athanasius Kir
her must have 
opied from Mersenne when he tabulated n!

for 1 � n � 50 on page 157 of his Ars Magna S
iendi (1669), be
ause he repeated all of

Mersenne's mistakes. Kir
her did, however, list the values 10m

14

, m

45

=10, and 10m

49

instead of m

14

, m

45

, and m

49

; perhaps he was trying to make the sequen
e grow more

steadily. It is not 
lear who �rst 
al
ulated the 
orre
t value of 39!; exer
ise 1.2.5{4

tells the story of 1000!.

7. The basi
 permutations are 12345, 13254, 14523, 15432, 12453, 14235, 15324,

13542, 12534, 15243, 13425, 14352. But then we �nd that all 60 of the even

permutations are both alive and dead, be
ause (9) di�ers by an even permutation

from (8). (Moreover, if we somehow repair the 
ase n = 5, half of the live permutations

for n = 6 will turn out to be odd.)

8. For example, we 
an repla
e (9) by

a

n

a

3

: : : a

n�1

a

2

a

1

; a

1

a

n�1

: : : a

n

a

3

a

2

; : : : ; a

n�1

a

2

: : : a

n�2

a

1

a

n

;

thus 
ipping the ends and 
y
li
ally shifting the other elements in the permutations

of (8). This modi�
ation works be
ause all permutations have the 
orre
t parity, and

be
ause the live and dead ones both have a

1

in every possible position. (We essentially

have a dual Sims table for the alternating group, as in Eq. 7.2.1.2{(32); but our elements

are named (n;n� 1; : : : ; 1) instead of (0; 1; : : : ; n� 1).)

A simpler way to generate permutations with the proper signs was published by

�

E. B�ezout [M�emoires A
ad. Royale des S
ien
es (Paris, 1764), 292℄: Ea
h permutation

a

1

: : : a

n�1

of f1; : : : ; n� 1g yields n others, a

1

: : : a

n�1

a

n

� a

1

: : : a

n�2

a

n

a

n�1

+ � � � .

9. (0;1;2;3;4;5;6;7;8;9); or perhaps we should say (9;8;7;6;5;4;3;2;1;0). Notes:

A di�erent system was used for the index numbers of the equations; for example, `�'

stood for 200. Moreover, it should be noted that (11) is a
tually a trans
ription of al-

Samaw'al's work into modern Arabi
; Ahmad and Rashed based their work on a 14th-


entury 
opy that used similar but older forms of the digits: (5;1;2;3;:;;;6;7;8;9).

Al-Samaw'al himself may well have used numerals of an even earlier vintage.

10. If the 56 
ases were equally likely, the answer would be 56H

56

� 258:2, as in

the 
oupon 
olle
tor's problem (exer
ise 3.3.2{8). But (6; 30; 20) 
ases o

ur with the

respe
tive probabilities (1=216; 1=72; 1=36); so the 
orre
t answer turns out to be

Z

1

0

(1� (1� e

�t=216

)

6

(1� e

�t=72

)

30

(1� e

�t=36

)

20

) dt � 546:6;

about 42% of the upper bound 216H

216

. [See P. Flajolet, D. Gardy, and L. Thimonier,

Dis
rete Applied Math. 39 (1992), 207{229.℄

11. It tabulates the

�

6

3

�

= 20 
ombinations of (b; 
; d;B;C;D) taken three at a time;

furthermore, they appear in lexi
ographi
 order if we regard b < 
 < d < B < C < D.
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The letter t ( ) means \shift from lower
ase to upper
ase." [See A. Bonner, Sele
ted

Works of Ramon Llull (Prin
eton: 1985), 596{597.℄ There are two typos: `d' should

be `b' at the beginning of line 6; `
' should be `d' at the end of line 18. Line 1 would

have been more 
onsistent with the others if Llull had presented it as

;

but in that line, of 
ourse, no 
ase shift was needed.

12. Multiply Poinsot's 
y
le by 5 (mod 7).

13. It's best to have just n lines when there are n di�erent letters:

a: aa: aaa

b: ab: aab: aaab: bb: abb: aabb: aaabb

Then, assigning the weights (a; b) = (1; 4) gives the numbers 1 through 11 as in (18).

(The �rst line of (16) should also be omitted.) Similarly, for fa; a; a; b; b; 
g we would

impli
itly give 
 the weight 12 and add the additional line


: a
: aa
: aaa
: b
: ab
: aab
: aaab
: bb
: abb
: aabb
: aaabb
:

[J. Bernoulli almost did it right in Ars Conje
tandi, Part 2, Chapter 6.℄

14. ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB AEC AED BCD BCE BCA BDE

BDA BDC BEA BEC BED BAC BAD BAE CDE CDA CDB CEA CEB CED CAB CAD

CAE CBD CBE CBA DEA DEB DEC DAB DAC DAE DBC DBE DBA DCE DCA DCB

EAB EAC EAD EBC EBD EBA ECD ECA ECB EDA EDB EDC. It's a genlex ordering

(see Algorithm 7.2.1.3R), pro
eeding 
y
li
ally through the letters not yet used.

[A similar ordering had been used to form all 120 permutations of �ve letters in a

kabbalisti
 work entitled Sha`ari Tzedeq, as
ribed to the 13th-
entury author Natan ben

Sa`adyah Har'ar of Messina, Si
ily; see Le Porte della Giustizia (Milan: Adelphi, 2001).℄

15. After j we pla
e the (n � 1)-
ombinations of fj; : : : ;mg with repetition, so the

answer is

�

(m+1�j)+(n�1)�1

n�1

�

=

�

m+n�j�1

n�1

�

. [Jean Borrel, also known as Buteonis,

pointed this out on pages 305{309 of his early book Logisti
a (Lyon: 1560). He

tabulated all throws of n di
e for 1 � n � 4, then used a sum over j to dedu
e that

there are 56+ 35+ 20+ 10+ 4+ 1 = 252 distin
t throws for n = 5, and 462 for n = 6.℄

16. N1. [Initialize.℄ Set r  n, t 0, and a

0

 0.

N2. [Advan
e.℄ While r � q, set t t+ 1, a

t

 q, and r  r � q. Then if r > 0,

set t t+ 1 and a

t

 r.

N3. [Visit.℄ Visit the 
omposition a

1

: : : a

t

.

N4. [Find j.℄ Set j  t, t� 1, : : : , until a

j

6= 1. Terminate the algorithm if j = 0.

N5. [De
rease a

j

.℄ Set a

j

 a

j

� 1, r  t� j + 1, t j; return to N2.

For example, the 
ompositions for n = 7 and q = 3 are 331, 322, 3211, 313, 3121, 3112,

31111, 232, 2311, 223, 2221, 2212, 22111, 2131, 2122, 21211, 2113, 21121, 21112, 211111,

133, 1321, 1312, 13111, 1231, 1222, 12211, 1213, 12121, 12112, 121111, 1132, 11311,

1123, 11221, 11212, 112111, 11131, 11122, 111211, 11113, 111121, 111112, 1111111.

N�ar�ayan

.

a's sutras 79 and 80 gave essentially this pro
edure, but with the strings

reversed (133, 223, 1123, : : : ), be
ause he preferred de
reasing 
olex order. Curiously,

he 
alled this a \famous method, told by s
holars of old dramati
 art," although no

referen
es to prior des
riptions are 
urrently known ex
ept in the 
ase q = 2.

17. The number V

n

of visits is F

(q)

n+q�1

= �(�

n

q

); see exer
ise 5.4.2{7. The number

X

n

of times step N4 tests a

j

= 1 satis�es X

n

= X

n�1

+ � � � +X

n�q

+ 1, and we �nd
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X

n

= V

0

+ � � � + V

n

= (qV

n

+ (q � 1)V

n�1

+ � � � + V

n�q+1

� 1)=(q � 1) = �(V

n

). The

number Y

n

of times step N2 sets a

t

 q satis�es the same re
urren
e, and we �nd

Y

n

= X

n�q

. And the number of times step N2 �nds r = 0 turns out to be V

n�q

.

18. It was MDCLXVI in Roman numerals, where M > D > C > L > X > V > I.

19. Lines 329 and 1022. (Puteanus in
luded 139 su
h verses among his list of 1022.)

20. With `tria' pre
eding `lumina', there are 5! � 2! � (11; 12; 12; 16) ways having a

da
tyl in the (1st, 2nd, 3rd, 4th) foot, respe
tively; with `lumina' pre
eding `tria' there

are 5! � 2! � (16; 12; 12; 11). So the total is 24480. [Leibniz 
onsidered this problem

near the end of his Dissertatio de Arte Combinatoria, and 
ame up with the answer

45870; but his argument was riddled with errors.℄

21. (a) The generating fun
tion 1=((1 � zu � yu

2

)(1 � zv � yv

2

)(1 � zw � yw

2

)) is


learly equal to

P

p;q;r;s;t�0

f(p; q; r; s; t)u

p

v

q

w

r

z

s

y

t

.

(b) If `tibi' is ^^ and `Virgo' is ����, the number is 3! 3! times

P

3

k=0

(f(2k + 1;

6� 2k; 2; 3; 3) + f(2k; 6� 2k; 2; 2; 3)), namely 36((7+7) + (9+5) + (10+5) + (14+7)) =

2304. Otherwise `tibi' is^��, `Virgo' is ��^, and the number is 2! 3! times

P

3

k=0

(f(2k;

5�2k; 2; 3; 2)+f(2k; 6�2k; 1; 3; 2)), namely 12((7+6)+(5+4)+(4+4)+(0+6)) = 432.

(
) The �fth foot begins with the se
ond syllable of `
�lo', `dotes', or `Virgo'.

Hen
e the additional number is 3! 3!

P

2

k=0

f(2k; 5 � 2k; 2; 3; 2) = 36(7 + 5 + 4) = 576,

and the grand total is 2304 + 432 + 576 = 3312.

22. Let � 2 fquot; sunt; totg, � 2 f
�lo; dotes;Virgog, � = sidera, and � = tibi.

Prestet's analysis was essentially equivalent to that of Bernoulli, but he forgot to in
lude

the 36 
ases ��������. (In his favor one 
an say that those 
ases are poeti
ally sterile;

Puteanus found no use for them.) The 1675 edition of Prestet's book had also omitted

all permutations that end with ��.

Wallis divided the possibilities into 23 types, T

1

[ T

2

[ � � � [ T

23

. He 
laimed that

his types 6 and 7 ea
h yielded 324 verses; but a
tually jT

6

j = jT

7

j = 252, be
ause his

variable i should be 7, not 9. He also 
ounted many solutions twi
e: jT

3

\ T

5

j = 72,

jT

2

\ T

7

j = jT

5

\ T

7

j = jT

3

\ T

6

j = jT

6

\ T

10

j = 36, and jT

11

\ T

12

j = jT

12

\ T

13

j =

jT

14

\ T

15

j = 12. He missed the 36 possibilities �������� (19 of whi
h were used by

Puteanus). And he also missed all the permutations of exer
ise 20(
); Puteanus had

used 250 of those 576. The Latin edition of Wallis's book, published in 1693, 
orre
ted

several typographi
 errors in this se
tion, but none of the mathemati
al mistakes.

Whitworth and Hartley omitted all 
ases with `tibi' = ^�� (see exer
ise 18),

possibly be
ause people's knowledge of 
lassi
al hexameter was beginning to fade.

[Speaking of errors, Puteanus a
tually published only 1020 distin
t permutations,

not 1022, be
ause lines 592 and 593 in his list were identi
al to lines 601 and 602. But

he would have had no trouble �nding two more 
ases| for example, by 
hanging `tot

sunt' to `sunt tot' in lines 252, 345, 511, 548, 659, 663, 678, 693, or 797.℄

23. Reading ea
h diagram left-to-right, so that 12 j345$ , we get
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24. His rule was: For k = 0, 1, : : : , n � 1, and for ea
h 
ombination 0 < j

1

< � � � <

j

k

< n of n�1 things taken k at a time, visit all partitions of f1; : : : ; n�1gnfj

1

; : : : ; j

k

g

together with the blo
k fj

1

; : : : ; j

k

; ng. His order for n = 5 was:

But stri
tly speaking, the answer to this exer
ise is \No"|be
ause Honda's rule is not


omplete until the order of the 
ombinations is spe
i�ed. He generated 
ombinations

in 
olex order (lexi
ographi
 on j

t

: : : j

1

). Lexi
ographi
 order on j

1

: : : j

t

would also be


onsistent with the list given for n = 4, but it would put before . Referen
e:

T. Hayashi, Tôhoku Math. J. 33 (1931), 332{337.

25. No; (28) misses 14 j235 (the top-bottom re
e
tion of its se
ond pattern).

26. Let a

n

be the number of inde
omposable partitions of f1; : : : ; ng, and let a

0

n

be the number that are both inde
omposable and 
omplete. These sequen
es begin

ha

1

; a

2

; : : : i = h1; 1; 2; 6; 22; 92; 426; : : : i, ha

0

1

; a

0

2

; : : : i = h0; 1; 1; 3; 9; 33; 135; : : : i; and

the answer to this exer
ise is a

0

n

�1 for n � 2. It turns out that a

n

is also the number of

symmetri
 polynomials of degree n in non
ommuting variables. [See M. C. Wolf, Duke

Math. J. 2 (1936), 626{637, who also tabulated inde
omposable partitions into k parts.℄

If A(z) =

P

n

a

n

z

n

, and if B(z) =

P

n

$

n

z

n

is the non-exponential generating

fun
tion for Bell numbers, we have A(z)B(z) = B(z) � 1, hen
e A(z) = 1 � 1=B(z).

And the result of exer
ise 7.2.1.5{35 implies that

P

n

a

0

n

z

n

= zA(z)=(1 + z � A(z)) =

z(B(z)�1)=(1+zB(z)). Unfortunately B(z) has no espe
ially ni
e 
losed form. Noti
e

that inde
omposable set partitions with n > 1 
orrespond to va
illating tableau loops

with no three 
onse
utive �s equal to zero (see exer
ise 7.2.1.5{27).

27. The problem is ambiguous be
ause genji-ko diagrams are not well de�ned. Let's

require all verti
al lines of a blo
k to have the same height; then, for example, 145 j236

has no single-
rossing diagram be
ause is not allowed.

The number of partitions with no 
rossing is C

n

(see exer
ise 7.2.1.6{26). For one


rossing, the elements of the two blo
ks that 
ross must appear within the restri
ted

growth sequen
e as either x

i

yx

j

y

k

or x

i

y

j+1

xy

k

or x

i

y

j

xy

k

x

l

, where i; j; k; l > 0.

Suppose the pattern is x

i

yx

j

y

k

. The number of su
h partitions is

[z

n�i�j�k�1

℄C(z)

i+j+k+2

= C

(n�i�j�k�1)n

by Eq. 7.2.1.6{(24). Summing on k gives C

(n�i�j�2)(n+1)

; then summing on j and i

gives C

(n�4)(n+3)

.

Similarly, the other two patterns 
ontribute C

(n�5)(n+3)

and C

(n�5)(n+4)

. The

total number of single-
rossing partitions is therefore C

(n�5)(n+3)

+ C

(n�4)(n+4)

.

28. Order the divisors of 
bbaaa by their number of prime fa
tors and then 
olexi
o-

graphi
ally: 1 � a � b � 
 � aa � ba � 
a � bb � 
b � aaa � baa � 
aa � bba �


ba � 
bb � baaa � 
aaa � bbaa � 
baa � 
bba � bbaaa � 
baaa � 
bbaa � 
bbaaa.

For every su
h divisor d, in de
reasing order, let d be the �rst fa
tor; re
ursively append

all fa
torizations of 
bbaaa=d whose �rst fa
tor is � d.
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If the divisors had been ordered lexi
ographi
ally (namely 1 < a < aa < aaa <

b < ba < � � � < 
bbaa < 
bbaaa), Wallis's algorithm would have been equivalent to

Algorithm 7.2.1.5M with (n

1

; n

2

; n

3

) = (1; 2; 3). He probably 
hose his more 
ompli-


ated ordering of the divisors be
ause it tends to agree more 
losely with ordinary

numeri
al order when a � b � 
; for example, his ordering is pre
isely numeri
al when

(a; b; 
) = (7; 11; 13). By generating the divisors a

ording to his somewhat 
omplex

s
heme, Wallis was essentially generating multiset 
ombinations, whi
h we noted in

Se
tion 7.2.1.3 are equivalent to bounded 
ompositions. [Referen
e: A Dis
ourse of

Combinations (1685), 126{128, with two typographi
 errors 
orre
ted.℄

29. The fa
torizations ed
ba, ed
b �a, ed
a �b, : : : , e �d �
 �b �a 
orrespond respe
tively to

30. The 
oeÆ
ient is zero unless i

1

+2i

2

+ � � � = n; in that 
ase it is

�

m

k

�

a

m�k

0

�

k

i

1

;i

2

;:::

�

where k = i

1

+ i

2

+ � � � . (Consider (a

0

z)

m

times (1 + (a

1

=a

0

)z + (a

2

=a

0

)z

2

+ � � � )

m

.)

31. The order produ
ed by that algorithm is de
reasing lexi
ographi
, the reverse

of (31), if we assume that partitions a

1

: : : a

k

have a

1

� � � � � a

k

; de Moivre's was

in
reasing 
olexi
ographi
.

32. 20 � 1 = 7 + 13 � 1 = 2 � 7 + 6 � 1 = 10 + 10 � 1 = 10 + 7 + 3 � 1 = 2 � 10. In general,

Bos
ovi
h suggested starting with n �1 and 
omputing the su

essor of a �10+b �7+
 �1

as follows: If 
 � 7, the su

essor is a �10+(b+1) �7+(
�7) �1; otherwise if 
+7b � 10,

the su

essor is (a+ 1) � 10 + (
+ 7b� 10) � 1; otherwise stop.
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When an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer to

that exer
ise for further information. An answer page is not indexed here unless it refers to a

topi
 not in
luded in the statement of the exer
ise.

� (
ir
le ratio), as \random" example, 0, 28.

Aba
us, 29.

Ada
hi, Fumie ( ), 18.

Ahmad, Salah (�Ì�
 �É�), 7, 29.

al-Samaw'al (= as-Samaw'al),

ibn Yah

.

y�a ibn Yah�uda al-Maghrib�

(Á«ØÌ�¿m ÞpǱ°Ì¿m m�ØÔÚ Ñp ÜÛ�Ú Ñp), 7, 29.

Aliquot parts, 19.

Alternating group, 29.

Amino a
ids, 25.

Anagrams, 5.

Analysis of algorithms, 26.

Arabi
 mathemati
s, 7, 13.

Arabi
 numerals, 7, 26.

Arima, Yoriyuki ( ), 18.

Aristotle of Stagira, son of Ni
oma
hus

(>Aristotèlh
 Nikom�qou å Stagir�th
),

10.

Aristoxenus (>Aristìxeno
), 4.

Attributes of God, 8{10.

Ba
ktra
k method, 17.

Bald�eri
, 8.

Bauhuis, Bernard (= Bauhusius,

Bernardus), 14{16.

Be
kenba
h, Edwin Ford, 24.

Bell, Eri
 Temple, numbers, 19, 32.

Bellhouse, David Ri
hard, 8.

Bernoulli, Ja
ques (= Jakob = James),

0, 13, 16{17, 30, 31.

B�ezout,

�

Etienne, 29.

Bh�askara II,

�

A
�arya, son of M�ahe�svara

(BA-krA
Ay
, mAh��r-y p

�

/,), 5, 6.

Binary arithmeti
, 1.

Binary trees, 23{25.

Bonner, Anthony Edmonde, 30.

Borrel, Jean (= Buteonis, Ioannes), 30.

Bo�skovi�
, Ruder Josip (Boxkovi�, RuÆer

Josip = Bos
ovi
h, Ruggiero Giuseppe

= Bos
ovi
h, Roger Joseph), 21, 27.

Bounded 
ompositions, 33.

Bourgogne-Artois, Jeanne de, 10.

Brown, Charles Philip, 3.

Bruijn, Ni
olaas Govert de, 
y
les, 3.

Burkhardt, Johann Carl, 22.

Buteonis, Ioannes (= Borrel, Jean), 30.

Cantor, Moritz Benedikt, 22.

Catalan, Eug�ene Charles, numbers, 23{25.

Cayley, Arthur, 23.

Chinese mathemati
s, 0{1.

Chorees, 3{4.

Christ, Wilhelm von, 4.

Christian mathemati
s, 7{17, 26.

Codons, 25.

Colex (= 
olexi
ographi
) order, 2, 14,

26, 30, 32, 33.

Combinations, 6{14, 22, 30, 31.

of a multiset, 26, 33.

with repetition, 7{8, 13, 26.

Complements, 0, 3.

Complete rhyme s
hemes, 27.

Complete bipartite graphs, 11.

Complete graphs, 9{12.

Complete ternary trees, 1.

Compositions, 2, 6, 26, 33.

Compression, 10.

Con
entri
 wheels, 11.

Confu
ius ( = = ), 0.

Continuant polynomials, 22.

Coupon 
olle
tor's problem, 29.

Crests, Japanese heraldi
, 18.

Crossings in a set partition, 27.

Da
tyls, 3, 15, 26.

de Bruijn, Ni
olaas Govert, 
y
les, 3.

de Moivre, Abraham, 20{22, 27.

de Montmort, Pierre R�emond, 20, 27.

Deo, Narsingh (nrEs

�

h d�v), 24.

Determinants, 6.

Di
e, 7{8, 19, 20, 26, 30.

Diomedes (Diom dh
), 3.

Divisors, 12, 19.

DNA, 25.

Donnolo, Shabbetai ben Avraham

(ELEPEC MDXA� OA IZAY), 4, 26.

Drexel (= Dre
hsel = Drexelius), Jeremias

(= Hieremias), 4{5.

Dy
k, Walther Franz Anton von, 23{24.

words, 23{24.

Elements (earth, air, �re, water), 0, 11.

Empty set, 13.

Erd}os, P�al (= Paul), 23.

Errors, 1, 4{6, 16{17, 25{26.

Ettingshausen, Andreas von, 22.

Euler, Leonhard (E�ler�, Leonard� =

��ler, Leonard), 21.

Eulerian trail, 12.

Even permutations, 6, 26.

Exa
t 
over problem, 17.
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Fa
torial number system, 14.

Fa
torials, tables of, 13, 26.

Fa
torizations, 19, 27.

Fibona

i, Leonardo, of Pisa [= Leonardo

�lio Bona

i Pisano℄, numbers, 2, 28.

generalized, 2, 30.

Flajolet, Philippe Patri
k Mi
hel, 29.

Flavors, 6.

Fontana Tartaglia, Ni

ol�o, 13.

Forests, 23.

Fran
e, queen of, 10.

Free groups, 24.

Free trees, 23.

Galilei, Galileo, 19.

Games, 7{8, 17, 26.

Gardner, Martin, 11.

Gardy, Dani�ele, 29.

Generating fun
tions, 27, 32.

Geneti
 
ode, 25.

Genji-ko ( ), 17{19, 23, 27.

Genlex order, 30.

Gershwin, George, 12.

God, 8{10.

Gradenigo, Pietro, 9.

Gray, Frank, 
odes, 11, 24.

Greedy algorithm, 2.

Greek poetry, 3, 15.

Hakimi, Seifollah Louis, 25.

Hammond, Eleanor Pres
ott, 8.

Har'ar, Natan ben Sa`adyah

(XXD DICRQ OA OZP), 30.

Harary, Frank, 23.

Hartley, William Ernest, 16{17, 27.

Hayashi, Tsurui
hi ( ), 32.

Hebrew letters, 4.

Hexagrams, 0{1, 25, 28.

Hexameter, 14{17, 26.

Hindenburg, Carl Friedri
h, 21{22.

Hindu mathemati
s, 1{3, 5{6, 13{14, 21, 26.

Homer (�Omhro
), 15.

Honda, Toshiaki ( ), 18, 27.

I Ching ( ), 0{1, 25{26.

Ibn Mun`im (Í¬�Ë Ñpm), 13.

Idel, Moshe (LCI� DYN), 11.

In
lusion and ex
lusion, 28.

Inde
omposable permutations, 27{28.

Indian mathemati
s, 1{3, 5{6, 13{14, 21, 26.

Indian numerals, 5.

Inorder, 25.

Integer partitions, 19{22, 27.

Internet, ii, iii, 25.

Islami
 mathemati
s, 7, 13.

Izquierdo, Sebasti�an, 12{13, 26.

Japanese mathemati
s, 6, 17{19.

Jesus of Nazareth, son of Joseph

(ZXVP OA SQEI OA REYI,

>IhsoÜ
 �pä Nazaràj uÉä
 >Iws f), 5.

Kabbalah, 4, 11, 30.

Kak, Subhash Chandra (s� BAq 
�dý kAk), 3.

Kaplansky, Irving, 23.

Ked�ara Bhat

.

t

.

a (k�dAr BÓ), 2, 21.

Keil, Heinri
h, 4.

Kimono, 18.

King Wen of Chou ( = ),

0{1, 26.

Kir
her, Athanasius, 4, 5, 11, 25, 29.

Klee, Vi
tor La Rue, Jr., iii.

Kleppis, Gregor (= Kleppisius,

Gregorius), 26.

Kl�ugel, Georg Simon, 22.

Knoblo
h, Eberhard Heinri
h, 19, 20.

Knott, Gary Don, 25.

Knuth, Donald Ervin ( ), i, iv.

Kreher, Donald Lawson, 25.

Lambert, Johann Heinri
h, 21.

Latin poetry, 14{17, 26.

Lehmer, Derri
k Henry, 24.

Leibniz, Gottfried Wilhelm, Freiherr von,

1, 15{16, 19{20, 26, 31.

Lexi
ographi
 order, 1, 5, 7, 8, 13, 19,

20, 22, 23, 30.

Llull, Ramon (= Lullus, Raimundus),

8{11, 26.

London, John, 10.

Ludus Cleri
alis, 7, 26.

Lydgate, John, 8.

Lynn, Ri
hard John, 1.

Markov (= Marko�), Andrei Andreevi
h

(Markov, Andre� Andreeviq),

the elder, pro
ess, 1.

Mary, Saint (�Agia Mar�a Jeotìko
,

Panag�a, Parjèno
), 14{15.

Matsunaga, Yoshisuke ( ), 18.

Mayeda, Wataru ( ), 25.

M
Lean, Iain Sin
lair, 10.

Medi
ine, 6, 9.

Melodies, 5, 12, 19.

Mersenne, Marin, 5, 19, 26.

Meters, poeti
, 1{4, 6, 14{17, 22, 26.

Metri
al feet, 3, 15, 26.

Mikami, Yoshio ( ), 6.

Mittag-Le�er, Magnus G�osta (=

Gustaf), 22.

Mixed-radix number systems, 30.

MMIX 
omputer, ii.

Moivre, Abraham de, 20{22, 27.

Monomial symmetri
 fun
tions, 20.

Montmort, Pierre R�emond de, 20, 27.

Morse, Samuel Finley Breese, 
ode, 2, 22.
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Multi
ombinations: Combinations with

repetition, 7{8, 14, 26.

Multinomial 
oeÆ
ients, 19.

Multinomial theorem, 20, 22, 27.

Multipartitions: Partitions of a multiset,

19, 27.

Multiset 
ombinations, 26, 33.

Multiset permutations, 5, 15, 21.

Murasaki Shikibu (= Lady Murasaki,

), 17.

Musi
, 2{5, 11{12, 19.

notation, 4{5.

rhythm, 2{4, 12.

Nakagawa, Noriyuki, 25.

N�ar�ayan

.

a Pan

.

d

.

ita, son of Nr

.

si _mha

(nArAyZ pE�Xt, n

�

Es\h-y p

�

/,), 2,

5, 13{14, 21, 26.

Needham, Joseph, 1.

Nested parentheses, 23{25.

Netto, Otto Erwin Johannes Eugen, 22{24.

Nievergelt, J�urg, 24.

Nijenhuis, Albert, 24.

Non
ommuting variables, 32.

Non
rossing partitions, 25, 27.

Nooten, Barend Adrian Anske Johannes

van, 2.

Nu
leotides, 25.

Null 
ase, 13.

Numerals, Arabi
, 7, 26.

Roman, 31.

Sanskrit, 5.

Nylan, Mi
hael, 1.

Odd permutations, 6, 26.

Ord-Smith, Ri
hard Albert James (=

Jimmy), 22.

Ordered forests, 23.

Ordered partitions, 2, 6, 26, 32.

Ordered trees, 23, 25.

Oriented trees, 23, 25.

Parentheses, nested, 23{25.

Partitions, 22.

non
rossing, 25, 27.

of an integer, 19{22, 27.

of a multiset, 19, 27.

of a set, 17{19, 25, 27.

ordered, see Compositions.

Party games, 8, 17.

Permutations, 4{6, 14, 22.

even and odd, 6, 26.

inde
omposable, 27{28.

null, 13.

of a Latin verse, 14{17, 26.

of a multiset, 5, 21.

restri
ted, 15{17, 26.

Pi (�), as \random" example, 0, 28.

Pi _ngala,

�

A
�arya (aA
Ay
 Ep½l), 1{2.

Plain 
hanges, 5, 12.

Poetry, 8, 19.

meters for, 1{4, 6, 14{17, 22, 26.

rhyme s
hemes, 19, 27.

Poinsot, Louis, 26.

Polish pre�x notation, 25.

Polyphase sorting, 2.

Pr�akr

.

ta Pai�ngala (þAk� t p{½l), 2, 26.

Preferential arrangements, seeWeak

orderings.

Preorder, 25.

Prestet, Jean, 16, 27.

Prins, Geert Caleb Ernst, 23.

Prosody, 1{3, 15{17, 26.

Proteins, 25.

Proteus verses, 15, 16, 26.

Ptolemy, Claudius, of Alexandria

(PtolemaØo
 KlaÔdio
 å >Alexandrinì
),

15.

Puteanus, Ery
ius (= de Putte, Eerrijk),

14{16, 26, 31.

Puttenham, George and/or Ri
hard,

18{19, 27.

Pyrrhi
s, 3{4.

Rabbini
 s
ript, 4.

Radix-2 arithmeti
, 13.

Radix-2 number system, 1, 4.

Radix-3 number system, 1.

Ranking, 1{2, 14, 26.

Rashed, Roshdi (= Rashid, Rushdi)

(��m� Ý���), 7, 29.

Re
ursive algorithms, 25, 27.

Reingold, Edward Martin (CLEBPIIX,

MIIG OA DYN WGVI), 24.

R�emond de Montmort, Pierre, 20, 27.

Restri
ted growth sequen
es, 32.

Reverse 
olex order, 14, 30.

Rhyme s
hemes, 19, 27.

Rhythms, 2{4, 11{12.

Roman numerals, 31.

Rothe, Heinri
h August, 22.

Ruskey, Frank, 25.

Saka, Masanobu ( ), 18.

Sanskrit, 1{3, 5, 6.

Savage, Carla Diane, 24.

S
aligero, Giulio (= S
aliger, Julius

Caesar), 15.

S
hillinger, Joseph Moiseyevi
h

(Xillinger, Iosif Moiseeviq),

11{12, 26.

S
hooten, Frans van, 12{14, 26.

S
oins, Hubert Ian, 25.

Sedgewi
k, Robert, 24.

Sefer Yetzirah (DXIVI XTQ), 4.

Seki, Takakazu ( ), 6, 18, 26.

Set partitions, 17{19, 25, 27.

Seven deadly sins, 9{10.

Shaari Tzedeq (WCV IXRY), 30.
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Shao Yung ( ), 1.

Sims, Charles CoÆn, table, 29.

Singh, Parmanand (prmAn

�

d Es

�

h), 2, 13.

Spanning trees, 25.

Spondees, 3{4, 15, 26.

Squarefree integers, 19.

Stanford GraphBase, ii, iii.

Stanford University, 24.

Stanley, Ri
hard Peter, 13.

Stinson, Douglas Robert, 25.

Stirling, James, 18.

subset numbers, 18{19.

Su�sruta (s� �� t), 6.

Swetz, Frank Joseph, 1.

Symmetri
 polynomials, 32.

Ta
quet, Andr�e, 12.

Tartaglia, Ni

ol�o Fontana, 13.

Tastes, 6.

Thimonier, Lo�ys, 29.

Three-valued logi
, 10.

Tompkins, Charles Brown, 24.

Tot tibi : : : , 14{17, 26.

Trees, 22{25.

Tribona

i sequen
e, 2, 30.

Tro
hees, 3, 15.

Tuples, 0{4, 13.

Twelvefold Way, 13.

Universal 
y
les, 12, 26.

Unranking, 1{2, 14, 26.

Va
illating tableau loops, 32.

van Nooten, Barend Adrian Anske

Johannes, 2.

van S
hooten, Frans, 12{13, 26.

Variations, 13.

Vedi
 
hants, 1.

Veni
e, doge of, 9.

Vergil (= Publius Vergilius Maro), 15.

Vi
es, 9{10.

Virgin, 14{15.

Virtues, 7{10, 14{15, 26.

von Christ, Wilhelm, 4.

von Dy
k, Walther Franz Anton, 23{24.

von Ettingshausen, Andreas, 22.

Voting, 10.

Wallis, John, 5, 13, 16, 19, 27.

Watanabe, Hitoshi ( ), 25.

Weak orderings, 23.

Wells, Mark Brimhall, 24, 25.

Wheels, 
on
entri
, 11.

Whitworth, William Allen, 16{17, 27.

Wibold, bishop of Cambrai (= Wiboldus,

Camera
ensis epis
opus), 7{9, 19.

Wilf, Herbert Saul, 24.

Wolf, Margarete Caroline, 32.

Yang Hsiung ( or ), 1{2.

Yano, Tamaki ( ), 17, 18.

Yijing, see I Ching.

Yin and yang, 0{1.

Zhou Wenwang, see King Wen.
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