
Core-Guided MaxSAT
with Soft Cardinality Constraints

Antonio Morgado1, Carmine Dodaro2, and Joao Marques-Silva1,3,�

1 INESC-ID, IST, ULisboa, Portugal
ajrm@sat.inesc-id.pt

2 Dep. of Mathematics and Computer Science, Unical, Italy
dodaro@mat.unical.it

3 CASL, University College Dublin, Ireland
jpms@ucd.ie

Abstract. Maximum Satisfiability (MaxSAT) is a well-known optimization vari-
ant of propositional Satisfiability (SAT). Motivated by a growing number of prac-
tical applications, recent years have seen the development of different MaxSAT
algorithms based on iterative SAT solving. Such algorithms perform well on prob-
lem instances originating from practical applications. This paper proposes a new
core-guided MaxSAT algorithm. This new algorithm builds on the recently pro-
posed unclasp algorithm for ASP optimization problems, but focuses on reusing
the encoded cardinality constraints. Moreover, the proposed algorithm also ex-
ploits recently proposed weighted optimization techniques. Experimental results
obtained on industrial instances from the most recent MaxSAT evaluation, in-
dicate that the proposed algorithm achieves increased robustness and improves
overall performance, being capable of solving more instances than state-of-the-
art MaxSAT solvers.

1 Introduction

Maximum Satisfiability (MaxSAT) is a well-known optimization version of Proposi-
tional Satisfiability (SAT). Recent years have seen a growing number of
practical applications of MaxSAT, that include fault localization in C code [12] and
design debugging [21], among many others [19]. For practical MaxSAT problem in-
stances, the most effective solutions are based on iterative SAT solving, and a number
of alternative approaches exist. One approach iteratively pre-relaxes every clause (by
adding to each clause a fresh relaxation variable) and refines bounds on the number of
unsatisfied clauses [19]. A recent example of such a MaxSAT solver is QMaxSAT [13].
An alternative approach is based on iterative identification of unsatisfiable cores [10].
Different algorithms based on the identification of unsatisfiable cores have been devel-
oped in recent years, e.g. [19]. One additional approach is based on finding minimum
hitting sets of a formula representing disallowed sets of clauses [8]. This paper builds on

� This work is partially supported by SFI grant BEACON (09/IN.1/I2618), by FCT grant PO-
LARIS (PTDC/EIA-CCO/123051/2010), by INESC-IDs multiannual PIDDAC funding PEst-
OE/EEI/LA0021/2013, and by the European Commission, European Social Fund of Regione
Calabria.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 564–573, 2014.
© Springer International Publishing Switzerland 2014

Core-Guided MaxSAT with Soft Cardinality Constraints 565

recent work on using unsatisfiable cores for solving optimization problems in ASP [1]
and shows how the algorithm can be optimized for the case of MaxSAT. Experimental
results, obtained on problem instances from the industrial categories of the MaxSAT
evaluation, indicate that the new algorithm is more robust in practice than state-of-the-
art MaxSAT solvers, being able to solve more problem instances. The paper is organized
as follows. Section 1 introduces the paper, followed by the notation and definitions used
in the paper in Section 2. The OLL algorithm is presented in Section 3. The experimen-
tal results are presented in Section 4 and Section 5 concludes the paper.

2 Preliminaries

This section introduces the notation used throughout the paper. Standard definitions are
assumed (e.g. [14,19]). Let X = {x1, x2 . . .} be a set of Boolean variables. A literal
li is either a variable xi or its negation ¬xi. A clause c is a disjunction of literals. A
conjunctive normal form (CNF) formulaϕ is a conjunction of clauses. An assignmentA
is a mappingA : X → {0, 1}, whereA satisfies(falsifies) xi ifA(xi) = 1(A(xi) = 0).
Assignments are extended to literals and clauses in the usual way, that is,A(li) = A(xi)
if li = xi, andA(li) = 1−A(xi) otherwise, while for clausesA(c) = max{A(li)|li ∈
c}. Given a CNF formula ϕ, a model of the formula is an assignment that satisfies all the
clauses in ϕ. The Propositional Satisfiability problem (SAT) is the problem of deciding
whether there exists a model to a given formula. A subformula of a given unsatisfiable
formula which is still unsatisfiable is referred as an unsatisfiable core (or simply a core).
The calls to the SAT solver are done through function SATSolver(ϕ), that receives a
formula and returns a triple (st, ϕC ,A), where st is either true or false.If st is true, then
A is a model, otherwise ϕC is a core. Given a clause c and an integer w greater than
0 referred to as weight, the pair (c, w) is a weighted clause. Weighted clauses may be
classified as hard or soft clauses. Hard clauses have to be satisfied and are associated
with the special weight �. Soft clauses may or may not be satisfied, and their weight
represents the cost of falsifying the clause. A weighted CNF formula (WCNF) is a
set of weighted clauses. A model of a WCNF formula is an assignment that satisfies
all the hard clauses, and the cost associated to the model is the sum of the weights
of the falsified soft clauses. The Weighted Partial MaxSAT problem is the problem of
determining the minimum cost of the models of a given WCNF formula.

In the paper, we refer to Relaxation Variables, which are fresh Boolean variables.
The process of augmenting a clause with a relaxation variable is referred as relaxing
the clause. We also refer to a special type of constraints called cardinality constraints,
which have the form

∑
i xi ≤ k. The sum

∑
xi is referred to as the left hand side

(LHS) of the constraint while k is referred to as the right hand side (RHS).

3 The OLL Algorithm

Algorithm OLL has been introduced in the unclasp tool for solving ASP optimiza-
tion problems [1]. Unclasp is the base of the ASP-based Linux configuration system
aspuncud [11], which won four tracks of the 2011 Mancoosi International Solver Com-
petition1. Algorithm OLL has been reported [1] to be able to solve a higher number of

1 http://www.mancoosi.org/misc/

http://www.mancoosi.org/misc/

566 A. Morgado, C. Dodaro, and J. Marques-Silva

MISC optimization instances than clasp (the base solver on which unclasp was built
upon).

This section shows how to adapt the OLL algorithm to MaxSAT, but additionally
considering the reuse of the cardinality constraints as they are discovered. The idea of
the OLL algorithm is to mix the strengths of two MaxSAT algorithms, namely the Fu
& Malik algorithm [10] and MSU3 [17,18]. These are core-guided algorithms, which
means that the algorithms make use of the unsatisfiable cores in order to relax clauses.
Like MSU3 only one relaxation variable is added per clause identified in a core, but
similarly to the Fu & Malik algorithm a new cardinality constraint is added for each core
as it is found. One of the main difference of the OLL algorithm is that the soft clauses
are transformed into hard clauses after relaxing them, while the cardinality constraints
are added as soft. Consider the following Example 1.

Example 1. In the example we will abuse the notation and refer to soft constraints as
if they were clauses. Consider for example the partial formula ϕ = ϕS ∪ ϕH , where
ϕS is the set of soft clauses ϕS = {(x1, 1), (x2, 1), (x3, 1)} and ϕH is the set of hard
clauses ϕH = {(¬x1∨¬x2,�), (¬x1∨¬x3,�), (¬x2∨¬x3,�)}. The initial working
formula ϕW is ϕS ∪ϕH , which is unsatisfiable. Let the soft clauses in the core returned
by the SAT solver be (x1, 1) and (x2, 1). The OLL algorithm relaxes both clauses and
makes them hard, and adds a cardinality constraint as a soft constraint. As such, the sets
of clauses in the working formula are updated as:

ϕS ← (ϕS \ {(x1, 1), (x2, 1)}) ∪ {(r1 + r2 ≤ 1, 1)}
ϕH ← ϕH ∪ {(x1 ∨ r1,�), (x2 ∨ r2,�)}

where r1 and r2 are the new relaxation variables.
The resulting working formula ϕW is again unsatisfiable. Now the unsatisfiable core

contains the soft clause (x3, 1) and the soft constraint (r1 + r2 ≤ 1, 1). As before the
OLL algorithm is going to relax the soft clause and make it hard, that is (x3 ∨ r3,�).
It will also remove the soft constraint (r1 + r2 ≤ 1, 1) from the working formula, and
add two new constraints (r3 + ¬(r1 + r2 ≤ 1) ≤ 1, 1) and (r1 + r2 ≤ 2, 1). The first
constraint says that in order to satisfy the constraint, you either have (r1 + r2 ≤ 1) (the
previous constraint) falsified or you are allowed to set r3 to true.

The second constraint added (r1 + r2 ≤ 2, 1), if satisfied, allows one more of the
previous relaxation variables to be satisfied. The sets in the working formula are then
updated as:

ϕS ← (ϕS \ {(x3, 1), (r1 + r2≤1, 1)}) ∪ {(r3 + ¬(r1 + r2 ≤ 1) ≤ 1, 1), (r1 + r2 ≤ 2, 1)}
ϕH ← ϕH ∪ {(x3 ∨ r3,�)}

Now the resulting working formula is satisfiable and the algorithm returns 2, which
is the cost of the satisfying assignment.

As the previous example illustrates, the idea of OLL is to go through unsatisfiable
iterations until a satisfiable working formula is obtained. Whenever a new unsatisfiable
core is identified, then the working formula is updated such that either all the previous
soft constraints in the core are satisfied and allowing a new relaxation variable to be set
to true, or one of the soft constraints is allowed to increase its bound by 1.

Core-Guided MaxSAT with Soft Cardinality Constraints 567

The example uses soft constraints that correspond to cardinality constraints. On the
other hand, SAT solvers only handle clauses. In order to use the OLL algorithm in
a MaxSAT solver using a SAT solver, it is necessary to encode the cardinality con-
straints into CNF each time they are identified. Observe that both cardinality constraints
r1+r2 ≤ 1 and r1+r2 ≤ 2, share the same LHS r1+r2. In fact, some of the existing en-
codings of cardinality constraints, encode the sum on the LHS into an array of Boolean
variables to represent it as a unary number. In this paper, we propose to use this fact in
order to reuse the encodings of the sums of the LHS of the constraints between cardi-
nality constraints that only differ on their RHS. In the previous example, r1 + r2 would
be encoded using an auxiliary function ([s1, s2], clauses) ← createSum({r1, r2}),
which receives a set of variables for which we want to encode the sum, and returns a
pair containing an array of the Boolean variables that encode the sum in a unary number
(the unary number s2s1), and a set of clauses that encodes the sum. Whenever a new
cardinality constraint is required with the same LHS (sum), then the same variables s1
and s2 are set to the appropriate values in order to encode the cardinality constraint.

The pseudo-code of OLL is shown in Algorithm 1. In the following we assume that
the input formula is unweighted (weighted case explained later on), partial and the
set of hard clauses is satisfiable. Given an input formula ϕ, OLL maintains three sets
of clauses: the current representation of the input formula called the working formula
ϕW ; the current set of soft clauses ϕS and the set of soft cardinalities ϕSC contain-
ing (unit) clauses associated to cardinality constraints. Those sets are initialized in
line 1. Moreover, function map associates with a literal l (related to one of the car-
dinality constraints) a pair corresponding to the outputs of the associated sum and a
bound (its RHS). OLL starts by calling the SAT solver on the current working for-
mula ϕW . If the formula is satisfiable, then the algorithm terminates and returns the
cost of A (line 5). Otherwise, the working formula is unsatisfiable and an unsatis-
fiable core is computed. The algorithm proceeds by relaxing all soft clauses of the
core that are in ϕS , and making them hard clauses. This is done through function
RelaxAndHarden(ϕW , ϕC ∩ ϕS), which receives the working formula ϕW , and a
set of soft clauses that need to be relaxed. Function RelaxAndHarden returns a pair
(L,ϕW), where L is the set of new relaxation variables, and ϕW is updated to the
clauses that were in ϕW , but to which the clauses that were in ϕC ∩ ϕS , have been
relaxed and transformed into hard clauses.

After relaxing soft clauses, the remaining clauses in the core related to cardinality
constraints (i.e. clauses in ϕC ∩ ϕSC) are processed and removed from the working
formula ϕW (line 9) and from the set ϕSC (line 10). Each of those clauses is a unit
clause.The outputs sumOtps of the sum associated with the cardinality constraint cor-
responding to ¬s are obtained with the function map(¬s), from which the correspond-
ing bound b (RHS) is also obtained. In fact, the variable s represents the b-th output
variable of the sum in sumOtps. In line 11, the set L is extended with the variable
s. This corresponds to the negation of the previous cardinality constraint with b as the
RHS, i.e. if s is true then the sum is greater than b, thus negating the cardinality con-
straint. The algorithm proceeds by creating a new unit clause (¬sumOtps[b + 1]) that
encodes the sum to be less or equal to b. The clause is then added to the working for-
mula ϕW (line 14) and to ϕSC (line 15). Moreover, in line 16, the pair (sum, b + 1) is
added to the map for the (b + 1)-th output variable. Note that this is done only if b + 1

568 A. Morgado, C. Dodaro, and J. Marques-Silva

Algorithm 1. OLL algorithm for (non-weighted) (partial) MaxSAT
Input: A formula ϕ

1 (ϕW , ϕS , ϕSC)← (ϕ,Soft(ϕW), ∅);
2 map← ∅; // map(lit) = (sumOtps, bound)
3 while true do
4 (st, ϕC ,A)← SATSolver(ϕW);
5 if st = true then return

∑
(c,1)∈ϕS

(1−A(c))
6 else
7 (L,ϕW)← RelaxAndHarden(ϕW , ϕC ∩ ϕS);
8 foreach (¬s, 1) ∈ ϕC ∩ ϕSC do
9 ϕW ← ϕW \ {(¬s, 1)};

10 ϕSC ← ϕSC \ {(¬s, 1)};
11 L← L ∪ {s};
12 (sumOtps, b)← map(¬s);
13 if b+ 1 < |sumOtps| then
14 ϕW ← ϕW ∪ {(¬sumOtps[b+ 1], 1)};
15 ϕSC ← ϕSC ∪ {(¬sumOtps[b+ 1], 1)};
16 map(¬sumOtps[b+ 1])← (sumOtps, b+ 1);

17 (sumOtpsNew, sumClsNew)← createSum(L);
18 ϕW ← ϕW ∪ {(c,�) | c ∈ sumClsNew} ∪ {(¬sumOtpsNew[1], 1)};
19 ϕSC ← ϕSC ∪ {(¬sumOtpsNew [1], 1)};
20 map(¬sumOtpsNew[1])← (sumOtpsNew, 1);

is less than the size of the sum, i.e. if incrementing the bound by one does not make the
sum trivially satisfied.

When all clauses in the core related to soft cardinality constraints have been
processed, a new cardinality constraint, with the corresponding new sum is created, con-
taining all variables in L (line 17). The clauses encoding the sum are added to the work-
ing formula as hard clauses while a new unit soft clause (¬sumOtptsNew[1]) is added
to ϕW and to ϕSC . This clause encodes that at most one of the variables in L is true.
In addition, the pair (sumOtpsNew, 1) is associated to the literal ¬sumOtpsNew[1] by
adding a new entry to the map.

Proposition 1. Given a (partial) MaxSAT formula, Algorithm 1 is correct and returns
the optimum MaxSAT solution.

Proof (sketch). The OLL algorithm goes thought unsatisfiable instances until a satisfi-
able instance is obtained. Initially the algorithm tries to satisfy all the soft clauses (added
to a working formula together with the hard clauses). Whenever the working formula is
unsatisfiable, then it is updated such that at most one more of the initial soft clauses is
allowed to be falsified (than the previous iteration). When the working formula is satis-
fiable the algorithm stops and the number of initial soft clauses simultaneously falsified
corresponds the optimum MaxSAT solution. This process is similar to other MaxSAT
algorithms as MSU3.

Nevertheless, in OLL, the restriction on the number of initial soft clauses that are
allowed to be falsified is achieved by adding relaxation variables to soft clauses that

Core-Guided MaxSAT with Soft Cardinality Constraints 569

belong to a core and have not been relaxed before, and by the addition of soft cardi-
nality constraints (At-Most-K constraints). The soft cardinality constraints (added on
line 18, initially with a RHS of 1) allow at most one of the newly relaxed clauses to
be falsified or at most one of previous soft cardinality constraints that appeared in the
core to be falsified. Falsifying a previous soft cardinality constraint forces the number
of associated initial soft clauses that are falsified to increase. The increase is contrained
to be at most one by adding a new soft cardinality constraint (added on line 14) equal
to the previous soft cardinality but with the RHS increased by 1.

The previous algorithm deals with non-weighted (partial) MaxSAT formulas. In the
weighted case the procedure is similar to the MSU1/WPM1 algorithms [15,3], that is,
every time a new core is found, the minimum weight of the soft clauses in the core
min is computed. Then each clause (ci, wi) with a weight greater than the minimum
is replaced by two clauses: (ci,min) and (ci, wi −min). Then the algorithm proceeds
as in the partial case but as if the core obtained contained only clauses with the same
weight min . The result is obtained as in the partial case by considering the cost of the
satisfying assignment in the original soft clauses, but considering the original weights.

4 Experimental Results

This section presents the experimental results obtained to validate the performance of
the MaxSAT algorithm proposed in Section 3. All experiments were run on an HPC
cluster, each node having two processors E5-2620 @2GHz, with each processor having
6 cores, and with a total of 128 GByte of physical memory. Each process was limited to
4GByte of RAM and to a time limit of 1800 seconds. All the industrial instances from
the most recent MaxSAT Evaluation2 2013 [5] were used, that is the following three
categories of benchmarks were considered: (plain) MaxSAT industrial; partial MaxSAT
industrial; and weighted partial MaxSAT industrial.

For the experiments, the OLL algorithm proposed in the previous section was imple-
mented in MSUnCore [20]3. MSUnCore is a state-of-the-art (generic) MaxSAT solver,
that won third place in the partial MaxSAT category of the 2013 MaxSAT Evaluation (sec-
ond place, if portfolio solvers are excluded). The underlying SAT solver in MSUnCore is
PicoSAT [7] (version 935). Three different cardinality constraint encodings that are able
to encode the sum of all the input variables as a unary number, were considered. Namely
Sorting Networks [9], Sequential Counters [22], and Totalizer [6]. In the results the OLL
algorithm with the cardinality constraints are referred as msu-oll-sn, msu-oll-sc and msu-
oll-to respectively. For weighted instances, we have implemented an OLL solver which
includes recent weighted boolean optimizations techniques proposed for MaxSAT solv-
ing. When considering the weighted optimizations, and previously to solving, a weighted
instance is checked for the BMO condition [16], in which case the instance is solved
according to the BMO approach. Otherwise, the stratification technique [4] is consid-
ered. The resulting solver is referred in the results as msu-oll-xx-wo, where xx corre-
sponds to the cardinality constraint considered. Additionally the experiments include the

2 http://www.maxsat.udl.cat
3 Logs in http://sat.inesc-id.pt/˜ajrm/oll_statlogs.tgz

http://www.maxsat.udl.cat
http://sat.inesc-id.pt/~ajrm/oll_statlogs.tgz

570 A. Morgado, C. Dodaro, and J. Marques-Silva

MSi PMSi WPMSi ALLi
#Instances 55 627 396 1078

msu-oll-sn-wo 25 512 330 867
msu-oll-to-wo 19 517 329 865
msu-oll-to 19 517 315 851
msu-oll-sn 25 512 314 851
msu-oll-sc-wo 18 494 331 843
msu-oll-sc 18 494 289 801
msu-bcd2 22 500 265 787

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 650 700 750 800 850

C
PU

 ti
m

e

Instances

msu-oll-sn-wo
msu-oll-to-wo

msu-oll-to
msu-oll-sn

msu-oll-sc-wo
msu-oll-sc
msu-bcd2

Fig. 1. Cactus plot and statistics for the different configurations of the solvers in MSUnCore

two best solvers for each of the industrial categories from the 2013 MaxSAT Evaluation
(among non-portfolio solvers): MiFuMax4, MSUnCore [20] (BCD2 version), QMaxSAT
0.21 [13], WPM1 [4] (2011 and 2013 versions), and WPM2 [4,2] (2013 version). The
solvers are referred in the results as mifumax, msu-bcd2, qmaxsat, wpm1, wpm1-2011,
and wpm2.

The table in Figure 1 shows the number of instances solved by each of the algo-
rithms in MSUnCore, that is, the OLL algorithms and msu-bcd2. The first column of
the table shows the name of the solver. The second to fourth columns show the number
of solved instances by each of the solvers, for the (plain) MaxSAT industrial (MSi),
partial MaxSAT industrial (PMSi) and weighted partial MaxSAT industrial instances
respectively. The last column shows the total number of solved instances among all of
the industrial instances. The first row does not present the number of solved instances,
but instead the total number of instances in the category considered in the column. In
the table the solvers are ordered according to the number of instances solved in ALLi.

The results in the table show that among the msu-oll-xx solvers, both msu-oll-sn
and msu-oll-to have similar performance, being msu-oll-sn slightly better for (plain)
MaxSAT instances, while msu-oll-to is slightly better for partial MaxSAT instances.
The msu-oll-sc solver performs consistently worse than the other two with a total of 50
less instances solved in ALLi. The table in Figure 1 also allows to conclude that the
weighted optimizations included are consistently beneficial for all the msu-oll solvers.
This is especially true for msu-oll-sc-wo which solved 32 more instances than msu-oll-
sc. Comparing the msu-oll solvers with msu-bcd2 (since they are implemented in the
same platform), the results show that for MSi instances, the msu-oll solvers are compa-
rable to msu-bcd2, where msu-oll-sn(-wo) solves 3 more instances than msu-bcd2. In
the case of PMSi instances, the difference between msu-bcd2 and the msu-oll solvers
is greater, and both the msu-oll-sn and msu-oll-to are able to solve more 12 and 17
instances than msu-bcd2. For weighted instances, all the OLL algorithms outperform
msu-bcd2, including the versions that do not make use of weighted optimizations. This
can be related to the fact that OLL requires only cardinality constraints to deal with the
weights, while msu-bcd2 uses pseudo-Boolean constraints. In fact, the best perform-
ing OLL algorithm (msu-oll-sn-wo) is able to solve 80 more instances than msu-bcd2.

4 http://sat.inesc-id.pt/˜mikolas/sw/mifumax

http://sat.inesc-id.pt/~mikolas/sw/mifumax

Core-Guided MaxSAT with Soft Cardinality Constraints 571

MSi PMSi WPMSi ALLi
#Instances 55 627 396 1078

msu-oll-sn-wo 25 512 330 867
wpm2 12 490 320 822
msu-bcd2 22 500 265 787
wpm1 19 384 342 745
wpm1-2011 37 265 304 606
mifumax 38 273 258 569
qmaxsat – 540 – –

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 400 450 500 550 600 650 700 750 800 850

C
PU

 ti
m

e

Instances

msu-oll-sn-wo
wpm2

msu-bcd2
wpm1

wpm1-2011
mifumax

Fig. 2. Cactus plot and statistics for the best OLL algorithm vs non-OLL algorithms

These results are confirmed by the cactus plot in Figure 1, where the msu-bcd2 is the
left-most solver, meaning that it solves less instances. On the other end, both msu-oll-
sn-wo and msu-oll-to-wo appear close together on the right-most side of the plot.

In order to compare the best performing msu-oll solver (msu-oll-sn-wo) with the
remaining solvers, we present in the table of Figure 2 the number of solved instances
for the remaining solvers along with msu-oll-sn-wo and msu-bcd2. The table in the
Figure 2 has a similar structure to the table in the Figure 1. As before the solvers are
ordered according to the number of instances solved in ALLi. The only exception is
qmaxsat for which the tested solver only allows to solve partial MaxSAT instances.
From the table it is possible to see that for each category, msu-oll-sn-wo is either the
third (for MSi) or the second (for PMSi and WPMSi) solver in terms of number of
instances solved. Nevertheless, overall msu-oll-sn-wo solves more instances than any
of the other solvers (shown in the ALLi column). The closest solver is wpm2 with 822
instances solved, which means a difference of 45 instances to msu-oll-sn-wo. These
results are also confirmed by the cactus plot show in Figure 2, where the right-most line
corresponds to msu-oll-sn-wo and the gap between the line of msu-oll-sn-wo and next
line (wpm2) corresponds to the 45 instances difference. Note that in the figure, qmaxsat
is not represented since it only allows solving partial MaxSAT instances.

5 Conclusions

This paper describes how to transform the OLL algorithm, proposed in unclasp for opti-
mization problems in ASP [1], into a core-guided MaxSAT using a modern SAT solver.
Additionally, the paper shows how to reuse the encodings of the cardinality constraints
as they are added to the working formula. The experimental results indicate that the pro-
posed OLL algorithm represents the currently most robust approach for MaxSAT, being
able to solve more instances than state-of-the-art MaxSAT solvers. Despite not being
in general the top performer for any specific category of instances, overall the OLL al-
gorithm solves more instances than any of the best performing solvers from the 2013
MaxSAT Evalution, including MiFuMax, MSUnCore (BCD2), WPM1 and WPM2.

Future work will investigate alternative approaches for aggregating soft cardinality
constraints, as well as improving the quality of computed unsatisfiable cores.

572 A. Morgado, C. Dodaro, and J. Marques-Silva

References

1. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in
clasp. In: International Conference on Logic Programming (Technical Communications),
pp. 211–221 (2012)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted) partial
MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg
(2013)

3. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfia-
bility testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer,
Heidelberg (2009)

4. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artificial Intelli-
gence 196, 77–105 (2013)

5. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT evaluations.
Journal on Satisfiability, Boolean Modeling and Computation 4(2-4), 251–278 (2008)

6. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)

7. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computa-
tion 4(2-4), 75–97 (2008)

8. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances.
In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)

9. Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2, 1–26 (2006)

10. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.)
SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

11. Gebser, M., Kaminski, R., Schaub, T.: aspcud: A Linux package configuration tool based
on answer set programming. In: International Workshop on Logics for Component Config-
uration (LoCoCo 2011). Electronic Proceedings in Theoretical Computer Science (EPTCS),
vol. 65, pp. 12–25 (2011), http://www.cs.uni-potsdam.de/wv/aspcud/

12. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiabil-
ity. In: International Conference on Programming Language Design and Implementation,
pp. 437–446 (2011)

13. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation 8(1-2), 95–100 (2012)

14. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability,
pp. 613–632. IOS Press (2009)

15. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimiza-
tion. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg
(2009)

16. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimiza-
tion: algorithms & applications. Annals of Mathematics and Artificial Intelligence 62(3-4),
317–343 (2011)

17. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
Computing Research Repository abs/0712.0097 (December 2007)

18. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable
cores. In: Design, Automation and Testing in Europe Conference, pp. 408–413 (March 2008)

http://www.cs.uni-potsdam.de/wv/aspcud/

Core-Guided MaxSAT with Soft Cardinality Constraints 573

19. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-
guided maxsat solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

20. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for
MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297.
Springer, Heidelberg (2012)

21. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design
debugging using maximum satisfiability. In: International Conference on Formal Methods in
Computer-Aided Design (2007)

22. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

	Core-Guided MaxSAT with Soft Cardinality Constraints
	1 Introduction
	2 Preliminaries
	3 The OLL Algorithm
	4 Experimental Results
	5 Conclusions
	References

