
USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 249

Simple Testing Can Prevent Most Critical Failures

An Analysis of Production Failures in Distributed Data-intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,

Yongle Zhang, Pranay U. Jain, Michael Stumm

University of Toronto

Abstract

Large, production quality distributed systems still fail pe-

riodically, and do so sometimes catastrophically, where

most or all users experience an outage or data loss. We

present the result of a comprehensive study investigat-

ing 198 randomly selected, user-reported failures that oc-

curred on Cassandra, HBase, Hadoop Distributed File

System (HDFS), Hadoop MapReduce, and Redis, with

the goal of understanding how one or multiple faults

eventually evolve into a user-visible failure. We found

that from a testing point of view, almost all failures re-

quire only 3 or fewer nodes to reproduce, which is good

news considering that these services typically run on a

very large number of nodes. However, multiple inputs

are needed to trigger the failures with the order between

them being important. Finally, we found the error logs

of these systems typically contain sufficient data on both

the errors and the input events that triggered the failure,

enabling the diagnose and the reproduction of the pro-

duction failures.

We found the majority of catastrophic failures could

easily have been prevented by performing simple testing

on error handling code – the last line of defense – even

without an understanding of the software design. We ex-

tracted three simple rules from the bugs that have lead to

some of the catastrophic failures, and developed a static

checker, Aspirator, capable of locating these bugs. Over

30% of the catastrophic failures would have been pre-

vented had Aspirator been used and the identified bugs

fixed. Running Aspirator on the code of 9 distributed sys-

tems located 143 bugs and bad practices that have been

fixed or confirmed by the developers.

1 Introduction

Real-world distributed systems inevitably experience

outages. For example, an outage to Amazon Web Ser-

vices in 2011 brought down Reddit, Quora, FourSqure,

part of the New York Times website, and about 70 other

sites [1], and an outage of Google in 2013 brought down

Internet traffic by 40% [21]. In another incident, a DNS

error dropped Sweden off the Internet, where every URL

in the .se domain became unmappable [46].

Given that many of these systems were designed to be

highly available, generally developed using good soft-

ware engineering practices, and intensely tested, this

raises the questions of why these systems still experi-

ence failures and what can be done to increase their re-

siliency. To help answer these questions, we studied 198

randomly sampled, user-reported failures of five data-

intensive distributed systems that were designed to tol-

erate component failures and are widely used in produc-

tion environments. The specific systems we considered

were Cassandra, HBase, Hadoop Distributed File System

(HDFS), Hadoop MapReduce, and Redis.

Our goal is to better understand the specific failure

manifestation sequences that occurred in these systems

in order to identify opportunities for improving their

availability and resiliency. Specifically, we want to bet-

ter understand how one or multiple errors1 evolve into

component failures and how some of them eventually

evolve into service-wide catastrophic failures. Individual

elements of the failure sequence have previously been

studied in isolation, including root causes categoriza-

tions [33, 52, 50, 56], different types of causes includ-

ing misconfiguraitons [43, 66, 49], bugs [12, 41, 42, 51]

hardware faults [62], and the failure symptoms [33, 56],

and many of these studies have made significant impact

in that they led to tools capable of identifying many bugs

(e.g., [16, 39]). However, the entire manifestation se-

quence connecting them is far less well-understood.

For each failure considered, we carefully studied the

failure report, the discussion between users and develop-

ers, the logs and the code, and we manually reproduced

73 of the failures to better understand the specific mani-

festations that occurred.

Overall, we found that the error manifestation se-

quences tend to be relatively complex: more often than

not, they require an unusual sequence of multiple events

with specific input parameters from a large space to lead

the system to a failure. This is perhaps not surprising

considering that these systems have undergone thorough

testing using unit tests, random error injections [18], and

static bug finding tools such as FindBugs [32], and they

are deployed widely and in constant use at many orga-

nization. But it does suggest that top-down testing, say

1Throughout this paper, we use the following standard terminol-

ogy [36]. A fault is the initial root cause, which could be a hardware

malfunction, a software bug, or a misconfiguration. A fault can produce

abnormal behaviors referred to as errors, such as system call error re-

turn or Java exceptions. Some of the errors will have no user-visible

side-effects or may be appropriately handled by software; other errors

manifest into a failure, where the system malfunction is noticed by end

users or operators.

1

250 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

using input and error injection techniques, will be chal-

lenged by the large input and state space. This is perhaps

why these studied failures escaped the rigorous testing

used in these software projects.

We further studied the characteristics of a specific sub-

set of failures — the catastrophic failures that affect all

or a majority of users instead of only a subset of users.

Catastrophic failures are of particular interest because

they are the most costly ones for the vendors, and they

are not supposed to occur as these distributed systems

are designed to withstand and automatically recover from

component failures. Specifically, we found that:

almost all (92%) of the catastrophic system failures

are the result of incorrect handling of non-fatal errors

explicitly signaled in software.

While it is well-known that error handling code is often

buggy [24, 44, 55], its sheer prevalence in the causes of

the catastrophic failures is still surprising. Even more

surprising given that the error handling code is the last

line of defense against failures, we further found that:

in 58% of the catastrophic failures, the underlying

faults could easily have been detected through simple

testing of error handling code.

In fact, in 35% of the catastrophic failures, the faults

in the error handling code fall into three trivial patterns:

(i) the error handler is simply empty or only contains a

log printing statement, (ii) the error handler aborts the

cluster on an overly-general exception, and (iii) the error

handler contains expressions like “FIXME” or “TODO”

in the comments. These faults are easily detectable by

tools or code reviews without a deep understanding of the

runtime context. In another 23% of the catastrophic fail-

ures, the error handling logic of a non-fatal error was so

wrong that any statement coverage testing or more care-

ful code reviews by the developers would have caught

the bugs.

To measure the applicability of the simple rules we ex-

tracted from the bugs that have lead to catastrophic fail-

ures, we implemented Aspirator, a simple static checker.

Aspirator identified 121 new bugs and 379 bad practices

in 9 widely used, production quality distributed systems,

despite the fact that these systems already use state-of-

the-art bug finding tools such as FindBugs [32] and error

injection tools [18]. Of these, 143 have been fixed or

confirmed by the systems’ developers.

Our study also includes a number of additional obser-

vations that may be helpful in improving testing and de-

bugging strategies. We found that 74% of the failures are

deterministic in that they are guaranteed to manifest with

an appropriate input sequence, that almost all failures are

guaranteed to manifest on no more than three nodes, and

that 77% of the failures can be reproduced by a unit test.

Software lang.
failures

total sampled catastrophic

Cassandra Java 3,923 40 2

HBase Java 5,804 41 21

HDFS Java 2,828 41 9

MapReduce Java 3,469 38 8

Redis C 1,192 38 8

Total – 17,216 198 48

Table 1: Number of reported and sampled failures for the sys-

tems we studied, and the catastrophic ones from the sample set.

Moreover, in 76% of the failures, the system emits ex-

plicit failure messages; and in 84% of the failures, all of

the triggering events that caused the failure are printed

into the log before failing. All these indicate that the

failures can be diagnosed and reproduced in a reason-

ably straightforward manner, with the primary challenge

being to have to sift through relatively noisy logs.

2 Methodology and Limitations

We studied 198 randomly sampled, real world fail-

ures reported on five popular distributed data-analytic

and storage systems, including HDFS, a distributed file

system [27]; Hadoop MapReduce, a distributed data-

analytic framework [28]; HBase and Cassandra, two

NoSQL distributed databases [2, 3]; and Redis, an in-

memory key-value store supporting master/slave replica-

tion [54]. We focused on distributed data-intensive sys-

tems because they are the building blocks of many inter-

net software services, and we selected the five systems

because they are widely used and are considered produc-

tion quality.

The failures we studied were extracted from the issue

tracking databases of these systems. We selected tickets

from these databases because of their high quality: each

selected failure ticket documents a distinct failure that

is confirmed by the developers, the discussions between

users and developers, and the failure resolutions in the

form of a patch or configuration change. Duplicate fail-

ures were marked by the developers, and are excluded

from our study.

The specific set of failures we considered were se-

lected from the issue tracking databases as follows. First,

we only selected severe failures with the failure ticket

priority field marked as “Blocker”, “Critical”, or “Ma-

jor”. Secondly, we only considered tickets dated 2010 or

later so as not to include failures of obsolete systems or

systems early in their lifetime. Thirdly, we filtered out

failures in testing systems by heuristically rejecting fail-

ures where the reporter and assignee (i.e., the developer

who is assigned to resolve the failure) were the same. Fi-

nally, we randomly selected failures from the remaining

set to make our observations representative of the entire

failure population. Table 1 shows the distribution of the

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 251

failure sets considered amongst the five systems and their

sampling rates.

For each sampled failure ticket, we carefully studied

the failure report, the discussion between users and de-

velopers, related error logs, the source code, and patches

to understand the root cause and its propagation leading

to the failure. We also manually reproduced 73 of the

failures to better understand them.

Limitations: as with all characterization studies, there

is an inherent risk that our findings may not be repre-

sentative. In the following we list potential sources of

biases and describe how we used our best-efforts to ad-

dress them.

(1) Representativeness of the selected systems. We only

studied distributed, data-intensive software systems. As

a result, our findings might not generalize to other types

of distributed systems such as telecommunication net-

works or scientific computing systems. However, we

took care to select diverse types of data-intensive pro-

grams that include both data-storage and analytical sys-

tems, both persistent store and volatile caching, both

written in Java and C, both master-slave and peer-to-peer

designs. (HBase, HDFS, Hadoop MapReduce, and Redis

use master-slave design, while Cassandra uses a peer-to-

peer gossiping protocol.) At the very least, these projects

are widely used: HDFS and Hadoop MapReduce are

the main elements of the Hadoop platform, which is the

predominant big-data analytic solution [29]; HBase and

Cassandra are the top two most popular wide column

store system [30], and Redis is the most popular key-

value store system [53].

Our findings also may not generalize to systems earlier

in their development cycle since we only studied systems

considered production quality. However, while we only

considered tickets dated 2010 or later to avoid bugs in

premature systems, the buggy code may have been newly

added. Studying the evolutions of these systems to estab-

lish the correlations between the bug and the code’s age

remains as the future work.

(2) Representativeness of the selected failures. Another

potential source of bias is the specific set of failures we

selected. We only studied tickets found in the issue-

tracking databases that are intended to document soft-

ware bugs. Other errors, such as misconfigurations, are

more likely to be reported in user discussion forums,

which we chose not to study because they are much less

rigorously documented, lack authoritative judgements,

and are often the results of trivial mistakes. Conse-

quently, we do not draw any conclusions on the distri-

bution of faults, which has been well-studied in comple-

mentary studies [50, 52]. Note, however, that it can be

hard for a user to correctly identify the nature of the cause

of a failure; therefore, our study still includes failures that

Symptom all catastrophic

Unexpected termination 74 17 (23%)

Incorrect result 44 1 (2%)

Data loss or potential data loss* 40 19 (48%)

Hung System 23 9 (39%)

Severe performance degradation 12 2 (17%)

Resource leak/exhaustion 5 0 (0%)

Total 198 48 (24%)

Table 2: Symptoms of failures observed by end-users or oper-

ators. The right-most column shows the number of catastrophic

failures with “%” identifying the percentage of catastrophic

failures over all failures with a given symptom. *: examples

of potential data loss include under-replicated data blocks.

stem from misconfigurations and hardware faults.

In addition, we excluded duplicated bugs from our

study so that our study reflects the characteristics of

distinct bugs. One could argue that duplicated bugs

should not be removed because they happened more of-

ten. There were only a total of 10 duplicated bugs that

were excluded from our original sample set. Therefore

they would not significantly change our conclusions even

if they were included.

(3) Size of our sample set. Modern statistics suggests that

a random sample set of size 30 or more is large enough

to represent the entire population [57]. More rigorously,

under standard assumptions, the Central Limit Theorem

predicts a 6.9% margin of error at the 95% confidence

level for our 198 random samples. Obviously, one can

study more samples to further reduce the margin of error.

(4) Possible observer errors. To minimize the possibility

of observer errors in the qualitative aspects of our study,

all inspectors used the same detailed written classifica-

tion methodology, and all failures were separately inves-

tigated by two inspectors before consensus was reached.

3 General Findings

This section discusses general findings from the entire

failure data set in order to provide a better understanding

as to how failures manifest themselves. Table 2 catego-

rizes the symptoms of the failures we studied.

Overall, our findings indicate that the failures are rel-

atively complex, but they identify a number of oppor-

tunities for improved testing. We also show that the

logs produced by these systems are rich with informa-

tion, making the diagnosis of the failures mostly straight-

forward. Finally, we show that the failures can be re-

produced offline relatively easily, even though they typ-

ically occurred on long-running, large production clus-

ters. Specifically, we show that most failures require no

more 3 nodes and no more than 3 input events to repro-

duce, and most failures are deterministic. In fact, most

of them can be reproduced with unit tests.

3

252 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Num. of events %

1 23%
�

single event

2 50%

multiple events: 77%
3 17%

4 5%

> 4 5%

Table 3: Minimum number of input events required to trigger

the failures.

Input event type %

Starting a service 58%

File/database write from client 32%

Unreachable node (network error, crash, etc.) 24%

Configuration change 23%

Adding a node to the running system 15%

File/database read from client 13%

Node restart (intentional) 9%

Data corruption 3%

Other 4%

Table 4: Input events that led to failures. The % column re-

ports the percentage of failure where the input event is required

to trigger the failure. Most failures require multiple preceding

events, so the sum of the “%” column is greater than 100%.

3.1 Complexity of Failures

Overall, our findings indicate that the manifestations of

the failures are relatively complex.

Finding 1 A majority (77%) of the failures require more

than one input event to manifest, but most of the failures

(90%) require no more than 3. (See Table 3.)

Figure 1 provides an example where three input events

are required for the failure to manifest.

Table 4 categorizes the input events that lead to fail-

ures into 9 categories. We consider these events to be “in-

put events” from a testing and diagnostic point of view —

some of the events (e.g., “unreachable node”, “data cor-

ruption”) are not strictly user inputs but can easily be em-

ulated by a tester or testing tools. Note that many of the

events have specific requirements for a failure to mani-

fest (e.g., a “file write” event needs to occur on a partic-

ular data block), making the input event space to explore

for testing immensely large.

Of the 23% of failures that require only a single event

to manifest, the event often involves rarely used or newly

introduced features, or are caused by concurrency bugs.

Finding 2 The specific order of events is important in

88% of the failures that require multiple input events.

Obviously, most of the individual events in Table 4

are heavily exercised and tested (e.g., read and write),

which is why only in minority of cases will a single input

NameNode DataNode1

(only one DataNode started) 1. upload

 blkA_100 send to DN1

(100 is the

generation stamp)

stores block:

blkA_100
add blkA_100 to

‘needReplication’ queue

 2. append

 to blkA updates to: blkA_101

 3. Start DN2

check needReplication:

ask DN1 to replicate

blkA_100 to DN2

gen-stamp mismatch:

blkA_100 (from NN) ≠

blkA_101 (local copy)
namenode.register

Refuse to replicate!

‘needReplication’: blkA_100

 gen-stamp not updated!

Figure 1: An HDFS failure where a data block remains

under-replicated, potentially leading to a data loss. Three in-

put events are needed (shown in boxes): (1) the user up-

loads a data block, causing HDFS to assign a generation

stamp. NameNode (NN) asks DataNode1 (DN1) to store this

block, and because this block is currently under-replicated,

adds it to needReplication queue. (2) the user appends

to this block, causing DN1 to increment the generation stamp

from 100 to 101. However, the generation stamp in the

needReplication queue is not updated – an error. (3) DN2

is started, so NN asks DN1 to replicate the block to DN2. But

since the generation stamps from needReplication queue

and DN1 do not match, DN1 keeps refusing to replicate.

event induce a failure. In most cases, a specific combi-

nation and sequence of multiple events is needed to tran-

sition the system into a failed state. Consider the failure

example shown in Figure 1. While the events “upload

file”, “append to file”, and “add another datanode” are

not problematic individually, the combination of the first

two will lead the system into an error state, and the last

event actually triggers the failure.

Finding 1 and 2 show the complexity of failures in

large distributed system. To expose the failures in test-

ing, we need to not only explore the combination of mul-

tiple input events from an exceedingly large event space,

we also need to explore different permutations.

3.2 Opportunities for Improved Testing

Additional opportunities to improve existing testing

strategies may be found when considering the types of

input events required for a failure to manifest. We briefly

discuss some of the input event types of Table 4.

Starting up services: More than half of the failures re-

quire the start of some services. This suggests that the

starting of services — especially more obscure ones —

should be more heavily tested. About a quarter of the

failures triggered by starting a service occurred on sys-

tems that have been running for a long time; e.g., the

HBase “Region Split” service is started only when a ta-

ble grows larger than a threshold. While such a failure

may seem hard to test since it requires a long running

system, it can be exposed intentionally by forcing a start

of the service during testing.

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 253

Number cumulative distribution function

of nodes all failures catastrophic

1 37% 43%

2 84% 86%

3 98% 98%

> 3 100% 100%

Table 5: Min. number of nodes needed to trigger the failures.

Unreachable nodes: 24% of the failures occur because a

node is unreachable. This is somewhat surprising given

that network errors and individual node crashes are ex-

pected to occur regularly in large data centers [14]. This

suggests that tools capable of injecting network errors

systematically [18, 23, 65] should be used more exten-

sively when inputing other events during testing.

Configuration changes: 23% of the failures are caused

by configuration changes. Of those, 30% involve mis-

configurations. The remaining majority involve valid

changes to enable certain features that may be rarely-

used. While the importance of misconfigurations have

been observed in previous studies [22, 50, 66], only a

few techniques exist to automatically explore configura-

tions changes and test the resulting reaction of the sys-

tem [19, 40, 63]. This suggests that testing tools should

be extended to combine (both valid and invalid) configu-

ration changes with other operations.

Adding a node: 15% of the failures are triggered by

adding a node to a running system. Figure 1 provides

an example. This is somewhat alarming, given that elas-

tically adding and removing nodes is one of the principle

promises of “cloud computing”. It suggests that adding

nodes needs to be tested under more scenarios.

The production failures we studied typically mani-

fested themselves on configurations with a large number

of nodes. This raises the question of how many nodes are

required for an effective testing and debugging system.

Finding 3 Almost all (98%) of the failures are guaran-

teed to manifest on no more than 3 nodes. 84% will man-

ifest on no more than 2 nodes. (See Table 5.)

The number is similar for catastrophic failures. Finding 3

implies that it is not necessary to have a large cluster to

test for and reproduce failures.

Note that Finding 3 does not contradict the conven-

tional wisdom that distributed system failures are more

likely to manifest on large clusters. In the end, testing is

a probabilistic exercise. A large cluster usually involves

more diverse workloads and fault modes, thus increas-

ing the chances for failures to manifest. However, what

our finding suggests is that it is not necessary to have a

large cluster of machines to expose bugs, as long as the

specific sequence of input events occurs.

We only encountered one failure that required a larger

number of nodes (over 1024): when the number of simul-

Software num. of deterministic failures

Cassandra 76% (31/41)

HBase 71% (29/41)

HDFS 76% (31/41)

MapReduce 63% (24/38)

Redis 79% (30/38)

Total 74% (147/198)

Table 6: Number of failures that are deterministic.

Source of non-determinism number

Timing btw. input event & internal exe. event 27 (53%)

Multi-thread atomicity violation 13 (25%)

Multi-thread deadlock 3 (6%)

Multi-thread lock contention (performance) 4 (8%)

Other 4 (8%)

Total 51 (100%)

Table 7: Break-down of the non-deterministic failures. The

“other” category is caused by nondeterministic behaviors from

the OS and third party libraries.

taneous Redis client connections exceeded the OS limit,

epoll() returned error, which was not handled prop-

erly, causing the entire cluster to hang. All of the other

failures require fewer than 10 nodes to manifest.

3.3 The Role of Timing

A key question for testing and diagnosis is whether the

failures are guaranteed to manifest if the required se-

quence of input events occur (i.e., deterministic failures),

or not (i.e., non-deterministic failures)?

Finding 4 74% of the failures are deterministic — they

are guaranteed to manifest given the right input event

sequences. (See Table 6.)

This means that for a majority of the failures, we only

need to explore the combination and permutation of in-

put events, but no additional timing relationship. This is

particularly meaningful for testing those failures that re-

quire long-running systems to manifest. As long as we

can simulate those events which typically only occur on

long running systems (e.g., region split in HBase typi-

cally only occurs when the region size grows too large),

we can expose these deterministic failures. Moreover,

the failures can still be reproduced after inserting addi-

tional log output, enabling tracing, or using debuggers.

Finding 5 Among the 51 non-deterministic failures,

53% have timing constraints only on the input events.

(See Table 7.)

These constraints require an input event to occur either

before or after some software internal execution event

such as a procedure call. Figure 2 shows an example. In

addition to the order of the four input events (that can be

5

254 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

HMaster RegionServer (RS)

1. RS network error Cannot connct to RS,

thinks RS is dead

Recovers RS’ region data

from its HLog

Recovery finishes

2. RS is back online

4. Receive client writes requests,

log into the new HLog

3. rolls its HLog (HBase’s

write-ahead-log)

A new RS is assigned to

serve the recovered region

Order dependency btw. input

operation and internal exe. state

Data writes

are lost!

Figure 2: A non-deterministic failure in HBase with timing

requirements (shown with solid arrows) only on input events

(boxed). Some newly written data will be lost because when

HMaster assigns a new region server, it only recovered the old

HLog that does not contain the newly written data.

write_lock();

/* remove a

* large directory */

write_unlock();

Critical region is too large,

causing concurrent write

requests to hang

Figure 3: Performance degradation in HDFS caused by a

single request to remove a large directory.

controlled by a tester), the additional requirement is that

the client write operations must occur before HMaster

assigns the region to a new Region Server, which cannot

be completely controlled by the user.

Note that these non-deterministic dependencies are

still easier to test and debug than non-determinisms stem-

ming from multi-threaded interleavings, since at least

one part of the timing dependency can be controlled by

testers. Testers can carefully control the timing of the

input events to induce the failure. Unit tests and model

checking tools can further completely manipulate such

timing dependencies by controlling the timing of both

the input events and the call of internal procedures. For

example, as part of the patch to fix the bug in Figure 2,

developers used a unit test that simulated the user inputs

and the dependencies with HMaster’s operations to de-

terministically reproduce the failure.

The majority of the remaining 24 non-deterministic

failures stem from shared-memory multi-threaded inter-

leavings. We observed three categories of concurrency

bugs in our dataset: atomicity violation [42], deadlock,

and lock contention that results in performance degra-

dation. It is much harder to expose and reproduce such

failures because it is hard for users or tools to control tim-

ing, and adding a single logging statement can cause the

failure to no longer expose itself. We reproduced 10 of

these non-deterministic failures and found the atomicity

violations and deadlocks the most difficult to reproduce

(we had to manually introduce additional timing delays,

0 %

20 %

40 %

60 %

80 %

100 %

Cassandra HBase HDFS MapRed. Redis

%
 o

f f
ail

ur
es

error log
event log

Figure 4: The logging comprehensiveness of the studied fail-

ures. Logging of both the input events and errors are consid-

ered. For failures requiring multiple events to trigger, we count

it as “logged” only when all the required events are logged.

like Thread.sleep() in the code to trigger the bugs).

The lock contention cases, however, are not as difficult

to reproduce. Figure 3 shows an example where a bug

caused unnecessary lock contention.

3.4 Logs Enable Diagnosis Opportunities

Overall, we found the logs output by the systems we

studied to be rich with useful information.We assume the

default logging verbosity level is used.

Finding 6 76% of the failures print explicit failure-

related error messages. (See Figure 4.)

This finding somewhat contradicts the findings of our

previous study [67] on failures in non-distributed sys-

tems, including Apache httpd, PostgreSQL, SVN, squid,

and GNU Coreutils, where only 43% of failures had ex-

plicit failure-related error messages logged. We surmise

there are three possible reasons why developers output

log messages more extensively for the distributed sys-

tems we studied. First, since distributed systems are

more complex, and harder to debug, developers likely

pay more attention to logging. Second, the horizon-

tal scalability of these systems makes the performance

overhead of outputing log message less critical. Third,

communicating through message-passing provides natu-

ral points to log messages; for example, if two nodes can-

not communicate with each other because of a network

problem, both have the opportunity to log the error.

Finding 7 For a majority (84%) of the failures, all of

their triggering events are logged. (See Figure 4.)

This suggests that it is possible to deterministically re-

play the majority of failures based on the existing log

messages alone. Deterministic replay has been widely

explored by the research community [4, 13, 15, 26, 35,

47, 61]. However, these approaches are based on intru-

sive tracing with significant runtime overhead and the

need to modify software/hardware.

Finding 8 Logs are noisy: the median of the number of

log messages printed by each failure is 824.

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 255

Software % of failures reproducible by unit test

Cassandra 73% (29/40)

HBase 85% (35/41)

HDFS 82% (34/41)

MapReduce 87% (33/38)

Redis 58% (22/38)

Total 77% (153/198)

Table 8: Percentage of failures that can be reproduced by a

unit test. The reason that only a relatively small number of

Redis failures can be reproduced by unit tests is that its unit-test

framework is not as powerful, being limited to command-line

commands. Consequently, it cannot simulate many errors such

as node failure, nor can it call some internal functions directly.

This number was obtained when reproducing 73 of the

198 failures with a minimal configuration and using a

minimal workload that is just sufficient to reproduce the

failure. Moreover, we did not count the messages printed

during the start-up and shut-down phases.

This suggests that manual examination of the log files

could be tedious. If a user only cares about the error

symptoms, a selective grep on the error verbosity levels

will reduce noise since a vast majority of the printed log

messages are at INFO level. However, the input events

that triggered the failure are often logged at INFO level.

Therefore to further infer the input events one has to ex-

amine almost every log message. It would be helpful if

existing log analysis techniques [5, 6, 48, 64] and tools

were extended so they can infer the relevant error and

input event messages by filtering out the irrelevant ones.

3.5 Failure Reproducibility

Conventional wisdom has it that failures which occur

on large, distributed system in production are extremely

hard to reproduce off-line. The users’ input may be un-

available due to privacy concerns, the difficulty in setting

up an environment that mirrors the one in production,

and the cost of third-party libraries, are often reasons

cited as to why it is difficult for vendors to reproduce pro-

duction failures. Our finding below indicates that failure

reproduction might not be as hard as it is thought to be.

Finding 9 A majority of the production failures (77%)

can be reproduced by a unit test. (See Table 8.)

While this finding might sound counter-intuitive, it is not

surprising given our previous findings because: (1) in

Finding 4 we show that 74% of the failures are determin-

istic, which means the failures can be reproduced with

the same operation sequence; and (2) among the remain-

ing non-deterministic failures, in 53% of the cases the

timing can be controlled through unit tests.

Specific data values are not typically required to re-

produce the failures; in fact, none of the studied failures

public void testLogRollAfterSplitStart {

startMiniCluster(3);

// create an HBase cluster with 1 master and 2 RS

HMaster.splitHLog();

// simulate a hlog splitting (HMaster’s recovery

// of RS’ region data) when RS cannot be reached

RS.rollHLog();

// simulate the region server’s log rolling event

for (i = 0; i < NUM_WRITES; i++)

writer.append(..); // write to RS’ region

HMaster.assignNewRS();

// HMaster assigns the region to a new RS

assertEquals (NUM_WRITES, countWritesHLog());

// Check if any writes are lost

}

Figure 6: Unit test for the failure shown in Figure 2.

required specific values of user’s data contents. Instead,

only the required input sequences (e.g., file write, dis-

connect a node, etc.) are needed.

Figure 6 shows how a unit test can simulate the

non-deterministic failure of Figure 2. It simulates a

mini-cluster by starting three processes running as three

nodes. It further simulates the key input events, including

HMaster’s log split, Region Server’s log rolling, and the

write requests. The required dependency where the client

must send write requests before the master re-assigns the

recovered region is also controlled by this unit test.

The failures that cannot be reproduced easily either de-

pend on a particular execution environment (such as OS

version or third party libraries), or were caused by non-

deterministic thread interleavings.

4 Catastrophic Failures

Table 2 in Section 3 shows that 48 failures in our entire

failure set have catastrophic consequences. We classify a

failure to be catastrophic when it prevents all or a major-

ity of the users from their normal access to the system.

In practice, these failures result in cluster-wide outage, a

hung cluster, or a loss to all or a majority of the user data.

Note that a bug resulting in under-replicated data blocks

is not considered as catastrophic, even when it affect all

data blocks, because it does not prevent users from their

normal read and write to their data yet. We specifically

study the catastrophic failures because they are the ones

with the largest business impact to the vendors.

The fact that there are so many catastrophic failures

is perhaps surprising given that the systems considered

all have High Availability (HA) mechanisms designed

to prevent component failures from taking down the en-

tire service. For example, all of the four systems with a

master-slave design — namely HBase, HDFS, MapRe-

duce, and Redis — are designed to, on a master node

failure, automatically elect a new master node and fail

7

256 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Incorrect handling of errors

explicitly signaled in s.w.

Latent error

Errors ignored (25%)

Abort in over-caught

exceptions (8%)

“TODO” in handler (2%)

92%

8%

C
a

ta
stro

p
h

ic
 fa

ilu
re

s (1
0

0
%

)

Initial faults

100%

(e.g., h.w. fault,

bugs, misconfig.)

Trivial

mistakes

System-

specific

Easily detectable (23%)

Complex bugs (34%)

35%

57%

Figure 5: Break-down of all catastrophic failures by their error handling.

over to it.2 Cassandra is a peer-to-peer system, thus by

design it avoids single points of failure. Then why do

catastrophic failures still occur?

Finding 10 Almost all catastrophic failures (92%) are

the result of incorrect handling of non-fatal errors ex-

plicitly signaled in software. (See Figure 5.)

These catastrophic failures are the result of more than

one fault triggering, where the initial fault, whether due

to a hardware fault, a misconfiguration, or a bug, first

manifests itself explicitly as a non-fatal error — for ex-

ample by throwing an exception or having a system call

return an error. This error need not be catastrophic; how-

ever in the vast majority of cases, the handling of the ex-

plicit error was faulty, resulting in an error manifesting

itself as a catastrophic failure.

This prevalence of incorrect error handling is unique

to catastrophic failures. In comparison, only 25% of the

non-catastrophic failures in our study involve incorrect

error handling, indicating that in non-catastrophic fail-

ures, error handling was mostly effective in preventing

the errors from taking down the entire service.

Overall, we found that the developers are good at an-

ticipating possible errors. In all but one case, the errors

were checked by the developers. The only case where

developers did not check the error was an unchecked er-

ror system call return in Redis. This is different from the

characteristics observed in previous studies on file sys-

tem bugs [24, 41, 55], where many errors weren’t even

checked. This difference is likely because (i) the Java

compiler forces developers to catch all the checked ex-

ceptions; and (ii) a variety of errors are expected to occur

in large distributed systems, and the developers program

more defensively. However, we found they were often

simply sloppy in handling these errors. This is further

corroborated in Findings 11 and 12 below. To be fair,

we should point out that our findings are skewed in the

2We assume the HA feature is always enabled when classifying

catastrophic failures. We did not classify failures as catastrophic if HA

was not enabled and the master node failed, even though it would likely

have affected all the users of the system. This is because such failures

are not unique compared to the other failures we studied — they just

happened to have occurred on the master node.

sense that our study did not expose the many errors that

are correctly caught and handled.

Nevertheless, the correctness of error handling code is

particularly important given their impact. Previous stud-

ies [50, 52] show that the initial faults in distributed sys-

tem failures are highly diversified (e.g., bugs, miscon-

figurations, node crashes, hardware faults), and in prac-

tice it is simply impossible to eliminate them all in large

data centers [14]. It is therefore unavoidable that some

of these faults will manifest themselves into errors, and

error handling then becomes the last line of defense [45].

Of the catastrophic failures we studied, only four were

not triggered by incorrect error handling. Three of them

were because the servers mistakenly threw fatal excep-

tions that terminated all the clients, i.e., the clients’ error

handling was correct. The other one was a massive per-

formance degradation when a bug disabled DNS look-up

result caching.

4.1 Trivial Mistakes in Error Handlers

Finding 11 35% of the catastrophic failures are caused

by trivial mistakes in error handling logic — ones that

simply violate best programming practices; and that can

be detected without system specific knowledge.

Figure 5 further breaks down the mistakes into three

categories: (i) the error handler ignores explicit er-

rors; (ii) the error handler over-catches an exception and

aborts the system; and (iii) the error handler contains

“TODO” or “FIXME” in the comment.

25% of the catastrophic failures were caused by ignor-

ing explicit errors (an error handler that only logs the er-

ror is also considered as ignoring the error). For systems

written in Java, the exceptions were all explicitly thrown,

whereas in Redis they were system call error returns.

Figure 7 shows a data loss in HBase caused by ignoring

an exception. Ignoring errors and allowing them to prop-

agate is known to be bad programming practice [7, 60],

yet we observed this lead to many catastrophic failures.

At least the developers were careful at logging the errors:

all the errors were logged except for one case where the

Redis developers did not log the error system call return.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 257

Split region

Remove old region’s metadata from META table

Region (table) size grows > threshold

Region split failed: old region removed

but new regions not created --- Data loss!

 try {

 split(..);

 } catch (Exception ex) {

 LOG.error(“split failed..”);

+ retry_split(); // fix: retry!

 }

Flaky file system returned

NullPointerException

Figure 7: A data loss in HBase where the error handling was

simply empty except for a logging statement. The fix was to

retry in the exception handler.

 try {
 namenode.registerDatanode();
+ } catch (RemoteException e) {
+ // retry.
 } catch (Throwable t) {
 System.exit(-1);
 }

RemoteExcepion is thrown
due to glitch in namenode

Figure 8: Entire HDFS cluster brought down by an over-catch.

User: MapReduce jobs hang when a rare Resource Manager restart occurs.

I have to ssh to every one of our 4000 nodes in a cluster and try to kill all the

running Application Manager.
Patch:

 catch (IOException e) {

- // TODO

 LOG(“Error event from RM: shutting down..”);

+ // This can happen if RM has been restarted. Must clean up.

+ eventHandler.handle(..);

 }

Figure 9: A catastrophic failure in MapReduce where devel-

opers left a “TODO” in the error handler.

Another 8% of the catastrophic failures were caused

by developers prematurely aborting the entire cluster on

a non-fatal exception. While in principle one would need

system specific knowledge to determine when to bring

down the entire cluster, the aborts we observed were all

within exception over-catch, where a higher level excep-

tion is used to catch multiple different lower-level excep-

tions. Figure 8 shows such an example. The exit() was

intended only for IncorrectVersionException. However,

the developers catch a high-level exception: Throwable.

Consequently, when a glitch in the namenode caused

registerDatanode() to throw RemoteException, it

was over-caught by Throwable and thus brought down

every datanode. The fix was to handle RemoteException

explicitly, so that only IncorrectVersionException would

fall through. However, this is still bad practice since later

when the code evolves, some other exceptions may be

over-caught again. The safe practice is to catch the pre-

cise exception [7].

Figure 9 shows an even more obvious mistake, where

the developers only left a comment “TODO” in the han-

dler logic in addition to a logging statement. While this

error would only occur rarely, it took down a production

cluster of 4,000 nodes.

1: HMaster assigns region R from RS1 to RS2

2: RS2 opens R

6: RS3 opens R

HMaster.OpenedRegionHandler()

 try {

 3: newlyOpened(getZookeeper(), R);

 // inform zookeeper

 // that R is OPENED

 } catch (KeeperException e) {

 // R is already OPENED...

 7:abort(“Error in”);

 }

5: HMaster

assigns R to RS3

4: RS2 dies

Figure 10: A catastrophic failure where the error handling

code was wrong and simply not tested at all. A rare sequence

of events caused newlyOpened() to throw a rare KeeperEx-

ception, which simply took down the entire HBase cluster.

4.2 System-specific Bugs

The other 57% of the catastrophic failures are caused

by incorrect error handling where system-specific knowl-

edge is required to detect the bugs. (See Figure 5.)

Finding 12 In 23% of the catastrophic failures, while

the mistakes in error handling were system specific, they

are still easily detectable. More formally, the incorrect

error handling in these cases would be exposed by 100%

statement coverage testing on the error handling logic.

In other words, once the problematic basic block in the

error handling code is triggered, the failure is guaranteed

to be exposed. This suggests that these basic blocks were

completely faulty and simply never properly tested. Fig-

ure 10 shows such an example. Once a test case can de-

terministically trigger KeeperException, the catastrophic

failure will be triggered with 100% certainty.

Hence, a good strategy to prevent these failures is to

start from existing error handling logic and try to reverse

engineer test cases that trigger them. For example, sym-

bolic execution techniques [8, 10] could be extended to

purposefully reconstruct an execution path that can reach

the error handling code block, instead of blindly explor-

ing every execution path from the system entry points.

While high statement coverage on error handling code

might seem difficult to achieve, aiming for higher state-

ment coverage in testing might still be a better strategy

than a strategy of applying random fault injections. For

example, the failure in Figure 10 requires a very rare

combination of events to trigger the buggy error handler.

Our finding suggests that a “bottom-up” approach could

be more effective: start from the error handling logic and

reverse engineer a test case to expose errors there.

Existing testing techniques for error handling logic

primarily use a “top-down” approach: start the system

using testing inputs or model-checking [23, 65], and ac-

tively inject errors at different stages [9, 18, 44]. Tools

like LFI [44] and Fate&Destini [23] are intelligent to

inject errors only at appropriate points and avoid dupli-

cated injections. Such techniques inevitably have greatly

9

258 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Client with corrupted memory

1. Read blockA from DataNode 1

2.Detects CheckSum exception

3. Report error to NameNode

4. Add blockA@DataNode1

 to CorruptReplicaMap

5. Repeat 1-3 on

 blockA@DN2, blockA@DN3

6. Add blockA@DN2, blockA@DN3

 to CorruptReplicaMap

7. No more valid replicas for blockA

8. Mark blockA as non-recoverable
Client 2

9. Read blockA

NameNode

10.No valid replica!

 Bug! Should verify the replica

 is indeed corrupted!

Figure 11: A massive data loss for all clients in HDFS. A

client with corrupted RAM reported data corruption on almost

every block it reads to the namenode. Instead of verifying

the checksum on datanodes, namenode blindly trusts the faulty

client and marks the blocks as permanently corrupted, causing

a massive data loss to all clients.

improved the reliability of software systems. In fact,

Hadoop developers have their own error injection frame-

work to test their systems [18], and the production fail-

ures we studied are likely the ones missed by such tools.

However, our findings suggest that it could be chal-

lenging for such “top-down” approaches to further ex-

pose these remaining production failures. They require

rare sequence of input events to first take the system to

a rare state, before the injected error can take down the

service. In addition, 38% of the failures only occur in

long-running systems. Therfore, the possible space of

input events would simply be untractable.

Complex bugs: the remaining 34% of catastrophic fail-

ures involve complex bugs in the error handling logic.

These are the cases where developers did not anticipate

certain error scenarios. As an example, consider the fail-

ure shown in Figure 11. While the handling logic makes

sense for a majority of the checksum errors, it did not

consider the scenario where a single client reports a mas-

sive number of corruptions (due to corrupt RAM) in a

very short amount of time. These type of errors — which

are almost byzantine — are indeed the hardest to test for.

Detecting them require both understanding how the sys-

tem works and anticipating all possible real-world fail-

ure modes. While our study cannot provide constructive

suggestions on how to identify such bugs, we found they

only account for one third of the catastrophic failures.

4.3 Discussion

While we show that almost all of the catastrophic fail-

ures are the result of incorrect error handling, it could be

argued that most of the code is reachable from error han-

dling blocks in real-world distributed system, therefore

most of the bugs are “incorrect error handling”. How-

ever, our findings suggest many of the bugs can be de-

tected by only examining the exception handler blocks

(e.g., the catch block in Java). As we show will in Ta-

ble 9, the number of catch blocks in these systems is

relatively small. For example, in HDFS, there are only

2652 catch blocks. In particular, the bugs belonging to

the “trivial mistakes” category in Finding 11 can be eas-

ily detected by only examining these catch blocks.

An interesting question is whether the outages from

large internet software vendors are also the result of in-

correct error handling. While we cannot answer this rig-

orously without access to their internal failure databases,

the postmortem analysis of some of the most visible out-

ages are released to the public. Interestingly, some of

the anecdotal outages are the result of incorrect error

handling. For example, in an outage that brought down

facebook.com for approximately 2.5 hours, which at that

time was “the worst outage Facebook have had in over

four years”, “the key flaw that caused the outage to be

so severe was an unfortunate handling of an error con-

dition” [17]. In the outage of Amazon Web Services in

2011 [59] that brought down Reddit, Quora, FourSquare,

parts of the New York Times website, and about 70 other

sites, the initial cause was a configuration change that

mistakenly routed production traffic to a secondary net-

work that was not intended for a heavy workload. Conse-

quently, nodes start to fail. What lead this to further prop-

agate into a service-level failure was the incorrect han-

dling of node-failures — “the nodes failing to find new

nodes did not back off aggressively enough when they

could not find space, but instead, continued to search re-

peatedly”. This caused even more network traffic, and

eventually lead to the service-level failure.

5 Aspirator: A Simple Checker

In Section 4.1, we observed that some of the most catas-

trophic failures are caused by trivial mistakes that fall

into three simple categories: (i) error handler is empty;

(ii) error handler over-catches exceptions and aborts; and

(iii) error handler contains phrases like “TODO” and

“FIXME”. To measure the applicability of these simple

rules, we built a rule-based static checker, Aspirator, ca-

pable of locating these bug patterns. Next we discuss

how Aspirator is implemented and the results of apply-

ing it to a number of systems.

5.1 Implementation of Aspirator

We implemented Aspirator using the Chord static analy-

sis framework [11] on Java bytecode. Aspirator works as

follows: it scans Java bytecode, instruction by instruc-

tion. If an instruction can throw exception e, Aspira-

tor identifies and records the corresponding catch block

for e. Aspirator emits a warning if the catch block

is empty or just contains a log printing statement, or if

the catch block contains “TODO” or “FIXME” com-

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 259

ments in the corresponding source code. It also emits

a warning if a catch block for a higher-level excep-

tion (e.g., Exception or Throwable) might catch multiple

lower-level exceptions and at the same time calls abort

or System.exit(). Aspirator is capable of identify-

ing these over-catches because when it reaches a catch

block, it knows exactly which exceptions from which in-

structions the catch block handles.

Not every empty catch block is necessarily a bad

practice or bug. Consider the following example where

the exception is handled outside of the catch block:

uri = null;

try {

uri = Util.fileAsURI(new File(uri));

} catch (IOException ex) { /* empty */ }

if (uri == null) { // handle it here!

Therefore Aspirator will not emit a warning on an empty

catch block if both of the following conditions are true:

(i) the corresponding try block modifies a variable V;

and (ii) the value of V is checked in the basic block

following the catch block. In addition, if the last in-

struction in the corresponding try block is a return,

break, or continue, and the block after the catch

block is not empty, Aspirator will not report a warning

if the catch block is empty because all the logic after

the catch block is in effect exception handling.

Aspirator further provides runtime configuration op-

tions to allow programmers to adjust the trade-offs be-

tween false positives and false negatives. It allows pro-

grammers to specify exceptions that should not result in

a warning. In our testing, we ignored all instances of the

FileNotFound exception, because we found the vast ma-

jority of them do not indicate a true error. Aspirator also

allows programmers to exclude certain methods from the

analysis. In our testing, we use this to suppress warnings

if the ignored exceptions are from a shutdown, close or

cleanup method — exceptions during a cleanup phase

are likely less important because the system is being

brought down anyway. Using these two heuristics did not

affect Aspirator’s capability to detect the trivial mistakes

leading to catastrophic failures in our study, yet signifi-

cantly reduce the number of false positives.

Limitations: As a proof-of-concept, Aspirator currently

only works on Java and other languages that are compat-

ible with Java bytecode (e.g., Scala), where exceptions

are supported by the language and are required to be ex-

plicitly caught. The main challenge to extend Aspirator

to non-Java programs is to identify the error conditions.

However, some likely error conditions can still be eas-

ily identified, including system call error returns, switch

fall-through, and calls to abort().

In addition, Aspirator cannot estimate the criticality of

the warnings it emits. Hence, not every warning emitted

will identify a bug that could lead to a failure; in fact,

try {
 journal.recoverSegments();
} catch (IOException ex) {

}
Cannot apply the updates
from Edit log, ignoring it
can cause dataloss!

try {
 tableLock.release();
} catch (IOException e) {
 LOG("Can't release lock",
 e);
} hang: lock is never released!

(a) (b)

Figure 12: Two new bugs found by Aspirator.

some false positives are emitted. However, because As-

pirator provides, with each warning, a list of caught ex-

ceptions together with the instructions that throw them,

developers in most cases will be able to quickly assess

the criticality of each warning and possibly annotate the

program to suppress specific future warnings.

Finally, the functionality of Aspirator could (and prob-

ably should) be added to existing static analysis tools,

such as FindBugs [32].

5.2 Checking Real-world Systems

We first evaluated Aspirator on the set of catastrophic

failures used in our study. If Aspirator had been used and

the captured bugs fixed, 33% of the Cassandra, HBase,

HDFS, and MapReduce’s catastrophic failures we stud-

ied could have been prevented.

We then used Aspirator to check the latest stable ver-

sions of 9 distributed systems or components used to

build distributed systems (e.g., Tomcat web-server). As-

pirator’s analysis finishes within 15 seconds for each sys-

tem on a MacBook Pro laptop with 2.7GHz Intel Core i7

processor, and has memory footprints of less than 1.2GB.

We categorize each warning generated by Aspirator

into one of three categories: bug, bad practice, and false

positive. For each warning, we use our best-effort to

understand the consequences of the exception handling

logic. Warnings are categorized as bugs only if we could

definitively conclude that, once the exception occurs, the

handling logic could lead to a failure. They were cate-

gorized as false positives if we clearly understood they

would not lead to a failure. All other cases are those

that we could not definitively infer the consequences

of the exception handling logic without domain knowl-

edge. Therefore we conservatively categorize them as

bad practices.

Table 9 shows the results. Overall, Aspirator detected

500 new bugs and bad practices along with 115 false

positives. Note that most of these systems already run

state-of-the-art static checkers like FindBugs [32], which

checks for over 400 rules, on every code check-in. Yet

Aspirator has found new bugs in all of them.

Bugs: many bugs detected by Aspirator could indeed

lead to catastrophic failures. For example, all 4 bugs

caught by the abort-in-over-catch checker could bring

11

260 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

System
Handler Bug Bad practice False

blocks total / confirmed ignore / abort / todo total / confirmed ignore / abort / todo pos.

Cassandra 4,365 2 2 2 - - 2 2 2 - - 9

Cloudstack 6,786 27 24 25 - - 185 21 182 1 2 20

HDFS 2,652 24 9 23 - 1 32 5 32 - - 16

HBase 4,995 16 16 11 3 2 43 6 35 5 3 20

Hive 9,948 25 15 23 - 2 54 14 52 - 2 8

Tomcat 5,257 7 4 6 1 - 23 3 17 4 2 30

Spark 396 2 2 - - 2 1 1 1 - - 2

YARN/MR2 1,069 13 8 6 - 7 15 3 10 4 1 1

Zookeeper 1,277 5 5 5 - - 24 3 23 - 1 9

Total 36,745 121 85 101 4 16 379 58 354 14 11 115

Table 9: Results of applying Aspirator to 9 distributed systems. If a case belongs to multiple categories (e.g., an empty handler

may also contain a “TODO” comment), we count it only once as an ignored exception. The “Handler blocks” column shows the

number of exception handling blocks that Aspirator discovered and analyzed. “-” indicates Aspirator reported 0 warning.

down the cluster on an unexpected exception in a sim-

ilar fashion as in Figure 8. All 4 of them have been fixed.

Some bugs can also cause the cluster to hang. Aspi-

rator detected 5 bugs in HBase and Hive that have a pat-

tern similar to the one depicted in Figure 12 (a). In this

example, when tableLock cannot be released, HBase

only outputs an error message and continues executing,

which can deadlock all servers accessing the table. The

developers fixed this bug by immediately cleaning up the

states and aborting the problematic server [31].

Figure 12 (b) shows a bug that could lead to data loss.

An IOException could be thrown when HDFS is recov-

ering user data by replaying the updates from the Edit

log. Ignoring it could cause a silent data loss.

Bad practices: the bad practice cases include potential

bugs for which we could not definitively determine their

consequences without domain expertise. For example,

if deleting a temporary file throws an exception and is

subsequently ignored, it may be inconsequential. How-

ever, it is nevertheless considered a bad practice because

it may indicate a more serious problem in the file system.

Some of these cases could as well be false positives.

While we cannot determine how many of them are false

positives, we did report 87 of the cases that we initially

classified as “bad practices” to developers. Among them,

58 were confirmed or fixed, but 17 were rejected. The

17 rejected ones were subsequently classified as “false

positives” in Table 9.

False positives: 19% of the warnings reported by Aspi-

rator are false positives. Most of them are due to that As-

pirator does not perform inter-procedural analysis. Con-

sider the following example, where an exception is han-

dled by testing the return value of a method call:

try {

set_A();

} catch (SomeException e) { /* empty */ }

if (A_is_not_set()) {/* handle it here! */}

In addition to FileNotFound and exceptions from from

shutdown, close, and cleanup, Aspirator should have

been further configured to exclude the warnings on other

exceptions. For example, many of the false positives

are caused by empty handlers of Java’s reflection re-

lated exceptions, such as NoSuchFieldException. Once

programmers realize an exception should have been ex-

cluded from Aspirator’s analysis, they can simply add

this exception to Aspirator’s configuration file.

5.3 Experience

Interaction with developers: We reported 171 bugs and

bad practices to the developers through the official bug

tracking website. To this date, 143 have already been

confirmed or fixed by the developers (73 of them have

been fixed, and the other 70 have been confirmed but not

fixed yet), 17 were rejected, and the others have not re-

ceived any responses.

We received mixed feedback from developers. On the

one hand, we received some positive comments like: “I

really want to fix issues in this line, because I really want

us to use exceptions properly and never ignore them”,

“No one would have looked at this hidden feature; ig-

noring exceptions is bad precisely for this reason”, and

“catching Throwable [i.e., exception over-catch] is bad,

we should fix these”. On the other hand, we received neg-

ative comments like: “I fail to see the reason to handle

every exception”.

There are a few reasons for developers’ obliviousness

to the handling of errors. First, these ignored errors may

not be regarded as critical enough to be handled prop-

erly. Often, it is only until the system suffers serious fail-

ures will the importance of the error handling be realized

by developers. We hope to raise developers’ awareness

by showing that many of the most catastrophic failures

today are caused precisely by such obliviousness to the

correctness of error handling logic.

Secondly, the developers may believe the errors would

never (or only very rarely) occur. Consider the following

code snippet detected by Aspirator from HBase:

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 261

try {

t = new TimeRange(timestamp, timestamp+1);

} catch (IOException e) {

// Will never happen

}

In this case, the developers thought the constructor could

never throw an exception, so they ignored it (as per the

comment in the code). We observed many empty error

handlers contained similar comments in multiple sys-

tems we checked. We argue that errors that “can never

happen” should be handled defensively to prevent them

from propagating. This is because developers’ judge-

ment could be wrong, later code evolutions may enable

the error, and allowing such unexpected errors to propa-

gate can be deadly. In the HBase example above, devel-

opers’ judgement was indeed wrong. The constructor is

implemented as follows:

public TimeRange (long min, long max)

throws IOException {

if (max < min)

throw new IOException("max < min");

}

It could have thrown an IOException when there is an in-

teger overflow, and swallowing this exception could have

lead to a data loss. The developers later fixed this by han-

dling the IOException properly.

Thirdly, proper handling of the errors can be difficult.

It is often much harder to reason about the correctness of

a system’s abnormal execution path than its normal ex-

ecution path. The problem is further exacerbated by the

reality that many of the exceptions are thrown by third

party components lacking of proper documentations. We

surmise that in many cases, even the developers may not

fully understand the possible causes or the potential con-

sequences of an exception. This is evidenced by the fol-

lowing code snippet from CloudStack:

} catch (NoTransitionException ne) {

/* Why this can happen? Ask God not me. */

}

We observed similar comments from empty exception

handlers in other systems as well.

Finally, in reality feature development is often prior-

itized over exception handling when release deadlines

loom. We embarrassingly experienced this ourselves

when we ran Aspirator on Aspirator’s code: we found

5 empty exception handlers, all of them for the purpose

of catching exceptions thrown by the underlying libraries

and put there only so that the code would compile.

Good practice in Cassandra: among the 9 systems we

checked, Cassandra has the lowest bug-to-handler-block

ratio, indicating that Cassandra developers are careful

in following good programming practices in exception

handling. In particular, the vast majority of the excep-

tions are handled by recursively propagating them to the

callers, and are handled by top level methods in the call

graphs. Interestingly, among the 5 systems we studied,

Cassandra also has the lowest rate of catastrophic fail-

ures in its randomly sampled failure set (see Table 1).

6 Related Work

A number of studies have characterized failures in dis-

tributed systems, which led to a much deeper understand-

ing of these failures and hence improved reliability. Our

study is the first (to the best of our knowledge) analy-

sis to understand the end-to-end manifestation sequence

of these failures. The manual analysis allowed us to

find the weakest link on the manifestation sequence for

the most catastrophic failures, namely the incorrect error

handling. While it is well-known that error handling is a

source of many errors, we found that these bugs in error

handling code, many of them extremely simple, are the

dominant cause of today’s catastrophic failures.

Next, we discuss three categories of related work:

characterization studies, studies on error handling code,

and distributed system testing.

Failure characterization studies Oppenheimer et al.

eleven years ago studied over 100 failure reports from

deployed internet services [50]. They discussed the root

causes, time-to-repair, and mitigation strategies of these

failures, and summarized a series of interesting find-

ings (e.g., operator mistakes being the most dominant

cause). Our study is largely complementary since the

open-source projects allow us to examine a richer source

of data, including source code, logs, developers’ discus-

sions, etc., which were not available for their study. In-

deed, as acknowledged by the authors, they “could have

been able to learn more about the detailed causes if [they]

had been able to examine the system logs and bug track-

ing database”.

Rabkin and Katz [52] analyzed reports from Cloud-

era’s production hadoop clusters. Their study focused on

categorizing the root causes of the failures.

Li et al. [38] studied bugs in Microsoft Bing’s data

analytic jobs written in SCOPE. They found that most of

the bugs were in the data processing logic and were often

caused by frequent change of table schema.

Others studied bugs in non-distributed systems. In

1985, Gray examined over 100 failures from the Tan-

dem [22] operating system, and found operator mistakes

and software bugs to be the two major causes. Chou et

al. [12] studied OS bugs and observed that device drivers

are the most buggy. This finding led to many systems and

tools to improve device driver quality, and a study [51]

ten years later suggested that the quality of device drivers

have indeed greatly improved. Lu et al. [42] studied con-

currency bugs in server programs, and found many inter-

13

262 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

esting findings, e.g., almost all of the concurrency bugs

can be triggered using 2 threads.

Study on error handling code Many studies have

shown that error handling code is often buggy [24, 44,

55, 58]. Using a static checker, Gunawi et al. found that

file systems and storage device drivers often do not cor-

rectly propagate error code [24]. Fu and Ryder also ob-

served that a significant number of catch blocks were

empty in many Java programs [20]. But they did not

study whether they have caused failures. In a study on

field failures with IBM’s MVS operating system between

1986 and 1989, Sullivan et al. found that incorrect error

recovery was the cause of 21% of the failures and 36%

of the failures with high impact [58]. In comparison, we

find that in the distributed systems we studied, incorrect

error handling resulted in 25% of the non-catastrophic

failures, and 92% of the catastrophic ones.

Many testing tools can effectively expose incorrect

error handling through error injections [18, 23, 44].

Fate&Destini [23] can intelligently inject unique com-

binations of multiple errors; LFI [44] selectively injects

errors at the program/library boundary and avoids dupli-

cated error injections. While these tools can be effec-

tive in exposing many incorrect error handling bugs, they

all use a “top-down” approach and rely on users/testers

to provide workloads to drive the system. In our study,

we found that a combination of input events is needed

to drive the system to the error state which is hard to

trigger using a top-down approach. Our findings sug-

gests that a “bottom-up” approach, which reconstruct test

cases from the error handling logic, can effectively ex-

pose most faults that lead to catastrophic failures.

Other tools are capable of identify bugs in error han-

dling code via static analysis [24, 55, 67]. EIO [24]

uses static analysis to detect error code that is either

unchecked or not further propagated. Errlog [67] reports

error handling code that is not logged. In comparison,

our simple checker is complementary. It detects excep-

tions that are checked but incorrectly handled, regardless

whether they are logged or not.

Distributed system testing Model checking [25, 34,

37, 65] tools can be used to systematically explore a

large combination of different events. For example,

SAMC [37] can intelligently inject multiple errors to

drive the target system into a corner case. Our study

further helps users make informed decisions when using

these tools (e.g., users need to check no more than three

nodes).

7 Conclusions

This paper presented an in-depth analysis of 198 user-

reported failures in five widely used, data-intensive dis-

tributed systems in the form of 12 findings. We found

that the error manifestation sequences leading to the fail-

ures to be relatively complex. However, we also found

that for the most catastrophic failures, almost all of them

are caused by incorrect error handling, and 58% of them

are trivial mistakes or can be exposed by statement cov-

erage testing.

It is doubtful that existing testing techniques will be

successful uncovering many of these error handling bugs.

They all use a “top-down” approach: start the system us-

ing generic inputs or model-checking [65, 23], and ac-

tively inject errors at different stages [9, 18, 44]. How-

ever the size of the input and state space, and the fact

that a significant number of failures only occur on long-

running systems, makes the problem of exposing these

bugs intractable. For example, Hadoop has its own er-

ror injection framework to test their system [18], but the

production failures we studied are likely the ones missed

by such tools.

Instead, we suggest a three pronged approach to ex-

pose these bugs: (1) use a tool similar to the Aspi-

rator that is capable of identifying a number of triv-

ial bugs; (2) enforce code reviews on error-handling

code, since the error handling logic is often simply

wrong; and (3) use, for example, extended symbolic

execution techniques [8, 10] to purposefully recon-

struct execution paths that can reach each error handling

code block. Our detailed analysis of the failures and

the source code of Aspirator are publicly available at:

http://www.eecg.toronto.edu/failureAnalysis/.

Acknowledgements

We greatly appreciate the anonymous reviewers, our

shepherd Jason Flinn, and Leonid Ryzhyk for their in-

sightful feedback. This research is supported by NSERC

Discovery grant, NetApp Faculty Fellowship, and Con-

naught New Researcher Award.

References

[1] Why Amazon’s cloud titanic went down. http:

//money.cnn.com/2011/04/22/technology/a

mazon ec2 cloud outage/index.htm.

[2] Apache Cassandra. http://cassandra.apache.o

rg.

[3] Apache HBase. http://hbase.apache.org.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deter-

ministic process groups in dOS. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’10, 2010.

[5] I. Beschastnikh, Y. Brun, , J. Abrahamson, M. D. Ernst,

and A. Krishnamurthy. Unifying FSM-inference algo-

rithms through declarative specification. In Proceedings

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 263

of The International Conference on Software Engineer-

ing, ICSE’13, 2013.

[6] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy,

and T. E. Anderson. Mining temporal invariants from par-

tially ordered logs. In Managing Large-scale Systems via

the Analysis of System Logs and the Application of Ma-

chine Learning Techniques, SLAML’11, pages 3:1–3:10,

2011.

[7] J. Bloch. Effective Java (2nd Edition). Prentice Hall,

2008.

[8] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex

systems programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI’08, pages 209–224, 2008.

[9] Chaos monkey. https://github.com/Netflix/S

imianArmy/wiki/Chaos-Monkey.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. The

S2E platform: Design, implementation, and applications.

ACM Trans. Comput. Syst., 30(1):2:1–2:49, Feb. 2012.

[11] Chord: A program analysis platform for Java. http:

//pag.gatech.edu/chord.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In Proceed-

ings of the 18th ACM Symposium on Operating Systems

Principles, SOSP ’01, pages 73–88, 2001.

[13] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu,

J. Yang, G. A. Gibson, and R. E. Bryant. Parrot: A practi-

cal runtime for deterministic, stable, and reliable threads.

In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 388–405,

2013.

[14] J. Dean. Underneath the covers at Google: current sys-

tems and future directions. In Google I/O, 2008.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and

P. M. Chen. ReVirt: enabling intrusion analysis through

virtual-machine logging and replay. In Proceedings of

the Fifth Symposium on Operating Systems Design and

Implementation, OSDI’02, 2002.

[16] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking

system rules using system-specific, programmer-written

compiler extensions. In Proceedings of the 4th confer-

ence on Symposium on Operating System Design and Im-

plementation, OSDI’00, pages 1–16, 2000.

[17] Facebook: More details on today’s outage. https:

//www.facebook.com/note.php?note id=

431441338919&id=9445547199&ref=mf.

[18] Hadoop team. Fault injection framework: How to

use it, test using artificial faults, and develop new

faults. http://wiki.apache.org/hadoop/HowT

oUseInjectionFramework.

[19] N. Feamster and H. Balakrishnan. Detecting BGP con-

figuration faults with static analysis. In Proceedings of

the 2nd USENIX Symposium on Networked System De-

sign and Implementation, NSDI’05, 2005.

[20] C. Fu and G. B. Ryder. Exception-chain analysis: Re-

vealing exception handling architecture in java server ap-

plications. In 29th International Conference on Software

Engineering, ICSE’07, pages 230–239, 2007.

[21] Google outage reportedly caused big drop in global

traffic. http://www.cnet.com/news/google-

outage-reportedly-caused-big-drop-in-

global-traffic/.

[22] J. Gray. Why do computers stop and what can be done

about it? In Proceedings of the Symposium on Reliability

in Distributed Software and Database Systems, 1986.

[23] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen,

and D. Borthakur. FATE and DESTINI: a framework for

cloud recovery testing. In Proceedings of the 8th USENIX

conference on Networked Systems Design and Implemen-

tation, NSDI’11, 2011.

[24] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau,

R. H. Arpaci-Dussea, and B. Liblit. EIO: Error handling

is occasionally correct. In Proceedings of the 6th USENIX

Conference on File and Storage Technologies, FAST’08,

2008.

[25] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang.

Practical software model checking via dynamic interface

reduction. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles, pages 265–278, October

2011.

[26] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.

Kaashoek, and Z. Zhang. R2: An application-level kernel

for record and replay. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI’08, pages 193–208, Berkeley, CA, USA,

2008. USENIX Association.

[27] Hadoop Distributed File System (HDFS) architecture

guide. http://hadoop.apache.org/docs/stab

le/hdfs design.html.

[28] Hadoop MapReduce. http://hadoop.apache.org

/docs/stable/mapred tutorial.html.

[29] Hadoop market is expected to reach usd 20.9 billion glob-

ally in 2018. http://www.prnewswire.com/new

s-releases/hadoop-market-is-expected-

to-reach-usd-209-billion-globally-

in-2018-transparency-market-research-

217735621.html.

[30] DB-Engines ranking of wide column stores.

http://db-engines.com/en/ranking/wi

de+column+store.

[31] HBase bug report 10452 – Fix bugs in exception han-

dler. https://issues.apache.org/jira/brow

se/HBASE-10452.

[32] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIG-

PLAN Notice, 39(12):92–106, Dec. 2004.

[33] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Pad-

hye, and P. Bahl. Detailed diagnosis in enterprise net-

works. In Proceedings of the ACM SIGCOMM 2009 con-

ference, SIGCOMM ’09, pages 243–254, 2009.

[34] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,

death, and the critical transition: finding liveness bugs in

systems code. In Proceedings of the Fourth Symposium

on Networked Systems Design and Implementation, pages

243–256, April 2007.

[35] O. Laadan, N. Viennot, and J. Nieh. Transparent,

lightweight application execution replay on commodity

15

264 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

multiprocessor operating systems. In Proceedings of the

ACM SIGMETRICS International Conference on Mea-

surement and Modeling of Computer Systems, SIGMET-

RICS ’10, pages 155–166, 2010.

[36] J.-C. Laprie. Dependable computing: concepts, limits,

challenges. In Proceedings of the 25th International Con-

ference on Fault-tolerant Computing, FTCS’95, pages

42–54, 1995.

[37] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman,

and H. S. Gunawi. Samc: Semantic-aware model check-

ing for fast discovery of deep bugs in cloud systems. In

Proceedings of the 11th USENIX Symposium on Operat-

ing System Design and Implementation, OSDI’14, 2014.

[38] S. Li, T. Xiao, H. Zhou, H. Lin, H. Lin, W. Lin, and

T. Xie. A characteristic study on failures of production

distributed data-parallel programs. In Proc. International

Conference on Software Engineering (ICSE 2013), Soft-

ware Engineering in Practice (SEIP) track, May 2013.

[39] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A

tool for finding copy-paste and related bugs in operating

system code. In Proceedings of the 6th Conference on

Symposium on Opearting Systems Design and Implemen-

tation, OSDI’04, 2004.

[40] G. C. Lorenzo Keller, Prasang Upadhyaya. ConfErr: A

tool for assessing resilience to human configuration er-

rors. In Proceedings International Conference on De-

pendable Systems and Networks, DSN’08, 2008.

[41] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and

S. Lu. A study of Linux file system evolution. In Proceed-

ings of the 11th USENIX Conference on File and Storage

Technologies, FAST’13, pages 31–44, 2013.

[42] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mis-

takes: a comprehensive study on real world concurrency

bug characteristics. In Proceedings of the 13th interna-

tional conference on Architectural support for program-

ming languages and operating systems, ASPLOS’08,

pages 329–339, 2008.

[43] R. Mahajan, D. Wetherall, and T. Anderson. Understand-

ing BGP misconfiguration. In Proceedings of the ACM

SIGCOMM 2002 conference, SIGCOMM ’02, pages 3–

16, 2002.

[44] P. D. Marinescu, R. Banabic, and G. Candea. An ex-

tensible technique for high-precision testing of recovery

code. In Proceedings of the 2010 USENIX annual techni-

cal conference, USENIX ATC’10, 2010.

[45] P. D. Marinescu and G. Candea. Efficient testing of re-

covery code using fault injection. ACM Trans. Comput.

Syst., 29(4):11:1–11:38, Dec. 2011.

[46] Missing dot drops Sweden off the internet.

http://www.networkworld.com/communi

ty/node/46115.

[47] P. Montesinos, L. Ceze, and J. Torrellas. De-

lorean: Recording and deterministically replaying shared-

memory multiprocessor execution effiently. In Proceed-

ings of the 35th Annual International Symposium on

Computer Architecture, ISCA ’08, pages 289–300, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[48] K. Nagaraj, C. Killian, and J. Neville. Structured compar-

ative analysis of systems logs to diagnose performance

problems. In Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation,

NSDI’12, 2012.

[49] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and

T. D. Nguyen. Understanding and dealing with operator

mistakes in internet services. In Proceedings of the 6th

conference on Symposium on Opearting Systems Design

and Implementation, OSDI’04, 2004.

[50] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why

do Internet services fail, and what can be done about it?

In Proceedings of the 4th conference on USENIX Sympo-

sium on Internet Technologies and Systems, USITS’03,

pages 1–15, 2003.

[51] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and

G. Muller. Faults in Linux: ten years later. In Proceed-

ings of the 16th International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’11, pages 305–318, 2011.

[52] A. Rabkin and R. Katz. How Hadoop clusters break. Soft-

ware, IEEE, 30(4):88–94, 2013.

[53] DB-Engines ranking of key-value stores. http://db-

engines.com/en/ranking/key-value+store.

[54] Redis: an open source, advanced key-value store. http:

//redis.io/.

[55] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.

Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error prop-

agation analysis for file systems. In Proceedings of the

2009 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’09, pages 270–

280, 2009.

[56] B. Schroeder and G. Gibson. A large-scale study of

failures in high-performance computing systems. IEEE

Transactions on Dependable and Secure Computing,

7(4):337–350, 2010.

[57] C. Spatz. Basic statistics, 1981.

[58] M. Sullivan and R. Chillarege. Software defects and their

impact on system availability — A study of field failures

in operating systems. In Twenty-First International Sym-

posium on Fault-Tolerant Computing, FTCS’91, pages 2–

9, 1991.

[59] Summary of the Amazon EC2 and RDS service

disruption. http://aws.amazon.com/message

/65648/.

[60] The curse of the swallowed exception. http://mi

chaelscharf.blogspot.ca/2006/09/dont-

swallow-interruptedexception-call.html.

[61] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.

Chen, J. Flinn, and S. Narayanasamy. DoublePlay: Paral-

lelizing sequential logging and replay. In Proceedings of

the 16th International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems, ASPLOS ’11, 2011.

[62] K. V. Vishwanath and N. Nagappan. Characterizing cloud

computing hardware reliability. In Proceedings of the 1st

ACM symposium on Cloud computing, SoCC ’10, pages

193–204, New York, NY, USA, 2010. ACM.

[63] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan,

Y. Zhou, and S. Pasupathy. Do not blame users for mis-

configurations. In Proceedings of the 24th ACM Sympo-

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 265

sium on Operating Systems Principles, SOSP ’13, 2013.

[64] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proceedings of the ACM SIGOPS 22nd Sympo-

sium on Operating Systems Principles, SOSP ’09, pages

117–132, 2009.

[65] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,

F. Long, L. Zhang, and L. Zhou. MODIST: Transpar-

ent model checking of unmodified distributed systems. In

Proceedings of the Sixth Symposium on Networked Sys-

tems Design and Implementation (NSDI ’09), pages 213–

228, April 2009.

[66] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,

and S. Pasupathy. An empirical study on configuration er-

rors in commercial and open source systems. In Proceed-

ings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, pages 159–172, 2011.

[67] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou,

and S. Savage. Be conservative: Enhancing failure di-

agnosis with proactive logging. In Proceedings of the

10th USENIX Symposium on Operating System Design

and Implementation, OSDI’12, pages 293–306, 2012.

17

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Rodrigues, Xu Zhao,

Yongle Zhang, Pranay U. Jain and Michael Stumm

University of Toronto

Simple testing can prevent most critical failures
-- An analysis of production failures in

distributed data-intensive systems

Code and dataset:
http://www.eecg.toronto.edu/failureAnalysis/

Key findings

2

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Many are caused by a small set of trivial bug patterns

}  Aspirator: a simple rule-based static checker
}  Found 143 confirmed new bugs and bad practices

Distributed system failures can be deadly

Amazon AWS outage downs Reddit, Quora, Foursquare,
Instagram, NetFlix, and about 70 other sites.

Google outage: Internet traffic plunges 40%.

Facebook goes down; users called 911.

3

}  Study end-to-end failure propagation sequence

}  Reveal the minimum conditions to expose failures
}  Reveal the weakest link

}  Previous works only studied elements in isolation

A thorough analysis of real-world failures

Fault (root cause),
e.g., bug, h/w fault,

misconfiguration, etc.

Failure,
visible to user/admin.

Error (exception),
e.g., system-call
error return

4

}  Randomly sampled 198 user-reported failures*
}  Carefully studied the discussion and related code/patch
}  Reproduced 73 to understand them

}  48 are catastrophic --- they affect all or a majority of users

Study methodology

Software Program
language

Sampled failures

Total Catastrophic

Cassandra Java 40 2

HBase Java 41 21

HDFS Java 41 9

Hadoop MapReduce Java 38 8

Redis C 38 8

Total - 198 48

5 * Analysis of each failure can be found at: http://www.eecg.toronto.edu/failureAnalysis/

Outline

6

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Many are caused by trivial bugs

}  Aspirator: a simple rule-based static checker

/*	 Master:	 delete	 the	 	
	 *	 ZooKeeper	 znode	 after	 	
	 *	 the	 region	 is	 opened	 */	
try	 {	
	 	 deleteZNode();	
}	 catch	 (KeeperException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 cluster.abort(“…”);	

An example

User: “Sudden outage on the entire HBase cluster. ”

Not handled
properly

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

7

}	

/*	 Master:	 delete	 the	 	
	 *	 ZooKeeper	 node	 after	 	
	 *	 the	 region	 is	 opened	 */	
try	 {	
	 	 deleteZNode();	
}	 catch	 (KeeperException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 cluster.abort(“…”);	
}	

Finding I: multiple events are required

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

8

77% of the failures require more
than one input events

Only occur on
long-running
system (38%)

/*	 Master:	 delete	 the	 	
	 *	 ZooKeeper	 node	 after	 	
	 *	 the	 region	 is	 opened	 */	
try	 {	
	 	 deleteZNode();	
}	 catch	 (KeeperException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 cluster.abort(“…”);	
}	

Finding II: event order matters

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

9

Order of events is important in 88% of
the multi-events failures

/*	 Master:	 delete	 the	 	
	 *	 ZooKeeper	 node	 after	 	
	 *	 the	 region	 is	 opened	 */	
try	 {	
	 	 deleteZNode();	
}	 catch	 (KeeperException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 cluster.abort(“…”);	
}	

Finding III: timing matters

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

10

26% of the failures are non-deterministic

Complexity is not surprising

11

}  These systems undergo thorough testing
}  Must provide unit test for every patch
}  Use static checker on every check-in
}  Use fault injection testing [HadoopFaultInjection]

}  Designed to provide high availability
}  E.g., automatic failover on master failures

Outline

12

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Catastrophic failures: those affect all or a majority of the users

}  Aspirator: a rule-based static checker

Breakdown of catastrophic failures
C

atastrophic failures (100%
)

Undetected Error

Error detected, but
wrongly handled

92%

8%

13

Faults

}  Error handling code is the last line of defense [Marinescu&Candea’11]

92% of catastrophic failures are the result of incorrect error handling

Trivial mistakes in error handling code
C

atastrophic failures (100%
)

Faults

Undetected Error

Error detected, but
wrongly handled

92%

8%

14

Trivial mistakes (35%)

Complex bugs (34%)

System specific, but
easily detectable (23%)

Errors ignored (25%)
Abort in over-catch (8%)
“TODO” in handler (2%)

	
	
	 	 	 	
}	 catch	 (Throwable	 t)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 abort	 (“…”);	
}	

NonFatalException	
	 FatalException	

Example of abort in over-catch

A failure caused by trivial mistake

15

User:
“MapReduce jobs hang when a rare Resource Manager
restart occurs. I have to ssh to every one of our 4000 nodes in
a cluster and kill all jobs. ”

catch	 (RebootException)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 //	 TODO	
	 	 LOG(“Error	 event	 from	 RM:	 shutting	 down...”);	
	
}	
+	 eventHandler.handle(exception_response);	

Easily detectable bugs
C

atastrophic failures (100%
)

Faults

Undetected Error

Error detected, but
wrongly handled

92%

8%

16

Trivial mistakes (35%)

Complex bugs (34%)

System specific, but
easily detectable (23%)

Completely wrong

/*	 Master:	 delete	 the	 	
	 *	 ZooKeeper	 znode	 after	 	
	 *	 the	 region	 is	 opened	 */	
try	 {	
	 	 deleteZNode();	
}	 catch	 (KeeperException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 cluster.abort(“…”);	
}	

The HBase example: an easily detectable bug

Completely wrong

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

17

}  Difficult to be triggered; easily detectable by code review

Over half are trivial or easily detectable bugs
C

atastrophic failures (100%
)

Faults

Undetected Error

Error detected, but
wrongly handled

92%

8%

18

Trivial mistakes (35%)

Complex bugs (34%)

System specific, but
easily detectable (23%)

Outline

19

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling

}  Aspirator: a simple rule-based static checker

Aspirator: a static checker for Java programs

}  Three rules on exception handling
}  Not empty
}  Not abort on exception over-catch
}  No “TODO” or “FIXME” comment

}  False positive suppression techniques (details in paper)

}  Over 1/3 of catastrophic failures could have been prevented
}  If aspirator has been used and identified bugs fixed

20 All source code of aspirator is at: http://www.eecg.toronto.edu/failureAnalysis/

Checking real-world systems

System Bugs Bad practice False positive

Cassandra 2 2 9

HBase 16 43 20

HDFS 24 32 16

Hadoop MapRed.2 13 15 1

Cloudstack 27 185 20

Hive 25 54 8

Tomcat 7 23 30

Spark 2 1 2

Zookeeper 5 24 9

Total 121 379 115

21

new bugs in every system

Training set

Testing set

New bugs can lead to catastrophic failures

22

}  Hang system

}  Data loss

}  Cluster crash
}  E.g., bugs found by “abort in over-catch” check

try	 {	
	 	 tableLock.release();	
}	 catch	 (IOException	 e)	 {	
	 	 LOG("Can't	 release	 lock”,	 e);	
}	

try	 {	
	 	 journal.recover();	
}	 catch	 (IOException	 ex)	 {	
	 	
}	

Cannot recover
updates from journal

Mixed feedbacks from developers

23

}  Reported 171 new bugs/bad practices
}  143 confirmed/fixed; 17 rejected; no response for the rest

“I fail to see the reason to handle every exception.”

“No one would have looked at this hidden feature; ignoring
exceptions is bad precisely for this reason”

 “I really want to fix issues in this line, because I really want us to
use exceptions properly and never ignore them”

Why do developers ignore error handling?

24

}  Developers think the errors will never happen
}  Code evolution may enable the errors
}  The judgment can be wrong

}  Error handling is difficult

}  Errors can be returned by 3rd party libraries

}  Feature development is prioritized

}	 catch	 (IOException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 //	 will	 never	 happen	
}	

}	 catch	 (NoTransitionException	 e)	 {	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 /*	 Why	 this	 can	 happen?	 Ask	 God	 not	 me.	 */	
}	

Other findings in the paper

25

}  Failures require no more than 3 nodes to manifest

}  Failures can be reproduced offline by unit tests
}  The triggering events are recorded in system log

}  Non-deterministic failures can still be deterministically reproduced

Related work

}  Error handling code is often buggy [Gunawi’08, Marinescu’10,
Rubio-González’09, Sullivan’91, etc.]

}  Studies on distributed system failures [Gray’85,
Oppenheimer’03, Rabkin’13, etc.]

}  Distributed system testing [ChaosMonkey, Gunawi’11, Guo’11,
HadoopFaultInjection, Killian’07, Leesatapornwongsa’14, Yang’09, etc.]

26

Conclusions

27

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Many are caused by a small set of trivial bug patterns

}  Aspirator: a simple rule-based static checker
}  Found 143 confirmed new bugs and bad practices

Unexpected fun: comments in error handlers

28

/*	 FIXME:	 this	 is	 a	 buggy	 logic,	 check	 with	 alex.	 */	

/*	 TODO:	 this	 whole	 thing	 is	 extremely	 brittle.	 */	

/*	 If	 this	 happens,	 hell	 will	 unleash	 on	 earth.	 */	 	

	 /*	 TODO:	 are	 we	 sure	 this	 is	 OK?	 */	

	 /*	 I	 really	 thing	 we	 should	 do	 a	 better	 handling	 of	 these	 	
	 	 *	 exceptions.	 I	 really	 do.	 */	

Source code and dataset:
http://www.eecg.toronto.edu/failureAnalysis/

/*	 I	 hate	 there	 was	 no	 piece	 of	 comment	 for	 code	
	 *	 handling	 race	 condition.	 	
	 *	 God	 knew	 what	 race	 condition	 the	 code	 dealt	 with!	 */	

Thanks!

