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Abstract

We offer a new metric for big data platforms, COST,

or the Configuration that Outperforms a Single Thread.

The COST of a given platform for a given problem is the

hardware configuration required before the platform out-

performs a competent single-threaded implementation.

COST weighs a system’s scalability against the over-

heads introduced by the system, and indicates the actual

performance gains of the system, without rewarding sys-

tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-

cently reported in SOSP and OSDI, and find that many

systems have either a surprisingly large COST, often

hundreds of cores, or simply underperform one thread

for all of their reported configurations.

1 Introduction

“You can have a second computer once you’ve

shown you know how to use the first one.”

–Paul Barham

The published work on big data systems has fetishized

scalability as the most important feature of a distributed

data processing platform. While nearly all such publi-

cations detail their system’s impressive scalability, few

directly evaluate their absolute performance against rea-

sonable benchmarks. To what degree are these systems

truly improving performance, as opposed to parallelizing

overheads that they themselves introduce?

Contrary to the common wisdom that effective scal-

ing is evidence of solid systems building, any system

can scale arbitrarily well with a sufficient lack of care in

its implementation. The two scaling curves in Figure 1

present the scaling of a Naiad computation before (sys-

tem A) and after (system B) a performance optimization

is applied. The optimization, which removes paralleliz-

able overheads, damages the apparent scalability despite

resulting in improved performance in all configurations.

∗Michael Isard was employed by Microsoft Research at the time of

his involvement, but is now unaffiliated.
†Derek G. Murray was unaffiliated at the time of his involvement,

but is now employed by Google Inc.
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Figure 1: Scaling and performance measurements

for a data-parallel algorithm, before (system A) and

after (system B) a simple performance optimization.

The unoptimized implementation “scales” far better,

despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will

argue that many published big data systems more closely

resemble system A than they resemble system B.

1.1 Methodology

In this paper we take several recent graph processing pa-

pers from the systems literature and compare their re-

ported performance against simple, single-threaded im-

plementations on the same datasets using a high-end

2014 laptop. Perhaps surprisingly, many published sys-

tems have unbounded COST—i.e., no configuration out-

performs the best single-threaded implementation—for

all of the problems to which they have been applied.

The comparisons are neither perfect nor always fair,

but the conclusions are sufficiently dramatic that some

concern must be raised. In some cases the single-

threaded implementations are more than an order of mag-

nitude faster than published results for systems using

hundreds of cores. We identify reasons for these gaps:

some are intrinsic to the domain, some are entirely avoid-

able, and others are good subjects for further research.

We stress that these problems lie not necessarily with

the systems themselves, which may be improved with

time, but rather with the measurements that the authors

provide and the standard that reviewers and readers de-

mand. Our hope is to shed light on this issue so that

future research is directed toward distributed systems

whose scalability comes from advances in system design

rather than poor baselines and low expectations.
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name twitter rv [13] uk-2007-05 [5, 6]

nodes 41,652,230 105,896,555

edges 1,468,365,182 3,738,733,648

size 5.76GB 14.72GB

Table 1: The “twitter rv” and “uk-2007-05” graphs.

fn PageRank20(graph: GraphIterator, alpha: f32) {

let mut a = vec![0f32; graph.nodes()];

let mut b = vec![0f32; graph.nodes()];

let mut d = vec![0f32; graph.nodes()];

graph.map_edges(|x, y| { d[x] += 1; });

for iter in 0..20 {

for i in 0..graph.nodes() {

b[i] = alpha * a[i] / d[i];

a[i] = 1f32 - alpha;

}

graph.map_edges(|x, y| { a[y] += b[x]; });

}

}

Figure 2: Twenty PageRank iterations.

2 Basic Graph Computations

Graph computation has featured prominently in recent

SOSP and OSDI conferences, and represents one of the

simplest classes of data-parallel computation that is not

trivially parallelized. Conveniently, Gonzalez et al. [10]

evaluated the latest versions of several graph-processing

systems in 2014. We implement each of their tasks using

single-threaded C# code, and evaluate the implementa-

tions on the same datasets they use (see Table 1).1

Our single-threaded implementations use a simple

Boost-like graph traversal pattern. A GraphIterator

type accepts actions on edges, and maps the action across

all graph edges. The implementation uses unbuffered IO

to read binary edge data from SSD and maintains per-

node state in memory backed by large pages (2MB).

2.1 PageRank

PageRank is an computation on directed graphs which it-

eratively updates a rank maintained for each vertex [19].

In each iteration a vertex’s rank is uniformly divided

among its outgoing neighbors, and then set to be the ac-

cumulation of scaled rank from incoming neighbors. A

dampening factor alpha is applied to the ranks, the lost

rank distributed uniformly among all nodes. Figure 2

presents code for twenty PageRank iterations.

1Our C# implementations required some manual in-lining, and are

less terse than our Rust implementations. In the interest of clarity, we

present the latter in this paper. Both versions of the code produce com-

parable results, and will be made available online.

scalable system cores twitter uk-2007-05

GraphChi [12] 2 3160s 6972s

Stratosphere [8] 16 2250s -

X-Stream [21] 16 1488s -

Spark [10] 128 857s 1759s

Giraph [10] 128 596s 1235s

GraphLab [10] 128 249s 833s

GraphX [10] 128 419s 462s

Single thread (SSD) 1 300s 651s

Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-

erations, compared with measured times for single-

threaded implementations from SSD and from RAM.

GraphChi and X-Stream report times for 5 Page-

Rank iterations, which we multiplied by four.

fn LabelPropagation(graph: GraphIterator) {

let mut label = (0..graph.nodes()).to_vec();

let mut done = false;

while !done {

done = true;

graph.map_edges(|x, y| {

if label[x] != label[y] {

done = false;

label[x] = min(label[x], label[y]);

label[y] = min(label[x], label[y]);

}

});

}

}

Figure 3: Label propagation.

Table 2 compares the reported times from several

systems against a single-threaded implementations of

PageRank, reading the data either from SSD or from

RAM. Other than GraphChi and X-Stream, which re-

read edge data from disk, all systems partition the graph

data among machines and load it in to memory. Other

than GraphLab and GraphX, systems partition edges by

source vertex; GraphLab and GraphX use more sophisti-

cated partitioning schemes to reduce communication.

No scalable system in Table 2 consistently out-

performs a single thread, even when the single thread

repeatedly re-reads the data from external storage. Only

GraphLab and GraphX outperform any single-threaded

executions, although we will see in Section 3.1 that the

single-threaded implementation outperforms these sys-

tems once it re-orders edges in a manner akin to the par-

titioning schemes these systems use.

2.2 Connected Components

The connected components of an undirected graph are

disjoint sets of vertices such that all vertices within a set
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scalable system cores twitter uk-2007-05

Stratosphere [8] 16 950s -

X-Stream [21] 16 1159s -

Spark [10] 128 1784s ≥ 8000s

Giraph [10] 128 200s ≥ 8000s

GraphLab [10] 128 242s 714s

GraphX [10] 128 251s 800s

Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-

gation, compared with measured times for single-

threaded label propagation from SSD.

are mutually reachable from each other.

In the distributed setting, the most common algorithm

for computing connectivity is label propagation [11]

(Figure 3). In label propagation, each vertex maintains a

label (initially its own ID), and iteratively updates its la-

bel to be the minimum of all its neighbors’ labels and its

current label. The process propagates the smallest label

in each component to all vertices in the component, and

the iteration converges once this happens in every com-

ponent. The updates are commutative and associative,

and consequently admit a scalable implementation [7].

Table 3 compares the reported running times of la-

bel propagation on several data-parallel systems with a

single-threaded implementation reading from SSD. De-

spite using orders of magnitude less hardware, single-

threaded label propagation is significantly faster than any

system above.

3 Better Baselines

The single-threaded implementations we have presented

were chosen to be the simplest, most direct implementa-

tions we could think of. There are several standard ways

to improve them, yielding single-threaded implementa-

tions which strictly dominate the reported performance

of the systems we have considered, in some cases by an

additional order of magnitude.

3.1 Improving graph layout

Our single-threaded algorithms take as inputs edge itera-

tors, and while they have no requirements on the order in

which edges are presented, the order does affect perfor-

mance. Up to this point, our single-threaded implemen-

tations have enumerated edges in vertex order, whereby

all edges for one vertex are presented before moving

on to the next vertex. Both GraphLab and GraphX in-

stead partition the edges among workers, without requir-

ing that all edges from a single vertex belong to the same

scalable system cores twitter uk-2007-05

GraphLab 128 249s 833s

GraphX 128 419s 462s

Vertex order (SSD) 1 300s 651s

Vertex order (RAM) 1 275s -

Hilbert order (SSD) 1 242s 256s

Hilbert order (RAM) 1 110s -

Table 4: Reported elapsed times for 20 PageRank it-

erations, compared with measured times for single-

threaded implementations from SSD and from RAM.

The single-threaded times use identical algorithms,

but with different edge orders.

worker, which enables those systems to exchange less

data [9, 10].

A single-threaded graph algorithm does not perform

explicit communication, but edge ordering can have a

pronounced effect on the cache behavior. For example,

the edge ordering described by a Hilbert curve [2], akin

to ordering edges (a,b) by the interleaving of the bits

of a and b, exhibits locality in both a and b rather than

just a as in the vertex ordering. Table 4 compares the

running times of single-threaded PageRank with edges

presented in Hilbert curve order against other implemen-

tations, where we see that it improves over all of them.

Converting the graph data to a Hilbert curve order is an

additional cost in pre-processing the graph. The process

amounts to transforming pairs of node identifiers (edges)

into an integer of twice as many bits, sorting these values,

and then transforming back to pairs of node identifiers.

Our implementation transforms the twitter rv graph in

179 seconds using one thread, which can be a perfor-

mance win even if pre-processing is counted against the

running time.

3.2 Improving algorithms

The problem of properly choosing a good algorithm lies

at the heart of computer science. The label propagation

algorithm is used for graph connectivity not because it

is a good algorithm, but because it fits within the “think

like a vertex” computational model [15], whose imple-

mentations scale well. Unfortunately, in this case (and

many others) the appealing scaling properties are largely

due to the algorithm’s sub-optimality; label propagation

simply does more work than better algorithms.

Consider the algorithmic alternative of Union-Find

with weighted union [3], a simple O(m logn) algorithm

which scans the graph edges once and maintains two in-

tegers for each graph vertex, as presented in Figure 4.

Table 5 reports its performance compared with imple-
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scalable system cores twitter uk-2007-05

GraphLab 128 242s 714s

GraphX 128 251s 800s

Single thread (SSD) 1 153s 417s

Union-Find (SSD) 1 15s 30s

Table 5: Times for various connectivity algorithms.

fn UnionFind(graph: GraphIterator) {

let mut root = (0..graph.nodes()).to_vec();

let mut rank = [0u8; graph.nodes()];

graph.map_edges(|mut x, mut y| {

while (x != root[x]) { x = root[x]; }

while (y != root[y]) { y = root[y]; }

if x != y {

match rank[x].cmp(&rank[y]) {

Less => { root[x] = y; },

Greater => { root[y] = x; },

Equal => { root[y] = x; rank[x] += 1; },

}

}

});

}

Figure 4: Union-Find with weighted union.

mentations of label propagation, faster than the fastest

of them (the single-threaded implementation) by over an

order of magnitude.

There are many other efficient algorithms for comput-

ing graph connectivity, several of which are paralleliz-

able despite not fitting in the “think like a vertex” model.

While some of these algorithms may not be the best fit

for a given distributed system, they are still legitimate

alternatives that must be considered.

4 Applying COST to prior work

Having developed single-threaded implementations, we

now have a basis for evaluating the COST of systems.

As an exercise, we retrospectively apply these baselines

to the published numbers for existing scalable systems.

4.1 PageRank

Figure 5 presents published scaling information from

PowerGraph [9], GraphX [10], and Naiad [16], as well

as two single-threaded measurements as horizontal lines.

The intersection with the upper line indicates the point

at which the system out-performs a simple resource-

constrained implementation, and is a suitable baseline

for systems with similar limitations (e.g., GraphChi and

X-Stream). The intersection with the lower line indicates

the point at which the system out-performs a feature-rich

implementation, including pre-processing and sufficient
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Figure 5: Published scaling measurements for Page-

Rank on twitter rv. The first plot is the time per

warm iteration. The second plot is the time for ten it-

erations from a cold start. Horizontal lines are single-

threaded measurements.
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Figure 6: Two Naiad implementations of union find.

memory, and is a suitable baseline for systems with sim-

ilar resources (e.g., GraphLab, Naiad, and GraphX).

From these curves we would say that Naiad has a

COST of 16 cores for PageRanking the twitter rv graph.

Although not presented as part of their scaling data,

GraphLab reports a 3.6s measurement on 512 cores, and

achieves a COST of 512 cores. GraphX does not in-

tersect the corresponding single-threaded measurement,

and we would say it has unbounded COST.

4.2 Graph connectivity

The published works do not have scaling information for

graph connectivity, but given the absolute performance

of label propagation on the scalable systems relative

to single-threaded union-find we are not optimistic that

such scaling data would have lead to a bounded COST.

Instead, Figure 6 presents the scaling of two Naiad im-

plementations of parallel union-find [14], the same ex-

amples from Figure 1. The two implementations differ in

their storage of per-vertex state: the slower one uses hash

tables where the faster one uses arrays. The faster im-

plementation has a COST of 10 cores, while the slower

implementation has a COST of roughly 100 cores.

The use of hash tables is the root cause of the factor

of ten increase in COST, but it does provide some value:

node identifiers need not lie in a compact set of integers.

This evaluation makes the trade-off clearer to both sys-

tem implementors and potential users.
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5 Lessons learned

Several aspects of scalable systems design and imple-

mentation contribute to overheads and increased COST.

The computational model presented by the system re-

stricts the programs one may express. The target hard-

ware may reflect different trade-offs, perhaps favoring

capacity and throughput over high clock frequency. Fi-

nally, the implementation of the system may add over-

heads a single thread doesn’t require. Understanding

each of these overheads is an important part of assessing

the capabilities and contributions of a scalable system.

To achieve scalable parallelism, big data systems re-

strict programs to models in which the parallelism is ev-

ident. These models may not align with the intent of the

programmer, or the most efficient parallel implementa-

tions for the problem at hand. Map-Reduce intention-

ally precludes memory-resident state in the interest of

scalability, leading to substantial overhead for algorithms

that would benefit from it. Pregel’s “think like a vertex”

model requires a graph computation to be cast as an iter-

ated local computation at each graph vertex as a function

of the state of its neighbors, which captures only a lim-

ited subset of efficient graph algorithms. Neither of these

designs are the “wrong choice”, but it is important to dis-

tinguish “scalability” from “efficient use of resources”.

The cluster computing environment is different from

the environment of a laptop. The former often values

high capacity and throughput over latency, with slower

cores, storage, and memory. The laptop now embod-

ies the personal computer, with lower capacity but faster

cores, storage, and memory. While scalable systems are

often a good match to cluster resources, it is important to

consider alternative hardware for peak performance.

Finally, the implementation of the system may intro-

duce overheads that conceal the performance benefits of

a scalable system. High-level languages may facilitate

development, but they can introduce performance issues

(garbage collection, bounds checks, memory copies). It

is especially common in a research setting to evaluate

a new idea with partial or primitive implementations of

other parts of the system (serialization, memory manage-

ment, networking), asserting that existing techniques will

improve the performance. While many of these issues

might be improved with engineering effort that does not

otherwise advance research, nonetheless it can be very

difficult to assess whether the benefits the system claims

will still manifest once the fat is removed.

There are many good reasons why a system might

have a high COST when compared with the fastest

purpose-built single-threaded implementation. The sys-

tem may target a different set of problems, be suited for

a different deployment, or be a prototype designed to as-

sess components of a full system. The system may also

provide other qualitative advantages, including integra-

tion with an existing ecosystem, high availability, or se-

curity, that a simpler solution cannot provide. As Sec-

tion 4 demonstrates, it is nonetheless important to eval-

uate the COST, both to explain whether a high COST is

intrinsic to the proposed system, and because it can high-

light avoidable inefficiencies and thereby lead to perfor-

mance improvements for the system.

6 Future directions (for the area)

While this note may appear critical of research in dis-

tributed systems, we believe there is still good work to

do, and our goal is to provide a framework for measuring

and making the best forward progress.

There are numerous examples of scalable algorithms

and computational models; one only needs to look

back to the parallel computing research of decades past.

Borůvka’s algorithm [1] is nearly ninety years old, par-

allelizes cleanly, and solves a more general problem

than label propagation. The Bulk Synchronous Parallel

model [24] is surprisingly more general than most related

work sections would have you believe. These algorithms

and models are richly detailed, analyzed, and in many

cases already implemented.

Many examples of performant scalable systems exist.

Both Galois [17] and Ligra [23] are shared-memory sys-

tems that significantly out-perform their distributed peers

when run on single machines. Naiad [16] introduces a

new general purpose dataflow model, and out-performs

even specialized systems. Understanding what these sys-

tems did right and how to improve them is more impor-

tant than re-hashing existing ideas in new domains com-

pared against only the poorest of prior work.

We are now starting to see performance studies of the

current crop of scalable systems [18], challenging some

conventional wisdom underlying their design principles.

Similar such studies have come from previous genera-

tions of systems [22], including work explicitly critical

of the absolute performance of scalable systems as com-

pared with simpler solutions [20, 4, 25]. While it is

surely valuable to understand and learn from the perfor-

mance of popular scalable systems, we might also learn

that we keep making, and publishing, the same mistakes.

Fundamentally, a part of good research is making sure

we are asking the right questions. “Can systems be made

to scale well?” is trivially answered (in the introduction)

and is not itself the right question. There is a substantial

amount of good research to do, but identifying progress

requires being more upfront about existing alternatives.

The COST of a scalable system uses the simplest of al-

ternatives, but is an important part of understanding and

articulating progress made by research on these systems.
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