
DAG Reduction: Fast Answering Reachability Queries∗

Junfeng Zhou†,‡, Shijie Zhou‡, Jeffrey Xu Yu§, Hao Wei§, Ziyang Chen�, Xian Tang‡

†Donghua University, §Chinese University of Hong Kong, ‡Yanshan University
�Shanghai Lixin University of Accounting and Finance

†,‡,�{zhoujf,shijie,zychen,txianz}@ysu.edu.cn, §{yu,hwei}@se.cuhk.edu.hk

ABSTRACT
Answering reachability queries is one of the fundamental graph oper-

ations. The existing approaches build indexes and answer reachability
queries on a directed acyclic graph (DAG) G, which is constructed by
coalescing each strongly connected component of the given directed
graph G into a node of G. Considering that G can still be large to be
processed efficiently, there are studies to further reduce G to a smaller
graph. However, these approaches suffer from either inefficiency in
answering reachability queries, or cannot scale to large graphs.

In this paper, we study DAG reduction to accelerate reachability
query processing, which reduces the size of G by computing transitive
reduction (TR) followed by computing equivalence reduction (ER).
For TR, we propose a bottom-up algorithm, namely buTR, which
removes from G all redundant edges to get the unique smallest DAG
Gt satisfying that Gt has the same transitive closure as that of G. For
ER, we propose a divide-and-conquer algorithm, namely linear-ER.
Given the result Gt of TR, linear-ER gets a smaller DAG Gε in linear
time based on equivalence relationship between nodes in G. Our DAG
reduction approaches (TR and ER) significantly improve the cost of
time and space, and can be scaled to large graphs. We confirm the
efficiency of our approaches by extensive experimental studies for TR,
ER, and reachability query processing using 20 real datasets.

1. INTRODUCTION
Given a directed graph G, a reachability query u? � v asks whether

a node v is reachable from a node u. Answering reachability queries
is one of the fundamental graph operations and has been extensively
studied [1, 5, 12–16, 18, 21, 23–25, 27–30]. Its applications include
social networks, biological networks, the Semantic Web, ontology,
transportation networks, program workflows, etc. Due to its importance
and the emergence of large graphs, it is still a challenging task for
reachability queries to be answered faster with less index size and index
construction time offline.

Observing that two nodes can reach each other in a strongly con-
nected component (SCC) and can be identified in linear time w.r.t. the
size of G [20], the existing methods focus on answering reachability

∗Corresponding Authors: Junfeng Zhou, Ziyang Chen and Xian Tang

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035927

queries on a directed acyclic graph (DAG) G = (V,E) by coalescing
SCCs of G into nodes of G, where V (E) is the set of nodes (edges) of
G. The size of G becomes smaller, but still can be large to be processed
efficiently. To address this problem, there are studies to further reduce
G to a smaller graph for reachability query processing. However, these
approaches suffer from either inefficiency in answering reachability
queries, or cannot scale to large graphs. In [12], Jin et al. proposed a
SCARAB framework, which exacts, from a DAG G, a smaller “reacha-
bility backbone” Gb carrying the major reachability relationship. It is
shown in [12] that existing algorithms can scale to large graphs based
on SCARAB. However, the cost behind the scalability is large index
size and more index construction time. The query performance is
improved only for a few algorithms, such as the GRAIL algorithm [29],
and degenerates for others due to its expensive search strategy. In [9],
Fan et al. studied equivalence reduction (ER), where two nodes u and v
are equivalent in a DAG G if (a) they can reach/be-reached-by the same
set of nodes and (b) they cannot reach each other. The result of ER over
G is a smaller graph Ge by replacing each set of equivalent nodes of G
with a representative node in Ge. After ER, reachability queries can
be processed more efficiently. However, the compressR [9] algorithm
on ER computation cannot scale to large graphs due to its high space
complexity O(|V |2) and high time complexity O(|V |(|V |+ |E|)).

Considering that reachability queries can be processed more effi-
ciently after ER, but compressR cannot scale to large graphs by directly
computing ER from G, in this paper, we study DAG reduction to accel-
erate reachability query processing, which gets the result of ER by first
computing TR. We show that given the result of TR, ER computation
can be largely simplified by our newly proposed algorithms. However,
TR computation itself is a non-trivial problem. Existing algorithms on
TR computation, such as the naive DFS and PTR [19], cannot scale
to large graphs either, due to their high space and time complexities.
To address this problem, we further propose efficient algorithm on TR
computation, such that both TR and ER computation can be scaled to
large graphs. Our main contributions are as follows.

• For TR, we propose a new algorithm buTR, which first identifies
from G a set of nodes from which all the redundant edges can
be safely deleted. The result is a smaller graph G′ = (V ′, E′),
where V ′ ⊆ V and E′ ⊆ E. Then, we process nodes of G′

in a bottom-up fashion to find all the remaining redundant edges.
The time complexity of buTR is O(|V |+ |E|+ d� |V ′|) where
d = |E|/|V | is the average degree of G, � is the average number
of visited nodes for each processed node of V ′ in computing, and the
space complexity is linear in O(|V |). By TR, we obtain the unique
smallest DAG Gt, which has the same transitive closure as that of G.

• For ER, we first show that equivalence relationship of two nodes
on G can be determined by their neighbor nodes in Gt = (V,Et),
rather than by all the set of nodes that can reach/be-reached-by the
two nodes as compressR does, and we have an algorithm Sort-ER to

375

get ER Gε of Gt with time complexity O(|Et| log |V |). We further
show that the equivalence relationship is a partition of V , and each
node u is a unique constraint that their in-neighbors (out-neighbors)
take it as their common out-neighbour (in-neighbor), we propose an
algorithm linear-ER to get Gε of Gt in O(|V |+ |Et|) time.

• We conduct extensive experimental study. The experimental results
show that our TR and ER approaches are much more efficient than
existing ones and can be scaled to large graphs, and based on the
result of DAG reduction Gε, reachability queries can be answered
faster, with less index sizes and index construction time.

2. PRELIMINARIES & THE PROBLEM
We model a graph as a directed graph G, and focus on the DAG

representation of G, denoted as G = (V,E), where V is the set of
nodes and E the set of edges. Here, a node in G represents a strongly
connected component (SCC) of G, and an edge in G represents the
edge from an SCC Si to another SCC Sj if there is an edge from a node
in Si to a node in Sj . G can be constructed from G in linear time [20].
A reachability query over G can be answered using G, such that u can
reach v over G iff u’s SCC can reach v’s SCC over G.

We use inG(u) = {v|(v, u) ∈ E} to denote the set of in-neighbor
nodes of u, and outG(u) = {v|(u, v) ∈ E} the set of out-neighbor
nodes of u. We define in∗

G(u) as the set of nodes in G that can reach u
whereu �∈ in∗

G(u), and out∗G(u) the set of nodes inG thatu can reach
where u �∈ out∗G(u). We call inG(u)/outG(u)/in

∗
G(u)/out

∗
G(u)

as u’s graph parents/children/ ancestors/descendants w.r.t. a DAG G.
In a similar way, we call inT (u)/outT (u)/in

∗
T (u)/out

∗
T (u) as u’s

tree parent/children/ ancestors/descendants w.r.t. a tree T , respectively.
We also call out∗G(u)

⋃{u} the transitive closure of u, and denote it
as TC(u). Given a DAG G = (V,E), we use X = {1, 2, ..., |V |}
to denote a topological order (topo-order) of G, which can be got by
a topological sorting on G. A topological sorting of G is a mapping
t : V → X , such that ∀(u, v) ∈ E, we have tu < tv , where tu(tv)
is the topo-order of u(v) w.r.t. X . A topo-order X of G can be got in
linear timeO(|V |+ |E|) [19]. We show important notations in Table 1
for ease of reference.

Transitive Reduction (TR): Given a DAG G = (V,E) and edge
(u, v) ∈ E, we say (u, v) is redundant, if there exists a node w, such
that u can reach v through w. The TR of G is the unique smallest DAG
Gt = (V,Et) without redundant edges and has the same transitive
closure (TC) as that of G [2]. E.g., Gt in Fig. 1(b) is the TR of G in
Fig. 1(a), and all dashed edges in Fig. 1 (a) are redundant edges.

Equivalence Reduction (ER): Given a DAG G = (V,E), two nodes
u and v(u �= v) are said equivalent to each other on G, denoted as
u ≡ v, iff in∗

G(u) = in∗
G(v) ∧ out∗G(u) = out∗G(v). The ER of

G is a DAG Ge = (V e, Ee), where a node ve ∈ V e represents a
set Sve of equivalent nodes that are equivalent to v in G, and an edge
(ue, ve) ∈ Ee represents the edge from a node ofSue to a node ofSve

in G. Note that two nodes in the same set of equivalent nodes cannot
reach each other due to that G is a DAG, and given a query u? � v, if
u �≡ v, we can answer it by testing ue? � ve over Ge.

Problem Statement: Given a DAG G = (V,E), we study DAG
reduction, which is to find the smallest DAG,Gε, by TR and ER, where
“smallest” means that Gε has the same TC as that of Ge, but without
redundant edges, i.e., Gε is the TR of Ge. E.g., given G in Fig. 1(a),
Gε in Fig. 1(c) is the result of DAG reduction. As a comparison, the
ER Ge of G may contain edges such as (v3, v13), (v5, v8), etc.

3. RELATED WORK
Existing algorithms working onG to answer reachability queries can

be divided into two categories: (1) Label-Only and (2) Online-Search.

Table 1: Table of notations

Notation Description

G = (V,E) a DAG with a node set V and an edge set E

Gt = (V,Et) G’s TR with a node set V and an edge set Et ⊆ E

Gε = (V ε, Eε) Gt’s ER with a node set V ε ⊆ V and an edge set Eε ⊆ Et

X a topo-order of a DAG G
tv node v’s topo-order in X
TX the LPM tree w.r.t. a topo-order X
TG a po-tree denoting the processing order of nodes in a DAG G
inG(v)(inT (v)) the set of graph parents (tree parent) of node v in a DAG G(tree T)
in∗

G(v)(in∗
T (v)) the set of graph (tree) ancestors of node v in a DAG G(tree T)

outG(v)(outT (v)) the set of graph (tree) children of node v in a DAG G(tree T)
out∗G(v)(out∗T (v)) the set of graph (tree) descendants of node v in a DAG G(tree T)

By Label-Only, u? � v can be answered by comparing labels of u
and v. By Online-Search, u? � v is answered by DFS at run-time,
when it cannot be answered by labels of u and v.

The Label-Only methods [1, 5, 13–16, 23, 27] focus on compressing
TC to get a smaller index size for fast query processing. The recent
work includes TF [5], DL [14], and PLL [27]. TF [5] folds the given
DAG recursively based on topological level to reduce the cost of 2-hop
computation. DL [14] and PLL [27] share the same idea of computing
2-hop label. Given all nodes in a certain order, the construction of DL
and PLL labels is enumerating each node with a forward BFS and a
backward BFS to add u to labels of nodes that u can reach and nodes
that can reach u. During each BFS, an early stop condition is adopted
to accelerate the computation and reduce the index size.

The Online-Search methods [18,21,24,25,28,29] answeru? � v by
performing DFS fromu at run-time if needed. The recent work includes
GRAIL [28,29], FERRARI [18], FELINE [24], and IP+ [25]. All these
methods use additional pruning strategies to facilitate query answering,
such as comparing topological level of u and v [18, 24, 25, 28, 29],
comparing topo-order [18], and comparing interval of u and v over a
spanning tree [24].

Besides, there are studies focusing on reducing G to a smaller DAG
to accelerate reachability query processing, including (1) SCARAB
Framework, (2) transitive reduction and (3) equivalence reduction.

SCARAB Framework is studied in [12], which extracts from DAGG a
“reachability backbone”Gb carrying the major reachability relationship
of G. For each node u ∈ G, it maintains, in Gb, a set of local
neighbor nodes Sin(u)(Sout(u)) that can reach (be reached by) u.
Given a query u? � v, SCARAB returns the final answers in two
cases: (Case 1) Local-Search: SCARAB performs bidirectional BFS
search from u and v to check whether u can reach v. If the answer is
FALSE, it answers the query by case 2. (Case 2) Reachability-Join-Test:
SCARAB returns the final answer by testing

∨
u′∈Sout(u),v′∈Sin(v)

u′? � v′ using anyone of existing methods. It is shown in [12] that
SCARAB can scale to large real graphs. The cost behind its scalability
is large index size and more index construction time. Moreover, the
query performance is improved only for a few algorithms, such as the
GRAIL algorithm [29], for other algorithms, the query performance
degenerates due to the expensive Local-Search in Case 1, and the need
of testing |Sout(u)| × |Sin(v)| queries to answer u? � v in Case 2.

Transitive Reduction has been extensively studied [2, 10, 19, 22,
26]. Compared with G, as TC of Gt equals that of G, the given
reachability query on G can be answered using Gt directly. We discuss
the complexities. First, for the time complexity to be measured as a
function of the number of nodes in G, Aho et al. in [2] proved that
transitive reduction and transitive closure have the same complexity
using matrix multiplication, and the fastest known algorithm [26]
takes time O(|V |2.3727) with space O(|V |2), which is unacceptable
when processing large graphs with limited memory, therefore is not
considered for comparison in our experiment. Even though there exist
algorithms [10, 22] achieving linear-time complexity to get Gt with

376

1

52

11
6

14138

15

4

3

127

9

10 16

1

52

116

14138

15

4

3

127

9

10 16

1

52

148

15

4

3

127

9

10 16
(a) G (b) Gt (c) Gε

Figure 1: DAG reduction: a DAG G (a), the DAG Gt from G by TR (b), and the reduced DAG Gε by ER from Gt (c). Nodes are denoted by their topo-orders.

V e ⊆ V,Ee ⊆ E
G = (V,E) Ge = (V e, Ee)

� V t = V V ε = V e

TR Et ⊆ E Eε ⊆ Ee

V ε ⊆ V t, Eε ⊆ Et

Gt = (V t, Et) Gε = (V ε,Eε)
� ER

Figure 2: Relationships between different graphs.

the assumption that G is N -free, a linear-time recognition algorithm
for N -free graphs is still an open problem, and G is not N -free in
practice. Second, for the time complexity to be measured by the number
of nodes/edges in G, the naive method is by depth-first search (DFS)
or breadth-first search (BFS) in O(|V ||E|). Simon proposed a path-
decomposition based transitive reduction (PTR) algorithm [19] to get
the TR of a DAG G. Let k be the number of paths got from G by PTR,
the time complexity of PTR is O(|E|+ k|V |+ k|Et|), and the space
complexity is O(k|V |). In practice, k is large that approaches |V |,
which makes PTR cannot scale to large graphs. The problem of using
Gt lies in the higher space and time cost in TR computation.

Equivalence Reduction is studied in [9] for reachability query pro-
cessing, which reduces the given DAG G to get a smaller DAG Ge

based on equivalence relationship. The compressR algorithm [9]
works as follows to get Ge. For each node u ∈ V , it first finds u’s
graph ancestors (descendants) by backward (forward) BFS with cost
O(|V | + |E|). Second, it identifies all the sets of equivalent nodes.
Then, it replaces each set by one of its node to get the compressed
graph Ge. For compressR, the time complexity is O(|V |(|V |+ |E|))
and the space complexity is O(|V |2). Based on Ge, for a given query
u? � v, if u ≡ v then u �� v. Otherwise, we answer u? � v by
testing ue? � ve on Ge using any of existing methods, where ue(ve)
is the node in Ge denoting the set of nodes equivalent to u(v) in G.

Compared with SCARAB, only one query needs to be tested over
the compressed graph of ER for the given query on G. Compared
with TR, ER computation removes from G not only edges, but also
nodes. Usually in practice, reachability queries can be answered more
efficiently after ER. However, the high space and time cost makes
compressR difficult to be scaled to large graphs for ER computation.

4. AN OVERVIEW ON DAG REDUCTION
Given a DAG G, Fig. 2 shows the relationships between G and its

ERGe, TRGt and its ERGε. The output of compressR [9] isGe. The
number of redundant edges of Ge depends on the insertion order of the
edges when constructing Ge. In the worst case, Ge is the TC of Gε.
Compared with Ge by compressR, the result of our DAG reduction is

Gε, which is the TR of Ge without redundant edges. The benefit is that
Gε has the minimum storage representation w.r.t. the property that TC
of Gε equals that of Ge, thus analysis and visualization are more easier
to be done [8]. Given a DAG G, although it has unique TR Gt, its ER
without redundant edges may not be unique. This is because that each
node v in Gε represents a set P of equivalent nodes in G and v can be
any node of P . All the ERs are isomorphic due to that all nodes of P
are equivalent to each other.

4.1 Processing Strategy and Challenges
One way to get the result of DAG reduction Gε is to first get Ge

by compressR, then get Gε by any one of existing algorithms on TR
computation. However, compressR is unscalable for ER computa-
tion due to its large time complexity O(|V |(|V | + |E|)) and space
complexity O(|V |2). In brief, to check whether two nodes u and
v are equivalent to each other, compressR first finds the graph an-
cestors and descendants of each node by traversing from u and v,
respectively. Second, compressR checks whether u’s graph ancestors
and descendants are same as that of v. E.g., for G in Fig. 1(a), to
check whether v6 an v7 are equivalent to each other, compressR needs
to first traverse from v6 to find its graph ancestors {v1, v2, v5} and
descendants {v8, v9, v10, v15, v16}, respectively. Then, compressR

processes v7 in the same way. With such results, compressR takes the
two nodes as equivalent ones by first comparing their graph ancestors
then comparing their graph descendants.

To reduce the space and time cost of compressR, a natural question to
ask is whether there exists a way such that the equivalence relationship
of two nodes can be transformed from comparing the whole set of
graph ancestors and descendants to comparing a small subsets of nodes,
which is confirmed by the following lemma.

Lemma 4.1: Let Ai(u) ⊆ in∗
G(u) (Di(u) ⊆ out∗G(u)) be the

subset containing all the nodes that can reach (be reached by)u through
shortest paths with at most i(i ≥ 1) edges. Then, ∀u, v ∈ V, ∀i ≥ 1,
if G has no redundant edges, Eq. (1) and Eq. (2) hold. �

Ai(u) = Ai(v) ⇔ in∗
G(u) = in∗

G(v) (1)

Di(u) = Di(v) ⇔ out∗G(u) = out∗G(v) (2)

Hereafter, all proofs can be found from Appendix A. Based on
Lemma 4.1, we can get the result of DAG reduction by first TR, then
ER, which is shown by the bold arrows in Fig. 2. E.g., for the DAGG in
Fig. 1(a), we do not afford expensive cost to first get Ge by compressR.
Instead, we first get Gt shown in Fig. 1(b), which does not contain
redundant edges, then get the result of DAG reduction Gε (Fig. 1(c))
from Gt. Since A1(u) = inGt(u) and D1(u) = outGt(u) are
the smallest subsets to make Eq. (1) and Eq. (2) hold, we use them
for ER computation. Compared with compressR, the benefits of
computing ER based on Gt are twofold: (1) we significantly reduce

377

1

10

100

1000

10000

amaze arxiv

|V|
k

Out*
Out*-Diff

Figure 3: Statistics of a dense graph (arxiv) and a sparse graph (amaze),
where Out* denotes |out∗G(·)|, Out*-Diff denotes the average value of
|out∗G(u) − out∗G(vmax)| for all nodes u ∈ V . ∀u ∈ V , vmax is the
estimated graph child of u with the largest set of graph descendants.

the space from storing all graph ancestors and descendants for each
node by compressR to graph parents and children; (2) we significantly
reduce the time from comparing graph ancestors and descendants to
comparing graph parents and children. E.g., givenGt in Fig. 1(b), both
v6 and v7 have two graph parents and one graph child, which are less
than their three graph ancestors and five descendants.

Even though we can get ER Gε of Gt without affording the much
more expensive time and space cost as compressR does, it makes sense
only if we can get the TR Gt of G first.

We discuss PTR [19]. PTR computes TR by first decomposing G
into k paths, such that TC(u) can be represented by at most k nodes,
where each one belongs to a different path. After that, PTR processes
nodes of G in descending order w.r.t. a topo-order X , by which it
knows TC(v)(v ∈ outG(u)) when processing u. In detail, for every
node u, it updates TC(u) using TC(v), where (u, v) is not a redundant
edge. During processing, as it needs to remember TC(u) for every
u ∈ V , PTR has space complexity O(k|V |) and time complexity
O(|E|+k|V |+k|Et|). Fig. 3 shows the statistics for two real graphs,
one is amaze, the other is arxiv (see Appendix C for detailed
description). amaze is a sparse graph with average degree d = 0.97,
arxiv is a dense graph with d = 11. From Fig. 3 we know that for
amaze, k = 0.81|V |, and for arxiv, k = 0.29|V |. The large k for
PTR makes it unscalable in practice with limited memory size.

To reduce the space complexity of PTR, an alternative is DFS which
has space complexity O(|V |) due to the fact that it visits the set of all
reachable nodes from each node on the fly. DFS randomly picks, in each
iteration, a node u and visits all nodes of out∗G(u) to find redundant
edges from u. Let |out∗G(·)| be the average number of visited nodes
for all nodes, the time complexity of DFS is O(d|out∗G(·)||V |), where

d = |E|
|V | is the average degree of G. The efficiency of DFS is affected

by two factors: (1) the number of processed nodes, for DFS, it is
|V |, and (2) the average traversing cost, for DFS, it is d|out∗G(·)|,
which is mainly dominated by the average number of visited nodes
|out∗G(·)| with the given DAG G. As shown in Fig. 3, for amaze,
|out∗G(·)| = 0.17|V |, and for arxiv, |out∗G(·)| = 0.15|V |, which
means that in practice, DFS may be inefficient due to that |out∗G(·)|
could be comparable to |V |.

As indicated by the time complexity of DFS, there are two critical
problems we need to solve to achieve efficient TR computation: (1)
designing efficient algorithm to identify all redundant edges from some
nodes in linear time, such that to reduce the number of nodes that cannot
be processed in linear time, and (2) designing efficient algorithm to
reduce the traversing cost of remaining nodes. For the first problem,
we propose a new spanning tree, namely LPM tree, then utilize the
positional relationships between nodes to identify redundant edges
in linear time. For the second problem, we propose new heuristics to
estimate the number of reachable nodes for every node in linear time,
then process nodes in a bottom-up fashion. For each node u, we only

1413

15

4

3

16

1413

15

4

3

16

1
1

2
6

3
7

10
4

4
8

5
9

8

9

10

8

9

10

r

6
10

7
2

8
3

9
5

(a) G′ (b) TG′

Figure 4: The reduced graph G′ (a) and its po-tree TG′ (b).

visit nodes of out∗G(u) \ out∗G(v) on the fly, where v is the graph child
node of u with the largest number of reachable nodes. In this way, the
traversing cost is largely reduced with O(|V |) space.

Our DAG-Reduction algorithm is shown in Algorithm 1 to obtain
the DAG reduction Gε for a given DAG G, which is done by first
calling Algorithm 4 (Section 5) in line 1 to get the TR Gt, then calling
Algorithm 5 (Section 6) in line 2 to return the final result Gε. In the
following discussion, we will first show the basic idea of our TR and
ER algorithms in Section 4.2 and Section 4.3, then discuss more details
of TR and ER computation in Section 5 and Section 6, respectively.

Algorithm 1: DAG-Reduction (G)

1 compute the TR Gt of G (Algorithm 4)
2 compute the ER Gε of Gt (Algorithm 5)

4.2 Basic Idea of TR Computation
The basic idea of our method on TR computation is to reduce (1)

the number of processed nodes, and (2) the average traversing cost.
Compared with DFS, we do not need to process as many as |V | nodes
with average traversing cost as high as d|out∗G(·)|. Compared with
PTR, the space complexity of our method is still O(|V |).

We discuss how to reduce the number of processed nodes. The main
idea is to first find, in linear time, a set of nodes called RRNs satisfying
that (1) the redundant edges from RRNs are all removed and (2) the
redundant edges from any non-RRNs can be identified without visiting
RRNs. After that, DFS processes only non-RRNs to find the remaining
redundant edges, which equals reducing the number of processed nodes.
E.g., for G in Fig. 1(a), we find that v1, v2, v5, v6, v7, v11 and v12 are
RRNs. After that, we remove these nodes and get a smaller graph G′

in Fig. 4(a). Compared with G, G′ = (V ′, E′) contains less nodes to
be processed next.

We discuss how to reduce the average traversing cost. Let u be a
graph parent of v, the main idea is based on the fact that out∗G(v) ⊂
out∗G(u) reduces the traversing cost of u, if out∗G(v) is maintained.
Obviously, to make the traversing cost minimal by maintaining the
largest out∗G(v), we need to know the exact number of graph descen-
dants for every node. However, knowing the exact size of out∗G(u) for
all nodes u ∈ V is non-trivial, it equals computing TC of G. We will
show shortly that by our newly proposed heuristics, we can estimate
the number of reachable nodes for every node in linear time, such that
to make out∗G(u) \ out∗G(v) as small as possible. Based on such esti-
mation we construct a spanning tree, denoted as po-tree TG′ , indicating
the processing order for nodes of G′. The po-tree TG′ is constructed
by inserting each node u as a tree child of v, where v has the largest
number of graph descendants in u’s graph children. E.g., the po-tree of
G′ in Fig. 4(a) is given in Fig. 4(b). By the po-tree TG′ , we process

378

V v1 v16

v6 v7 v1 v2 v5 v8 v16

v1 v2 v5 v8 v10 v13 v16

v4 v2 v3 v5 v8 v10 v13 v14 v16

v11 v12

v9 v15v6 v7

v6 v7

v1 v11 v12

P0

v2 v2 ¬v2
P1

v5 v5 v5 ¬v5
P2

v8 ¬v8 ¬v8 v8 v8 ¬v8
P3

Figure 5: Illustration of the divide-and-conquer method, where vi(vi) means
that all nodes in the set under vi are its graph children (parents), ¬vi means that
all nodes in the set under vi are neither graph parents nor children of vi.

nodes of G′ in a bottom-up fashion. After processing a node v, the next
node to be processed is one of v’s unprocessed graph parent u (u is
a tree child of v in TG′). The efficiency of our algorithm is achieved
as follows. During processing u, we do not need to visit all nodes of
out∗G(u). Instead, we only visit nodes of out∗G(u) \ out∗G(v) on the
fly. Compared with PTR, we do not need to afford O(k|V |) space to
remember TC (u) for all nodes u ∈ V , and compared with DFS, the
traversing cost of each node u can be reduced accordingly due to the
fact that |out∗G(u) \ out∗G(v)| ≤ |out∗G(u)|. As shown in Fig. 3, for
each processed node u, by avoiding visiting nodes that are reachable
from its graph child v, we can reduce the average number of visited
nodes from 639 by DFS to 0.71 for amaze, and reduce the average
number of visited nodes from 928 by DFS to 6.6 for arxiv.

4.3 Basic Idea of ER Computation
We first give a sorting algorithm for a given Gt. Here, to compare

if two nodes are equivalent, the algorithm relies on the sorting of all
nodes by comparing their graph ancestors/descendants to speed up the
process. However, it cannot be done in linear time.

To make further improvement, we propose a new linear divide-and-
conquer algorithm, which takes initially all nodes in V as possible
equivalent ones, then repeatedly divides this set into smaller ones
satisfying that nodes in different sets are definitely inequivalent, while
nodes in the same set are possible equivalent. All the sets form a
partition of V . We show the idea using Fig. 5. Let P0 be the first
partition. In each iteration, we randomly pick a node vi, and use it
to divide some sets in partition Pi−1 into more subsets to get Pi. In
other words, a set P ∈ Pi−1 will be divided by vi into at most three
disjoint subsets in Pi, where the first set P1 contains nodes that are
graph children of vi, denoted by vi in Fig. 5, the second set P2 contains
nodes that are graph parents of vi, denoted by vi, and the third set P3

contains nodes that are neither graph parents nor children of vi, denoted
by ¬vi. If ∃Pi = ∅(i ∈ [1, 3]), P is divided into two or even one set
in Pi. After processing all nodes, we get P|V | containing all sets of
equivalent nodes.

For example, given Gt in Fig. 1(b), P0 = {V } initially. Assume
that the first randomly selected node is v2, the second is v5 and the
third is v8. We first process v2, which divides V into three sets to
get P1 = {P11, P12, P13}, where all nodes in P11 = {v6, v7} are
graph children of v2, the single node in P12 = {v1} is a graph parent
of v2, and all nodes in P13 = {v2, ..., v5, v8, ..., v16} are neither
v2’s graph parents nor children. We then process v5 based on P1

to get P2 = {P21, P22, P23, P24}. As all nodes in P11 are graph
children of v5, P21 = P11. P22 = P12 due to that v1 is a graph parent
of v5. P13 ∈ P1 is divided into two sets, P23 = {v11, v12} and
P24 = {v2, ..., v5, v8, ..., v10, v13, ..., v16}, where nodes in P23 are
graph children of v5, and nodes in P24 are neither v5’s graph parents
nor children. After processing v8, we getP3 containing 6 sets. For each
node vi, the sets in leaf nodes of the tree in Fig. 5 in computing form
the partition Pi(i ∈ [1, |V |]). For each set P ∈ Pi, we can find, from

1

32

74

8

12

13

5

116

9

14

15

1610

[1,16]

[2,2] [3,4] [5,16]

[6,6]

[8,10]

[9,10]

[7,10]
[11,11]

[12,16]

[13,13]
[14,16]

[15,16]

[16,16]

[4,4]

[10,10]

0

1

2

3

4

5

Figure 6: The LPM tree TX of G generated from X . The integers on the left of
TX are topological levels, i.e., the length of the longest path ending at a node.

edges on the path between P and the root of the tree in Fig. 5, the set of
processed graph parents and children for all nodes of P . As each set of
Pi has a distinct path to the tree root denoting a unique set of graph
parents and children, two nodes from different sets of Pi are definitely
inequivalent. The following processing is similar. After processing all
nodes, we get P|V |. As each set of P|V | cannot be further divided into
smaller ones, all nodes in the same set of P|V | are definitely equivalent
to each other, i.e., P|V | contains all sets of equivalent nodes. E.g., since
v6 and v7 have the same set of graph parents and children, i.e., v2, v5
and v8, shown on the path from the root to {v6, v7} in P3 in Fig. 5,
and there is no other nodes that take v6 or v7 as their graph parents or
children according to Gt in Fig. 1 (b), we know that {v6, v7} ∈ P|V |,
thus v6 and v7 are equivalent to each other.

5. TRANSITIVE REDUCTION
We discuss in this section more details on the optimizations for TR,

including (O1)marking nodes to reduce the size of the processed graph,
and (O2) estimating the number of graph descendants to construct a
po-tree to reduce the average traversing cost.

5.1 O1: Marking Nodes of G

Given a node u in a DAG G, it is not possible to know whether an
edge from u is redundant or not by scanning only u’s graph children.
The aim of this optimization is, based on a spanning tree, to identify a
set of nodes in linear time O(|V |+ |E|) satisfying that all redundant
edges from them are correctly identified, such that to get a smaller
graph G′ to be processed next. However, not any spanning tree is
appropriate. Given a node u in a spanning tree T of G, if v is a tree
descendant but not a tree child of u, then we can safely say that the
non-tree edge (u, v) is a redundant edge, if it exists. If v is a tree child
of u, then we cannot tell whether edge (u, v) is redundant or not easily.

5.1.1 The LPM Tree and the Marked Nodes
Given a topo-order X of DAG G, the LPM tree TX is a spanning

tree of G, where the incoming edge to a node v in TX is from its last
graph parent u, which has the maximum topo-order among v’s graph
parents in X . As an example, given G in Fig. 1(a) with its topo-order
X , the LPM tree TX is shown in Fig. 6. We have the following result.

Property 5.1: Each edge of TX is not a redundant edge. �

As a comparison, the DFS/BFS-based spanning tree does not have
this property. E.g., for G in Fig. 1(a), edge (v3, v13) may be an edge of
both a DFS or BFS-based spanning tree. According to Property 5.1, we
only need to focus on non-tree edges to find redundant ones.

Definition 5.1: (Complete Node, CN) Given a node u ∈ V , we say
u is a CN of TX , if ∀v ∈ out∗G(u), v ∈ out∗TX

(u). �

379

Here, intuitively, if u is a CN, then u’s graph descendants are its tree
descendants, thus all edges from u pointing to nodes that are not u’s
tree child nodes in TX are redundant edges. E.g., the CNs of TX in
Fig. 6 are v1, v5, v10, v12, v14, v15 and v16 according to Definition 5.1.
Consider v1, outG(v1) = {v2, v3, v4, v5, v12, v14} ⊆ out∗TX

(v1).
Since v4 is a tree descendant but not a tree child of v1, the edge (v1, v4)
is redundant. Similarly, (v1, v12) and (v1, v14) are redundant edges.

Further, if u is not a CN, we may still have a chance to find all
redundant edges from u. The main idea is to find every node u such
that all redundant edges from u can be identified by the positional
relationship between nodes of u’s graph children. E.g., v6 is not a
CN and it has two graph children, v8 and v9. And we know that edge
(v6, v9) is redundant due to that v9 is a tree child of v8 in TX . We
divide u’s graph children into two disjoint sets, S1 and S2, satisfying
that outG(u) = S1

⋃
S2, where S1 contains nodes that are u’s tree

descendants in TX , and S2 = outG(u) \ out∗TX
(u). As nodes of S1

are u’s tree descendants, we can easily find redundant edges between u
and nodes of S1 based on TX and Property 5.1. We use Definition 5.2
to find redundant edges between u and nodes of S2.

Definition 5.2: (Reducible Node, RN) ∀u ∈ V , let lu be the topo-
logical level of u, i.e., the length of the longest path ending at u, and
lmin(u) = min{lv|v ∈ outTX (u)} if outTX (u) �= ∅, otherwise
lmin(u) = ∞. We say u is anRN of TX , if outG(u) \ out∗TX

(u) can
be represented by C1 and C2 satisfying the following conditions:

1. outG(u) \ out∗TX
(u) = C1 ∪ C2 and C1 ∩ C2 = ∅,

2. ∀v ∈ C1, lv ≤ lmin(u),
3. ∀v, w ∈ C1, tv < tw ⇒ lv ≥ lw,
4. ∀w ∈ C2, ∃v ∈ C1, such that w ∈ out∗TX

(v). �

In Definition 5.2, the first condition further divides S2 into two
disjoint sets C1 and C2. The second condition guarantees that there
does not exist paths from nodes of outTX (u) to nodes of C1. The third
condition guarantees that no edge exists between two nodes of C1. By
the second and third condition, we know that all edges from u to nodes
ofC1 are not redundant edges. The fourth condition guarantees that any
edge from u to a node of C2 is a redundant edge. Therefore, if u is an
RN, it means that we can find C1 and C2, such that all redundant edges
from u can be correctly identified. It is worth noting that if u is a CN,
then u is also an RN, and in this case, outG(u) \ out∗TX

(u) = ∅. E.g.,
all nodes but v3 in Fig. 6 are RNs according to Definition 5.2. Consider
v3. Since outTX (v3) = {v4}, we have lmin(v3) = lv4 = 2. Since
outG(v3)\out∗TX

(v3) = {v8, v13, v16}, and none of the three nodes
satisfies the second condition of Definition 5.2, v3 is not an RN.

Definition 5.3: (RemovableRN,RRN) Given anRNu,u is anRRN,
if in∗

G(u) = ∅, or ∀v ∈ in∗
G(u), v is an RN. �

Intuitively, given an RRN u, all redundant edges from each of u’s
graph ancestors have been correctly identified, thus we do not need to
find redundant edges from any of u’s graph ancestors again, and for any
non-RN v, finding redundant edges from v will not visit u. Therefore,
RRNs are useless for processing non-RNs and can be safely removed.
E.g., v3 in Fig. 6 is not an RRN since it is not an RN of TX according
to Definition 5.3. Even though v4 is an RN of TX , it is not an RRN,
since v3 ∈ in∗

G(v4) is not an RN of TX . The 7 RRNs found in TX are
the circled nodes in Fig. 6, i.e., v1, v2, v5, v6, v7, v11 and v12. After
removing the 7 RRNs, the reduced G′ is shown in Fig. 4(a).

5.1.2 The Algorithm
As shown by Algorithm 2, we first find all RRNs, then find all CNs

from non-RRNs. If a node v is both a CN and RRN, it will be marked
as an RRN due to that v is useless for post processing.

ConsiderRRN. Definition 5.3 implies that we need to check whether
every node of in∗

G(v) is an RN, in order to know whether v is an RRN.
We give Lemma 5.1 to show that we only need to visit nodes of inG(v).

Lemma 5.1: Given an RN v, v is an RRN iff inG(v) = ∅, or every
node of inG(v) is an RRN. �

According to Lemma 5.1, to know whether v is an RRN, we first
need to know whether it is an RN. To know whether v is an RN, we
need to know whether all redundant edges from v can be correctly
identified according to Definition 5.2. Given w ∈ outG(v), if edge
(v, w) is redundant, there must exist a node x ∈ outG(v) satisfying
tv < tx < tw ∧ x � w. Here, x � w is determined by their posi-
tional relationship in TX . And the problem becomes ∀w ∈ outG(v),
whether ∃x ∈ outG(v)(x �= w), such that x is a tree ancestor of w.
We use DT-order to make the cost of determining whether v is an RN
minimal by visiting all nodes of outG(v) only once.

The DT-order: A DT-order is a DFS-based topo-order which visits all
nodes of G in DFS way under the restriction of topological sorting, i.e.,
a node can be visited only if all its graph ancestors have been visited.
E.g., the topo-order for nodes in Fig. 1(a) is a DT-order of G.

Lemma 5.2: If the LPM tree TX is generated based on a DT-order X
of G, then X is also a DFS-order of TX . �

According to Lemma 5.2, visiting nodes of an LPM tree in DFS-
order X equals visiting nodes of G in ascending topo-order X . We
assign each node an interval Iu = [s, e] to facilitate checking the
ancestor-descendant relationship for nodes in TX , where Iu.s = tu,
and Iu.e is the maximum DT-order of u’s tree descendants. Iu ⊂ Iv
means that v is a tree ancestor of u. The interval of each node in TX

is shown in Fig. 6. Note that we cannot have Lemma 5.2 if the given
topo-order is not a DT-order, and the interval used in [11, 24, 29] does
not have any relationship with topo-order.

Algorithm 2: markCNRRN (G = (V,E))

1 construct TX

2 check whether ∀v ∈ V is an RN by calling isRN(v, TX)
3 check whether ∀v ∈ V is an RRN according to Lemma 5.1 in

ascending DT-order
4 check whether every non-RRN is a CN in descending DT-order
5 return G after removing RRNs

Function isRN(v, TX)
6 Ix ← [0, 0]; lmin(v) ← ∞
7 for each (w ∈ outG(v) in ascending DT-order X of G) do
8 if (Iw ⊂ Iv) then
9 if (lmin(v) > lw) then lmin(v) ← lw

10 if (Iw �⊂ Ix) then Ix ← Iw
11 else delete edge (v, w)
12 else
13 if (Iw �⊂ Ix) then
14 if (lmin(v) < lw) then return FALSE
15 else Ix ← Iw; lmin(v) ← lw
16 else delete edge (v, w)
17 return TRUE

In Algorithm 2, isRN() is used to check whether a node is an RN,
which processes v’s graph children in ascending DT-order X (line 7)
to determine whether v is an RN by visiting its graph children only
once. In isRN(), w is the current processed node, x is the last node
processed beforew satisfying that edge (v, x) is not redundant, lmin(v)
denotes the smallest topological level for nodes processed before w. To
know whether w has a tree ancestor in outG(v), we only need to test
whether w is a tree descendant of x. If v is an RN, we know whether
it is an RRN by visiting all its graph parents only once according to
Lemma 5.1.

380

Consider CN. Let xu = max argv{tv|v ∈ out∗G(u)} be, among
u’s graph descendants, the one with the largest topo-order. We process
all non-RRNs in descending order w.r.t. DT-order X . For each graph
parent node u of the current processed node v, we update xu using xv .
When processing u, we know u is a CN iff xu is a tree descendant of u,
which can be determined by comparing their intervals.

After identifying RRNs and CNs, we remove all RRNs from G and
return G in line 5 as the reduced graph G′ to be processed next.

Example 5.1: Given G in Fig. 1(a), Algorithm 2 first constructs the
LPM tree as shown in Fig. 6, then marks all nodes but v3 as RNs. After
that, Algorithm 2 finds 7 RRNs, i.e., v1, v2, v5, v6, v7, v11 and v12.
Finally, it finds all CNs from non-RRNs, and returns G without the 7
RRNs as the reduced graph G′ shown in Fig. 4(a). �

5.1.3 Analysis

Theorem 5.1: Given an LPM tree TX of G, Algorithm 2 correctly
finds all RRNs and CNs. �

With DT-order we have the LPM tree constructed in linear time
O(|V |+ |E|) (line 1). Given a node v, isRN() visits v’s graph children
once (line 2), and v’s graph parents are also visited once to determine
whether it is an RRN (line 3). Therefore, to find all RRNs, Algorithm 2
visits

∑
v∈V (|inG(v)|+ |outG(v)|) = 2× |E| edges. For CN, we

need to visit graph parents of every node once.Therefore, the time
complexity of Algorithm 2 is O(|V |+ |E|).

5.2 O2: Estimating # of Graph Descendants
We process each node based on one of its graph child to reduce the

traversing cost. Consider G′ in Fig. 4(a). If we process v3 after v16,
we need to visit all nodes in out∗G(v3) \ out∗G(v16), which contains
8 nodes. As a comparison, if we process v3 after v4, we need to
visit nodes in out∗G(v3) \ out∗G(v4), which contains only 1 node. To
minimize out∗G(u) \ out∗G(v), where v is a graph child of u, we need
to know the exact size of out∗G(u) for each node u. However, knowing
the exact number of graph descendants for all nodes is non-trivial, since
it needs to compute TC of the given DAG.

Suppose that u is the graph parent of v, [30] proposed heuristics to
estimate the lower and upper bounds (denoted as lb and ub, respec-
tively) of out∗G(u). The lower bound of u is obtained by summing
up the contributions of u’s graph children, where each graph child v
contributes 1

|inG(v)| of its lower bound to u. If |outG(u)| = 1 and

|inG(v)| > 1, the lower bound of u may be less than that of v, which
may result in v is not the one wanted for u. On the other hand, the
upper bound of u is the sum of the upper bounds of u’s graph children.
As many nodes share the same set of graph descendants, the upper
bound of u may be much larger than the exact result, which cannot
help us to select the appropriate v for u. [6] proposed to estimate the
number of graph descendants for all nodes by performing k random
permutations, to guarantee the difference between the estimated size
and the accurate size is bounded with certain probability. The larger
the k, the better the estimated results. As the cost of each random
permutation is O(|V | + |E|), the overall cost is O(k(|V | + |E|)).
Even though we can get a better estimation, the larger k value may
result in inefficiency for transitive reduction.

Here, with our LPM tree TX , we can get an estimation in linear
time O(|V |+ |E|), to significantly accelerate TR computation. Let
Cu ⊆ outG′(u) be the set of u’s graph children that do not have

tree ancestors in outG′(u) w.r.t. TX
1, Ñ(u) the estimated size of

1Cu is defined without topological levels, while C1 in Definition 5.2
is defined with topological levels. E.g., for node v3 in Fig. 6, Cv3 =
{v4, v8, v13, v16}, while C1 = ∅ for v3.

out∗G(u), and vmax the node with the largest estimated number of
graph descendants in Cu. We give two heuristics to estimate the sizes.

(H1) Using the sum of sub-tree sizes as the estimation. We take
|Cu|+

∑
v∈Cu

|out∗TX
(v)| as the lower bound of |out∗G(u)|.

(H2) Using vmax to estimate Ñ(u) = |Cu|+ Ñ(vmax).

Example 5.2: For H1, consider v14 in Fig. 4(a), which is a CN of TX

in Fig. 6. Cv14 = {v15}, we know that |Cv14 | + |out∗TX
(v15)| =

2 = |out∗G(v14)|. However, some leaf nodes of the LPM tree may have
graph descendants in the given DAG. If some nodes ofCu are leaf nodes
of the LPM tree, then the estimated results may be far from accurate.
E.g., for v3 in Fig. 4(a), if the three redundant edges from v3 do not
exist, then Cv3 = {v4}, and we have that |Cv3 | + |out∗TX

(v4)| =
1 < |out∗G(v3)| = 8.

For H2, consider v4 in Fig. 4(a). Cv4 = {v8, v13, v14}. Suppose

that Ñ(v8) = 4 and Ñ(v13) = Ñ(v14) = 2. With H2, we can get

the estimated size of v4, i.e., Ñ(v4) = |Cv4 |+ Ñ(v8) = 3 + 4 = 7,
which is the accurate result. However, when the set of subtrees of
H1 have similar sizes, or when most edges from u to nodes of Cu are
redundant edges, H2 may get results smaller or larger than that of H1, or
even larger than |out∗G(u)|. In practice, the result of H2 is smaller than
the accurate result, because each redundant edge (u, v)(v �= vmax)

can make Ñ(u) increased by one, but it may make Ñ(u) decreased by
|out∗TX

(v)|. �

As can be seen above, H1 and H2 are complementary to each other.
When one gets a smaller result, the other usually gets a larger value.
Also H1 gets a lower bound of |out∗G(u)| and H2 gets a result that is
usually smaller than the accurate result. We take the larger value of H1
and H2 as the estimated result. By summarizing the above description,
we estimate the approximate size of out∗G(u) based on Eq. (3).

Ñ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|out∗TX
(u)|, u is a CN and

|out∗TX
(u)| ≥

Ñ(vmax)

Ñ(vmax), u is a CN and
|out∗TX

(u)| <
Ñ(vmax)

max{|Cu|+ Ñ(vmax),
|Cu|+

∑
v∈Cu

|out∗TX
(v)|}, otherwise

(3)

There are three cases in Eq. (3). (Case-1)u is aCN and |out∗TX
(u)| ≥

Ñ(vmax), we take |out∗TX
(u)| as the accurate result, which can be

got in O(1) time, i.e., |out∗G(u)| = Iu.e − Iu.s. (Case-2) u is a

CN but |out∗TX
(u)| < Ñ(vmax), we take Ñ(vmax) as the estimated

result, to guarantee that ∀v ∈ outG′(u), Ñ(u) ≥ Ñ(v). (Case-3)

u is not a CN, we take the larger value of {|Cu|+ Ñ(vmax), |Cu|+∑
v∈Cu

|out∗TX
(v)|} as the estimated result, which guarantees that

Ñ(u) is not smaller than the lower bound.
Consider G′ in Fig. 4(a). |out∗G(v3)| = 8, the estimated results by

our method is 11. For all other nodes, our estimated results are the
same as the accurate results. As a comparison, since v3 has many graph
descendants taking v15 as their graph descendants, the ub [30] method
will get inaccurate results by counting estimated results of v15 several
times. For v3, the estimated result of ub is 16. On the contrary, lb [30]
is also inaccurate for the similar reason. [6] estimates the results based
on k random permutations, its accuracy depends on the value of k, the
larger the value the more accurate results it can get. However, a larger
value for k means unaffordable cost for estimation.

381

We use Algorithm 3 to make the estimation and generate the po-
tree, which processes all nodes in descending DT-order, such that
when processing a node u, we have the estimated values for u’s graph
children. For each node u, we use Eq. (3) to estimate the number of
graph descendants, then insert u into the po-tree TG′ as a tree child of
vmax. Here, po-tree TG′ is a spanning tree indicating the processing

order for nodes of G′. After processing all nodes, we get the estimated
values for all nodes and the po-tree TG′ as well. The po-tree of G′ in
Fig. 4(a) is given in Fig. 4(b). For each node, we visit its child nodes
only once, thus the time complexity of Algorithm 3 is O(|V |+ |E|).

Algorithm 3: genPoTree (G′ = (V ′, E′))

1 initialize the po-tree TG′ with a single root node r
2 for each (u ∈ V ′ in descending DT-order X of G′) do
3 if (outG′(u) = ∅) then vmax ← r

4 else vmax ← maxargv∈outG′ (u){Ñ(v)}
5 compute the value of Ñ(u) using Eq. (3)
6 insert u as a tree child of vmax in TG′
7 return TG′

5.3 The Algorithm for TR

5.3.1 The Processing Strategy
As shown by Algorithm 4, buTR first outputs a smaller graph G′ in

line 1. In line 2, it generates a po-tree TG′ based on Eq. (3). Then, it
processes nodes of G′ in a bottom-up fashion. After processing a node
v, the next node to be processed is one of v’s unprocessed graph parent
u (u is a tree child of v in TG′). We divide nodes of out∗G(u) into two
sets, out∗G(v) and out∗G(u) \ out∗G(v), and process them separately.

Processing Nodes of out∗G(v) (line 10): We use a flag for each node
to denote whether it belongs to out∗G(v) or not. We explain our idea
using Fig. 7. Here, assume that all nodes of out∗G(v), i.e., S1, in Fig. 7
are graph descendants of v. When processing u1, we know that edge
(u1, y4) is redundant, since (u1, v) ∈ E and y4 ∈ out∗G(v).

Processing Nodes of out∗G(u)\out∗G(v) (lines 11-15): We first pass
u as another flag to each of u’s graph child y ∈ outG′(u) \ out∗G(v)
(line 11), then mark all nodes of out∗G(u) \ out∗G(v) by either DFS
or BFS, indicating that they are graph descendants of u (lines 12-15).
During DFS/BFS, edge (u, y) is redundant if we encounter a node
y ∈ outG′(u) \ out∗G(v) marked by u. Reconsider Fig. 7. When
processing u1, we pass u1 to y1 and y2. When we encounter y2, we
observe u1 by DFS/BFS from y1. Thus (u1, y2) is redundant due to
that u1 can reach y2 through y1.

5.3.2 Avoiding the Rollback Operation
Consider Fig. 7, where y3 �∈ out∗G(v). After processing u1, if we

set the flag value of y3 as TRUE denoting that y3 ∈ out∗G(u1), then
when we precede to u2, we may wrongly take (u2, y3) as a redundant
edge due to (1) we process u2 based on v, and (2) y3 is marked as
TRUE before processing u2 indicating that y3 ∈ out∗G(v). To avoid
such a problem, we need to remember S2, and rollback its status to
FALSE before preceding to u2, which is to visit S2 again. We use
DT-order and the reverse DT-order to avoid the rollback operation.

The Reverse DT-order: Recall that a DT-order visits all nodes of G
in DFS way under the restriction that a node can be visited only if all its
graph ancestors have been visited. Given a DT-order X of G, we have
its reverse DT-order, denoted as X , which can be got in O(|V |+ |E|)
time by visiting nodes of G in DFS way in the reverse order of X under
the restriction of topological sorting2.

2The two topo-orders used in FELINE [24] are not DT-orders, and the
cost of getting the second one is O(|V | log |V |+ |E|).

 S3 S2

 S1

v

u1

y4
y2

y1

u2

y3

S2

⋂
S3

Figure 7: Relationship of transitive closures of different nodes, where bold
(thin) arrows denote paths (edges), out∗G(v) = S1, out∗G(u1) = S1 ∪ S2,
out∗G(u2) = S1 ∪ S3.

This is done as follows based on a stack S. For all the nodes without
incoming edges, we push them intoS in ascending DT-orderX . When
a node u is popped out from S, we assign u its tu in X , which is equal
to the order it is popped out from S. After that, we push u’s graph
children that take u as their unique graph parent into S in ascending
DT-order X , and remove u and all its outgoing edges. Such operation
is performed repeatedly until S becomes empty. E.g., given the graph
TG′ in Fig. 4(b) and the DT-order Z denoted as the red italic integers
(topological sorting is performed from tree ancestor to descendants),
the reverse DT-order Z is denoted as the underlined integer beside
each node. And we have the following result.

Lemma 5.3: Given DT-orders Z and Z of a tree T , let tu(tu) be
the topo-order of node u in Z(Z), then nodes u and v do not have
ancestor-descendant relationship iff tu < tv ⇔ tu > tv . �

Lemma 5.4: Let N1(N2) be the number of visited nodes and edges
for all nodes of TG′ processed in ascending DT-order Z(Z) by buTR,
then N1 = N2. �

Our solution to avoid the rollback operation is based on Lemma 5.3
and Lemma 5.4. With Lemma 5.4, we can process nodes of TG′ in
ascending order w.r.t. any DT-order of TG′ . Assume that u1 and u2

do not have ancestor-descendant relationship in TG′ , and (u1, v) and
(u2, v) are two edges in TG′ . With Lemma 5.3, if tu1 < tu2 , then
tu1 > tu2 . Therefore, we process nodes of TG′ in ascending DT-order
Z, but mark nodes with their DT-orders in Z. We process u1 and mark
nodes of out∗G(u1)\out∗G(v)with tu1 . Then, when processingu2, we
can directly mark nodes of out∗G(u2) \ out∗G(v) with tu2 . In this way,
we guarantee that a node, if it needs to be marked more than once, is
marked with values in descending order, such that we know which node
set it belongs to, and therefore avoid the rollback operation on nodes of
out∗G(u) \ out∗G(v), i.e., we visit each node of out∗G(u) \ out∗G(v)
only once, instead of twice. We explain it using an example.

Example 5.3: Consider v14 and v13 in Fig. 4(b), where tv14 = 4 <
tv13 = 5 and tv14 = 10 > tv13 = 9. Assume that edges (v13, v10)
and (v14, v9) also exist in Fig. 4(a). We process v14 before v13.
When processing v14, we mark nodes of out∗G(v14) \ out∗G(v15) =
{v9, v10, v15} with tv14 = 10. At this point, we know that nodes with
flag values ≤ 10 are v14’s graph descendants, among which those with
flag values = 10 (v9, v10 and v15) belong to out∗G(v14) \ out∗G(v15),
and those with flag values < 10 belong to out∗G(v15). Next, we pro-
cess v13, we mark nodes of out∗G(v13) \ out∗G(v15) = {v10, v15}
with tv3 = 9. Here, we know nodes with flag values ≤ 9 are v13’s
graph descendants, among which those with flag values = 9 belong
to out∗G(v13) \ out∗G(v15), and those with flag values < 9 belong
to out∗G(v15). As a result, nodes in out∗G(v14) \ out∗G(v15) and
out∗G(v13) \ out∗G(v15) are visited only once. �

5.3.3 Analysis

Theorem 5.2: Given a DAG G, Algorithm 4 correctly identifies all
redundant edges. �

382

Algorithm 4: buTR (G = (V,E))

1 G′ ← markCNRRN (G)
2 TG′ ← genPoTree (G′)
3 for each (u ∈ outTG′ (r) in descending DT-order Z) do
4 processTreeChild(u, r)
5 return G after removing redundant edges

Procedure processTreeChild(u, v)
6 delRdtEdge(u, v)
7 for each (x ∈ outTG′ (u) in descending DT-order Z) do
8 processTreeChild(x, u)

Procedure delRdtEdge(u, v) /*∀x∈V, flag[x]=∞∧edge[x]=-1 initially*/

9 for each (w ∈ outG′(u)) do
10 if (flag[w] ≤ tv) then delete edge (u,w)
11 else flag[w] ← tu; edge[w] ← u
12 for each (w ∈ outG′(u) \ ({v}⋃ out∗G(v))) do
13 visit nodes of out∗G(u) \ out∗G(v) by DFS/BFS from w
14 set the flag value of each visited node x as tu
15 delete edge (u, x), if edge[x] = u(x �= w)

For each node u in the po-tree TG′ , the number of visited nodes
for u is �u,vmax = |out∗G(u) \ out∗G(vmax)|. Here, vmax has the
largest number of graph descendants among u’s graph children, and
vmax is the unique parent of u in TG′ . The cost of processing u is

d ×�u,vmax . Let � =
∑

u∈V ′ �u,vmax

|V ′| be the average number of

visited nodes of processing all nodes V ′, the cost of processing all
nodes of V ′ is O(d�|V ′|). Since the time complexity of Algorithm 2
and Algorithm 3 is O(|V | + |E|), the time complexity of buTR is
O(|V |+ |E|+ d� |V ′|).

During the processing, we need to maintain an LPM tree and po-tree,
and for each node of G, we need to maintain 5 variables, the space
complexity of buTR is O(|V |).

6. EQUIVALENCE REDUCTION
Given the output Gt of buTR, we show in this section how to get

the ER Gε of Gt. By first sorting the adjacency lists (such as by topo-
order), we have a total order of all nodes by comparing their graph
parents and children. After that, each set of equivalent nodes can be
clustered together by either one of existing sorting algorithms, which
we call as Sort-ER without giving more details. We mainly discuss the
linear algorithm linear-ER.

Definition 6.1: (Partial Equivalence ≡S) Given the TR Gt =
(V,Et) of a DAG G and a subset S ⊆ V , we say two nodes u and v
are equivalent to each other on Gt w.r.t. S if they have the same set of
graph parents and children in S, and is denoted as u ≡S v. �

Definition 6.1 defines a relaxed equivalence relationship for all nodes
of Gt, which considers only graph parents and children in a subset of
V . E.g., given Gt in Fig. 1(b), if S = {v8}, then v8’s graph parents,
i.e., {v4, v6, v7}, form an equivalent set due to the three nodes have the
same graph child v8. v8’s graph children, i.e., {v9, v15}, form another
equivalent set due to that the two nodes have the same graph parent v8,
and all other nodes form the third equivalent set due to that they do not
have graph parents and children in S.

The partial equivalence relationship ≡S also defines, for V , a parti-
tion P satisfying (1) P does not contain the empty set, (2) the union of
the sets in P is equal to V (P covers V), and (3) the intersection of any
two distinct sets in P is empty. Obviously, nodes in the same set of P
are possible equivalent, while nodes in different sets of P are definitely
inequivalent.

Algorithm 5: linear-ER (Gt = (V,Et))

1 P0 ← {V }
2 for each (i ∈ [1, |V |] in ascending order) do
3 Pi ← refine(Pi−1, vi)
4 replace each set of P|V | by one of its nodes to get Gε

Function refine(Pi−1, vi) /*S = inGt(vi)
⋃

outGt(vi)*/
5 generate a partition S for S, of which two nodes in the same set

of Pi−1 belong to the same set of S , otherwise, they belong to
different sets of S

6 for each (w ∈ S) do
7 remove w from the set of Pi−1 it belongs to
8 Pi−1 ← Pi−1

⋃S
9 return Pi−1

Lemma 6.1: Let Si, Sj be subsets of V contain i and j nodes re-
spectively, Pi(Pj) the partition of V corresponding to the partial
equivalence relationship ≡Si (≡Sj), then Si ⊂ Sj ⇒ Pj � Pi,
where Pj � Pi denotes that every element of Pj is a subset of some
element of Pi. �

Let Si = ∅ if i = 0, otherwise Si = Si−1 ∪ {vi}, we have
∅ = S0 ⊂ S1 ⊂ S2 ⊂ ... ⊂ S|V | = V . Based on Lemma 6.1, we
have Eq. (4).

P|V | � P|V |−1 � ... � P0 = {V } (4)

Theorem 6.1: Given Gt = (V,Et), partition P|V | contains all sets
of equivalent nodes w.r.t. G. �

According to Theorem 6.1, P|V | is the result we want to get. Based
on Eq. (4), we have Algorithm 5, which visits the graph parents and
children of each node only once to find all sets of equivalent nodes.
After that, each set of P|V | is replaced by one of its nodes to get the
compressed graph Gε.

Analysis: We first discuss the complexity of Sort-ER. Let fu =
|inGt(u)| + |outGt(u)| and assume that Sort-ER is implemented
based on the mergesort algorithm [17], thus the space complexity is
O(|V |). To get the final sorted results, mergesort needs to loop log |V |
times. In the ith loop, mergesort merges |V |/2i−1 sorted runs into
|V |/2i sorted runs. For two nodes u and v, the cost of comparison
is min{fu, fv}. In each loop, as mergesort compares at most |V |
different pairs of nodes, the cost of each loop is bounded by 2|Et|, thus
the time complexity of sorting all nodes to identify all sets of equivalent
nodes is O(|Et| log |V |). As the complexity of removing equivalent
nodes and their outgoing edges is O(|V |+ |Et|), therefore, the time
complexity of Sort-ER is O(|Et| log |V |).

We then discuss the complexity of linear-ER. As shown in Algo-
rithm 5, we need to remember the set number for each node, thus the
space complexity of linear-ER is O(|V |). Consider the time complex-
ity. We process all nodes in lines 2-3. In each iteration, we process one
node vi in line 3 by calling Function refine(), which visits vi’s graph
parents and children once to get the new partition Pi, thus the cost of
processing all nodes of Gt is

∑
vi∈V (|outGt(vi)|+ |inGt(vi)|) =

2|Et|. Since the cost of line 4 is |V | + |Et|, the time complexity of
linear-ER is O(|V |+ |Et|).

By combining Algorithm 4 and Algorithm 5 together, we know that
the space complexity of the DAG-Reduction algorithm is O(|V |), and
the time complexity is O(|V |+ |E|+ d� |V ′|).

7. EXPERIMENT
We test three groups of algorithms: First, for TR, it includes PTR [19],

DFS, and our buTR. Second, for ER, it includes our Sort-ER and

383

Table 2: Statistics of datasets, where d = |E|/|V | is the average degree of G,
|out∗G(·)| is the average number of reachable nodes for nodes of G, rn(re)

is the ratio of the number of nodes (edges) in G′, Gt, and Gε over that of G,
respectively.

Dataset
G G′ Gt Gε

|V | |E| d |out∗G(·)| rn% re% re% rn% re%

amaze 3,710 3,600 0.97 639 57.5 63.5 94.0 29.8 31.4

kegg 3,617 3,908 1.08 729 65.1 64.6 93.8 37.6 35.7

xmark 6,080 7,025 1.16 88 66.8 65.1 99.0 55.8 57.0

citeseer 10,720 44,258 4.13 39 86.9 85.3 51.8 84.9 46.1

pubmed 9,000 40,028 4.45 58 92.1 94.7 67.5 76.7 62.0

arxiv 6,000 66,707 11.12 928 97.8 91.5 20.0 97.9 19.7

email 231,000 223,004 0.97 11,698 9.2 10.1 96.9 14.7 8.3

unip150m 25,037,600 25,037,598 1.00 1.6 0.0 0.0 100.0 25.6 25.6

wiki 2,281,879 2,311,570 1.01 18,522 98.8 98.3 98.7 1.4 1.3

LJ 971,232 1,024,140 1.05 206,903 61.1 59.3 95.1 11.1 10.8

web 371,764 517,805 1.39 55,055 60.1 60.8 79.8 30.5 24.9

05Patent 1,671,488 3,303,789 1.98 7.7 83.3 84.7 90.1 80.3 78.9

citeseerx 6,540,401 15,011,260 2.30 15,510 89.1 93.1 74.4 39.7 46.4

dbpedia 3,365,623 7,989,191 2.37 83,658 76.1 81.2 59.2 50.5 31.7

govwild 8,022,880 23,652,610 2.95 561 100.0 99.9 93.7 69.0 82.5

Patent 3,774,768 16,518,947 4.38 1,544 96.5 96.0 71.6 91.2 68.9

go-unip 6,967,956 34,769,339 4.99 26 79.4 91.4 67.2 2.1 2.3

10go-unip 469,526 3,476,397 7.40 39 93.7 96.9 58.7 16.5 11.5

twitter 18,121,168 18,359,487 1.01 1,346,820 83.0 83.4 90.9 1.7 1.8

web-uk 22,753,644 38,184,039 1.68 3,417,930 64.9 61.0 66.8 15.9 14.8

linear-ER with input Gt. We also compare DAG-Reduction with
compressR [9] for the input G, where DAG-Reduction is to get Gt by
calling buTR followed by identifying Gε by calling linear-ER. Third,
for reachability query processing, we select five state-of-the-art algo-
rithms, including GRAIL [29] (abbreviated as GRL3), FELINE [24]
(abbreviated as FL), IP+ [25]4, PLL [27] and TF [5]. Besides, we
also make comparison between DAG reduction and the reachability
backbone [12] in Appendix B. We test the reachability algorithms using
random reachability query workloads. Here, a random workload is
generated by sampling node pairs with the same probability. The query
time is the running time of a total of 1,000,000 reachability queries.

We obtained the source code of all existing algorithms for reacha-
bility query processing from the authors, and implemented all other
algorithms using C++ and compiled by G++ 4.6.3. All experiments
were run on a PC with AMD Athlon(tm) II X2 250 3.0 GHz CPU, 16
GB memory, and Ubuntu 12.04.4 Linux OS. For algorithms that run
≥ 24 hours or exceed the memory limit (16GB), we will show their
results as “–” in the tables.

Table 2 shows the statistics of 20 real datasets used in our experiments.
We give detailed description of these datasets in Appendix C.

7.1 Transitive Reduction (TR)
In this part, we first report the comparison between our algorithm

and existing ones on TR, then show the impact of the optimizations and
the impact of different TC estimating methods.

Comparison on TR: Table 3 shows the running time of different TR
algorithms, where k is the size of path decomposition of PTR. For
buTR, Step1 and Step2 denote markCNRRN and the operation after
markCNRRN, respectively.

From Table 3 we know that DFS is greatly affected by the size of
the average transitive closure |out∗G(·)| (refer to the 5th column in
Table 2). When |out∗G(·)| increases, such as for twitter and web-uk,
DFS fails to get the result in limited time. buTR outperforms DFS on
most datasets, because cavg for buTR is very small. For the amaze
dataset, cavg of DFS is 649.3, while cavg of buTR is 0.26. Regarding
buTR, Step1 may need more time than Step2 even though Step1 has
linear time complexity, and Step2 needs more time than Step1 when

3GRL is the improved version of [28], and k = 5 for all datasets.
4The values of parameters are k = 2, h = 2, and μ = 100.

Table 3: Comparison of running time for TR (ms).

Dataset PTR(k/|V |) DFS (cavg)
buTR

Step1 Step2 buTR (cavg)

amaze 38 (0.81) 22 (649.3) 0.51 0.22 0.73 (0.26)

kegg 33 (0.75) 24 (743.1) 0.40 0.23 0.63 (0.27)

xmark 38 (0.71) 5.30 (99.1) 0.83 0.40 1.23 (2.01)

citeseer 121 (0.54) 8.42 (57.5) 4.47 3.96 8.43 (12.98)

pubmed 73 (0.62) 8.15 (93.1) 3.38 3.54 6.92 (26.19)

arxiv 67 (0.29) 196 (4,301.1) 4.07 5.51 9.58 (89.52)

email 90,817 (0.93) 14,100 (11,824.2) 37 11 48 (0.23)

unip150m - 1,706 (2.4) 6,598 1,599 8,197 (0)

wiki - 301,304 (18,636.4) 363 178 541 (0.02)

LJ - 1,661,850 (210,734.0) 190 63 253 (0.10)

web - 298,438 (63,400.3) 128 88 216 (1.02)

05Patent 1,244,350 (0.74) 1,079 (9.8) 2,015 1,751 3,766 (4.79)

citeseerx - 3,951,890 (21,522.5) 6,242 11,266 17,508 (27.81)

dbpedia - 2,428,480 (88,209.0) 2,310 2,244 4,554 (3.39)

govwild - 76,369 (854.8) 4,799 4,842 9,641 (9.63)

Patent 482,117 (0.13) 579,911 (2,347.6) 10,158 277,135 287,293 (925.71)

go-unip - 3,661 (40.2) 5,074 6,085 11,159 (21.89)

10go-unip 395,541 (0.84) 383 (62.0) 461 567 1,028 (31.64)

twitter - - 4,006 1,833 5,839 (0.03)

web-uk - - 4,815 3,105 7,920 (3.51)

Table 4: Running time (ms) of buTR with different optimizations.

Dataset buTR-B(cavg) buTR-O1(cavg) buTR (cavg)
amaze 1.91 (29) 2.02 (35) 0.73 (0.26)

kegg 2.46 (38) 1.80 (26) 0.63 (0.27)

xmark 4.72 (40) 2.59 (18) 1.23 (2.01)

citeseer 14.10 (54) 18.61 (50) 8.43 (13)

pubmed 15.43 (100) 19.74 (103) 6.92 (26)

arxiv 188 (2,544) 205.19 (2,248) 9.58 (90)

email 662 (230) 147 (375) 48 (0.23)

unip150m 4,582 (1) 8,123 (0) 8,197 (0)

wiki 36,512 (981) 17,405 (447) 541 (0.02)

LJ 206,129 (11,189) 79,070 (6,658) 253 (0.10)

web 72,702 (6,784) 32,382 (4,211) 216 (1.02)

05Patent 1,311 (8) 3,750 (8) 3,766 (4.79)

citeseerx 7,471,010 (16,828) 7,996,991 (17,710) 17,508 (28)

dbpedia 1,512,640 (23,776) 1,114,804 (20,843) 4,554 (3.39)

govwild 137,841 (771) 164,472 (770) 9,641 (9.63)

Patent 822,854 (1,932) 945,138 (1,940) 287,293 (926)

go-unip 6,993 (31) 12,801 (37) 11,159 (22)

10go-unip 693 (50) 1,275 (53) 1,028 (32)

twitter - 8,853,434 (28,800) 5,839 (0.03)

web-uk - - 7,920 (3.51)

both cavg and the size of G′ become large. PTR suffers from long time
and large space due to the path-decomposition, and it works efficient
only when the number of paths k is small. E.g., for the arxiv dataset,
the ratio of k

|V | is 0.29, and PTR is more efficient than DFS. But for

the email dataset, k
|V | = 0.93, DFS outperforms PTR. When the given

graph becomes large, PTR fails to get the result in limited time due to
large space consumption.

The ratio of remained edges of Gt is shown in the 8th column in
Table 2. The number of removed edges various with the given graph.
For arxiv, more than 80% edges are removed. For govwild, only 6.3%
edges are removed.

Impacts of the Optimizations: Table 4 shows the comparison of
running time for buTR-B, buTR-O1 and buTR, where “B” denotes the
baseline algorithm that processes nodes of G in a bottom-up fashion
without any optimization, “O1” means that buTR first calls markCN-
RRN to get G′, then processes nodes of G′ as buTR-B does, buTR is
Algorithm 4, which uses all optimizations. In Table 4, cavg = d�
denotes the average traversing cost for all nodes. cavg for buTR-B is
computed based on all nodes of G, and is computed based on all nodes
of G′ for the other two algorithms.

From Table 4 we know that buTR works much better than buTR-O1,
and can be verified by the value of cavg . The reason lies in that for
buTR-O1, each node u is processed after one of its randomly selected

384

Table 5: Running time (ms) of buTR using different estimating methods.

DataSet ub lb kr (k = 100) buTR
amaze 2.46 0.87 22.13 0.73
kegg 0.76 0.75 17.19 0.63

xmark 1.60 1.57 30.85 1.23
citeseer 13.25 13.44 84.20 8.43
pubmed 9.66 11.00 69.34 6.92

arxiv 39.27 48.68 58.66 9.58
email 56 55 2,049 48

unip150m 9,030 8,984 639,025 8,197
wiki 622 628 78,562 541
LJ 322 338 22,927 253

web 237 643 6,895 216
05Patent 4,100 4,179 65,902 3,766
citeseerx 18,508 507,810 347,280 17,508
dbpedia 4,900 13,373 88,323 4,554
govwild 10,657 10,968 375,403 9,641
Patent 261,544 444,341 442,395 287,293

go-unip 12,318 12,742 178,879 11,159
10go-unip 1,145 1,188 9,551 1,028

twitter 6,554 6,496 923,944 5,839
web-uk 12,972 825,701 990,805 7,920

graph child v, which may result in large size of out∗G(u) \ out∗G(v),
and a large value for cavg . As a comparison, by constructing a good
po-tree, the value of cavg for buTR is small. E.g., the cavg of buTR-O1
is 28,800 for the twitter dataset, while is 0.03 for buTR, and buTR is
1,516 times faster than buTR-O1. From Table 4 we know that buTR-O1
works at most 4.5 times faster than buTR-B on the email dataset, and
can work successfully on the twitter dataset. For other datasets, the
benefit of buTR-O1 is not obvious, or even beaten by buTR-B on some
datasets. Even though, markCNRRN is necessary due to that it is not
only used to reduce the size of G, but also get CNs for estimating the
size of TC used by buTR.

From Table 4 we know that both buTR and buTR-O1 are beaten
by buTR-B on datasets unip150m, 05Patent, go-unip and 10go-unip.
The reasons lie in two aspects: (1) all the four datasets have small
value for |out∗G(·)| (see Table 2), therefore the traversing cost cannot
be reduced significantly; (2) the cost of markCNRRN dominates the
overall performance of both buTR-O1 and buTR for the four datasets,
while buTR-B does not need to afford this cost.

Estimations in buTR: buTR estimates the size of |out∗G(·)| for each
node using Eq. (3) to construct a po-tree in order to reduce the traversing
cost. We compare our method using Eq. (3) with lb (lower bound) and
ub (upper bound) in [30] and kr (k random permutations) [6], where

k = 100. Let N(u) = |out∗G(u)|, and Ñ(u) be the estimated result

of N(u), we use error rate er(u) = |Ñ(u)−N(u)|
N(u)

as a metrics to show

the effectiveness of different estimating methods.
As shown in Fig. 8, for most graphs, our method is more accurate

than existing methods, because by our method many nodes are with
er(u) ∈ [0, 0.2). kr [6] gets a better estimation on unip150m, go-unip
and 10go-unip datasets, but is inefficient, since kr needs to traverse the
given graph k = 100 times to get the estimation. As shown in Fig. 8
and Table 5, our estimating method is effective and efficient.

7.2 Equivalence Reduction (ER)
Table 6 shows the comparison of different algorithms on ER. First,

given the input graph Gt, linear-ER is more efficient than Sort-ER.
Second, given the input graph G, DAG-Reduction significantly out-
performs compressR, as ensured by the time complexity. Also, when
the size of G and |out∗G(·)| increases, compressR breaks down due to
limited space (its space complexity is O(|V |2)).

After ER, the ratios of the numbers of nodes and edges of Gε are
shown in the 9th and the 10th columns in Table 2, from which we know
that the reduction ratios for all datasets vary significantly, this is because
that the reduction ratio is determined by G itself. After getting P|V |

Table 6: Comparison of running time for ER (ms).

Dataset Sort-ER linear-ER compressR DAG-Reduction

amaze 1.48 0.21 146.33 0.94
kegg 0.44 0.21 162.34 0.85

xmark 1.23 0.42 37.04 1.65
citeseer 3.35 1.40 53.56 9.83
pubmed 2.55 1.24 52.65 8.16

arxiv 1.87 0.77 889.93 10.35
email 35.09 16.01 - 64.35

unip150m 12,457.10 2,437.95 27,717.90 10,634.51
wiki 196.42 130.84 - 672.31
LJ 144.37 72.30 - 325.30

web 149.61 44.09 - 260.09
05Patent 1,455.34 879.42 7,731.24 4,645.65
citeseerx 4,749.09 2,707.66 - 20,214.56
dbpedia 2,758.04 855.35 - 5,409.35
govwild 5,978.13 2,404.77 - 12,046.18
Patent 6,077.49 4,593.92 - 291,886.92

go-unip 8,452.43 1,829.87 53,496.90 12,988.87
10go-unip 465.57 137.87 4,504.15 1,165.87

twitter 1,976.76 1,122.59 - 6,961.52
web-uk 5,281.05 1,654.51 - 9,574.59

Table 7: Comparison of index sizes (MB).

Dataset GRL GRL∗ FL FL∗ IP+ IP+
∗ PLL PLL∗ TF TF∗

amaze 0.14 •0.06 0.13 •0.05 0.05 0.06 0.04 0.05 0.02 0.02

kegg 0.14 •0.07 0.12 •0.06 0.05 0.06 0.05 0.05 0.02 0.02

xmark 0.23 0.15 0.21 0.14 0.09 0.11 0.12 0.12 0.12 0.08

citeseer 0.41 0.39 0.37 0.35 0.14 0.21 0.28 0.31 0.83 0.52

pubmed 0.34 0.30 0.31 0.27 0.11 0.16 0.27 0.29 0.80 0.64

arxiv 0.23 0.25 0.21 0.22 0.11 0.13 0.35 0.40 14.66 •5.34

email 8.81 •2.17 7.93 •2.04 2.78 2.90 2.59 2.71 0.85 0.95

unip150m 955 •340 860 •316 299 348 318 328 132 140

wiki 87 •10 78 •10 43 26 26 26 9 9

LJ 37 •8 33 •7 15 12 11 12 4 4

web 14 •6 13 •5 6 5 5 5 3 2

05Patent 64 58 57 52 20 30 29 33 26 29

citeseerx 250 •124 225 114 87 98 36 54 1,523 •631

dbpedia 128 78 116 71 44 54 53 54 52 30

govwild 306 242 275 221 105 144 188 205 3,123 2,693

Patent 144 146 130 133 58 80 633 648 4,732 4,231

go-unip 266 •32 239 •32 80 81 251 •87 431 •40

10go-unip 18 •5 16 •4 5 6 21 •9 44 •9

twitter 691 •81 622 •79 316 211 202 209 70 71

web-uk 868 •225 781 •211 356 310 357 336 - •324

by Algorithm 5, each set of P|V | will be replaced by one of its node

to generate Gε, and the reduction ratio w.r.t. nodes is rn =
|P|V ||
|V | . A

small |P|V || means that each set of P|V | contains a large number of
nodes that are equivalent to each other on average.

7.3 Reachability Query Processing
Tables 7, 8 and 9 show the comparison of index sizes, index construc-

tion time and query time for existing reachability algorithms working
on the input DAG G, as well as their counterparts on the result of DAG
reduction Gε with “∗” as their subscript. For each algorithm, we use
“•” to denote the best result is better than the worst one more than two
times, we take others as comparable results.

Index Size: Table 7 shows that DAG reduction has a positive impact
for all algorithms. E.g., for GRL, the index sizes based on Gε are
11.4%, 12.1% and 11.7% to its counterparts on G for wiki, go-unip and
twitter datasets, respectively. For FL algorithm, we have similar results
as GRL. For TF, the index size on Gε is 9.3% to that on G for the
go-unip dataset. After DAG reduction, TF works successfully on the
web-uk dataset. For IP+, we have comparable results on all datasets.

Index Construction Time: We have shown that the result of DAG
reduction,Gε, can be got quickly, which is a one-time activity, and once
Gε has been obtained, it can be repeatedly used by different algorithms.
Table 8 shows that, compared with G, all existing algorithms work

385

 0

 0.2

 0.4

 0.6

 0.8

 1

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

ublb kr butr
ublb kr butr

Ra
tio

 of
 ea

ch
 ra

ng
e

[0,0.2) [0.2,0.5) [0.5,1) [1,INF]

web-uktwitter10go-unipgo-unipPatentgovwilddbpediaciteseerx05PatentwebLJwikiunip150memailarxivpubmedciteseerxmarkkeggamaze

Figure 8: Comparison of the error rates for different estimating methods.

Table 8: Comparison of index construction time (ms).

Dataset GRL GRL∗ FL FL∗ IP+ IP+
∗ PLL PLL∗ TF TF∗

amaze 7.66 7.14 1.21 •0.60 1.50 1.20 4.46 •1.11 6.69 •2.44

kegg 7.47 6.84 1.34 0.70 2.80 1.29 1.16 0.96 10.29 9.58

xmark 13.69 13.87 2.45 1.73 •3.40 10.02 2.80 2.39 14.44 12.90

citeseer 51.62 44.02 9.69 7.58 12.40 10.11 14.80 14.05 101.03 •50.43

pubmed 36.73 35.84 6.57 5.15 10.00 10.00 12.76 12.36 72.19 48.49

arxiv 32.17 19.17 6.17 3.91 12.50 10.00 25.66 19.28 7,586 •614

email 1,063 931 110 •37 160 100 119 93 161 125

unip150m 192,236 162,680 18,040 •8,746 23,460 18,490 21,631 15,695 68,229 •31,366

wiki 12,578 12,665 1,006 •213 1,590 1,050 1,238 1,123 1,429 1,090

LJ 4,896 4,879 464 •169 710 490 594 484 923 761

web 1,755 1,627 250 •120 360 240 277 186 637 393

05Patent 9,805 10,548 2,132 1,958 2,870 2,660 3,082 2,770 7,667 6,855

citeseerx 34,038 44,421 6,435 4,516 10,430 7,880 4,074 3,386 101,029 •41,536

dbpedia 23,365 20,676 3,262 2,014 4,720 3,290 4,349 3,216 15,081 •7,194

govwild 39,443 50,204 7,013 6,163 10,810 10,100 13,914 13,292 143,272 114,950

Patent 39,088 34,477 8,395 7,482 12,770 10,590 245,345 242,475 253,020 197,125

go-unip 67,876 43,511 7,144 •805 11,230 •3,630 17,712 •3,926 67,524 •6,224

10go-unip 4,100 2,525 585 •140 840 •300 1,679 •540 6,293 •994

twitter 118,208 114,024 9,176 •1,852 15,380 9,810 11,150 8,789 18,785 13,289

web-uk 147,831 140,513 12,425 •4,646 21,610 15,190 21,944 16,471 - •67,368

Table 9: Comparison of query time (ms).

Dataset GRL GRL∗ FL FL∗ IP+ IP+
∗ PLL PLL∗ TF TF∗

amaze 3,796 •254 41 42 20 18 29 20 22 11

kegg 4,720 •402 46 43 23 21 29 21 15 12

xmark 491 •243 298 220 40 34 46 47 32 26

citeseer 555 465 223 196 89 68 100 146 68 53

pubmed 550 425 169 128 62 51 86 102 64 53

arxiv 2,805 2,307 1,593 1,444 877 573 92 160 505 •248

email 53,024 •176 121 •37 70 •29 158 85 51 •14

unip150m 657 •236 26 20 11 13 120 74 46 41

wiki 1,744,266 •324 125 •14 47 •7 266 •43 77 •8

LJ 9,580,519 •42,942 250 •78 140 •44 243 •112 140 •41

web 662,571 •82,977 221 149 137 92 210 199 142 98

05Patent 527 532 90 91 29 29 205 212 74 74

citeseerx 64,769 45,120 771 502 210 147 259 241 146 96

dbpedia 212,503 •4,292 241 193 180 148 367 404 240 213

govwild 1,255 1,252 469 471 226 226 436 542 445 452

Patent 557 543 111 114 29 29 563 643 84 84

go-unip 848 665 128 143 65 63 267 189 85 102

10go-unip 728 552 145 102 70 51 223 170 87 78

twitter - •18,386 280 •28 160 •17 412 •87 203 •18

web-uk - •3,002,770 560 303 367 200 460 319 -•175

more efficiently on Gε. E.g., FL is 8.9 times faster on Gε than on G
for the go-unip dataset, TF is 12.4 times faster on Gε than on G for the
arxiv dataset.

Query Time on Random Workload: Similar to index size, Table 9
shows that query time can be improved significantly using DAG re-
duction for all algorithms. E.g., for GRL, the query time on Gε are
301 and 5,384 times faster than that on G for email and wiki datasets.
And more importantly, GRL can process all queries in limited time for
twitter and web-uk datasets after DAG reduction. For FL, IP+, PLL
and TF, the query time on Gε are 8.9, 6.7, 6.2 and 9.6 times faster than
that on G for the wiki dataset, and are 10, 9.4, 4.7 and 11.3 times faster
for the twitter dataset, respectively. And TF can process queries on the
web-uk dataset after DAG reduction.

By taking Tables 7 to 9 together, we know that DAG reduction makes
significantly improvements on index sizes, index construction time and
query time for all algorithms. More importantly, after DAG reduction,
GRL and TF can work successfully on all datasets.

8. CONCLUSIONS
In this paper, we focus on DAG reduction which is to reduce G by

first computing the transitive reduction TR followed by computing the
equivalence reduction ER. With the newly proposed techniques, we
show that we can significantly reduce the cost of TR compared with
the existing PTR and DFS algorithms, and significantly reduce the
cost of ER compared with the compressR algorithm. As an indication,
among 20 real datasets being tested, for TR, PTR cannot complete in 10
datasets, DFS takes 1,661,850 ms for the LJ dataset whereas our buTR
algorithm takes 253 ms; for ER, compressR cannot scale to 10 large
datasets, whereas our linear-ER can efficiently compute all datasets.
For reachability queries answering, we show that our DAG reduction
can significantly improve the efficiency either by itself or by integrated
with SCARAB using 20 real datasets.

9. ACKNOWLEDGMENTS
This work was partly supported by the grants from the Natural

Science Foundation of China (No.: 61472339, 61303040, 61572421,
61272124), and Jeffrey Xu Yu was partly supported by the grant of the
Research Grants Council of Hong Kong SAR, China, No. 14209314
and No. 14221716. The authors would like to thank Na Li and Qiang
Ma for implementing algorithms on ER computation, and also would
like to thank the anonymous referees for their insightful and valuable
comments.

386

10. REFERENCES

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data and
knowledge bases. In SIGMOD, pages 253–262, 1989.

[2] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive
reduction of a directed graph. SIAM J. Comput., 1(2):131–137,
1972.

[3] P. Boldi, M. Santini, and S. Vigna. A large time-aware web graph.
SIGIR Forum, 42(2):33–38, 2008.

[4] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi.
Measuring user influence in twitter: The million follower fallacy.
In ICWSM, 2010.

[5] J. Cheng, S. Huang, H. Wu, and A. W. Fu. Tf-label: a
topological-folding labeling scheme for reachability querying in
a large graph. In SIGMOD, pages 193–204, 2013.

[6] E. Cohen. Estimating the size of the transitive closure in linear
time. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994,
pages 190–200, 1994.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability
and distance queries via 2-hop labels. In ACM-SIAM, pages
937–946, 2002.

[8] V. Dubois and C. Bothorel. Transitive reduction for social
network analysis and visualization. In 2005 IEEE / WIC / ACM
International Conference on Web Intelligence, pages 128–131,
2005.

[9] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph
compression. In SIGMOD, pages 157–168, 2012.

[10] M. Habib, M. Morvan, and J. Rampon. On the calculation of
transitive reduction - closure of orders. Discrete Mathematics,
111(1-3):289–303, 1993.

[11] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins on
indexed XML documents. In VLDB, pages 273–284, 2003.

[12] R. Jin, N. Ruan, S. Dey, and J. X. Yu. SCARAB: scaling
reachability computation on large graphs. In SIGMOD, pages
169–180, 2012.

[13] R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An efficient
reachability indexing scheme for large directed graphs. ACM
Trans. Database Syst., 36(1):7, 2011.

[14] R. Jin and G. Wang. Simple, fast, and scalable reachability oracle.
PVLDB, 6(14):1978–1989, 2013.

[15] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability query. In
SIGMOD, pages 813–826, 2009.

[16] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering
reachability queries on very large directed graphs. In SIGMOD,
pages 595–608, 2008.

[17] J. Katajainen and J. L. Träff. A meticulous analysis of mergesort
programs. In Algorithms and Complexity, Third Italian
Conference, CIAC ’97, Rome, Italy, March 12-14, 1997,
Proceedings, pages 217–228, 1997.

[18] S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum. FERRARI:
flexible and efficient reachability range assignment for graph
indexing. In ICDE, pages 1009–1020, 2013.

[19] K. Simon. An improved algorithm for transitive closure on
acyclic digraphs. Theor. Comput. Sci., 58:325–346, 1988.

[20] R. E. Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[21] S. Trißl and U. Leser. Fast and practical indexing and querying of
very large graphs. In SIGMOD, pages 845–856, 2007.

[22] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of
series parallel digraphs. SIAM J. Comput., 11(2):298–313, 1982.

[23] S. J. van Schaik and O. de Moor. A memory efficient reachability
data structure through bit vector compression. In SIGMOD,
pages 913–924, 2011.

[24] R. R. Veloso, L. Cerf, W. M. Junior, and M. J. Zaki. Reachability
queries in very large graphs: A fast refined online search
approach. In EDBT, pages 511–522, 2014.

[25] H. Wei, J. X. Yu, C. Lu, and R. Jin. Reachability querying: An
independent permutation labeling approach. PVLDB,
7(12):1191–1202, 2014.

[26] V. V. Williams. Multiplying matrices faster than
coppersmith-winograd. In STOC, pages 887–898, 2012.

[27] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast and scalable
reachability queries on graphs by pruned labeling with
landmarks and paths. In CIKM, pages 1601–1606, 2013.

[28] H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: scalable
reachability index for large graphs. PVLDB, 3(1):276–284, 2010.

[29] H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: a scalable index
for reachability queries in very large graphs. VLDB J.,
21(4):509–534, 2012.

[30] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries
on large dynamic graphs: a total order approach. In SIGMOD,
pages 1323–1334, 2014.

APPENDIX
A. PROOFS

Proof of Lemma 4.1: We prove this lemma from two aspects.

(1) If G has no redundant edges, Ai(u) = Ai(v) ⇒ in∗
G(u) =

in∗
G(v) ∧Di(u) = Di(v) ⇒ out∗G(u) = out∗G(v).

∀i ≥ 1, as Ai(u) contains all the the nodes that can reach u through
shortest paths with at most i edges, we know thatAi(u) ⊆ Ai+1(u)
and ∀w ∈ Ai+1(u) \ Ai(u), w can reach some node of Ai(u)
through one edge. Therefore, Ai(u) = Ai(v) ⇒ Ai+1(u) =
Ai+1(v). WhenAi+1(u)\Ai(u) = ∅, we haveAi(u) = in∗

G(u).
Therefore, if G has no redundant edges, Ai(u) = Ai(v) ⇒
in∗

G(u) = in∗
G(v). Similarly, ifGhas no redundant edges,Di(u) =

Di(v) ⇒ out∗G(u) = out∗G(v).

(2) If G has no redundant edges, in∗
G(u) = in∗

G(v) ⇒ Ai(u) =
Ai(v) ∧ out∗G(u) = out∗G(v) ⇒ Di(u) = Di(v).

We assume that there exist i ≥ 1, u, v, wi ∈ V , such that when
in∗

G(u) = in∗
G(v), wi ∈ Ai(u) \Ai(v), i.e., Ai(u) �= Ai(v). If

i > 1, wi ∈ Ai(u) \ Ai(v) means that there exists a node wi−1

satisfying that (wi, wi−1) ∈ E and wi−1 ∈ Ai−1(u) \Ai−1(v).
This is because that if wi−1 ∈ Ai−1(v), then wi ∈ Ai(v). Thus,
Ai(u) �= Ai(v) ⇒ Ai−1(u) �= Ai−1(v). By induction, we know
that ∀i ≥ 2, there exists w1 ∈ A1(u) \ A1(v), i.e., Ai(u) �=
Ai(v) ⇒ A1(u) �= A1(v). Combining with the case of i = 1, this
assumption means that ∀i ≥ 1, there existsw1 ∈ V , such that when
in∗

G(u) = in∗
G(v), w1 ∈ A1(u) \A1(v), i.e., A1(u) �= A1(v).

Since in∗
G(u) = in∗

G(v) ∧ w1 �∈ A1(v), we know that w1 ∈
in∗

G(v), and there must exist at least one node x ∈ A1(v), such
that w1 can reach v through x, i.e., w1 � x � v. By in∗

G(u) =
in∗

G(v) ∧ x ∈ in∗
G(v), we know that x ∈ in∗

G(u), i.e., x � u.
Thus, w1 can reach u through x, and we know that (w1, u) is
redundant, which contradicts the assumption thatG has no redundant
edges. In the above assumption, we have the same result if wi ∈
Ai(v) \Ai(u). Therefore, if G has no redundant edges, in∗

G(u) =
in∗

G(v) ⇒ Ai(u) = Ai(v). Similarly, if G has no redundant
edges, we know that out∗G(u) = out∗G(v) ⇒ Di(u) = Di(v).

387

Based on the above discussion, we know that ∀u, v ∈ V, ∀i ≥ 1, if
G has no redundant edges, then Eq. (1) and Eq. (2) hold. �

Proof of Property 5.1: Assume that there exists a redundant edge
(x, y) in the LPM tree TX , i.e., x is the tree parent of y in TX . Since
(x, y) is a redundant edge, x can reach y through at least one node w,
such that (w, y) ∈ E ∧ tx < tw < ty . According to the construction
of LPM tree, y’s tree parent should be w, rather than x, i.e., (x, y)
should not be an edge of TX , which contradicts the assumption. �

Proof of Lemma 5.1: We prove this lemma from two aspects.

(1) If inG(v) = ∅, or every node of inG(v) is an RRN, then v is an
RRN.

If inG(v) = ∅, then in∗
G(v) = ∅. Thus, v is an RRN by Defini-

tion 5.3. If inG(v) �= ∅ and ∀u ∈ inG(v), u is an RRN, we know
that all nodes of in∗

G(u) ∪ {u} are RNs according to Definition 5.3.
Since in∗

G(v) =
⋃

u∈inG(v)(in
∗
G(u) ∪ {u}), all nodes of in∗

G(v)

are RNs. By Definition 5.3, v is an RRN.

(2) If v is an RRN, then inG(v) = ∅, or every node of inG(v) is an
RRN.

According to Definition 5.3, if v is an RRN, then in∗
G(v) = ∅, or

∀u ∈ in∗
G(v), u is an RN. The first case means that inG(v) = ∅.

Consider the second case. ∀u ∈ inG(v), since in∗
G(u)

⋃{u} ⊆
in∗

G(v) and all nodes of in∗
G(v) areRNs, we know thatu is anRRN

according to Definition 5.3. �

Proof of Lemma 5.2: First, given a DAG G, to get the DT-order X ,
the topological sorting can be done by (Step1) finding all the “start
nodes” without incoming edges and pushing them into a stack S;
(Step2) popping out a node v from S, assigning v its visiting order
(DT-order) tv , and pushing v’s graph children which have no incoming
edges into S after deleting edges starting from v; and (Step3) repeating
Step2 until S becomes empty.

Second, we construct the LPM tree TX during performing topologi-
cal sorting on G. Let u be the last graph parent visited before v (v is
pushed into S immediately after u is popped out from S). In Step2,
after popping out a node v from S and assigning its DT-order tv , v is
inserted into TX as a tree child of u (v is the tv-th node inserted into
TX). After that, each of v’s tree children is popped out from S and
inserted into TX recursively. Therefore, TX is constructed recursively
by inserting nodes into it in the ascending DT-order X .

Third, when we visit nodes of TX in the ascending DT-order X , it
means that after visiting a node v, we first visit each of its tree children
recursively, which is a DFS visiting order for TX . Therefore, if the
LPM tree TX is generated based on a DT-order X of G, then X is also
a DFS-order of TX . �

Proof of Theorem 5.1: We prove this theorem from two aspects.

(1) We prove the correctness for RRN.

The correctness of correctly identifying all RRNs is based on cor-
rectly identifying all RNs according to Lemma 5.1. We show the
correctness of identifying all RNs from two aspects.

(1.1) isRN() correctly identifies whether a given node v is an RN.
Function isRN() processes v’s graph children in ascending DT-
order X . When processing w ∈ outG(v), there are two cases:
w ∈ out∗TX

(v) (line 8 holds) and w ∈ outG(v) \ out∗TX
(v)

(line 8 does not hold).
Consider the trivial case where w ∈ out∗TX

(v) processed in lines
9-11, i.e., w is a tree descendant of v. In this case, (v, w) is
redundant if w is not a tree child of v (line 11); otherwise, (v, w)
is not a redundant edge (Property 5.1), i.e., we can correctly find
all redundant edges from v to its tree descendants given that v is
an RN.

Consider the case where w ∈ outG(v) \ out∗TX
(v) processed in

lines 13-16, i.e.,w is not a tree descendant of v. In this case, isRN()
checks whether w belongs to C2 in lines 13. If line 13 returns
FALSE, it means that w belongs to C2 (the fourth condition of
Definition 5.2) and we delete the redundant edge (v, w) in line
16; otherwise, if line 13 returns TRUE, it means that w �∈ C2, we
further check whether it belongs C1 in line 14 (the second and the
third conditions of Definition 5.2). In line 14, if lmin(v) < lw,
it means that the second and third conditions do not hold, thus
w �∈ C1. As a result, C1

⋃
C2 �= outG(v) \ out∗TX

(v), we
know that v is not an RN according to Definition 5.2 and isRN()
returns FALSE in line 14. If lmin(v) ≥ lw , it means thatw ∈ C1,
and we continue to visit the next graph child of v. Finally, if isRN()
returns TRUE in line 17, it means that outG(v) \ out∗TX

(v) can
be divided into two sets satisfying the four conditions, thus v is an
RN by Definition 5.2, and we correctly delete all redundant edges
in line 16.
Therefore, isRN() correctly identifies whether a given node v is
an RN or not.

(1.2) All RNs are correctly identified by Algorithm 2.
As each given node can be correctly identified, all RNs can be
correctly identified by calling isRN() to process all nodes.

Based on the above result, Algorithm 2 processes all nodes in as-
cending DT-order, such that when processing a node v, we know
whether each one of its graph parents is anRRN or not, then we know
whether v is an RRN or not by visiting v’s graph parents only once
according to Lemma 5.1. Thus, all RRNs are correctly identified.

(2) We prove the correctness for CN.

Let xu = max argv{tv|v ∈ out∗G(u)} be, among u’s graph
descendants, the one with the largest topo-order. Algorithm 2
processes nodes in descending DT-order to find all CNs from non-
RRNs. For each processed node v, we update xu for each of v’s
graph parent u using xv . Therefore, when processing u, we know
the correct value of xu. Given a non-RRN u, if u is a tree ancestor
of xu in TX , Algorithm 2 will mark u as a CN, otherwise not. We
show the correctness of processing each non-RRN from two aspects.

(2.1) If u is a CN, then xu ∈ out∗TX
(u).

By Definition 5.1, if u is a CN, then ∀v ∈ out∗G(u), v ∈
out∗TX

(u). As xu ∈ out∗G(u), we know xu ∈ out∗TX
(u).

(2.2) If xu ∈ out∗TX
(u), then u is a CN.

Let Iu = [s, e] be the interval assigned to u to facilitate check-
ing the ancestor-descendant relationship for nodes in TX , where
Iu.s = tu, and Iu.e is the maximum DT-order of u’s tree descen-
dants.
First, ∀v ∈ out∗G(u) \ {xu}, we have tu < tv < txu .
Second, xu ∈ out∗TX

(u) means that txu ≤ Iu.e.
As Iu.s = tu, ∀v ∈ out∗G(u), we know Iv ⊂ Iu according to
Lemma 5.2, i.e., ∀v ∈ out∗G(u), v ∈ out∗TX

(u). Thus, v is a
CN according to Definition 5.1.

Therefore, given the LPM tree TX , Algorithm 2 correctly identifies
all RRNs and CNs. �

Proof of Lemma 5.3: We prove this lemma from two aspects.

(1) If u and v do not have ancestor-descendant relationship in T , then
tu < tv ⇔ tu > tv .

In this case,u and v may be sibling nodes (Fig. 9(a)), or not (Fig. 9(b)-
(d)), we show the correctness case by case.

(Case1) u and v are sibling nodes (Fig. 9(a)).
Assume thatw is the tree parent ofu and v. During the topological
sorting of computing Z based on Z, after processing w (i.e.,

388

assigning its DT-order tw), both u and v become nodes without
incoming edges, and u will be pushed into stack before v due
to that tu < tv . Therefore, u is popped out from the stack (i.e.,
assign its DT-order tu) after v, that is, tu > tv , i.e., tu < tv ⇒
tu > tv . Similarly, if Z is computed based on Z, we have
tu > tv ⇒ tu < tv . Therefore, if u and v are sibling nodes,
then tu < tv ⇔ tu > tv .

(Case2) u and v are not sibling nodes (Fig. 9(b)-(d)).
Let w = lca(u, v) be the lowest common ancestor (LCA) of u
and v in T , there are three sub-cases.

(Case2.1) u and v’s tree ancestor va are sibling nodes (Fig. 9 (b)).
Given Z, since va is a tree ancestor of v, we know tva < tv .
According to Lemma 5.2, any node with DT-order between
va and v are va’s tree descendants. Since u and va are sibling
nodes, given tu < tv , we know that tu < tva < tv . When
computing Z , we have tva < tv < tu as shown by Case1, i.e.,
tu < tv ⇒ tu > tv . Similarly, if Z is computed based on Z,
we have tu > tv ⇒ tu < tv .
Thus in this case, tu < tv ⇔ tu > tv .

(Case2.2) u’s tree ancestor ua and v are sibling nodes (Fig. 9
(c)). tu < tv ⇔ tu > tv can be proved in the similar way as
Case2.1.

(Case2.3) ua and va are sibling nodes (Fig. 9 (d)). Since ua

and va are sibling nodes, given Z and tu < tv , we know
that tua < tu < tva < tv according to Lemma 5.2. When
computing Z, we have tva < tv < tua < tu, i.e., tu <
tv ⇒ tu > tv . Similarly, if Z is computed based on Z, we
have tu > tv ⇒ tu < tv .
Thus in this case, tu < tv ⇔ tu > tv .

Therefore, if u and v do not have ancestor-descendant relationship
in T , then tu < tv ⇔ tu > tv .

(2) If tu < tv ⇔ tu > tv holds, then u and v do not have ancestor-
descendant relationship in T .

Assume that u and v have ancestor-descendant relationship in T ,
which also consists of two cases.

(Case1) u is a tree ancestor of v.
In this case, we have that u � v, and for both Z and Z, tu <
tv ∧ tu < tv , i.e., tu < tv ⇔ tu > tv does not hold.

(Case2) v is a tree ancestor of u.
Similar to Case1, we know tu < tv ⇔ tu > tv does not hold.

Thus if tu < tv ⇔ tu > tv holds, then u and v do not have
ancestor-descendant relationship in T .

Therefore, nodes u and v do not have ancestor-descendant relation-
ship iff tu < tv ⇔ tu > tv . �

Proof of Lemma 5.4: For each edge (u, v) of TG′ , the cost of process-
ingu, c(u, v), is visiting nodes of out∗G(u)\out∗G(v) and the involved
edges, and c(u, v) does not change by switching from processing order
in Z to Z , because for any DT-order, edge (u, v) does not change, thus
the number of processed nodes and edges does not change. Therefore,
N1 =

∑
i∈[1,|V ′|−1] c(ui, vi) = N2, where |V ′| − 1 is the number

of edges in TG′ . �

Proof of Theorem 5.2: We prove this theorem from two aspects.

(1) Each edge deleted by Algorithm 4 is a redundant edge.

In markCNRRN (line 1 of Algorithm 4), each redundant edge is
found based on tree relationship, i.e., edge (v, w) is redundant only
if ∃x ∈ outG(v), such that x is a tree ancestor of w in TX , which
means that v can reach w through x, thus (v, w) is a redundant edge.
After calling markCNRRN, we find redundant edges from each node

w

u v

w

ua va

u v

w

ua v

u

w

vau

v

(a) (b) (c) (d)

Figure 9: Illustration of the positional relationships where u and v do not have
ancestor-descendant relationship in a tree. Each arrow (dashed arrow) denotes
an edge (a path) between two nodes, (a) denotes that u and v are sibling nodes,
and (b)-(d) denote u and v are not sibling nodes.

that is not an RRN in line 6 by calling Procedure delRdtEdge(). Let
v be the tree parent of u in po-tree TG′ (v is a graph child of u in
G), in delRdtEdge(), we identify redundant edges in lines 10 and 15,
which correspond to the two cases that the redundant edges are from
u to nodes of out∗G(v) and out∗G(u) \ out∗G(v), respectively. If an
edge (u,w) is deleted in line 10, it must be a redundant edge, due to
that w ∈ out∗G(v) ∧ u � v; otherwise if (u,w) is deleted in line
15, it must be a redundant edge due to that we first mark all of u’s
graph children using u, then encounter u at w when traversing from
another node of u’s graph children, i.e., there exists, for u, a graph
child node v(�= w), such that u can reach w through v. Therefore,
if we delete an edge, it must be a redundant edge.

(2) Algorithm 4 finds all redundant edges.

For all RRNs, markCNRRN correctly finds all redundant edges
from them. After that, we process all nodes that are not RRNs. As
shown in Algorithm 4, we process just one node u in each iteration,
and only delete all redundant edges from u, every redundant edge
from other nodes are not considered. As discussed above, for each
redundant edge (u,w), either w ∈ out∗G(u) \ out∗G(v) holds, or
w ∈ out∗G(v) holds. And for both cases, we can correctly find
all redundant edges from u in lines 10 and 15. Therefore, after
processing all nodes, we correctly find all redundant edges. �

Proof of Lemma 6.1: Since Si(Sj) contains i(j) nodes and Si ⊂
Sj , we know j > i. Assume that Si = {v1, v2, ..., vi}, Sj =
{v1, v2, ..., vi, ..., vj}, we can expand Si to get Sj with j − i steps by
adding node vk(i < k ≤ j) into Si in the (k − i)th step to get a set
Sk−i. After adding vj into Si in the (j− i)th step, we get Sj−i = Sj .

Let S0 = Si, we have j − i+ 1 sets S0, S1, S2, ..., Sj−i, which
satisfy that ∀x ∈ [1, j − i], Sx \ Sx−1 = {vi+x}. We use Px to
denote the partition of V corresponding to the partial equivalence
relationship ≡Sx .

We first prove that ∀x ∈ [1, j − i], Sx−1 ⊂ Sx ⇒ Px � Px−1.
Given Px−1, the unique node vi+x ∈ Sx \ Sx−1 divides each set
P ∈ Px−1 into at most three disjoint subsets, where the first subset P1

contains nodes that are graph children of vi+x, the second subset P2

contains nodes that are graph parents of vi+x, and the third subset P3

contains nodes that are neither graph parents nor children of vi+x. The
three subsets satisfy that P1

⋃
P2

⋃
P3 = P . If ∃Pi = ∅(i ∈ [1, 3]),

then P is divided into two or even one subset. After that, we get the
partition Px w.r.t. Sx, which satisfies that every set of Px is a subset
of some set of Px−1, i.e., Px � Px−1.

Since S0 ⊂ S1 ⊂ S2 ⊂ ... ⊂ Sj−i and ∀x ∈ [1, j − i], Sx \
Sx−1 = {vi+x}, we know that Pj−i � Pj−i−1 � ... � P1 � P0.
As Si = S0 and Sj−i = Sj , we know that Pj � Pi.

Therefore, Si ⊂ Sj ⇒ Pj � Pi. �

389

Table 10: DAG reduction vs Backbone: IP+.

Dataset
Index Size (MB) Index Construction Time (ms) Query Time (ms)

IP+
∗ IP+

B IP+
B∗ IP+

∗ IP+
B IP+

B∗ IP+
∗ IP+

B IP+
B∗

amaze •0.055 0.16 0.064 •1.20 5.80 2.94 •18 59 37

kegg •0.06 0.16 0.08 •1.29 15.43 3.49 •21 67 44

xmark •0.11 0.26 0.17 •10.02 24.44 12.37 34.4 39 33.5

citeseer •0.21 0.60 0.51 10 4.35 •1.66 68 107 84

pubmed •0.16 0.49 0.40 10 •2.12 4.93 •51 96 107

arxiv •0.13 0.46 0.33 10 11.20 •2.12 573 1,009 531

email 2.90 10 •2.34 100 1,156 •8 •29 174 41

unip150m •348 1,069 386 18,490 •1,210 1,315 •13 121 44

wiki 26 97 •11 1,050 324,324 •61 •7 141 9

LJ 12 41 •9 490 47 •29 •44 325 86

web •5.47 16 6.41 •240 9,309 7,842 •92 314 211

05Patent •30 82 72 2,660 681 •537 •29 58 53

citeseerx •98 305 152 7,880 1,752 •1,185 147 236 178

dbpedia •54 161 90 •3,290 428,504 132,716 •148 372 273

govwild •144 390 315 10,100 •1,613 1,713 226 355 351

Patent •80 235 212 10,590 6,138 •4,724 •29 99 89

go-unip 81 400 •38 3,630 907 •558 •63 215 186

10go-unip •6.05 29 6.18 300 61 •46 •51 205 139

twitter 211 771 •88 9,810 30,948 •648 •17 340 27

web-uk 310 995 •262 15,190 2,544 •1,733 •200 522 305

Proof of Theorem 6.1: According to Definition 6.1, we know u ≡
v ⇔ u ≡V v. Since P|V | is a partition of V , and two nodes in
different sets of P|V | are inequivalent, we only need to prove that two
nodes in the same set of P|V | are equivalent to each other.

As shown by Fig. 5, after processing all nodes of V , each leaf node
of the tree is a set P ∈ P|V |. All nodes of P have the same set of graph
parents and children, which are denoted as the set of nodes on the path
p from the root to the leaf node P . Since all nodes of V are already
processed after getting P|V |, P will not be further divided into smaller
sets, i.e., all graph parents and children in the given graph Gt for nodes
of P can be found from p. Therefore, all nodes in the same set of P|V |
are definitely equivalent to each other.

As P|V | is a partition of V , i.e.,
⋃

P∈P|V |
P = |V |, we know that

P|V | contains all sets of equivalent nodes w.r.t. G. �

B. DAG REDUCTION AND REACHABILITY
BACKBONE

Both DAG reduction and reachability backbone (abbreviated as
Backbone) [12] reduce the size of the given DAG. We show their
impacts using IP+ [25] and TF [5] as the representative of Online-
Search and Label-Only methods, respectively, and use subscripts “∗”,
“B” and “B∗” to denote the version working on Gε, the Backbone
graph of G and the Backbone graph of Gε, respectively. Tables 10 and
11 show the results of IP+ and TF.

On one hand, using DAG reduction is a better choice to accelerate
reachability query processing compared with Backbone. This is be-
cause, Backbone was proposed to tackle the scalability bottleneck for
methods that cannot process large graphs, such as [7, 16]. It was shown
in [12] that even though existing algorithms can scale to large graphs
with Backbone graphs, the cost behind the scalability is large index
size and more index construction time. The query performance may
degenerate due to its expensive search strategy (see Section 3 and [12]
for a detailed description).

On the other hand, from Tables 10 and 11 we know that if the Back-
bone graphs are generated based on the result of our DAG reduction
Gε, then compared with generating Backbone graphs from G, for both
algorithms, the index size, index construction time and query time can
be improved significantly for most datasets.

Table 11: DAG reduction vs Backbone: TF.

Dataset
Index Size (MB) Index Construction Time (ms) Query Time (ms)

TF∗ TFB TFB∗ TF∗ TFB TFB∗ TF∗ TFB TFB∗
amaze •0.02 0.16 0.06 2 2 2 •11 54 29

kegg •0.02 0.15 0.07 10 2.39 •2.15 •12 86 34

xmark •0.08 0.27 0.18 13 7 7 26 37 34

citeseer 0.52 0.77 0.59 51 33 •22 •53 133 89

pubmed 0.64 0.67 0.55 48 24 •23 •53 117 79

arxiv 5.34 6.25 •2.06 614 190 •61 •248 540 298

email •0.95 9.62 2.20 125 8 •7 •14 169 38

unip150m •140 1,058 371 31,366 2,424 2,230 •41 1,300 49

wiki •8.86 96 10 1,090 74 •47 •8 141 9

LJ •4.21 41 8.29 761 46 •31 •41 329 85

web •2.20 16 6.32 393 35 •26 •98 307 207

05Patent •29 83 74 6,855 1,379 •1,214 74 56 76

citeseerx 631 824 •296 41,536 33,970 •9,823 96 156 127

dbpedia •30 164 90 7,194 1,633 •840 213 364 276

govwild 2,693 464 •419 114,950 •6,033 6,529 452 348 369

Patent 4,231 1,742 •1,384 197,125 106,760 •76,510 84 96 101

go-unip •40 434 48 6,224 4,089 •1,489 •102 220 205

10go-unip 8.61 32 •8.56 994 367 •253 •78 202 141

twitter •71 766 82 13,289 1,337 •630 •18 343 21

web-uk •324 - 407 67,368 - •29,637 •175 - 305

C. DATASETS
For the datasets listed in Table 2, amaze5, kegg5, xmark5, email6,

wiki6, LJ6 and web6 are directed graphs initially, we transformed them
into DAGs by coalescing each strongly connected component into a
node of DAGs. All other datasets are DAGs initially. These datasets
are used in the recent works [5, 12, 14, 24, 25, 27, 28].

Among these datasets, the first six are small datasets and are down-
loaded from the same web page, amaze, kegg and xmark are from the
sigmod08 zip file, and pubmed and arxiv are from the sigmod09
zip file. These small datasets are mainly used to make comparison
between existing algorithms and our algorithms on TR and ER. amaze
and kegg are metabolic networks, both have a central node that has a
large in-degree and out-degree. xmark is an XML document, citeseer5,
pubmed5 and arxiv5 are all citation networks. The following 14 large
datasets are mainly used for testing the performance of reachability
query processing. email is a DAG transformed from directed graph
email-EuAll, which is a email network from a EU research institution.
unip150m5 (uniprotenc_150m) is a DAG obtained from the RDF graph
of UniProt7, which contains many nodes without incoming edges and
few nodes without outgoing edges. wiki is a DAG transformed from
Wikipedia talk (communication) network wiki-Talk. LJ is a DAG of
an online social network soc-LiveJournal1. web is a DAG of web
graph web-Google. 05Patent8(05cit-Patent), Patent5 (cit-Patents) and
citeseerx5 are all citation networks with out-degree of non-leaf nodes
ranging from 10 to 30. dbpedia9 is the DAG of a knowledge graph.
govwild10 is a DAG transformed from a large RDF graph. go-unip5

(go_uniprot) and 10go-unip8 (10go-uniprot) are DAGs transformed
from the joint graph of Gene Ontology terms with the annotations file
from the UniProt. twitter10 is a DAG transformed from a large-scale
social network obtained from a crawl of twitter.com [4]. web-uk10 is a
DAG of a web graph dataset [3].

5https://code.google.com/archive/p/grail/downloads
6http://snap.stanford.edu/data/index.html
7http://www.uniprot.org/
8http://pan.baidu.com/s/1bpHkFJx
9http://pan.baidu.com/s/1c00Jq5E

10https://code.google.com/p/ferrari-index/downloads/list

390

