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ABSTRACT

Answering reachability queries is one of the fundamental graph oper-
ations. The existing approaches build indexes and answer reachability
queries on a directed acyclic graph (DAG) G, which is constructed by
coalescing each strongly connected component of the given directed
graph G into a node of GG. Considering that G can still be large to be
processed efficiently, there are studies to further reduce G to a smaller
graph. However, these approaches suffer from either inefficiency in
answering reachability queries, or cannot scale to large graphs.

In this paper, we study DAG reduction to accelerate reachability
query processing, which reduces the size of G by computing transitive
reduction (TR) followed by computing equivalence reduction (ER).
For TR, we propose a bottom-up algorithm, namely buTR, which
removes from G all redundant edges to get the unique smallest DAG
G satisfying that G has the same transitive closure as that of G. For
ER, we propose a divide-and-conquer algorithm, namely linear-ER.
Given the result G* of TR, linear-ER gets a smaller DAG G* in linear
time based on equivalence relationship between nodes in G. Our DAG
reduction approaches (TR and ER) significantly improve the cost of
time and space, and can be scaled to large graphs. We confirm the
efficiency of our approaches by extensive experimental studies for TR,
ER, and reachability query processing using 20 real datasets.

1. INTRODUCTION

Given a directed graph G, a reachability query u? ~~ v asks whether
anode v is reachable from a node . Answering reachability queries
is one of the fundamental graph operations and has been extensively
studied [1,5, 12-16, 18,21, 23-25,27-30]. Its applications include
social networks, biological networks, the Semantic Web, ontology,
transportation networks, program workflows, etc. Due to its importance
and the emergence of large graphs, it is still a challenging task for
reachability queries to be answered faster with less index size and index
construction time offline.

Observing that two nodes can reach each other in a strongly con-
nected component (SCC) and can be identified in linear time w.r.t. the
size of G [20], the existing methods focus on answering reachability
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queries on a directed acyclic graph (DAG) G = (V, E) by coalescing
SCCs of G into nodes of GG, where V' (E) is the set of nodes (edges) of
G. The size of G becomes smaller, but still can be large to be processed
efficiently. To address this problem, there are studies to further reduce
G to a smaller graph for reachability query processing. However, these
approaches suffer from either inefficiency in answering reachability
queries, or cannot scale to large graphs. In [12], Jin et al. proposed a
SCARAB framework, which exacts, from a DAG (7, a smaller “reacha-
bility backbone™ G carrying the major reachability relationship. It is
shown in [12] that existing algorithms can scale to large graphs based
on SCARAB. However, the cost behind the scalability is large index
size and more index construction time. The query performance is
improved only for a few algorithms, such as the GRAIL algorithm [29],
and degenerates for others due to its expensive search strategy. In [9],
Fan et al. studied equivalence reduction (ER), where two nodes u and v
are equivalent in a DAG G if (a) they can reach/be-reached-by the same
set of nodes and (b) they cannot reach each other. The result of ER over
G is a smaller graph G by replacing each set of equivalent nodes of G
with a representative node in G°. After ER, reachability queries can
be processed more efficiently. However, the compressg [9] algorithm
on ER computation cannot scale to large graphs due to its high space
complexity O(]V|?) and high time complexity O(|V|(|V| + | E|)).

Considering that reachability queries can be processed more effi-
ciently after ER, but compressg cannot scale to large graphs by directly
computing ER from G, in this paper, we study DAG reduction to accel-
erate reachability query processing, which gets the result of ER by first
computing TR. We show that given the result of TR, ER computation
can be largely simplified by our newly proposed algorithms. However,
TR computation itself is a non-trivial problem. Existing algorithms on
TR computation, such as the naive DFS and PTR [19], cannot scale
to large graphs either, due to their high space and time complexities.
To address this problem, we further propose efficient algorithm on TR
computation, such that both TR and ER computation can be scaled to
large graphs. Our main contributions are as follows.

e For TR, we propose a new algorithm buTR, which first identifies
from G a set of nodes from which all the redundant edges can
be safely deleted. The result is a smaller graph G’ = (V' E'),
where V' C V and E' C E. Then, we process nodes of G’
in a bottom-up fashion to find all the remaining redundant edges.
The time complexity of buTR is O(|V'| + |E| + d A |V'|) where
d = |E|/|V|is the average degree of G, A is the average number
of visited nodes for each processed node of V in computing, and the
space complexity is linear in O(|V]). By TR, we obtain the unique
smallest DAG G*, which has the same transitive closure as that of G

e For ER, we first show that equivalence relationship of two nodes
on G can be determined by their neighbor nodes in G* = (V, E*),
rather than by all the set of nodes that can reach/be-reached-by the
two nodes as compressg does, and we have an algorithm Sort-ER to



get ER G° of G* with time complexity O(|E*|log |V|). We further
show that the equivalence relationship is a partition of V', and each
node u is a unique constraint that their in-neighbors (out-neighbors)
take it as their common out-neighbour (in-neighbor), we propose an
algorithm linear-ER to get G° of G* in O(|V| + |E*|) time.

e We conduct extensive experimental study. The experimental results
show that our TR and ER approaches are much more efficient than
existing ones and can be scaled to large graphs, and based on the
result of DAG reduction G, reachability queries can be answered
faster, with less index sizes and index construction time.

2. PRELIMINARIES & THE PROBLEM

We model a graph as a directed graph G, and focus on the DAG
representation of G, denoted as G = (V, E), where V is the set of
nodes and F the set of edges. Here, a node in GG represents a strongly
connected component (SCC) of G, and an edge in G represents the
edge from an SCC'S; to another SCC S} if there is an edge from a node
in S; to anode in S;. G can be constructed from G in linear time [20].
A reachability query over G can be answered using (7, such that u can
reach v over G iff u’s SCC can reach v’s SCC over G.

We use ing(u) = {v|(v,u) € E} to denote the set of in-neighbor
nodes of u, and outg (u) = {v|(u,v) € E} the set of out-neighbor
nodes of u. We define ing; (u) as the set of nodes in G that can reach u
where u & ing(u), and out; (u) the set of nodes in G that u can reach
where u & outg (u). We call ing (u) /outa(u)/ing (u)/outs (u)
as u’s graph parents/children/ ancestors/descendants w.r.t. a DAG G.
In a similar way, we call inr (u) /outr(u)/ing(u)/out(u) as u’s
tree parent/children/ ancestors/descendants w.r.t. a tree ', respectively.
We also call outg; (u) |J{u} the transitive closure of u, and denote it
as TC(u). Givena DAGG = (V, E), weuse X = {1,2,...,|V|}
to denote a topological order (topo-order) of (G, which can be got by
a topological sorting on GG. A topological sorting of GG is a mapping
t:V — X,suchthatV(u,v) € E, wehavet, < t,, where t,(tv)
is the topo-order of u(v) w.r.t. X. A topo-order X of GG can be got in
linear time O(|V'| + | E|) [19]. We show important notations in Table 1
for ease of reference.

Transitive Reduction (TR): Given a DAG G = (V, F) and edge
(u,v) € E, wesay (u, v) is redundant, if there exists a node w, such
that u can reach v through w. The TR of G is the unique smallest DAG
G' = (V, E") without redundant edges and has the same transitive
closure (TC) as that of G [2]. E.g., G* in Fig. 1(b) is the TR of G in
Fig. 1(a), and all dashed edges in Fig. 1 (a) are redundant edges.

Equivalence Reduction (ER): Givena DAGG = (V, E), two nodes
wand v(u # v) are said equivalent to each other on G, denoted as
u = v, iff ing(u) = ing(v) A out(u) = outg(v). The ER of
G isa DAG G° = (V*°, E°), where a node ve € V° represents a
set Sy, of equivalent nodes that are equivalent to v in (G, and an edge
(e, ve) € E° represents the edge from a node of S, to anode of S,
in G. Note that two nodes in the same set of equivalent nodes cannot
reach each other due to that G is a DAG, and given a query u? ~~ v, if
u # v, we can answer it by testing ue? ~ ve over G°.

Problem Statement: Given a DAG G = (V, E), we study DAG
reduction, which is to find the smallest DAG, G°, by TR and ER, where
“smallest” means that G has the same TC as that of G¢, but without
redundant edges, i.e., G° is the TR of G°. E.g., given G in Fig. 1(a),
G* in Fig. 1(c) is the result of DAG reduction. As a comparison, the
ER G of G may contain edges such as (v3, v13), (vs, vs), etc.

3. RELATED WORK

Existing algorithms working on G to answer reachability queries can
be divided into two categories: (1) Label-Only and (2) Online-Search.
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Table 1: Table of notations

[Notation [Description

G = (V,E) a DAG with anode set V and an edge set E/

G' = (V,E") G’s TR withanode set V andanedgeset E* C E

G® = (V°, E) G"’s ERwithanodeset V¢ C V andanedgeset E° C E°

X a topo-order of a DAG G

Ly node v’s topo-order in X

Tx the LPM tree w.r.t. a topo-order X

Ta a po-tree denoting the processing order of nodes ina DAG G
ing(v)(inp(v)) |[the setof graph parents (tree parent) of node v in a DAG G (tree T')
ing (v)(en.(v)) |the setof graph (tree) ancestors of node v in a DAG G (tree T')
outc (v)(outr (v))]the set of graph (tree) children of node v in a DAG G (tree T')
outg, (v)(outy (v))]the set of graph (tree) descendants of node v in a DAG G (tree T')

By Label-Only, u? ~~ v can be answered by comparing labels of u
and v. By Online-Search, u? ~+ v is answered by DFS at run-time,
when it cannot be answered by labels of v and v.

The Label-Only methods [1, 5, 13-16,23,27] focus on compressing
TC to get a smaller index size for fast query processing. The recent
work includes TF[5], DL [14], and PLL [27]. TF[S5] folds the given
DAG recursively based on topological level to reduce the cost of 2-hop
computation. DL [14] and PLL [27] share the same idea of computing
2-hop label. Given all nodes in a certain order, the construction of DL
and PLL labels is enumerating each node with a forward BFS and a
backward BFS to add « to labels of nodes that u can reach and nodes
that can reach u. During each BFS, an early stop condition is adopted
to accelerate the computation and reduce the index size.

The Online-Search methods [18,21,24,25,28,29] answer u? ~~ v by
performing DFS from w at run-time if needed. The recent work includes
GRAIL [28,29], FERRARI[18], FELINE [24], and IPt [25]. All these
methods use additional pruning strategies to facilitate query answering,
such as comparing topological level of u and v [18, 24, 25, 28, 29],
comparing topo-order [18], and comparing interval of u and v over a
spanning tree [24].

Besides, there are studies focusing on reducing G to a smaller DAG
to accelerate reachability query processing, including (1) SCARAB
Framework, (2) transitive reduction and (3) equivalence reduction.

SCARABFramework is studied in [12], which extracts from DAG G a
“reachability backbone” G carrying the major reachability relationship
of G. For each node v € G, it maintains, in G, a set of local
neighbor nodes Sin (u)(Sout(w)) that can reach (be reached by) w.
Given a query u? ~~ v, SCARAB returns the final answers in two
cases: (Case 1) Local-Search: SCARAB performs bidirectional BES
search from u and v to check whether u can reach v. If the answer is
FALSE, it answers the query by case 2. (Case 2) Reachability-Join-Test:
SCARAB returns the final answer by testing \/ Sout (u) v €Sin (v)

u’? ~~ v’ using anyone of existing methods. It is shown in [12] that
SCARAB can scale to large real graphs. The cost behind its scalability
is large index size and more index construction time. Moreover, the
query performance is improved only for a few algorithms, such as the
GRAIL algorithm [29], for other algorithms, the query performance
degenerates due to the expensive Local-Search in Case 1, and the need
of testing | Sout (u)| X |Sin (v)| queries to answer u? ~~ v in Case 2.

Transitive Reduction has been extensively studied [2, 10, 19, 22,
26]. Compared with G, as TC of G* equals that of G, the given
reachability query on G' can be answered using G directly. We discuss
the complexities. First, for the time complexity to be measured as a
function of the number of nodes in GG, Aho et al. in [2] proved that
transitive reduction and transitive closure have the same complexity
using matrix multiplication, and the fastest known algorithm [26]
takes time O(|V |**7%7) with space O(|V/|?), which is unacceptable
when processing large graphs with limited memory, therefore is not
considered for comparison in our experiment. Even though there exist
algorithms [10, 22] achieving linear-time complexity to get G* with
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Figure 1: DAG reduction: a DAG G (a), the DAG G* from G by TR (b), and the reduced DAG G*¢ by ER from G* (c). Nodes are denoted by their topo-orders.
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Figure 2: Relationships between different graphs.

the assumption that G is [N -free, a linear-time recognition algorithm
for N-free graphs is still an open problem, and G is not N-free in
practice. Second, for the time complexity to be measured by the number
of nodes/edges in G, the naive method is by depth-first search (DFS)
or breadth-first search (BFS) in O(|V'|| E]). Simon proposed a path-
decomposition based fransitive reduction (PTR) algorithm [19] to get
the TR of a DAG G. Let k be the number of paths got from G by PTR,
the time complexity of PTRis O(|E| + k|V| + k| E?|), and the space
complexity is O(k|V']). In practice, k is large that approaches |V/|,
which makes PTR cannot scale to large graphs. The problem of using
G" lies in the higher space and time cost in TR computation.

Equivalence Reduction is studied in [9] for reachability query pro-
cessing, which reduces the given DAG G to get a smaller DAG G*
based on equivalence relationship. The compressg algorithm [9]
works as follows to get G¢. For each node u € V/, it first finds u’s
graph ancestors (descendants) by backward (forward) BES with cost
O(|V| + |E|). Second, it identifies all the sets of equivalent nodes.
Then, it replaces each set by one of its node to get the compressed
graph G°. For compressg, the time complexity is O(|V'|(|V'| + |E|))
and the space complexity is O(|V'|?). Based on G, for a given query
u? ~ v, if u = vthenu v v. Otherwise, we answer u? ~» v by
testing ue? ~ v on G using any of existing methods, where ue (ve)
is the node in G denoting the set of nodes equivalent to u(v) in G.
Compared with SCARAB, only one query needs to be tested over
the compressed graph of ER for the given query on G. Compared
with TR, ER computation removes from G not only edges, but also
nodes. Usually in practice, reachability queries can be answered more
efficiently after ER. However, the high space and time cost makes
compressg difficult to be scaled to large graphs for ER computation.

4. AN OVERVIEW ON DAG REDUCTION

Given a DAG G, Fig. 2 shows the relationships between G and its
ERG*, TR G" and its ER G°. The output of compressg [9] is G¢. The
number of redundant edges of G* depends on the insertion order of the
edges when constructing G°. In the worst case, G€ is the TC of G*.
Compared with G by compressg, the result of our DAG reduction is
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G*, which is the TR of G without redundant edges. The benefit is that
G* has the minimum storage representation w.r.t. the property that TC
of G° equals that of G, thus analysis and visualization are more easier
to be done [8]. Given a DAG G, although it has unique TR GY,its ER
without redundant edges may not be unique. This is because that each
node v in G* represents a set P of equivalent nodes in G and v can be
any node of P. All the ERs are isomorphic due to that all nodes of P
are equivalent to each other.

4.1 Processing Strategy and Challenges

One way to get the result of DAG reduction G* is to first get G°
by compressg, then get G° by any one of existing algorithms on TR
computation. However, compressg is unscalable for ER computa-
tion due to its large time complexity O(|V|(|V| + |E|)) and space
complexity O(|V|?). In brief, to check whether two nodes u and
v are equivalent to each other, compressg first finds the graph an-
cestors and descendants of each node by traversing from w and v,
respectively. Second, compressg checks whether u’s graph ancestors
and descendants are same as that of v. E.g., for G in Fig. 1(a), to
check whether vg an v7 are equivalent to each other, compressg needs
to first traverse from g to find its graph ancestors {v1, v2, vs } and
descendants {vs, vy, v10, V15, V16 }, respectively. Then, compressg
processes v7 in the same way. With such results, compressg takes the
two nodes as equivalent ones by first comparing their graph ancestors
then comparing their graph descendants.

To reduce the space and time cost of compressg, a natural question to
ask is whether there exists a way such that the equivalence relationship
of two nodes can be transformed from comparing the whole set of
graph ancestors and descendants to comparing a small subsets of nodes,
which is confirmed by the following lemma.

Lemma 4.1: Let A;(u) C ing(u) (Di(u) C outg(u)) be the
subset containing all the nodes that can reach (be reached by) u through
shortest paths with at most i(i > 1) edges. Then, Vu,v € V,Vi > 1,

if G has no redundant edges, Eq. (1) and Eq. (2) hold. a
Ai(w) = Ai(v) & infs(u) = ins(v) ()
D;(u) = D;(v) & outi(u) = outg(v) 2

Hereafter, all proofs can be found from Appendix A. Based on
Lemma 4.1, we can get the result of DAG reduction by first TR, then
ER, which is shown by the bold arrows in Fig. 2. E.g., for the DAG G in
Fig. 1(a), we do not afford expensive cost to first get G by compressg.
Instead, we first get G* shown in Fig. 1(b), which does not contain
redundant edges, then get the result of DAG reduction G° (Fig. 1(c))
from G*. Since A1(u) = inge(u) and Di(u) = outge:(u) are
the smallest subsets to make Eq. (1) and Eq. (2) hold, we use them
for ER computation. Compared with compressg, the benefits of
computing ER based on G* are twofold: (1) we significantly reduce
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Figure 3: Statistics of a dense graph (arxiv) and a sparse graph (amaze),
where Out* denotes |outf, ()|, Out*-Diff denotes the average value of
|0ut*G (u) — out’é(vmaxﬂ forall nodes u € V. Yu € V, vmax is the
estimated graph child of w with the largest set of graph descendants.

the space from storing all graph ancestors and descendants for each
node by compressg to graph parents and children; (2) we significantly
reduce the time from comparing graph ancestors and descendants to
comparing graph parents and children. E.g., given G* in Fig. 1(b), both
ve and vy have rwo graph parents and one graph child, which are less
than their three graph ancestors and five descendants.

Even though we can get ER G* of G* without affording the much
more expensive time and space cost as compressg does, it makes sense
only if we can get the TR G* of G first.

We discuss PTR [19]. PTR computes TR by first decomposing G
into k paths, such that TC(u) can be represented by at most k nodes,
where each one belongs to a different path. After that, PTR processes
nodes of G in descending order w.r.t. a topo-order X, by which it
knows TC(v)(v € outa(u)) when processing w. In detail, for every
node wu, it updates TC(w) using TC(v), where (u, v) is not a redundant
edge. During processing, as it needs to remember TC(u) for every
uw € V, PTR has space complexity O(k|V'|) and time complexity
O(|E|+k|V|+ k| E"|). Fig. 3 shows the statistics for two real graphs,
one is amaze, the other is arxiv (see Appendix C for detailed
description). amaze is a sparse graph with average degree d = 0.97,
arxivisadense graph with d = 11. From Fig. 3 we know that for
amaze, k = 0.81|V],and forarxiv, k = 0.29|V|. The large & for
PTR makes it unscalable in practice with limited memory size.

To reduce the space complexity of PTR, an alternative is DFS which
has space complexity O(|V']) due to the fact that it visits the set of all
reachable nodes from each node on the fly. DFS randomly picks, in each
iteration, a node u and visits all nodes of out(; (u) to find redundant
edges from u. Let |out (+)| be the average number of visited nodes
for all nodes, the time complexity of DFSis O(d|out& (+)]|V]), where

= % is the average degree of GG. The efficiency of DFS is affected
by two factors: (1) the number of processed nodes, for DFS, it is
|V|, and (2) the average traversing cost, for DFS, it is d|out&(+)|,
which is mainly dominated by the average number of visited nodes
|out; ()| with the given DAG G. As shown in Fig. 3, for amaze,
louts (+)] = 0.17|V], and for arxiv, |out(+)| = 0.15|V|, which
means that in practice, DFS may be inefficient due to that |outg ()|
could be comparable to |V|.

As indicated by the time complexity of DFS, there are two critical
problems we need to solve to achieve efficient TR computation: (1)
designing efficient algorithm to identify all redundant edges from some
nodes in linear time, such that to reduce the number of nodes that cannot
be processed in linear time, and (2) designing efficient algorithm to
reduce the traversing cost of remaining nodes. For the first problem,
we propose a new spanning tree, namely LPM tree, then utilize the
positional relationships between nodes to identify redundant edges
in linear time. For the second problem, we propose new heuristics to
estimate the number of reachable nodes for every node in linear time,
then process nodes in a bottom-up tashion. For each node u, we only
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Figure 4: The reduced graph G’ (a) and its po-tree T+ (b).
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visit nodes of outg; (u) \ outg; (v) on the fly, where v is the graph child
node of » with the largest number of reachable nodes. In this way, the
traversing cost is largely reduced with O(|V']) space.

Our DAG-Reduction algorithm is shown in Algorithm 1 to obtain
the DAG reduction G° for a given DAG G, which is done by first
calling Algorithm 4 (Section 5) in line 1 to get the TR G, then calling
Algorithm 5 (Section 6) in line 2 to return the final result G°. In the
following discussion, we will first show the basic idea of our TR and
ER algorithms in Section 4.2 and Section 4.3, then discuss more details
of TR and ER computation in Section 5 and Section 6, respectively.

Algorithm 1: DAG-Reduction (G)

1 compute the TR G" of G (Algorithm 4)
2 compute the ER G* of G* (Algorithm 5)

4.2 Basic Idea of TR Computation

The basic idea of our method on TR computation is to reduce (1)
the number of processed nodes, and (2) the average traversing cost.
Compared with DFS, we do not need to process as many as |V| nodes
with average traversing cost as high as d|outg;(+)|. Compared with
PTR, the space complexity of our method is still O(|V|).

We discuss how to reduce the number of processed nodes. The main
idea is to first find, in linear time, a set of nodes called RRNs satisfying
that (1) the redundant edges from RRNs are all removed and (2) the
redundant edges from any non-RRNs can be identified without visiting
RRNs. After that, DFS processes only non-RRNs to find the remaining
redundant edges, which equals reducing the number of processed nodes.
E.g., for G in Fig. 1(a), we find that vy, v2, V5, Ve, v7, v11 and vi2 are
RRNs. After that, we remove these nodes and get a smaller graph G’
in Fig. 4(a). Compared with G, G’ = (V’, E’) contains less nodes to
be processed next.

We discuss how to reduce the average traversing cost. Let u be a
graph parent of v, the main idea is based on the fact that out; (v) C
outg,; (u) reduces the traversing cost of u, if out¢, (v) is maintained.
Obviously, to make the traversing cost minimal by maintaining the
largest out(; (v), we need to know the exact number of graph descen-
dants for every node. However, knowing the exact size of out; (u) for
all nodes w € V' is non-trivial, it equals computing TC of G. We will
show shortly that by our newly proposed heuristics, we can estimate
the number of reachable nodes for every node in linear time, such that
to make out¢; (u) \ outg; (v) as small as possible. Based on such esti-
mation we construct a spanning tree, denoted as po-tree 7, indicating
the processing order for nodes of G’. The po-tree 7 is constructed
by inserting each node w as a tree child of v, where v has the largest
number of graph descendants in w’s graph children. E.g., the po-tree of
G’ in Fig. 4(a) is given in Fig. 4(b). By the po-tree T¢, we process
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Figure 5: Illustration of the divide-and-conquer method, where v; (U5) means
that all nodes in the set under v; are its graph children (parents), —v; means that
all nodes in the set under v; are neither graph parents nor children of v;.

nodes of G’ in a bottom-up fashion. After processing a node v, the next
node to be processed is one of v’s unprocessed graph parent u (u is
atree child of v in 7). The efficiency of our algorithm is achieved
as follows. During processing u, we do not need to visit all nodes of
outg; (u). Instead, we only visit nodes of outg; (u) \ outg(v) on the
fly. Compared with PTR, we do not need to afford O(k|V'|) space to
remember TC (u) for all nodes u € V, and compared with DFS, the
traversing cost of each node u can be reduced accordingly due to the
fact that |out g (u) \ outg (v)| < outd (u)|. As shown in Fig. 3, for
each processed node u, by avoiding visiting nodes that are reachable
from its graph child v, we can reduce the average number of visited
nodes from 639 by DFS to 0.71 for amaze, and reduce the average
number of visited nodes from 928 by DFS to 6.6 for arxiv.

4.3 Basic Idea of ER Computation

We first give a sorting algorithm for a given G*. Here, to compare
if two nodes are equivalent, the algorithm relies on the sorting of all
nodes by comparing their graph ancestors/descendants to speed up the
process. However, it cannot be done in linear time.

To make further improvement, we propose a new linear divide-and-
conquer algorithm, which takes initially all nodes in V' as possible
equivalent ones, then repeatedly divides this set into smaller ones
satisfying that nodes in different sets are definitely inequivalent, while
nodes in the same set are possible equivalent. All the sets form a
partition of V. We show the idea using Fig. 5. Let Py be the first
partition. In each iteration, we randomly pick a node v;, and use it
to divide some sets in partition P;_1 into more subsets to get P;. In
other words, a set P € P, will be divided by v; into at most three
disjoint subsets in P;, where the first set P, contains nodes that are
graph children of v;, denoted by v; in Fig. 5, the second set P> contains
nodes that are graph parents of v;, denoted by v, and the third set P
contains nodes that are neither graph parents nor children of v;, denoted
by —w;. If 3P; = 0(i € [1, 3]), P is divided into two or even one set
in P;. After processing all nodes, we get P}y | containing all sets of
equivalent nodes.

For example, given G* in Fig. 1(b), Po = {V'} initially. Assume
that the first randomly selected node is vz, the second is vs and the
third is vg. We first process v2, which divides V' into three sets to
get P1 = { P11, P12, P13}, where all nodes in P11 = {vg, v7} are
graph children of v, the single node in P12 = {v1 } is a graph parent
of va, and all nodes in P13 = {va, ..., 05, vs, ..., 016} are neither
v2’s graph parents nor children. We then process vs based on Py
to get P = {Pa1, P22, Pa3, Pas}. As all nodes in Py; are graph
children of vs, Po1 = Pi1. Pao = P12 due to that vy is a graph parent
of vs. P13 € P is divided into two sets, Pog = {v11,v12} and
Py = {va,...,v5, Vs, ..., V10, V13, ..., V16 }, Where nodes in P»3 are
graph children of vs, and nodes in P4 are neither vs’s graph parents
nor children. After processing vs, we get Ps containing 6 sets. For each
node v;, the sets in leaf nodes of the tree in Fig. 5 in computing form
the partition P; (¢ € [1, |V'|]). Foreach set P € P;, we can find, from
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Figure 6: The LPM tree T'x of G generated from X. The integers on the left of
T'x are topological levels, i.e., the length of the longest path ending at a node.

edges on the path between P and the root of the tree in Fig. 5, the set of
processed graph parents and children for all nodes of P. As each set of
‘P; has a distinct path to the tree root denoting a unique set of graph
parents and children, two nodes from different sets of P; are definitely
inequivalent. The following processing is similar. After processing all
nodes, we get P|y|. As each set of P}y, cannot be further divided into
smaller ones, all nodes in the same set of P}y-| are definitely equivalent
to each other, i.e., P}y contains all sets of equivalent nodes. E.g., since
ve and v have the same set of graph parents and children, i.e., v2, vs
and vg, shown on the path from the root to {vg, vz} in Ps in Fig. 5,
and there is no other nodes that take vg or v7 as their graph parents or
children according to G* in Fig. 1 (b), we know that {ve, v7} € Pivis
thus ve and v7 are equivalent to each other.

S. TRANSITIVE REDUCTION

We discuss in this section more details on the optimizations for TR,
including (O1) marking nodes to reduce the size of the processed graph,
and (O2) estimating the number of graph descendants to construct a
po-tree to reduce the average traversing cost.

5.1 O1: Marking Nodes of ¢

Given anode u in a DAG G, it is not possible to know whether an
edge from w is redundant or not by scanning only w’s graph children.
The aim of this optimization is, based on a spanning tree, to identify a
set of nodes in linear time O(|V'| + | E|) satisfying that all redundant
edges from them are correctly identified, such that to get a smaller
graph G’ to be processed next. However, not any spanning tree is
appropriate. Given a node w in a spanning tree 7" of G, if v is a tree
descendant but nor a tree child of u, then we can safely say that the
non-tree edge (u, v) is a redundant edge, if it exists. If v is a tree child
of u, then we cannot tell whether edge (u, v) is redundant or not easily.

5.1.1 The LPM Tree and the Marked Nodes

Given a topo-order X of DAG G, the LPM tree T'x is a spanning
tree of GG, where the incoming edge to a node v in T'x is from its last
graph parent u, which has the maximum topo-order among v’s graph
parents in X. As an example, given G in Fig. 1(a) with its topo-order
X, the LPM tree T'x is shown in Fig. 6. We have the following result.

Property 5.1: Each edge of T'x is not a redundant edge. a

As a comparison, the DFS/BFS-based spanning tree does not have
this property. E.g., for G in Fig. 1(a), edge (vs, v13) may be an edge of
both a DES or BFS-based spanning tree. According to Property 5.1, we
only need to focus on non-tree edges to find redundant ones.

Definition 5.1: (Complete Node, CN) Given anode u € V', we say
wisa CNof Tx,if Vv € outg;(u), v € outh, (u). O



Here, intuitively, if u is a CN, then «’s graph descendants are its tree
descendants, thus all edges from « pointing to nodes that are not u’s
tree child nodes in T'x are redundant edges. E.g., the CNs of T’x in
Fig.6 are v1, vs, V10, V12, V14, V15 and vy according to Definition 5.1.
Consider v1, outg(vi) = {v2,v3,v4, V5, v12,v14} C out’r,, (v1).
Since v4 is a tree descendant but not a tree child of v, the edge (v1, v4)
is redundant. Similarly, (vi,v12) and (v1,v14) are redundant edges.

Further, if « is not a CN, we may still have a chance to find all
redundant edges from w. The main idea is to find every node u such
that all redundant edges from w can be identified by the positional
relationship between nodes of w’s graph children. E.g., vs is not a
CN and it has two graph children, vg and v9. And we know that edge
(ve, v9) is redundant due to that vg is a tree child of vs in T'x. We
divide u’s graph children into two disjoint sets, S1 and S, satisfying
that outg (u) = S1|J S2, where S1 contains nodes that are u’s tree
descendants in T'x, and S2 = outc (u) \ outy, (u). Asnodes of Sy
are u’s tree descendants, we can easily find redundant edges between u
and nodes of Sy based on T’x and Property 5.1. We use Definition 5.2
to find redundant edges between u and nodes of .Ss.

Definition 5.2: (Reducible Node, RN) Vu € V| let [,, be the topo-
logical level of u, i.e., the length of the longest path ending at u, and
Imin(u) = min{ly|v € outry (u)} if outry (u) # 0, otherwise
Imin(u) = co. Wesay wisan RN of T'x, if outa (u) \ outt, (u) can
be represented by C and C5 satisfying the following conditions:
1. outg(u) \ outy, (u) = C1 UC2and C1 N Ca = 0,

2. Vwe(Cl, < lmin(u),

3. Vo,w € Cr,ty < tw = Ly > L,

4. Yw € C2,3v € Cy,suchthatw € outr, (v).

In Definition 5.2, the first condition further divides S> into two
disjoint sets C'; and C'>. The second condition guarantees that there
does not exist paths from nodes of outr, (u) to nodes of C'1. The third
condition guarantees that no edge exists between two nodes of C'y. By
the second and third condition, we know that all edges from w to nodes
of C1 are not redundant edges. The fourth condition guarantees that any
edge from u to a node of C's is a redundant edge. Therefore, if w is an
RN, it means that we can find C; and C'3, such that all redundant edges
from u can be correctly identified. It is worth noting that if w is a CN,
then w is also an RN, and in this case, outg (u) \ outry, (u) = 0. E.g.,
all nodes but vs in Fig. 6 are RNs according to Definition 5.2. Consider
vs. Since outr, (v3) = {va}, we have lmin(vs) = l,, = 2. Since
outg(vs) \outt, (vs) = {vs,v13, vie },and none of the three nodes
satisfies the second condition of Definition 5.2, v3 is not an RN.

Definition 5.3: (Removable RN, RRN) Given an RN u, wis an RRN,
ifing(u) = 0, or Vo € ing(u), visan RN. O

O

Intuitively, given an RRN w, all redundant edges from each of u’s
graph ancestors have been correctly identified, thus we do not need to
find redundant edges from any of u’s graph ancestors again, and for any
non-RN v, finding redundant edges from v will not visit u. Therefore,
RRNs are useless for processing non-RNs and can be safely removed.
E.g., v3 in Fig. 6 is not an RRN since it is not an RN of T’x according
to Definition 5.3. Even though v4 is an RN of Tx, it is not an RRN,
since vz € ing (va)isnotan RN of T'x. The 7 RRNs found in T’x are
the circled nodes in Fig. 6, i.e., v1, v2, vs, Vs, V7, v11 and vio. After
removing the 7 RRNs, the reduced G” is shown in Fig. 4(a).

5.1.2 The Algorithm

As shown by Algorithm 2, we first find all RRNSs, then find all CNs
from non-RRNs. If a node v is both a CN and RRN, it will be marked
as an RRN due to that v is useless for post processing.

Consider RRN. Definition 5.3 implies that we need to check whether
every node of in g (v) is an RN, in order to know whether v is an RRN.
We give Lemma 5.1 to show that we only need to visit nodes of ing (v).
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Lemma 5.1: Given an RN v, v is an RRN iff ing (v) = 0, or every
node of ing (v) is an RRN. O

According to Lemma 5.1, to know whether v is an RRN, we first
need to know whether it is an RN. To know whether v is an RN, we
need to know whether all redundant edges from v can be correctly
identified according to Definition 5.2. Given w € outa(v), if edge
(v, w) is redundant, there must exist anode x € oute (v) satisfying
ty <ty < tw Az~ w. Here, z ~ w is determined by their posi-
tional relationship in T'x . And the problem becomes Vw € outa (v),
whether 3z € outq(v)(z # w), such that z is a tree ancestor of w.
We use DT-order to make the cost of determining whether v is an RN
minimal by visiting all nodes of out (v) only once.

The DT-order: A DT-order is a DFS-based topo-order which visits all
nodes of GG in DFS way under the restriction of topological sorting, i.e.,
anode can be visited only if all its graph ancestors have been visited.
E.g., the topo-order for nodes in Fig. 1(a) is a DT-order of G.

Lemma 5.2: If the LPM tree T'x is generated based on a DT-order X
of G, then X is also a DFS-order of T'x. a

According to Lemma 5.2, visiting nodes of an LPM tree in DFS-
order X equals visiting nodes of G in ascending topo-order X . We
assign each node an interval I, = [s, ] to facilitate checking the
ancestor-descendant relationship for nodes in T'x, where [,,.s = t4,
and [, .e is the maximum DT-order of u’s tree descendants. I,, C I,
means that v is a tree ancestor of «. The interval of each node in T'x
is shown in Fig. 6. Note that we cannot have Lemma 5.2 if the given
topo-order is not a DT-order, and the interval used in [11,24,29] does
not have any relationship with topo-order.

Algorithm 2: markCNRRN (G = (V, E))

1 construct T'x

2 check whether Vv € V' is an RN by calling isRN(v, T’x )

3 check whether Vv € V' is an RRN according to Lemma 5.1 in
ascending DT-order

4 check whether every non-RRN is a CN in descending DT-order

5 return G after removing RRNs

Function isRN(v, Tx)

6 I, < [0,0]; lmin(v) <= o0

7 for each (w € outg(v) in ascending DT-order X of G) do
8 if (I, C I,) then

9 if (Imin (v) > 1) then lyin (v) < Ly

10 if (I, ¢ I,) then I, < I,

11 else delete edge (v, w)

12 else

13 if (I, ¢ 1) then

14 if (Imin (v) < 1) then return FALSE
15 else I, < Iy lmin (V) < lw

16 else delete edge (v, w)

17 return TRUE

In Algorithm 2, isRN() is used to check whether a node is an RN,
which processes v’s graph children in ascending DT-order X (line 7)
to determine whether v is an RN by visiting its graph children only
once. In isRN(), w is the current processed node, x is the last node
processed before w satisfying thatedge (v, x) is not redundant, I min (v)
denotes the smallest topological level for nodes processed before w. To
know whether w has a tree ancestor in out (v), we only need to test
whether w is a tree descendant of z. If v is an RN, we know whether
it is an RRN by visiting all its graph parents only once according to
Lemma5.1.



Consider CN. Let z,, = max arg, {t,|v € outg(u)} be, among
u’s graph descendants, the one with the largest topo-order. We process
all non-RRNs in descending order w.r.t. DT-order X . For each graph
parent node v of the current processed node v, we update x,, using .
When processing u, we know u is a CN iff z, is a tree descendant of u,
which can be determined by comparing their intervals.

After identifying RRNs and CNs, we remove all RRNs from G and
return G in line 5 as the reduced graph G’ to be processed next.

Example 5.1: Given G in Fig. 1(a), Algorithm 2 first constructs the
LPM tree as shown in Fig. 6, then marks all nodes but v3 as RNs. After
that, Algorithm 2 finds 7 RRNSs, i.e., v1, v2, vs, v, V7, v11 and vi2.
Finally, it finds all CNs from non-RRNs, and returns G without the 7
RRNSs as the reduced graph G’ shown in Fig. 4(a). a

5.1.3 Analysis

Theorem 5.1: Given an LPM tree T'x of G, Algorithm 2 correctly
finds all RRNs and CNs.

With DT-order we have the LPM tree constructed in linear time
O(|V|+ |E|) (line 1). Given a node v, isRN() visits v’s graph children
once (line 2), and v’s graph parents are also visited once to determine
whether it is an RRN (line 3). Therefore, to find all RRNs, Algorithm 2
visits 3y ([ing (v)] + |outa(v)|) = 2 x |E| edges. For CN, we
need to visit graph parents of every node once.Therefore, the time
complexity of Algorithm 2is O(|V| + | E|).

5.2 O2: Estimating # of Graph Descendants

We process each node based on one of its graph child to reduce the
traversing cost. Consider G in Fig. 4(a). If we process v3 after vy,
we need to visit all nodes in outg; (vs) \ outg (vi6), which contains
8 nodes. As a comparison, if we process v3 after v4, we need to
visit nodes in out; (vs) \ out¢; (va), which contains only 1 node. To
minimize out$; (u) \ outé(v), where v is a graph child of u, we need
to know the exact size of out; (u) for each node u. However, knowing
the exact number of graph descendants for all nodes is non-trivial, since
it needs to compute TC of the given DAG.

Suppose that u is the graph parent of v, [30] proposed heuristics to
estimate the lower and upper bounds (denoted as |b and ub, respec-
tively) of out¢; (u). The lower bound of w is obtained by summing
up the contributions of u’s graph children, where each graph child v
contributes m of its lower bound to . If |outg(u)| = 1 and

ling(v)| > 1, the lower bound of u may be less than that of v, which
may result in v is not the one wanted for u. On the other hand, the
upper bound of u is the sum of the upper bounds of u’s graph children.
As many nodes share the same set of graph descendants, the upper
bound of v may be much larger than the exact result, which cannot
help us to select the appropriate v for u. [6] proposed to estimate the
number of graph descendants for all nodes by performing k& random
permutations, to guarantee the difference between the estimated size
and the accurate size is bounded with certain probability. The larger
the k, the better the estimated results. As the cost of each random
permutation is O(|V'| + |E|), the overall cost is O(k(|V'| + |E|)).
Even though we can get a better estimation, the larger k£ value may
result in inefficiency for transitive reduction.

Here, with our LPM tree T'x, we can get an estimation in linear
time O(|V'| 4 |E|), to significantly accelerate TR computation. Let
Cu C outgr(u) be the set of u’s graph children that do not have

tree ancestors in outc (u) w.rt. Tx', N(u) the estimated size of

'C,, is defined without topological levels, while C; in Definition 5.2
is defined with topological levels. E.g., for node v3 in Fig. 6, Cyy; =
{va, vs, v13, v16 }, While C1 = 0 for vs.
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outg;(u), and vmax the node with the largest estimated number of
graph descendants in C',,. We give two heuristics to estimate the sizes.

(H1) Using the sum of sub-tree sizes as the estimation. We take
|Cul + X, cc, loutt (v)|as the lower bound of |outg; (u)].

(H2) Using Umax to estimate N (1) = |Cu| + N (vmax)-

Example 5.2: For H1, consider v14 in Fig. 4(a), which isa CN of T'x
in Fig. 6. Cy,, = {vis}, we know that |Cl,, | + |outT (vi5)] =
2 = |out§ (vi4)|. However, some leaf nodes of the LPM tree may have
graph descendants in the given DAG. If some nodes of C', are leaf nodes
of the LPM tree, then the estimated results may be far from accurate.
E.g., for v3 in Fig. 4(a), if the three redundant edges from v3 do not
exist, then Cyy; = {va}, and we have that |C\5| + |outT,, (va)| =
1 < |outg(vs)| = 8.

For H2, consider v4 in Fig. 4(a) Cv, = {vs, v13,v14}. Suppose
that N (vs) = 4 and N(v13) N(vi4) = 2. With H2, we can get
the estimated size of v, i.e., N (vs) = |Cy,| + N(vs) =3 +4 =71,
which is the accurate result. However, when the set of subtrees of
H1 have similar sizes, or when most edges from w to nodes of C,, are
redundant edges, H2 may get results smaller or larger than that of H1, or
even larger than & (u)]. In practice, the result of H2 is smaller than
the accurate result, because each redundant edge (u, v)(v # Umax)

can make N () increased by one, but it may make N (u) decreased by
|outr (v)]. O

As can be seen above, H1 and H2 are complementary to each other.
When one gets a smaller result, the other usually gets a larger value.
Also H1 gets a lower bound of |out¢; (u)| and H2 gets a result that is
usually smaller than the accurate result. We take the larger value of H1
and H2 as the estimated result. By summarizing the above description,
we estimate the approximate size of out¢; (u) based on Eq. (3).

oty (u)], wisa CN and
Jout (u)] >

_ N('Umax)
~ N(Umax); wisa CN and
N(u) = louty, (w)| < G

_ N('Umax)
IIlaX{‘Cu| + N('Umax),
[Cul 4+ > |outs (v)|}, otherwise
veCy X

| >
N (Vmax), we take |out? (u)] as the accurate result, which can be
gotin O(1) time, i.e., outg(u)| = lu.e = lu.s. (Case-2) uisa
CN but Jout?, (u)| < N (Umax ), we take N(vmax) as the estimated
result, to guarantee that Vo € outer (u), N(u) > N(v). (Case-3)

wis not a CN, we take the larger value of {|Cl| + N (vmax), |Cu| +
> e, loutt, (v)[} as the estimated result, which guarantees that

There are three cases in Eq. (3). (Case-1) wisa CN and |out7, (u)

N (u) is not smaller than the lower bound.

Consider G’ in Fig. 4(a). |out¢; (vs)| = 8, the estimated results by
our method is 11. For all other nodes, our estimated results are the
same as the accurate results. As a comparison, since v3 has many graph
descendants taking v15 as their graph descendants, the ub [30] method
will get inaccurate results by counting estimated results of v15 several
times. For vs, the estimated result of ub is 16. On the contrary, |b [30]
is also inaccurate for the similar reason. [6] estimates the results based
on k random permutations, its accuracy depends on the value of k, the
larger the value the more accurate results it can get. However, a larger
value for k£ means unaffordable cost for estimation.



We use Algorithm 3 to make the estimation and generate the po-
tree, which processes all nodes in descending DT-order, such that
when processing a node u, we have the estimated values for u’s graph
children. For each node u, we use Eq. (3) to estimate the number of
graph descendants, then insert u into the po-tree 7 as a tree child of
Umax. Here, po-tree 7 is a spanning tree indicating the processing
order for nodes of G’. After processing all nodes, we get the estimated
values for all nodes and the po-tree 75 as well. The po-tree of G in
Fig. 4(a) is given in Fig. 4(b). For each node, we visit its child nodes
only once, thus the time complexity of Algorithm 3is O(|V| + |E|).

Algorithm 3: genPoTree (G' = (V', E’))

1 initialize the po-tree 7 with a single root node r
2 foreach (u € V' in descending DT-order X of G') do

3 if (outgr (u) = 0) then vmax < 7

4 else umax — maxarg, ¢, ., wiN(@)}
5 compute the value of N (u) using Eq. (3)
6  insertu as a tree child of vyax in T/

7 return 7g

5.3 The Algorithm for Tr

5.3.1 The Processing Strategy

As shown by Algorithm 4, buTR first outputs a smaller graph G’ in
line 1. In line 2, it generates a po-tree 7/ based on Eq. (3). Then, it
processes nodes of G’ in a bottom-up fashion. After processing a node
v, the next node to be processed is one of v’s unprocessed graph parent
w (uis a tree child of v in T¢/). We divide nodes of outg; (u) into two
sets, out s (v) and outg; (u) \ oute (v), and process them separately.

Processing Nodes of out; (v) (line 10): We use a flag for each node
to denote whether it belongs to out¢; (v) or not. We explain our idea
using Fig. 7. Here, assume that all nodes of out¢, (v), i.e., S1, in Fig. 7
are graph descendants of v. When processing 1, we know that edge
(u1,ya4) is redundant, since (u1,v) € Eandys € outy(v).

Processing Nodes of outg; (u) \ outg; (v) (lines 11-15): We first pass
u as another flag to each of u’s graph child y € outg (u) \ outg (v)
(line 11), then mark all nodes of outg; (u) \ outg, (v) by either DFS
or BFS, indicating that they are graph descendants of u (lines 12-15).
During DFS/BFS, edge (u,y) is redundant if we encounter a node
y € outgs (u) \ outy(v) marked by u. Reconsider Fig. 7. When
processing u1, we pass u1 to y1 and y2. When we encounter y2, we
observe u1 by DFS/BFS from y1. Thus (u1, y2) is redundant due to
that u; can reach y» through y;.

5.3.2  Avoiding the Rollback Operation

Consider Fig. 7, where y3 & out¢, (v). After processing u1, if we
set the flag value of y3 as TRUE denoting that y3 € out;(u1), then
when we precede to uz, we may wrongly take (u2, y3) as a redundant
edge due to (1) we process uz based on v, and (2) y3 is marked as
TRUE before processing u2 indicating that ys € out; (v). To avoid
such a problem, we need to remember Sz, and rollback its status to
FALSE before preceding to ug, which is to visit Sz again. We use
DT-order and the reverse DT-order to avoid the rollback operation.

The Reverse DT-order: Recall that a DT-order visits all nodes of G
in DFS way under the restriction that a node can be visited only if all its
graph ancestors have been visited. Given a DT-order X of GG, we have
its reverse DT-order, denoted as X, which can be gotin O(|V| + | E|)
time by visiting nodes of GG in DFS way in the reverse order of X under
the restriction of topological sorting®.

>The two topo-orders used in FELINE [24] are not DT-orders, and the
cost of getting the second one is O(|V'|log |V'| + | E|).
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Figure 7: Relationship of transitive closures of different nodes, where bold
(thin) arrows denote paths (edges), outf,(v) = S1, outy(u1) = S1 U Sa,
O’LLt*G(uz) =51 US3.

This is done as follows based on a stack .S. For all the nodes without
incoming edges, we push them into S in ascending DT-order X . When
anode u is popped out from S, we assign w its ¢z in X, which is equal
to the order it is popped out from S. After that, we push u’s graph
children that take u as their unique graph parent into S in ascending
DT-order X, and remove u and all its outgoing edges. Such operation
is performed repeatedly until .S becomes empty. E.g., given the graph
To in Fig. 4(b) and the DT-order Z denoted as the red italic integers
(topological sorting is performed from tree ancestor to descendants),
the reverse DT-order Z is denoted as the underlined integer beside
each node. And we have the following result.

Lemma 5.3: Given DT-orders Z and ZofatreeT, lett, (tw) be
the topo-order of node v in Z(Z), then nodes w and v do not have
ancestor-descendant relationship iff t, < t, < ta > tv. O

Lemma 5.4: Let N1(Nz) be the number of visited nodes and edges
for all nodes of Tg processed in ascending DT-order Z(Z) by buTR,
O

then N1 = Nos.

Our solution to avoid the rollback operation is based on Lemma 5.3
and Lemma 5.4. With Lemma 5.4, we can process nodes of 7/ in
ascending order w.r.t. any DT-order of 7. Assume that uq and uz
do not have ancestor-descendant relationship in 7/, and (u1, v) and
(u2,v) are two edges in Tgr. With Lemma 5.3, if tz1 < twg, then
tu, > tu,. Therefore, we process nodes of 7 in ascending DT-order
Z, but mark nodes with their DT-orders in Z. We process w1 and mark
nodes of out & (u1) \ outg; (v) with t,, . Then, when processing u2, we
can directly mark nodes of out¢; (u2) \ outg; (v) with t.,. In this way,
we guarantee that a node, if it needs to be marked more than once, is
marked with values in descending order, such that we know which node
set it belongs to, and therefore avoid the rollback operation on nodes of
outg;(u) \ outs; (v), i.e., we visit each node of outg; (u) \ oute; (v)
only once, instead of twice. We explain it using an example.

Example 5.3: Consider v14 and v13 in Fig. 4(b), where trr7 = 4 <
tyrz = Sand ty,, = 10 > t,;, = 9. Assume that edges (v13, vio)
and (v14, vg) also exist in Fig. 4(a). We process v14 before vs.
When processing v14, we mark nodes of out¢; (vi4) \ outg(vis) =
{v9, V10, V15 } with t,,, = 10. At this point, we know that nodes with
flag values < 10 are v14’s graph descendants, among which those with
flag values = 10 (vg, v10 and v15) belong to out g (via) \ outs (vis),
and those with flag values < 10 belong to outg; (v1s). Next, we pro-
cess v13, we mark nodes of out¢; (vi3) \ out&(vis) = {vio,vis}
with t,, = 9. Here, we know nodes with flag values < 9 are v13’s
graph descendants, among which those with flag values = 9 belong
to outg; (v13) \ outy(vis), and those with flag values < 9 belong
to outf;(vis). As a result, nodes in outg; (via) \ oute(vis) and
outg; (v13) \ outgy(v1s) are visited only once. O

5.3.3  Analysis

Theorem 5.2: Given a DAG G, Algorithm 4 correctly identifies all
redundant edges. m|



Algorithm 4: buTR (G = (V, E))

Algorithm 5: linear-ER (G* = (V, E"))

1 G’ + markCNRRN (G)

2 T + genPoTree (G')

3 foreach (u € outr,, (1) in descending DT-order Z) do
4 processTreeChild(u, r)

5 return G after removing redundant edges

Procedure processTreeChild(u, v)

6 delRdtEdge(u,v)

7 foreach (z € outr,, (u) in descending DT-order Z) do
8 processTreeChild(z, u)

Procedure delRdAtEdge(u, v) rvzev, flagls]=conedgelw]=1initaly*/
9 foreach (w € outg(u)) do

10 if (flag[w] < t,) then delete edge (u, w)

11 else flag[w] + tu; edge[w] + u

12 for each (w € outgr(u) \ ({v} U outs(v))) do

13 visitnodes of outg; (u) \ out¢; (v) by DES/BFS from w
14 set the flag value of each visited node x as ¢,
15 delete edge (u, x), if edge[z] = u(z # w)

For each node w in the po-tree 7/, the number of visited nodes
for wis Auvpmax = |outs(u) \ outl; (vmax)|. Here, Umax has the
largest number of graph descendants among w’s graph children, and
Umax 18 the unique parent of w in T¢/. The cost of processing u is
A X Doy Lot A = ZueVr Suimax
visited nodes of processing all nodes V", the cost of processing all
nodes of V' is O(d A |V']). Since the time complexity of Algorithm 2
and Algorithm 3 is O(|V'| + |E|), the time complexity of buTR is
O(|V| + |E| +d A V).

During the processing, we need to maintain an LPM tree and po-tree,
and for each node of G, we need to maintain 5 variables, the space
complexity of buTRis O(|V]).

be the average number of

6. EQUIVALENCE REDUCTION

Given the output G* of buTR, we show in this section how to get
the ER G° of G*. By first sorting the adjacency lists (such as by topo-
order), we have a total order of all nodes by comparing their graph
parents and children. After that, each set of equivalent nodes can be
clustered together by either one of existing sorting algorithms, which
we call as Sort-ER without giving more details. We mainly discuss the
linear algorithm linear-ER.

Definition 6.1: (Partial Equivalence =s) Given the TR G b=
(V, E*) of a DAG G and a subset S C V/, we say two nodes u and v
are equivalent to each other on G* w.r.t. S if they have the same set of
graph parents and children in S, and is denoted as u =g v. o

Definition 6.1 defines a relaxed equivalence relationship for all nodes
of G*, which considers only graph parents and children in a subset of
V.E.g., given G* in Fig. 1(b), if S = {vs}, then vs’s graph parents,
i.e., {v4, vs, v7}, form an equivalent set due to the three nodes have the
same graph child vs. vs’s graph children, i.e., {ve, v15 }, form another
equivalent set due to that the two nodes have the same graph parent vs,
and all other nodes form the third equivalent set due to that they do not
have graph parents and children in S.

The partial equivalence relationship =g also defines, for V', a parti-
tion P satistying (1) P does not contain the empty set, (2) the union of
the sets in P is equal to V' (P covers V'), and (3) the intersection of any
two distinct sets in P is empty. Obviously, nodes in the same set of P
are possible equivalent, while nodes in different sets of P are definitely
inequivalent.
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1 Py« {V}

2 for each (i € [1,|V]] in ascending order) do

3 Pi <—reﬁne(73i,1,vi)

4 replace each set of P}y/| by one of its nodes to get G*
Function refine(P;_1,v;) /S = ing:t (vi) |J outge (vi)*/
5 generate a partition S for S, of which two nodes in the same set
of P;—1 belong to the same set of S, otherwise, they belong to
different sets of S
for each (w € S) do

remove w from the set of P;_1 it belongs to

Pic1+—PiaUS
return P;_1

O 00 3N

Lemma 6.1: Let S;, S; be subsets of V' contain i and j nodes re-
spectively, P;(P;) the partition of V corresponding to the partial
equivalence relationship =g, (Esj ), then S; C S; = P; <X P,
where P; < P; denotes that every element of Pj is a subset of some
element of P;. O

Let S; = Qif ¢ = 0, otherwise S; = S;—1 U {v;}, we have
) =Sy CS1 CS2C..C Sy =V.BasedonLemma6.1, we
have Eq. (4).

Pvi 2 Pvi-1 2 ... 2Po={V} “4)
Theorem 6.1: Given G* = (V, E*), partition P|v| contains all sets
of equivalent nodes w.r.t. G. a

According to Theorem 6.1, Py is the result we want to get. Based
on Eq. (4), we have Algorithm 5, which visits the graph parents and
children of each node only once to find all sets of equivalent nodes.
After that, each set of PP}y is replaced by one of its nodes to get the
compressed graph G°.

Analysis: We first discuss the complexity of Sort-ER. Let f,, =
lingt (u)| + |outgt (u)| and assume that Sort-ER is implemented
based on the mergesort algorithm [17], thus the space complexity is
O(|V]). To get the final sorted results, mergesort needs to loop log |V/|
times. In the i™ loop, mergesort merges |V|/2°~* sorted runs into
|V'|/2¢ sorted runs. For two nodes v and v, the cost of comparison
is min{ fu, fu }. In each loop, as mergesort compares at most |V/|
different pairs of nodes, the cost of each loop is bounded by 2| E*|, thus
the time complexity of sorting all nodes to identify all sets of equivalent
nodes is O(| E*|log |V']). As the complexity of removing equivalent
nodes and their outgoing edges is O(|V| + |E"|), therefore, the time
complexity of Sort-ER is O(| E*|log | V).

We then discuss the complexity of linear-ER. As shown in Algo-
rithm 5, we need to remember the set number for each node, thus the
space complexity of linear-ER is O(|V]). Consider the time complex-
ity. We process all nodes in lines 2-3. In each iteration, we process one
node v; in line 3 by calling Function refine( ), which visits v;’s graph
parents and children once to get the new partition P;, thus the cost of
processing all nodes of G" is 2w ev (Joutae (vi)| + [ing: (vi)]) =
2|E"|. Since the cost of line 4 is | V| + |E*|, the time complexity of
linear-ERis O(|V'| + | E*|).

By combining Algorithm 4 and Algorithm 5 together, we know that
the space complexity of the DAG-Reduction algorithm is O(|V]), and
the time complexity is O(|V| + |E| + d A |V']).

7. EXPERIMENT

We test three groups of algorithms: First, for TR, itincludes PTR[19],
DFS, and our buTR. Second, for ER, it includes our Sort-ER and



Table 2: Statistics of datasets, where d = |E|/|V| is the average degree of G,
|out¢, ()| is the average number of reachable nodes for nodes of G, 7y, (1)
is the ratio of the number of nodes (edges) in G/, G*, and G¢ over that of G,
respectively.

G G’ G* G*
Dataset V] TE] dllouty, )| rn %o Te %] Te%0|Tn %] 7%
amaze 3,710 3,600| 0.97 639| 57.5| 63.5| 94.0( 29.8| 314
kegg 3,617 3,908| 1.08 729| 65.1| 64.6| 93.8| 37.6| 35.7
xmark 6,080 7,025| 1.16 88| 66.8[ 65.1| 99.0| 55.8| 57.0
citeseer 10,720 44,258 4.13 39| 86.9| 85.3| 51.8| 84.9| 46.1
pubmed 9,000 40,028 4.45 58| 92.1| 94.7| 67.5| 76.7| 62.0
arxiv 6,000 66,707 |11.12 928| 97.8| 91.5| 20.0( 97.9| 19.7
email 231,000  223,004| 0.97 11,698 9.2| 10.1| 96.9| 147 8.3
unip150m||25,037,600(25,037,598| 1.00 1.6 0.0] 0.0f 100.0{ 25.6| 25.6
wiki 2,281,879 2,311,570| 1.01 18,522| 98.8| 98.3| 98.7| 14| 1.3
L] 971,232| 1,024,140| 1.05| 206,903| 61.1| 59.3| 95.1| 11.1| 10.8
web 371,764 517,805| 1.39 55,055 60.1| 60.8| 79.8| 30.5| 24.9
O5Patent || 1,671,488| 3,303,789| 1.98 7.7| 83.3| 84.7| 90.1| 80.3| 78.9
citeseerx || 6,540,401|15,011,260| 2.30 15,510 89.1| 93.1| 74.4| 39.7| 46.4
dbpedia || 3,365,623| 7,989,191 2.37 83,658 76.1| 81.2| 59.2| 50.5| 31.7
govwild || 8,022,880(23,652,610| 2.95 561/100.0| 99.9| 93.7| 69.0| 82.5
Patent 3,774,768(16,518,947| 4.38 1,544 96.5| 96.0| 71.6| 91.2| 68.9
go-unip 6,967,956(34,769,339| 4.99 26 79.4| 91.4| 67.2| 21| 23
10go-unip 469,526| 3,476,397 7.40 39| 93.7| 96.9| 58.7| 16.5| 11.5
twitter || 18,121,168(18,359,487| 1.01| 1,346,820 83.0| 83.4| 90.9| 1.7| 1.8
web-uk |[22,753,644|38,184,039| 1.68| 3,417,930 64.9| 61.0| 66.8| 15.9| 14.8

linear-ER with input G*. We also compare DAG-Reduction with
compressg [9] for the input G, where DAG-Reduction is to get G* by
calling buTR followed by identifying G* by calling linear-ER. Third,
for reachability query processing, we select five state-of-the-art algo-
rithms, including GRAIL [29] (abbreviated as GRL?), FELINE [24]
(abbreviated as FL), IP* [25]1%, PLL [27] and TF [5]. Besides, we
also make comparison between DAG reduction and the reachability
backbone [12] in Appendix B. We test the reachability algorithms using
random reachability query workloads. Here, a random workload is
generated by sampling node pairs with the same probability. The query
time is the running time of a total of 1,000,000 reachability queries.

We obtained the source code of all existing algorithms for reacha-
bility query processing from the authors, and implemented all other
algorithms using C++ and compiled by G++ 4.6.3. All experiments
were run on a PC with AMD Athlon(tm) II X2 250 3.0 GHz CPU, 16
GB memory, and Ubuntu 12.04.4 Linux OS. For algorithms that run
> 24 hours or exceed the memory limit (16GB), we will show their
results as “—" in the tables.

Table 2 shows the statistics of 20 real datasets used in our experiments.
We give detailed description of these datasets in Appendix C.

7.1 Transitive Reduction (TRr)

In this part, we first report the comparison between our algorithm
and existing ones on TR, then show the impact of the optimizations and
the impact of different TC estimating methods.

Comparison on TR: Table 3 shows the running time of different TR
algorithms, where k is the size of path decomposition of PTR. For
buTR, Stepl and Step2 denote markCNRRN and the operation after
markCNRRN, respectively.

From Table 3 we know that DFS is greatly affected by the size of
the average transitive closure |outg (+)| (refer to the 5th column in
Table 2). When |outg; (+)| increases, such as for twitter and web-uk,
DFS fails to get the result in limited time. buTR outperforms DFES on
most datasets, because cq.4 for buTR is very small. For the amaze
dataset, cqvg of DFSis 649.3, while cq.4 of buTR is 0.26. Regarding
buTR, Step] may need more time than Step2 even though Step1 has
linear time complexity, and Step2 needs more time than Step1 when

3GRL is the improved version of [28], and k£ = 5 for all datasets.
*The values of parameters are k = 2, h = 2, and p = 100.
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Table 3: Comparison of running time for TR (ms).

| Dataset ||PTR(1c/ VD | DFS (cavg) I _— StepgulTR — I
amaze 38(0.81) 22(649.3) 0.51 0.22 0.73 (0.26)
kegg 33(0.75) 24 (743.1) 0.40 0.23 0.63 (0.27)
xmark 38(0.71) 5.30(99.1) 0.83 0.40 1.23 (2.01)
citeseer 121 (0.54) 8.42 (57.5) 4.47 3.96 8.43 (12.98)
pubmed 73(0.62) 8.15(93.1) 3.38 3.54 6.92 (26.19)
arxiv 67(0.29) 196 (4,301.1) 4.07 5.51 9.58 (89.52)
email 90.817 (0.93) 14,100 (11,824.2) 37 11 48 (0.23)
unip150m - 1,706 2.4) | 6,598 1,599 8,197 (0)
wiki - 301,304 (18,636.4) 363 178 541 (0.02)
L) - | 1,661,850 (210,734.0) 190 63 253(0.10)
web - 298,438 (63,400.3) 128 88 216 (1.02)
O5Patent || 1,244,350 (0.74) 1,079 (9.8) | 2,015 1,751 3,766 (4.79)
citeseerx - | 3951890215225 | 6,242 | 11,266 17,508 (27.81)
dbpedia - | 2428.480(88.209.0) | 2,310 2,244 4,554 (3.39)
govwild - 76,369 (854.8) | 4,799 4,842 9,641 (9.63)
Patent 482,117 (0.13) 579,911 (2347.6) | 10,158 [277,135 (287,293 (925.71)
go-unip - 3,661 (40.2) | 5,074 6,085 11,159 (21.89)
10go-unip|| 395,541 (0.84) 383 (62.0) 461 567 1,028 (31.64)
twitter - - | 4,006 1,833 5,839 (0.03)
web-uk - - | 4815 3,105 7,920 (3.51)

Table 4: Running time (ms) of buTR with different optimizations.

Dataset buTR-B(cavg) buTR-O1(cavgq) buTR (Cavg)
amaze 1.91(29) 2.02(35) 0.73(0.26)
kegg 246 (38) 1.80(26) 0.63(0.27)
Xmark Z72(40) 259(18) 1.23(2.01)
Citeseer T4.10(54) 18.61(50) 843(13)
pubmed 15.43(100) 19.74 (103 ) 6.92(26)
arxiv 188 (2,544 ) 205.19(2,248) 9.58 (90)
email 662 (230) 147 (375) 48(0.23)
unip150m 74582 (1) 8.123(0) 8.197(0)
wiki 36,512 (981) 17,405 (447) 541(0.02)
L] 206,129 (11,189) 79,070 ( 6,658 ) 253(0.10)
web 72,702 (6,784) 32,382 (4,211) 216(1.02)
05Patent 1,311(8) 3,750 (8) 3,766 (4.79)
Citeseerx || 7,471,010 (16,828 ) | 7,996,991 ( 17,710) 17,508 (28)
dbpedia 1,512,640 (23,776) 1,114,804 (20,843 ) 4,554 (3.39)
govwild 137,841 (771) 164,472 (770) 9,641 (9.63)
Patent §22,854(1,932) 045,138 (1,040) | 287,293 (926
go-unip 6,993 (31) 12,801 (37) 11,159 (22)
10go-unip 693 (50) 1,275(53) 1,028 (32)
twitter [ 8,853,434 (28,800) 5,839(0.03)
web-uk - B 7,920 (351)

both ¢qv4 and the size of G’ become large. PTR suffers from long time
and large space due to the path-decomposition, and it works efficient
only when the number of paths k is small. E.g., for the arxiv dataset,
the ratio of - is 0.29, and PTR is more efficient than DFS. But for

VI
the email dataset, ﬁ = 0.93, DFS outperforms PTR. When the given
graph becomes large, PTR fails to get the result in limited time due to
large space consumption.

The ratio of remained edges of G* is shown in the 8th column in
Table 2. The number of removed edges various with the given graph.
For arxiv, more than 80% edges are removed. For govwild, only 6.3%

edges are removed.

Impacts of the Optimizations: Table 4 shows the comparison of
running time for buTR-B, buTR-O1 and buTR, where “B” denotes the
baseline algorithm that processes nodes of GG in a bottom-up fashion
without any optimization, “O1” means that buTR first calls markCN-
RRN'to get G, then processes nodes of G’ as buTR-B does, buTR is
Algorithm 4, which uses all optimizations. In Table 4, ¢4y = dA
denotes the average traversing cost for all nodes. cq.4 for buTR-B is
computed based on all nodes of G, and is computed based on all nodes
of G’ for the other two algorithms.

From Table 4 we know that buTR works much better than buTR-O1,
and can be verified by the value of c4.4. The reason lies in that for
buTR-O1, each node u is processed after one of its randomly selected



Table 5: Running time (ms) of buTR using different estimating methods.

DataSet ub Ib kr (k = 100) buTR
amaze 2.46 0.87 22.13 0.73
kegg 0.76 0.75 17.19 0.63
xmark 1.60 1.57 30.85 1.23
citeseer 13.25 13.44 84.20 843
pubmed 9.66 11.00 69.34 6.92
arxiv 39.27 48.68 58.66 9.58
email 56 55 2,049 48
unip150m 9,030 8,984 639,025 8,197
wiki 622 628 78,562 541
LI 322 338 22,927 253
web 237 643 6,895 216
05Patent 4,100 4,179 65,902 3,766
citeseerx 18,508 507,810 347,280 17,508
dbpedia 4,900 13,373 88,323 4,554
govwild 10,657 10,968 375,403 9,641
Patent 261,544 444,341 442,395 287,293
go-unip 12,318 12,742 178,879 11,159
10go-unip 1,145 1,188 9,551 1,028
twitter 6,554 6,496 923,944 5,839
web-uk 12,972 825,701 990,805 7,920

graph child v, which may result in large size of outg; (u) \ outé; (v),
and a large value for c,.4. As a comparison, by constructing a good
po-tree, the value of cqv4 for buTR is small. E.g., the cqv4 of buTR-O1
is 28,800 for the twitter dataset, while is 0.03 for buTR, and buTR is
1,516 times faster than buTR-O1. From Table 4 we know that buTR-O1
works at most 4.5 times faster than buTR-B on the email dataset, and
can work successfully on the twitter dataset. For other datasets, the
benefit of buTR-O1 is not obvious, or even beaten by buTR-B on some
datasets. Even though, markCNRRN is necessary due to that it is not
only used to reduce the size of GG, but also get CNs for estimating the
size of TC used by buTR.

From Table 4 we know that both buTR and buTR-O1 are beaten
by buTR-B on datasets unip150m, O5Patent, go-unip and 10go-unip.
The reasons lie in two aspects: (1) all the four datasets have small
value for |out(+)| (see Table 2), therefore the traversing cost cannot
be reduced significantly; (2) the cost of markCNRRN dominates the
overall performance of both buTR-O1 and buTR for the four datasets,
while buTR-B does not need to afford this cost.

Estimations in buTR: buTR estimates the size of |out{(+)| for each
node using Eq. (3) to construct a po-tree in order to reduce the traversing
cost. We compare our method using Eq. (3) with Ib (lower bound) and
ub (upper bound) in [30] and kr (k random permutations) [6], where
k = 100. Let N(u) = |outg(u)l|, and ]V(u) be the estimated result

of N (u), we use error rate er(u) = W as a metrics to show

the effectiveness of different estimating methods.

As shown in Fig. 8, for most graphs, our method is more accurate
than existing methods, because by our method many nodes are with
er(u) € [0,0.2). kr [6] gets a better estimation on unip150m, go-unip
and 10go-unip datasets, but is inefficient, since kr needs to traverse the
given graph k = 100 times to get the estimation. As shown in Fig. 8
and Table 5, our estimating method is effective and efficient.

7.2 Equivalence Reduction (ER)

Table 6 shows the comparison of different algorithms on ER. First,
given the input graph G?, linear-ER is more efficient than Sort-ER.
Second, given the input graph GG, DAG-Reduction significantly out-
performs compressg, as ensured by the time complexity. Also, when
the size of G and |out¢ (+)| increases, compressg breaks down due to
limited space (its space complexity is O(|V']?)).

After ER, the ratios of the numbers of nodes and edges of G* are
shown in the 9th and the 10th columns in Table 2, from which we know
that the reduction ratios for all datasets vary significantly, this is because
that the reduction ratio is determined by G itself. After getting P}y/|
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Table 6: Comparison of running time for ER (ms).

[ Dataset [ Sort-ER | linear-ER ][ compressg |  DAG-Reduction |
amaze 1.48 0.21 146.33 0.94
kegg 0.44 0.21 162.34 0.85
xmark 1.23 0.42 37.04 1.65
citeseer 3.35 1.40 53.56 9.83
pubmed 2.55 1.24 52.65 8.16
arxiv 1.87 0.77 889.93 10.35
email 35.09 16.01 - 64.35
unip150m 12,457.10 2,437.95 27,717.90 10,634.51
wiki 196.42 130.84 - 672.31
LJ 144.37 72.30 - 325.30
web 149.61 44.09 - 260.09
05Patent 1,455.34 879.42 7,731.24 4,645.65
citeseerx 4,749.09 2,707.66 - 20,214.56
dbpedia 2,758.04 855.35 - 5,409.35
govwild 5,978.13 2,404.77 - 12,046.18
Patent 6,077.49 4,593.92 N 291,886.92
2o-unip 8.452.43 1,529.87 53,496.90 12,988.37
T0go-unip 46557 137.87 4,504.15 1,165.87
twitter 1.976.76 1,122.59 . 6,961.52
web-uk 5281.05 1,654.51 - 9,574.59
Table 7: Comparison of index sizes (MB).
[ Dataset [[GRL]GRL.[[ FL| FL.[[ IPT] IPJ[[ PLLIPLL.[[ TF] TF.|
amaze |[0.14|0.06(|0.13 [ 0.05 [| 0.05 | 0.06 |[ 0.04 | 0.05 0.02| 0.02
kegg 0.14 | 0.07 || 0.12 | @0.06 {| 0.05 | 0.06 |[ 0.05 | 0.05 0.02| 0.02
xmark [/ 0.23| 0.15]{0.21| 0.14 1 0.09 [ 0.11 || 0.12| 0.12 0.12 0.08
citeseer [[0.41| 0.39(/0.37 | 0.35( 0.14]0.21|[0.28 | 0.31 0.83| 0.52
pubmed |[0.34| 0.30([0.31| 0.27 || 0.11]0.16 ][ 0.27 | 0.29 0.80 | 0.64
arxiv 0.23| 0.25(/0.21| 0.22]{0.11]0.13|/0.35(0.40 || 14.66 | ©5.34
email 8.81|02.17(|7.93 | 2.04 || 2.78 | 2.90 || 2.59 | 2.71 0.85| 0.95
unipl50m|| 955 | 340 || 860 | 316 | 299 | 348 || 318 | 328 132 140
wiki 87| el0 78| 10 43| 26 26| 26 9 9
LJ 37 8 33 o7 15 12 11 12 4 4
web 14 o6 13 o5 6 5 5 5 3 2
O5Patent || 64 58| 57 52 20f 30(f 29| 33 26 29
citeseerx || 250 | o124 (| 225 114 87| 98 36| 541 1,523 | e631
dbpedia || 128 78 || 116 71 441 54 53| 54 52 30
govwild || 306 | 242 275| 221 || 105| 144 || 188 | 205 || 3,123 | 2,693
Patent 144 146 || 130 133 58| 80| 633 | 648 | 4,732 | 4,231
go-unip || 266 | 32| 239 | e32 80| 81| 251 | 87 431 040
10go-unip|| 18 o5 16 o4 5 6 21| o9 44 o9
twitter 691 o81 || 622 79| 316 211 || 202| 209 70 71
web-uk || 868 | €225 781 | 211 || 356 | 310 || 357 | 336 -| 324

by Algorithm 5, each set of PPy will be replaced by one of its node

. . . P
to generate G°, and the reduction ratio w.r.t. nodes is r, = ! |“)’|‘ I LA

small |P}y/|| means that each set of PP}y, contains a large number of
nodes that are equivalent to each other on average.

7.3 Reachability Query Processing

Tables 7, 8 and 9 show the comparison of index sizes, index construc-
tion time and query time for existing reachability algorithms working
on the input DAG G, as well as their counterparts on the result of DAG
reduction G° with “x” as their subscript. For each algorithm, we use
“@” to denote the best result is better than the worst one more than two
times, we take others as comparable results.

Index Size: Table 7 shows that DAG reduction has a positive impact
for all algorithms. E.g., for GRL, the index sizes based on G° are
11.4%, 12.1% and 11.7% to its counterparts on GG for wiki, go-unip and
twitter datasets, respectively. For FL algorithm, we have similar results
as GRL. For TF, the index size on G° is 9.3% to that on G for the
go-unip dataset. After DAG reduction, TF works successfully on the
web-uk dataset. For IPT, we have comparable results on all datasets.

Index Construction Time: We have shown that the result of DAG
reduction, G°, can be got quickly, which is a one-time activity, and once
G* has been obtained, it can be repeatedly used by different algorithms.
Table 8 shows that, compared with G, all existing algorithms work
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Figure 8: Comparison of the error rates for different estimating methods.

Table 8: Comparison of index construction time (ms).

[ Dataset || GRL [ GRL. [ FL [ FEL. [ 1T [ 1pF [ PLL [ PLL, | TF | TF. |
amaze 7.66 7.14 1.21 0(0.60 1.50 1.20 4.46 ol.11 6.69 e2.44
kegg 747 6.84 1.34 0.70 2.80 1.29 1.16 0.96 10.29 9.58
xmark 13.69 13.87 245 1.73 3.40 10.02 2.80 2.39 14.44 12.90
citeseer 51.62 44.02 9.69 7.58 12.40 10.11 14.80 14.05 101.03 | 5043
pubmed 36.73 35.84 6.57 5.15 10.00 10.00 12.76 12.36 72.19 48.49
arxiv 32.17 19.17 6.17 391 12.50 10.00 25.66 19.28 7,586 o614
email 1,063 931 110 037 160 100 119 93 161 125
unip150m 192,236 162,680 18,040 38,746 23,460 18,490 21,631 15,695 68,229 031,366
wiki 12,578 12,665 1,006 213 1,590 1,050 1,238 1,123 1,429 1,090
L 4,896 4,879 464 0169 710 490 594 484 923 761
web 1,755 1,627 250 0120 360 240 277 186 637 393
05Patent 9,805 10,548 2,132 1,958 2,870 2,660 3,082 2,770 7,667 6,855
citeseerx 34,038 44,421 6,435 4,516 10,430 7,880 4,074 3,386 101,029 041,536
dbpedia 23,365 20,676 3,262 2,014 4,720 3,290 4,349 3,216 15,081 07,194
govwild 39,443 50,204 7,013 6,163 10,810 10,100 13,914 13,292 143,272 114,950
Patent 39,088 34,477 8,395 7,482 12,770 10,590 245,345 | 242,475 253,020 197,125
go-unip 67,876 43,511 7,144 805 11,230 03,630 17,712 03,926 67,524 06,224
10go-unip 4,100 2,525 585 140 840 0300 1,679 0540 6,293 0994
twitter 118,208 114,024 9,176 1,852 15,380 9,810 11,150 8,789 18,785 13,289
web-uk 147,831 | 140,513 || 12,425 | 4,646 || 21,610 | 15,190 || 21944 | 16471 ~ [ 67,368
Table 9: Comparison of query time (ms). By taking Tables 7 to 9 together, we know that DAG reduction makes
Dataset GRL|  GRL.|[| FL| FL.[[IPT] IPJ]| PLL|PLL.] TF|TF. significantly improvements on index sizes, index construction time and
amaze 3,796 o254 || 41 42]] 20| 18] 29| 20 22 11 query time for all algorithms. More importantly, after DAG reduction,
kegg 4720 o402 46| 4311 23] 21| 29] 21 15) 12 GRL and TF can work successfully on all datasets.
xmark 491 0243 (| 298| 220|| 40| 34| 46 471 32| 26
citeseer 555 465 || 223 196 89| 68| 100| 146( 68| 53
pubmed 550 425 || 169| 128]| 62| 51| 86| 102] 64| 53 8. CONCLUSIONS
arxiv 2,805 2,307 [|1,593 (1,444 ||877 | 573 || 92| 160 |[505 (248 . . L.
= In this paper, we focus on DAG reduction which is to reduce G by
email 53,024 el76 || 121 | 37| 70| @29 || 158 85| 51 |el4 h . . .
Unipl50m 657 o361 26 20 11T 3120 741 a6 a1 ﬁrst.computlng the t.ransmve r@ductlon TR followed by computmg the
wiki  |[1,744,266 324 || 125| el4 || 47| o7 266 e43 || 77| 8 equivalence reduction ER. With the newly proposed techniques, we
LI 9,580,519 42,942 [ 250 | 78 [[140 [ @44 [[ 243 | @112 [[140 [ e41 show that we can significantly reduce the cost of TR compared with
web ]662,571| 82,977 221| 149 |[137] 92 210] 199142 | 98 the existing PTR and DFS algorithms, and significantly reduce the
05Patent 527 532 90 91| 29| 29205 212 74| 74 £ ER d with th | thm. A indicati
citeseerx || 64,769 | 45,120 || 771| 502 |[210| 147 [[259 | 241([146| 96 costo compared with the compress algorithm. As an indication,
dbpedia || 212,503 | 4,292 || 241 | 193 |[180 | 148 |[ 367 | 404 [[240 | 213 among 20 real datasets being tested, for TR, PTR cannot complete in 10
govwild 1,255 1,252 ]| 469 [ 4710[226[ 226 436 [ 542445452 datasets, DFS takes 1,661,850 ms for the LJ dataset whereas our buTR
Patent 557 SA3N| ML) T14)) 291 2911563 | 643 84| 84 algorithm takes 253 ms; for ER, compressg cannot scale to 10 large
so-ump 848 65|l 1281 143 )] 65] 6311267] 189l 85102 datasets, whereas our linear-ER can efficiently compute all datasets
10go-unip 728 552 || 145| 102 70| 51| 223| 170] 87| 78 > WG ' ) y p L.
twitter T 18,386 || 280 28 [[160 [e17 || 412| 87 [[203 [e18 For reachability queries answering, we show that our DAG reduction
web-uk - [03,002,770|] 560 | 303 [[367 | 200 [[ 460 | 319 1175 can significantly improve the efficiency either by itself or by integrated

more efficiently on G°. E.g., FL is 8.9 times faster on G° than on G
for the go-unip dataset, TFis 12.4 times faster on G° than on G for the
arxiv dataset.

Query Time on Random Workload: Similar to index size, Table 9
shows that query time can be improved significantly using DAG re-
duction for all algorithms. E.g., for GRL, the query time on G* are
301 and 5,384 times faster than that on G for email and wiki datasets.
And more importantly, GRL can process all queries in limited time for
twitter and web-uk datasets after DAG reduction. For FL, IP™, PLL
and TF, the query time on G¢ are 8.9, 6.7, 6.2 and 9.6 times faster than
that on G for the wiki dataset, and are 10, 9.4, 4.7 and 11.3 times faster
for the twitter dataset, respectively. And TF can process queries on the
web-uk dataset after DAG reduction.

386

with SCARAB using 20 real datasets.
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APPENDIX
A. PROOFS

Proof of Lemma 4.1: We prove this lemma from two aspects.

(1) If G has no redundant edges, A;(u) = A;(v) = ing(u) =
ing(v) A Di(u) = D;(v) = outg(u) = outg(v).

Vi > 1,as A;(u) contains all the the nodes that can reach w through

shortest paths with at most 7 edges, we know that A;(u) C A;41(u)

and Vw € Aiqi(u) \ Ai(u), w can reach some node of A;(u)

through one edge. Therefore, A;(u) = A;(v) = Ait1(u) =

Ait1(v). When A, 11 (u)\ Ai(u) = 0, wehave A; (u) = ing (u).
Therefore, if G has no redundant edges, A;(u) = A;(v) =

ing(u) = ing(v). Similarly, if G has no redundant edges, D; (u) =
D;(v) = outg(u) = outy(v).

(2) If G has no redundant edges ing(u) =
Ai(v) A outg(u) = outd(v) = Di(u) =
We assume that there exist 7 > 1, u,v,w; € V, such that when
ins () = ingy(v), w; € Ay(u) \ A (V) ies Ai(u) £ Ay (). I
i > 1, w; € A;(u) \ A;(v) means that there exists a node w;—1
satisfying that (w;, w;—1) € Eandw;—1 € Ai—1(u) \ Ai—1(v).
This is because that if w;—1 € A;_1(v), thenw; € A;(v). Thus,
Ai(u) # Ai(v) = Ai—1(u) # Ai—1(v). By induction, we know
that Vi > 2, there exists w1 € Ai(u) \ A1(v), ie., A;(u) #
Ai(v) = Ai(u) # Ai(v). Combining with the case of ¢ = 1, this
assumption means that V¢ > 1, there exists w1 € V/, such that when
ing(u) = ing(v), wr € Ar(u) \ A1(v),ie., A1(u) # A1 (v).
Since ing(u) = ing(v) A wr € Ai(v), we know that wy €
ing(v), and there must exist at least one node € A; (v), such
that w1 can reach v through z, i.e., w1 ~ = ~» v. By ing(u) =
ing(v) Az € ing(v), we know that z € ing(u), ie., z ~ wu.
Thus, w1 can reach u through z, and we know that (w1, u) is
redundant, which contradicts the assumption that G has no redundant
edges. In the above assumption, we have the same result if w; €
A;(v) \ Aji(u). Therefore, if G has no redundant edges, ing; (u) =
ing(v) = Ai(u) = A;(v). Similarly, if G has no redundant
edges, we know that outg (u) = outg(v) = Di(u) = D;i(v).

inalo) = () =
Di(v)



Based on the above discussion, we know that Vu, v € V,Vi > 1,if
G has no redundant edges, then Eq. (1) and Eq. (2) hold. O

Proof of Property 5.1: Assume that there exists a redundant edge
(z,y) in the LPM tree T, i.e., x is the tree parent of y in T’x . Since
(z,y) is aredundant edge,  can reach y through at least one node w,
such that (w,y) € E Aty < tw < ty. According to the construction
of LPM tree, y’s tree parent should be w, rather than z, i.e., (z,y)
should not be an edge of T'x, which contradicts the assumption. O

Proof of Lemma 5.1: We prove this lemma from two aspects.

(1) Ifing(v) = 0, or every node of ing (v) is an RRN, then v is an
RRN.
If ing(v) = 0, then in&(v) = 0. Thus, v is an RRN by Defini-
tion 5.3. If ing (v) # 0 and Vu € ing(v), uis an RRN, we know
that all nodes of ing (u) U {u} are RNs according to Definition 5.3.
Since ing (v) = Uy cing (o) (inG (w) U {u}), all nodes of ing (v)
are RNs. By Definition 5.3, v is an RRN.

(2) Ifvis an RRN, then ing(v) = 0, or every node of ing (v) is an
RRN.
According to Definition 5.3, if v is an RRN, then ing (v) = 0, or
Vu € ing&(v), uis an RN. The first case means that ing (v) = 0.
Consider the second case. Yu € ing(v), since ing(u) | J{u} C
ing(v) and all nodes of ing, (v) are RNs, we know that w is an RRN
according to Definition 5.3. a

Proof of Lemma 5.2: First, given a DAG G, to get the DT-order X,
the topological sorting can be done by (Step1) finding all the “start
nodes” without incoming edges and pushing them into a stack S;
(Step2) popping out a node v from S, assigning v its visiting order
(DT-order) t,,, and pushing v’s graph children which have no incoming
edges into S after deleting edges starting from v; and (Step3) repeating
Step2 until S becomes empty.

Second, we construct the LPM tree T’y during performing topologi-
cal sorting on G. Let u be the last graph parent visited before v (v is
pushed into S immediately after u is popped out from S). In Step2,
after popping out a node v from S and assigning its DT-order ¢, v is
inserted into T’y as a tree child of u (v is the ¢,,-th node inserted into
T'x). After that, each of v’s tree children is popped out from S and
inserted into T'x recursively. Therefore, T'x is constructed recursively
by inserting nodes into it in the ascending DT-order X .

Third, when we visit nodes of 7'x in the ascending DT-order X, it
means that after visiting a node v, we first visit each of its tree children
recursively, which is a DES visiting order for 7’y . Therefore, if the
LPMtree T’x is generated based on a DT-order X of G, then X is also
a DFS-order of T'x . O

Proof of Theorem 5.1: We prove this theorem from two aspects.

(1) We prove the correctness for RRN.
The correctness of correctly identifying all RRNs is based on cor-
rectly identifying all RNs according to Lemma 5.1. We show the
correctness of identifying all RNs from two aspects.

(1.1) isRN() correctly identifies whether a given node v is an RN.

Function isSRN() processes v’s graph children in ascending DT-
order X. When processing w € outg(v), there are two cases:
w € outr, (v) (line 8 holds) and w € outg(v) \ outt, (v)
(line 8 does not hold).
Consider the trivial case where w € out? (v) processed in lines
9-11, i.e., w is a tree descendant of v. In this case, (v, w) is
redundant if w is not a tree child of v (line 11); otherwise, (v, w)
is not a redundant edge (Property 5.1), i.e., we can correctly find
all redundant edges from v to its tree descendants given that v is
an RN.
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Consider the case where w € outg(v) \ out’, (v) processed in
lines 13-16, i.e., w is not a tree descendant of v. In this case, iSRN()
checks whether w belongs to C in lines 13. If line 13 returns
FALSE, it means that w belongs to C' (the fourth condition of
Definition 5.2) and we delete the redundant edge (v, w) in line
16; otherwise, if line 13 returns TRUE, it means that w ¢ Ca, we
further check whether it belongs C' in line 14 (the second and the
third conditions of Definition 5.2). In line 14, if lmin(v) < lw,
it means that the second and third conditions do not hold, thus
w ¢ C1. Asaresult, C1 |JC2 # outg(v) \ outr, (v), we
know that v is not an RN according to Definition 5.2 and isRN()
returns FALSE in line 14. If [ yin (v) > ly, it means thatw € C1,
and we continue to visit the next graph child of v. Finally, if isSRN()
returns TRUE in line 17, it means that outc (v) \ outr, (v) can
be divided into two sets satisfying the four conditions, thus v is an
RN by Definition 5.2, and we correctly delete all redundant edges
in line 16.
Therefore, isRN() correctly identifies whether a given node v is
an RN or not.

(1.2) All RNs are correctly identified by Algorithm 2.
As each given node can be correctly identified, all RNs can be
correctly identified by calling isRN() to process all nodes.

Based on the above result, Algorithm 2 processes all nodes in as-
cending DT-order, such that when processing a node v, we know
whether each one of its graph parents is an RRN or not, then we know
whether v is an RRN or not by visiting v’s graph parents only once
according to Lemma 5.1. Thus, all RRNs are correctly identified.

(2) We prove the correctness for CN.
Let z, = maxarg,{t,|v € outg(u)} be, among u’s graph
descendants, the one with the largest topo-order. Algorithm 2
processes nodes in descending DT-order to find all CNs from non-
RRNs. For each processed node v, we update x., for each of v’s
graph parent u using x,,. Therefore, when processing u, we know
the correct value of x,,. Given a non-RRN w, if w is a tree ancestor
of x,, in T'x, Algorithm 2 will mark u as a CN, otherwise not. We
show the correctness of processing each non-RRN from two aspects.

(2.1) IfuisaCN,thenz, € outy, (u).
By Definition 5.1, if u is a CN, then Vv € outg(u),v €
outy, (u). As z,, € outs(u), weknow x,, € outy, (u).
(2.2) If zy, € outt, (u),thenwuisa CN.
Let I, = [s, €] be the interval assigned to u to facilitate check-
ing the ancestor-descendant relationship for nodes in 7'x, where
I,.s = ty, and I, .e is the maximum DT-order of u’s tree descen-
dants.
First, Vo € outg(u) \ {zu}, wehave t, < ty < ts,.
Second, x., € outr, (u) means thatt,, < I,.e.
As .8 = tu, Vv € outf(u), we know I, C I, according to
Lemma 5.2, i.e., Vv € outg(u),v € outi}x (u). Thus, visa
CN according to Definition 5.1.

Therefore, given the LPM tree T'x, Algorithm 2 correctly identifies
all RRNs and CNss. O

Proof of Lemma 5.3: We prove this lemma from two aspects.

(1) If w and v do not have ancestor-descendant relationship in 7', then
ty <ty & tg > tp.
In this case, v and v may be sibling nodes (Fig. 9(a)), or not (Fig. 9(b)-
(d)), we show the correctness case by case.

(Casel) wand v are sibling nodes (Fig. 9(a)).
Assume that w is the tree parent of u and v. During the topological
sorting of computing Z based on Z, after processing w (i.e.,



assigning its DT-order tw), both u and v become nodes without
incoming edges, and u will be pushed into stack before v due
to that t,, < t,. Therefore, w is popped out from the stack (i.e.,
assign its DT-order t5) after v, thatis, ty > tw,ie.,ty, < t, =
tw > ty. Similarly, if Z is computed based on Z, we have
tw > tv = tu < t,. Therefore, if u and v are sibling nodes,
thent, < t, & tg > tz.
(Case2) w and v are not sibling nodes (Fig. 9(b)-(d)).

Letw = lca(u, v) be the lowest common ancestor (LCA) of u
and v in 7', there are three sub-cases.

(Case2.1) wandv’stree ancestor v, are sibling nodes (Fig. 9 (b)).
Given Z, since v, is a tree ancestor of v, we know t,,, < t,.
According to Lemma 5.2, any node with DT-order between
v, and v are v, ’s tree descendants. Since u and v, are sibling
nodes, given t,, < t,, we know thatt,, < t,, < t,. When
computing Z, we have tz— < t7 < t as shown by Casel, i.e.,
ty <ty = tw > ty. Similarly, if Z is computed based on Z,
we have tqy >ty = ty < to.

Thus in this case, t, < t, < tz > tz.

(Case2.2) u’s tree ancestor u, and v are sibling nodes (Fig. 9
(€). tu < ty < ty > ty can be proved in the similar way as
Case2.1.

(Case2.3) u, and v, are sibling nodes (Fig. 9 (d)). Since uq
and v, are sibling nodes, given Z and t,, < %,, we know
thatt,,, < ty < t,, < t, according to Lemma 5.2. When
computing Z, we have to— < ty < tg < tg, i€, ty, <
t, = tg > ty. Similarly, if Z is computed based on Z, we
have tg > tz = ty < ty.

Thus in this case, t, < t, < ta > tw.

Therefore, if u and v do not have ancestor-descendant relationship
inT,thent, < t, < tz > tz.

(2) Ift, < ty, & tg > tw holds, then v and v do not have ancestor-
descendant relationship in 7.
Assume that v and v have ancestor-descendant relationship in 7",
which also consists of two cases.

(Casel) wu is a tree ancestor of v.
In this case, we have that u ~ v, and for both Z and Z, t,, <
ty AN g < tg, i.e., ty < t, < tg > ty does not hold.

(Case2) wvis atree ancestor of u.
Similar to Casel, we know t,, < t, < tw > tw does not hold.

Thus if ¢, < t, < tz > ty holds, then u and v do not have
ancestor-descendant relationship in 7'

Therefore, nodes « and v do not have ancestor-descendant relation-
Shlp iff t, <t, < tg > ts. O

Proof of Lemma 5.4: For each edge (u, v) of T, the cost of process-
ing u, c(u, v), is visiting nodes of out¢; (u) \ out¢; (v) and the involved
edges, and c(u, v) does not change by switching from processing order
in Z to Z, because for any DT-order, edge (u, v) does not change, thus
the number of processed nodes and edges does not change. Therefore,
N1 =37, cpijvr|—1) €(ui, vi) = N2, where [V'] — 1is the number
of edgesin ¢ . |

Proof of Theorem 5.2: We prove this theorem from two aspects.

(1) Eachedge deleted by Algorithm 4 is a redundant edge.
In markCNRRN (line 1 of Algorithm 4), each redundant edge is
found based on tree relationship, i.e., edge (v, w) is redundant only
if dx € outc(v), such that x is a tree ancestor of w in T'x, which
means that v can reach w through x, thus (v, w) is a redundant edge.
After calling markCNRRN, we find redundant edges from each node
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Figure 9: Illustration of the positional relationships where u and v do not have
ancestor-descendant relationship in a tree. Each arrow (dashed arrow) denotes
an edge (a path) between two nodes, (a) denotes that v and v are sibling nodes,
and (b)-(d) denote w and v are not sibling nodes.

(©)

that is not an RRN in line 6 by calling Procedure delRdtEdge(). Let
v be the tree parent of w in po-tree 7 (v is a graph child of v in
(), in delRdtEdge(), we identify redundant edges in lines 10 and 15,
which correspond to the two cases that the redundant edges are from
u to nodes of outy; (v) and outg; (u) \ oute; (v), respectively. If an
edge (u, w) is deleted in line 10, it must be a redundant edge, due to
thatw € outd (v) A u ~ v; otherwise if (u, w) is deleted in line
15, it must be a redundant edge due to that we first mark all of u’s
graph children using w, then encounter u at w when traversing from
another node of u’s graph children, i.e., there exists, for u, a graph
child node v(# w), such that u can reach w through v. Therefore,
if we delete an edge, it must be a redundant edge.

(2) Algorithm 4 finds all redundant edges.

For all RRNs, markCNRRN correctly finds all redundant edges
from them. After that, we process all nodes that are not RRNs. As
shown in Algorithm 4, we process just one node u in each iteration,
and only delete all redundant edges from u, every redundant edge
from other nodes are not considered. As discussed above, for each
redundant edge (u, w), either w € outg(u) \ outg(v) holds, or
w € outd(v) holds. And for both cases, we can correctly find
all redundant edges from w in lines 10 and 15. Therefore, after
processing all nodes, we correctly find all redundant edges. O

Proof of Lemma 6.1: Since S;(S;) contains ¢(j) nodes and S; C
S;, we know j > i. Assume that S; = {v1,v2,...,vi}, S;
{v1,v2, ..., Vi, ..., v; }, we can expand S; to get S; with j — i steps by
adding node vy, (i < k < j) into S; in the (k — 4)th step to get a set
Sk=1, After adding v; into S; in the (j — 4)th step, we get S7 % = S;.

Let S° = S;, wehave j — i + 1sets S, S*, S2, ..., 877% which
satisfy that Vo € [1,5 —i], 5%\ S°7! = {vi4.}. We use P” to
denote the partition of V' corresponding to the partial equivalence
relationship =g=.

We first prove that Vo € [1,5 — 4], S“~! € §* = P” < P~ 1.
Given P*~ 1, the unique node v;+, € S%\ 571 divides each set
P € P! into at most three disjoint subsets, where the first subset P,
contains nodes that are graph children of v; , the second subset P>
contains nodes that are graph parents of v;4 ., and the third subset P3
contains nodes that are neither graph parents nor children of v; 1. The
three subsets satisfy that P1 | J P> |J Ps = P.If 3P; = 0(i € [1, 3]),
then P is divided into two or even one subset. After that, we get the
partition P* w.r.t. S*, which satisfies that every set of P* is a subset
of some set of P71 f.e., PT < P71,

Since S® € S' € S* C ... C S PandVz € [1,5 —i],S"\
5771 = {viya } weknow that 7% < PI—i71 < < pl < PO,
As S; = S%and $77% = S, we know that P; < P;.

Therefore, S; C S; = Pj < P;.

O



Table 10: DAG reduction vs Backbone: IPT.

Table 11: DAG reduction vs Backbone: TF.

Proof of Theorem 6.1: According to Definition 6.1, we know u =
v & u =y v. Since P)y is a partition of V, and two nodes in
different sets of PP|y-| are inequivalent, we only need to prove that two
nodes in the same set of P|y| are equivalent to each other.

As shown by Fig. 5, after processing all nodes of V', each leaf node
of the treeisaset P € Pjy/|. Allnodes of P have the same set of graph
parents and children, which are denoted as the set of nodes on the path
p from the root to the leaf node P. Since all nodes of V' are already
processed after getting |y |, I will not be further divided into smaller
sets, i.e., all graph parents and children in the given graph G for nodes
of P can be found from p. Therefore, all nodes in the same set of Py
are definitely equivalent to each other.

As Py isapartitionof V,i.e., UPEPlV\ P = |V|, we know that

‘Pjv| contains all sets of equivalent nodes w.r.t. G. O

B. pAGREDUCTION AND REACHABILITY

BACKBONE

Both DAG reduction and reachability backbone (abbreviated as
Backbone) [12] reduce the size of the given DAG. We show their
impacts using IP™ [25] and TF [5] as the representative of Online-
Search and Label-Only methods, respectively, and use subscripts “x”,
“B” and “Bx*” to denote the version working on G*, the Backbone
graph of G and the Backbone graph of G<, respectively. Tables 10 and
11 show the results of IP™ and TF.

On one hand, using DAG reduction is a better choice to accelerate
reachability query processing compared with Backbone. This is be-
cause, Backbone was proposed to tackle the scalability bottleneck for
methods that cannot process large graphs, such as [7, 16]. It was shown
in [12] that even though existing algorithms can scale to large graphs
with Backbone graphs, the cost behind the scalability is large index
size and more index construction time. The query performance may
degenerate due to its expensive search strategy (see Section 3 and [12]
for a detailed description).

On the other hand, from Tables 10 and 11 we know that if the Back-
bone graphs are generated based on the result of our DAG reduction
G*, then compared with generating Backbone graphs from G, for both
algorithms, the index size, index construction time and query time can
be improved significantly for most datasets.
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Index Size (MB) "index Construction Time (ms)[| Query Time (ms) Index Size (MB) ndex Construction Time (ms)| Query Time (ms)

Dataset IP:' IP+B|IP+R*” IP:rl 1P+B| IPE* IP,H IP£|1P+B* Dataset TF.| TFp| TFp. TF. TFp TFp.| TF.| TFp|TFp.
amaze ||®0.055 | 0.16 [0.064 || e1.20| 5.80 204 18] 59| 37 amaze |[«0.02] 0.16 | 0.06 2 2 20 o1l 54] 29
kegg ©0.06| 0.16| 0.08 || e1.29| 1543 349 ([ e21| 67| 44 kegg [[€0.02] 0.15] 0.07 10] 239 e2.I5| el2| 86| 34
xmark || ©0.11[0.26| 0.17 [|[@10.02| 24.44 12.37[[34.4] 39335 xmark ||0.08 | 0.27 | 0.18 13 7 7| 26] 37| 34
citeseer || ©0.21| 0.60 | 0.51 10| 435 el 66| 68| 107| 84 citeseer || 0.52] 0.77] 0.59 51 33 022 [ 53] 133| 89
pubmed || ©0.16 | 0.49 | 0.40 10| e2.12 493 ([ e51| 96| 107 pubmed || 0.64] 0.67| 0.55 48 24 23] 53[ 117] 79
arxiv 0.13] 046 0.33 10 11.20 02.12 || 573 [1,009 | 531 arxiv 5.34] 6.25 | ¢2.06 614 190 o061 |[0248 | 540| 298
email 200 10[e2.34 100] 1,156 o3 [[ 20 174 41 email [[0.95]9.62| 2.20 125 8 o7 [ o14] 169 38
unipl50m|| 34811,069 | 386 [[ 18,490 | 1,210 1315 | e13 | 121 44 uniplSOm || @140 1,058 | 371 31,366 | 2424 | 2,230 | 411,300 49
wiki 26| 97| eIl || 1,050 (324,324 o6l || o7 141 9 wiki  [[e8.86| 96 10 [ 1,090 74 o47] e8] 141 9
LJ 2] 41| e9 490 47 20 ([ edd | 325| 36 L] o421 41| 829 761 46 o31|[ e41| 329 &5
web e547| 16| 641 e240| 9,309 7,842 [ @92 314 211 web  |[e220] 16[ 6.32 393 35 026 || 98] 307 207
05Patent 30| 82| 72| 2.660 681 537 | 20| 58| 53 O5Patent || 29| 83 74| 6.855| 1,379 1214 74| 56| 76
citeseerx 98| 305| 1521 7.880| 1,752 el,185 || 147 236 178 citeseerx 631 824 | €296 | 41,536 | 33,970 | 9,823 9 | 156| 127
dbpedia e54| 161| 90 |[®3,290 [428,504 | 132,716 ||e148 | 372 | 273 dbpedia || 30| 164 90 7.194] 1,633| e840 [ 213 | 364| 276
govwild || 144 | 390| 315 [[10,100 | 1,613 1,713 [ 226 | 355 | 351 govwild [[2,693 | 464 | 419 [[114,950 | 6,033 | 6,529 || 452 348| 369
Patent eS80 | 235| 212([10.590| 6.138| 4,724 29| 99| 89 Patent || 4,231 |1,742 [e1,384 |[197.125 | 106,760 | 76,510 || 84| 96| 101
go-unip 81| 400| 381 3,630 907 0558 || @63 215 186 go-unip 040 | 434 48 6,224 | 4,089 1,489 |(e102| 220| 205
10go-unip|| ©6.05| 29| 6.18 300 61 o46 || 51| 205 | 139 10go-unip|| 8.61| 32| 8.56 994 367 253 78] 202| 141
twitter 211 771 88| 9.810| 30,948 0648 || el17 340 27 twitter 71| 766 82| 13280 1,337 0630 || o138 | 343 21
web-uk 310 | 995|262 [[15,190 | 2,544 | 1,733 || 200[ 522 | 305 web-uk || €324 - 407]] 67,368 -] 29,637 [[0175 -] 305

C. DATASETS

For the datasets listed in Table 2, amaze®, kegg®, xmark®, email®,
wiki®, LJ® and web® are directed graphs initially, we transformed them
into DAGs by coalescing each strongly connected component into a
node of DAGs. All other datasets are DAGs initially. These datasets
are used in the recent works [5, 12, 14,24,25,27,28].

Among these datasets, the first six are small datasets and are down-
loaded from the same web page, amaze, kegg and xmark are from the
sigmodO08 zip file, and pubmed and arxiv are from the s 1gmod09
zip file. These small datasets are mainly used to make comparison
between existing algorithms and our algorithms on TR and ER. amaze
and kegg are metabolic networks, both have a central node that has a
large in-degree and out-degree. xmark is an XML document, citeseer®,
pubmed® and arxiv® are all citation networks. The following 14 large
datasets are mainly used for testing the performance of reachability
query processing. email is a DAG transformed from directed graph
email-EuAll, which is a email network from a EU research institution.
unip150m°® (uniprotenc_150m) is a DAG obtained from the RDF graph
of UniProt’, which contains many nodes without incoming edges and
few nodes without outgoing edges. wiki is a DAG transformed from
Wikipedia talk (communication) network wiki-Talk. LJ is a DAG of
an online social network soc-LiveJournall. web is a DAG of web
graph web-Google. 05Patent® (05cit-Patent), Patent® (cit-Patents) and
citeseerx® are all citation networks with out-degree of non-leaf nodes
ranging from 10 to 30. dbpedia’ is the DAG of a knowledge graph.
govwild'® is a DAG transformed from a large RDF graph. go-unip®
(go_uniprot) and 10go-unip® (10go-uniprot) are DAGs transformed
from the joint graph of Gene Ontology terms with the annotations file
from the UniProt. twitter'? is a DAG transformed from a large-scale
social network obtained from a crawl of twitter.com [4]. web-uk'® is a
DAG of a web graph dataset [3].

Shttps://code.google.com/archive/p/grail/downloads
®http://snap.stanford.edu/data/index.html
"http://www.uniprot.org/
8http://pan.baidu.com/s/1bpHKFIx
*http://pan.baidu.com/s/1c00Jg5E
Phttps://code.google.com/p/ferrari-index/downloads/list





