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Quantum Effects in Communications Systems*
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Summary-The information capacity of various communications
systems is considered. Quantum effects are taken fully into account.
The entropy of an electromagnetic wave having the quantum sta-
tistical properties of white noise in a single transmission mode is
found, and from it the information efficiency of various possible sys-
tems may be derived. The receiving systems considered include
amplifiers, heterodyne and homodyne converters and quantum
counters. In the limit of high signal or noise power (compared to
hvB, where h is Planck's constant and v and B are, respectively, the
center frequency and bandwidth of the channel) the information
efficiency of an amplifier can approach unity. In the limit of low
powers the amplifier becomes inefficient, while the efficiency of the
quantum counter can approach unity. The amount of information
that can be incorporated in a wave drops off rather rapidly when the
power drops below hvB.

I. INTRODUCTION

ITH THE ADVENT of the possibility of
broad-band communications at frequencies in
the infrared and optical range, it has become

important to investigate the effects of the quantization
of radiation on the capacity of electromagnetic waves

to transmit information. Unlike the situation prevail-
ing in the microwave range, where thermal noise gen-

erally provides an ultimate limit to our ability to
transmit information, in the infrared and optical range

this limit is provided by what may be called quantum
noise.

Our work stems principally from the classic work of
Shannon' on discrete and continuous infornmation
channels. Gabor2'3 introduced the concept of quantiza-
tioni into electromagnetic communication channels and
coined the term "quantum noise." In consideration of
the problem of field measurements by a receiver, he used
an electron beam probe. The shot noise in the beam in-
fluenced his results in an important and, in the light of
present knowledge, unnecessary way. Stern4" has con-

sidered information rates in "photon channels." His
conclusion' that the information efficiency of a linear
amplifier can be no greater than 50 per cent conflicts
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with the results presented here. The major difference
may be traced to the fact that he takes no account of
the information that may be stored in the signal phase;
and phase information approaches 50 per cent of the
total possible information in the large signal-to-noise
case where the quantum theory and the classical theory
approach one another. Lasher6'7 has also obtaiined ex-
pressions for informationi capacity based oIn quantumi
mechanical principles. His results agree qualitatively
with ours; the quantitative differences presuImiably
arise from the approximiate methods whiclh he used.
We8 have previously discussed sorme of the ideas which
are utilized in this paper. In other recenit work the im-
portant question of the statistical properties of quantum
noise in linear amplifiers has been studied.9'"111
Our ruminiations will be limited to waves existing in a

transmission system for which only a single tranismiiission
mode of the field is utilized. That is, the polarization anid
distribution of the field over any plane perpendicular to
the direction of propagation are considered invariant.
This situation is typical of tran-smisssioni in a coaxial
line or in a waveguide. It will also very likely be true
for lonig-distanice broad-banid optical comimiunication
systems. A possible departure fromii such a single-miiode
system would involve the use of the two orthogonial
field polarizations to provide two independent (channels.

During the course of passage fronm tranismitter to re-
ceiver, the signal is presumed to suffer a large atteniua-
tion and, in general, to be supplemenited by some
amount of additive white"2 noise power. At the receiver
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in which the spectral density of the noise varies appreciably across
the band may be treated by dividing the band up into smaller seg-
ments, and treating each such segment as an independent chaninel.
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Fig. 1-Typical commuLnication system.

as much as possible of the information remaining in
the received wave is extracted. The receiver may in-
corporate an amplifier at the carrier frequency or it may
not. We will investigate both of these cases. Fig. 1 shows
a typical communications channel such as we have
described.

So long as the electromagnetic waves may be de-
scribed classically, i.e., without quantization, Shan-
non1 has shown that the information capacity C of a
signal of average power S in the presence of additive
white noise power N in a channel of bandwidth B is
given by

C = Blog(1+-) (1)

If the logarithm is taken to the base 2, C is in units of
bits per second. To realize this capacity the signal must
be modulated in such a way as to have also the statis-
tical randomness of white noise.

In deriving (1) Shannon noted that information and
entropy were closely allied quantities. In fact he identi-
fied information as prescribed entropy. He was able to
show that the entropy rate R of a continuous wave,
having the statistical properties of narrow-band white
noise and average power P, could be expressed as

R = Blog() (2)

where the constant Po is arbitrary. To obtain (1) he
subtracted the entropy rate for the noise alone from the
entropy rate for the combiined signal and noise. The
latter also has the statistical properties of white noise
when both signal and noise have these properties in-
dependently. Thus the constant is cancelled out and

C=B log ( - B log (1) =Blog (1+ )

C is the additional entropy occasioned by the presence of
the signal. Since the signal is completely prescribed, the
added entropy is prescribed entropy, or information.

Eq. (1) says that the information capacity ap-
proaches infinity as the signal-to-noise ratio approaches
infinity. This is because as the noise decreases we can
make more and more accurate measurements of the
state of the signal field. However, the uncertainty prin-

ciple of quantum mechanics tells us that in fact we can-
not measure a field to arbitrary accuracy, and so as
N- O, fundamental quantum limitations on information
capacity make their appearance.

II. ENTROPY OF WHITE NOISE

The fact that an electromagnetic wave is quantized
allows us to obtain an absolute value for its entropy
without the arbitrary constant of (2). Consider the wave
in a transmission linie traveling toward the receiver.
Assume that the wave velocity is v and that there is no
dispersion. Then, in time t, the receiver measures the
field which had previously occupied a length L = vt of
the line. To describe this field we can expand it into a
series of orthogonal modes, and then measure the state
of excitation of each mode as well as possible. A com-
monly used expansion is a spatial Fourier series. For
this expansion the qth mode varies with distatnce and
time according to the exponential factor

exp jq (z - vt)1.
The condition for orthogoniality of the nmodes is that the
different values of q differ by integers. It is also clear
from the above expression that the mode q has fre-
quency qv/L. Thus the frequency separation between
adjacent modes is AP = v/L. In a bandwidth B there are

B/IAv=BL/v orthogonal modes. Since L =vt we see that
in time t the receiver measures the state of excitation of
Bt such modes. The rate of arrival of independent
field modes at the receiver is therefore B.
The complete description of the field requires meas-

urement of the state of excitation of each mode. Clas-
sically this would involve indepenident simultaneous
measurements of the amplitude and phase of each
mode, or equivalently simultaneous measurenment of the
electric and magnetic fields associated with each mode.
Thus, classically, we make 2B independent measure-
menits per second to identify the wave. In quantum
mechanics the measurements of electric and magnetic
fields are not independent, so we must consider that we
make only B independent measurements per second,
each measurement specifiying the state of one particular
field mode.
Now we know that a white noise wave must have the

most random possible excitation of the various modes
consistent with the average power in the wave. This
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allows us to calculate the entropy of such a wave. Let
us specify the state of each mode by assigning to it ex-
actly m photons, i.e., an excitation energy mhz. From
statistical mechanics'3 we know that the enitropy per
iiode for a large number of modes is given by the ex-
pression

H = -E p(m) log p(m)
m

where p(m) is the probability that a mode will contain
just m photons. The average energy per mode is given
by

E-hv-= hv mp(m)

and of course since p(m) is a probability, the p(m)'s
must fulfill the requirement that

Ep(m)= .
m

To find the most random possible excitation consistent
with a given average power, we must maximize H by
varying the probabilities p(m) while keeping Zp(m) and
2mp(m) constant. This is a simple problem in the cal-
culus of variations. The set of p(m) which maximize H
are

p(m)=
1 +m1n +min

The average power P in this wave is

P = EB = i-lhvB

since E= Fhv is the average energy per mode and B
modes per second are incident on the receiver. This
exponential probability distribution for the excitation
of the modes is consistent with the exponential power
distribution which we know is characteristic of white
noise. The entropy per mode for white noise is thus

H =- p(m) log p(m)

= E p(m) [log(1+ i) + m log (+)]

I

=log (l + mn) + mn log I + _ - (3)
m/

Since m=P/hvB where P is the average power in the
wave, we may express the entropy per mode as

pP\ P / hvBX
H=log I1+ )+ h log I1 + )*

One may object that the specification of the excita-

13 R. C. Tolman, "The principles of statistical mechanics, " Oxford
University Press, Oxford, England, 1938. See also Shannon and
Weaver.'

tion of each mode in terms of exact inumiiibers of photonis
is not the only possible way. However, the niumber of
distiniguishable excitations within an eniergy range fromn
E to E+AE should be independenit of the quanitities
used for the field specification, anid so we are free to
choose the milost conveniieint specificationi, as we have
done. Finally we note that the rate of arrival of enitropy
at the receiver for a white noise wave is

P X JP hvB+
R HB-log KhvB) hv p)

(4)

Eq. (4) is the quantum equivalent of (2).
Of the terms in (4) the first has a form quite similar

to the classical expression and predominates when the
average number of photons per mode is large compared
to unity. We can call it the mlode enitropy. It is equal to
the rate of arrival of modes, B, tim-ies the logarithmn of
m+l, which may be thought of rather loosely as the
number of frequently occurring nmode occupation num-
bers in a typical noise wave. By mnode occupationi nium-
ber we mean the number of photonis in the mode.
The second term of (4) is of fundamenital quantum

origin. It is the predonminanit ternm at power levels less
thaIi hvB where the m-nean occupationi iiunuber mn becomes
less than unity. We can call it the photon- entropy. It is
equal to the rate of arrival of photon-is, P/h'v, times the
logarithm of the number of frequenitly occurrinig in-
tervals (i.e., muodes) for each photoni. We shall see that
at least part of this entropy canl take the formi of in-
formiiationi which is recoverable if we use a photocell or
somiie other eniergy-sensitive device as a receiver.

If we approach classical theory by the frequenitly used
artifice of supposing that h becomes very smlall, it may
be seen that (4) approaches (2) with the arbitrary coni-
stauit evaluated as

P0 - hzB/e

where e is the Naperian- base for natural logarithnms.
Since the arbitrary constant contains h, it is clear that
it could not be determinied from a classical description.

III. ENTROPY AND INFORMATION

In Section II we found an absolute expression for the
enitropy of white noise, utilizing a particular quantunm
mechanical description of the possible excitations of the
field modes. It is not obvious, however, that all of this
entropy can be prescribed as a signial, and so constitute
informationi. This is not to say that we cannlot modulate
a CW carrier wave in such a way as to give the resulting
wave the statistical properties of white noise in the
prescribed bandwidth B, but rather that there is very
likely some part of the resulting entropy which is
essentially irretrievable as information. We must confess
that we do not know at present the aniswer to this
problem. In any event the entropy of the wave is cer-
tainly an upper limit to the amount of information it
may contain, and as suich it is a useful quanitity.
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IV. INFORMATION CAPACITY IN THE PRESENCE
OF ADDITIVE NOiSE

Suppose we have a signal with average power S ac-
companied by additive white noise with average power
N. Following the ideas of Shannon we note that the in-
formation in the wave can be no greater than the en-
tropy of the combination of signal plus noise less the uni-
informative entropy of the noise alone. The entropy of
the combined signal and noise is maximized when the
total wave has the statistics of white noise. QuaIntumI
mechanically as well as classically, this implies that the
signal alone should also have the characteristics of white
noise. The entropy rate for the combined wave is then
given by (4) with P =S+ N, while the entropy rate for
noise alone has P =N. The upper limit to the informiia-
tion in the wave, which we will label Cwave, for a signal
of average power S in the presenice of white noise of
average power N is thus given by

Cwlasve = R(P=S+AT) - R(p=-v,

or

Cwave = B log (1 + N +I )

S + N / vB N hvB
+ -log t1 + -)--log 91 +-. (5)

For a bandwidth of 109 cps and an additive noise power

N taken as arising from a black body at 290°K, i.e.,

N = hvB [exp 1-I

the information limit, Cwave, is plotted in Fig. 2 as a

function of frequency for power levels ranging from 10-7
to 10-13 watt.

A. Classical Limit

If the noise power N is considerably greater than hvB,
we have a situation where a classical description of the
wave should be adequate. Expansion of (5) to first order
in the small quantities hIBIN and (hvB)/(S+N)
yields

~~/S\ hvBS1
cwavee=Blog(I+)2 -loge.]Cwave-B _ t N} 2N(S + N)loe***J

Under the assumed condition N»>hvB, the second
term is always much smaller than the first, independent
of the value of S/N, so the classical description which
results in (2) is quite good.

If there is no additive noise, but the signal is much
larger than hvB, we find

Cwa[veB[log( )+ loge+

i1o3 1014
FREQUENCY IN CPS

Fig. 2-Upper limit to the iniformation that may be inicorporated into
an electromagnetic wave in a single transmission mode. Thermal
noise, as originating from a black bodv at 290°K, is assu,med to
accompany the wave.

In the limit of very high signial power this expressioni is
nearly the same as one would obtain frolmi the classical
expression (1), by assuming the presence of an equiv-
alent "zero-point" noise power hvB/e. Note, however,
that this equivalence is not exact.

V. INFORMATION CAPACITY AFTER TRANSMISSION
As our tranismitted signal travels toward the receiver,

it is attenuated and usually somne noise power is added to
it. If we assume that the added nioise is white then the
informuationi capacity of the received wave is linmited by
(5) where S is the received signal power and N the
added noise power.

VI. INFORMATION CAPACITY AFTER
COhIERENT AMPLIFICATION

Suppose Inow that the first element of the receiver is
an amplifier at the carrier frequency. Ihis could be a
maser, a nondegenierate parametric amplifier or any
other type of linear amplifier. Assume that the amplifier
has high gain. There is always internal white noise
generated in such an amplifier which, referred to the in-
put, may be described by ani effective input noise, Neff.
In the case of the maser this noise is known to be

N,ff = KkeB,

where K=n2/(n2-nj) and n2 and n1 are, respectively,
the densities of upper-state and lower-state atoms in the
active medium. In terms of a negative temperature of
the active medium Tm, we have

K-[1- exp ( Y)
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For the parametric amplifier Neff may be writteni in a
similar way, with K also greater than or equal to unity.14
After much amplification the additive noise, given by
the gain times the sum of the incident noise plus the
effective input noise,'5 is always much greater than hvB
and so the classical formula applies for the information
capacity. We find, therefore, that after much amplifica-
tioIn the information capacity of the wave is reduced to

Camplifier = B log (1 + )KhvB (6)

where S is the incident signal, N is the incident noise
and K> 1. Thus the best possible amplifier, for which
K = 1, retains only the first term in the incident wave in-
formation limit, (5). We now can define the information
efficiency of an amplifier as Camplifier/Cwave. For the
interesting case of a perfect amplifier this is plotted for
various values of signal strength in Fig. 3. The incident
noise is assumed the same as for Fig. 2.

After much amplification we may assume that all of

1.0

I WATT

0.8

~0.6z
z B = IO9CPS
o TN:= 290' K

U-
0.4

\o-11
0.2

lOt1 ioI2 1013 iol4 1015 1016
FREQUENCY IN CPS

Fig. 3-Information efficiency for an ideal amplifier of high gain.
Because of spontaneous emission, the ideal amplifier has an
effective input noise power of hvB, which is responsible for the
lowering of its efficiency at high frequencies.

14 W. H. Louisell, A. Yariv, and A. E. Siegman, "Quantum fluctu-
ations and noise in parametric processes. I," Phys. Rev., vol. 124, pp.
1646-1654; December, 1961.

15 It has now been established9"10"'1 that the simple addition (volt-
agewise) of the amplified effective input noise to the classically
amplified signal and real input noise accounts for all fluctuations in
the output wave. That is, if the signal wave leaving the transmitter
has the form v8 cos (cj8t++,), then the amplified wave has the form
(GIL)112 v8 cos (wt+ck)+G1'/v+ cos(cOS t+8), where G and L are the
gain and loss of the amplifier and attenuator, respectively, and where
the added term in the amplified wave is the fluctuating white noise
voltage. This is rigorously true no matter how small, in terms of
quanta per mode, the signal may be at the amplifier input. We are of
course assuming that the gain and loss are not subject to fluctuations
caused by such things as variations in the density of attenuating or
amplifying particles, variations in pumping of a parametric amplifier,
etc.

the information remainiing in the wave can be extracted,
so (6) also gives the informiiation capacity of a system
using a high gain coherent amplifier aCt the carrier fre-
quency as the first elelmenit of the receiver.'6 For smiiall
N the efficienicy drops off for signal levels less than
about hpB, iiidicating a substalitial loss of inforimiation
in this region for such a system.

VII. THE HETERODYNE RECEIVER

Instead of amplifying the wave we might immediately
make use of a photoelectric device in a heterodynie re-
ceiver.'7"8 To do this we might let the signial anid power
from a CW local oscillator fall simultaneously on a
photosensitive elemnent.
Then the photocurrent is proportional to the in-

stantaneous power Pi,st incident on the element. If the
quantum efficiency of the photosensitive device is E, the
current is given by

1EPin st
1= ~~qhp

where q is the electronic charge. Let the signal frequency
be wsig and the local oscillator frequency be WlocaI. If the
local oscillator power is much greater than the signal
power, the instantaneous power will have the formii

Piist ~Plocal + 2\/PsigPiocal cos (wsig - Wlocal)t + * -

where Psig is the instantaneous input signial power and
Plocal is the local oscillator power. The photocurrent thus
consists of a dc component

c-q
o q Plocal

hp

and a signal current at the intermiediate frequency whose
mean square is

f.q2 2

Isg = 2 h ) SPlocal

where S is the average input signal power. Because of the
dc current there will be shot noise, whose mean square
1S

IN2 = 2qIoB = 2 (- q2PlocalB.

16 It might appear that we are departing somewhat from commoni
usage here by speaking of the information capacity of a system using
a specific receiver. The reason for it is that in quantum mechanics the
properties of the measuring apparatus (i.e., the receiver) inevitably
influence to some extent the quantities to be measured. Thus, while
we can obtain from entropy considerations an upper limit to the
capacity of any system, from which we may derive "efficiencies" for
particular systems, this upper limit cannot be termed a capacity. It
would seem that we cannot obtain any expression which might
properly be called a channel capacity unless we include as an essen-
tial part of the channel such elements of the receiver as are necessary
to insure that subsequent measurement can be performed with nlo
further appreciable reaction back on the channel itself.

17 A. Javan and R. Kompfner, private communication.
18 B. M. Oliver, "Signal-to-noise ratios in photoelectric mixing,"

PROC. IRE, vol. 49, pp. 1960-1961; December, 1961.
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The ratio I,211/N2 is the signal-to-noise ratio at the IF,
which comes out to be simply eS/hvB. This implies an
information capacity for the IF signal of

S
Cheterodyne = B log 1 + f h -

It is not difficult to include the effect of incident additive
noise coming in with the signal. This simply reduces the
signal-to-noise ratio at the IF to

s

1
X + - hvB

atnd the information capacity to

f S
Cheterodyiie - B log 1 + +

N +-hpB

The informatioin capacity of a system using a heterodyne
receiver thus has the same form as that of a system using
a coherent amplifier, with K replaced by e-l.

VIII. THE HOMODYNE RECEIVER

It was pointed out by B. M. Oliver'8"9 that the homo-
dvne receiver has quite interesting properties. In this
case we confine the modulation to amplitude modula-
tion, along with an allowed phase shift of r, and then
use a local oscillator in the receiver which has exactly
the same frequency and phase as the signal carrier. Sinice
cos(wsig-c.iocal)t is then always equal to ±1, the in-
stantaneous power incident on the photocell is

P = Plocal + 2V\Psig /Plocal +***

where the quantity V\P,i, may range through positive
and negative values according to the modulation ampli-
tude and phase. The dc component of the photocurrent
is again

Eq
Io= Plocal.

hv

For this case, however, the signal current is at baseband
and has bandwidth B/2, where B is the high-frequency
band used for transmission. The mean-square shot
current at baseband is therefore

IN2 = 2qIo(B/2) = q2Pl0Ga51B,
hp/

while the mean-square signal current is now

/ ig2
IS8ig2 = 4 'Eq SPlocal

19 B. M. Oliver, "Comments on 'Noise in photoelectric mixing,"'
PROC. IRE (Correspondence), vol. 50, pp. 1545-1546; June, 1962.

where again S is the average signial power, i.e., the aver-
age of P8i,. The signal-to-noise ratio is therefore

6S
Isig'IIN 2 = 4-,,

hvB

and so the information capacity of the baseband sig-
nal is

B / ES\
Chomodyne = ylogI + 4-)

As in the heterodyne case we may include inicident nioise
without too much difficulty. The result is

B 2S
Chomodne = - log 1 +

N +-hvBj

where N is the average received noise in the high-fre-
quency band B.

Oliver pointed out that in this case the equivalent in-
put quantum noise is only half as large as that occurring
in the heterodyne receiver or in the equivalent maser. At
first sight this is somewhat curious. In fact it simply
indicates that perhaps one cannot always deduce the
effects of quantum noise simply on the assumption of
some fixed equivalent input noise which is the same in
all situations. In no case is the capacity of a systemi
using a homodyne receiver greater than the capacity
limit, (5), of a wave of average power S ini the presence
of the average incident noise N. Such a result would be
truly surprising. In Fig. 4 the information efficiency for

S/hvB

>- 0.6
z

U

LA-

iJ 0.4

10 0.1 0.05

loll *12 jol3 ioI4
FREQUENCY IN CPS

io'5 l106

Fig. 4-Information efficiency for various receivers for an average
received signal power of 10-11 w, a bandwidth of 109 cps, and an
external noise temperature of 290°K. Note that at the higher fre-
quencies the coherent amplifier is not as good as the other types
of receivers.
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an ideal (e= 1) homodyne system is also plotted against
frequency, for a signal power of 10-11 w and an externial
noise temperature of 290°K. For comparison the in-
formation efficiency of an ideal amplifier is plotted also,
as well as that of an ideal detector using a binary quani-
tum counter (see Section IX-A, and note that for fre-
quencies of 1014 cps or greater the external noise may be
completely neglected).

IX. THE QUANTUM COUNTER
Instead of using any of the aforementioned receivers,

we might simply allow the signal to fall on some photo-
electric device and count the photoelectrons as they are
produced. If we could do this with unity quantum
efficiency and with perfect discrimination between
different numbers of photoelectrons, we would surely
have an ideal power-sensitive receiver. The information
capacity for this general case can in principle be found
since the probability distribution for the various num-
bers of received photons resulting from the transmission
of some known number of photons has been computed.20
Unfortunately, attempts to calculate the information
capacity of a communication system using such a re-
ceiver encounter rather great computational difficulties.
Nevertheless in some simple cases the problem can be
solved approximately. When SlhvB is either much
larger or much smaller than unity, we may obtain
approximately correct values for the capacity.

A. The Binary Counter

For the case S<<hvB, the average number of photons
per independent field mode is much smaller than unity,
so that only the two events, no photon received or one
photon received, have appreciable probabilities. Con-
sider, then, the following communication system. The
transmitted signal consists of a series of pulses, each of
duration 1/B and of constant amplitude. The pulses
occur in a statistically random sequence with the
probability Q of sending a pulse in any particular time
interval. A typical transmitted message would then
appear as in Fig. 5. The average power in the signal is Q
times the pulse power, or if the energy in each pulse is
E the average power is QEB. The receiver measures the
number of received photons in each time interval 1/B;
thus it makes B measurements per second, which is
consistent with the notion that there are B independent
field modes received per second. If the receiver simply
distinguishes between no photons received or some
photons received, we will have a system which should
do nearly as well as possible when the average number of
photons received per interval is much smaller than unity
but of course is rather inefficient for larger average

20 K. Shimoda, H. Takahasi, and C. H. Townes, "Fluctuations
in the amplification of quanta with applications to maser amplifiers,"
J. Phys. Soc. Japan, vol. 12, pp. 686-700; June, 1957.

numbers of photons. This system has the advanitage
that one can compute its informatioin capacity exactly,
and we shall niow proceed to do this.

Fig. 6 shows the communications channel uncder conl-
sideration. In each time interval 1/B the tranismitter
either emits a pulse or it does not. The probability of
occurrence of a pulse in anly particular time interval is Q.
If the receiver detects at least one photon in any timlle in-
terval, it records a 1; if not, it records a 0. To siImplify
imiatters, let us assume that the quantum efficiency of the
receiver is unity, and at first let us assume that there is
no noise in the channel. In this case if the transnmitter
does not send a pulse, the receiver definitely records a 0.
This is indicated in Fig. 6. Oni the other hanid if the
transmitter senids a pulse, the receiver does not definiitely
record a 1. There is a finite probability that no photonis
reach the receiver eveni when the pulse is senit. This
probability is known, however. So long as the numnber of
photoins in the transmitted pulse is reasonably well
known, the probability distributioni q(m) for the various
numbers m of photons received after large transmission
loss is a Poisson distribution, from which

Sm
q(m) = -e-8.

m !

Here the average or expected number of received
photons in the pulse is labeled s. Thus the probability of
receiving no photons is e-8, and the probability of re-
ceiving at least one is of course 1 - e-. These probabili-
ties are also indicated on Fig. 6.
Now to compute information capacity we must use

some further results of Shannon's work.' He showed
that the information I per symbol (i.e., time interval)

_~t4WU1[~FL~
Fig. 5-Typical sequence of pulses in a message suitable for a binary

communication system. The statistical probability for the occur-
rence of a pulse is 0.25 in this message.

PROBABILITY a

i-es PULSE PROBABILITY

RECEIVED Q (1-e-sJ
Lmi

NOT 1 NOT
SENT RECEIVED

i~~~~~(0

Fig. 6-Schematic diagram for a noiseless binary channel. The vari-
ous probabilities necessary for the solution of the information
problem are indicated on the diagram.
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for such a discrete communication channel is given by

I = H(y) -Hx(y)

where H(y) is the entropy per symbol of the received
message, given by

H(y) = - p(y) logp(y)

summed over the probabilities p(y) for the possible re-
ceived symbols y, while H.(y) is the conditional
entropy of the received message, given by

Hx(y) --E p(x) E px(y) log p,(y).
X y

Here the quantities

- E px(y) log px(y)

are the entropy per symbol of the received message when
the transmitted symbol (x) is known, and Hx(y) is this
entropy averaged over the probability distribution
p(x) for transmitted symbols. Thus H(y) is the total
received entropy, while Hx(y) is that part of the re-
ceived entropy which does not contain information.
With the help of these formulas we are able to com-

pute the information capacity of the channel. For a
probability Q of sending a pulse, the total probabilities
for receiving a 1 or a 0 are

p(1) = Q(1 -e); p(O) = 1 - Q(1 - e8)

while the conditional probabilities are

Ppulse(O) - e e; Ppuise(l) = 1 - e-, Pno pulse(O) = 1

Pno pulse(l) = 0.

The received entropy is then

1(y) = Q(1-e-8) log [Q(1-e-8]

-[1 -Q(1 -e-8)] log [1 -Q(1 -e-s)]

and the conditional entropy is

Hx(Y)- Q[e-8 log e-8 + (1 - e-8) log (1 -e-8)]
- (1 - Q)[o].

Subtracting the two, we find

I - Q(1 e-8) log Q - [1 - Q(1 -e8)]

*log [1-Q(1 -e-)] + Qe-8 log e-8.

To find the maximum information per symbol we
must maximize I with respect to Q, under the constraint
that the average power remain constant. Now since s is
the average number of received photons per pulse, and
Q the probability of sending a pulse, the average number

of photons per time interval is Qs. This is the quantity
which must remain constant and was called m in Sec-
tion I. If we therefore substitute Q=mi/s, where in- is a
constant, into I, differentiate with respect to s and set
the result equal to 0, we obtain the condition for maxi-
mum 1. This is

loge-+e-8- 1]=
5

( e8
_ - I

KS + I

To find Imax this transcendental equation must be solved
for s, assuming some value of mn, and then the result
used to evaluate I. In Fig. 7, s is plotted against mT. It
may be seen that s does not drop off very rapidly for
small m-. Finally Imax can then be calculated, and the in-
formation capacity of this system

Cbinary = ImaxB

may be compared to the information limit for a noise-
less wave of the same average power (i.e., inmhvB) at the
receiver input. The efficiency of the system

Cbinary/Cwave

is plotted in Fig. 4. It may be seen to approach unity
slowly at small signal levels. One can in fact show that at
very very small signal levels, i.e., for loge(1/in)>1, the
information per symbol approaches

1
Imax -3 im log-

m

This may be compared to H of (3).

U)
z
0

0
I
G.
z

(6

in

:L

0

cI)
-j

0D

0 1 2 3
m

AVERAGE SIGNAL STRENGTH IN PHOTONS PER INTERVAL

Fig. 7-Optimized average received pulse amplitude for the noiseless
binary channel as a function of the average number of received
photons per available time interval. The probability of sending a
pulse is given by Q= mi/s.
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PROBABLITY PULSE

Q- SENT

NOT
SENT

RECEIVED

NOT

RECEIVED

Fig. 8-Schematic diagram for a noisy binary channel.

From this fairly simple example the matheniatical
complexity of the quaintum counter systenm is reason-
ably evident. However, the case of the binary counter
with noise is also simlple enough to be calculated. There
are two cases of possible interest involving nioise. The
first is wheni the inoise in the counter results fromii
noise power in the transm-nission mode accompanying
the signial. It is theni imiiportanit to consider the effects
of interfereince between nioise and signial. However, there
seems little use in calculating informationi capacities
for this case sinice, for a giveni nioise temnperature, the
niumber of nioise photons per interval 1113, as a funlctioni
of frequency, is for the greater part of the frequencyr
range either greater thani one wheni hp <<k T, or imiuch
less than onie-when hv>kT. In the formiier case the
binary counter is clearly not the most efficient receiver,
in the latter the nioise may be igniored so lonig as it is
nmuch less thani the signial.
The seconid case involvinig inoise in the couniter is wheni

the noise and signal are statistically independenit. This
would occur if the nioise results from dark curreint in the
photodetector, or from the effects of stray light incidenit
in the receiver fromii modes other thani the transmissioni
mode or at frequenicies outside of the useful banid. If we
assumne that the noise photoelectrons arise fromii a large
niumber of statistically iindependeint causes, then the
probability distributioni of nioise photoelectronis is also a
Poissoni. Fromii this the coniditional probabilities giveni in
Fig. 8 follow. The results of a calculationi of Ima for
these probabilities, based oni the equations of the previ-
ous section, are giveni in Fig. 9. For comparisoni, kin,. for
the noiseless case, is plotted there also.

B. The Quantum Counter When S>>hvB
In the previous subsectioni we conisidered a particular

conmImiunication systeml usinlg a quantum counter for
which the capacity could be calculated exactly, but
which approximates all ideal receiver only wheni
S+N<<hvB. We canl also obtaini anl approximate result
for an ideal quantum counter system which is valid at
high power levels. We assume again that the transmitter
sends out a sequenice of pulses, each of duration 1/B,
but with varying amplitudes. We suppose that the re-
ceiver tells the exact number of photoins it receives in
each such time interval, and we may assume that in the

I0o-IS io 10-4 10-3 1o-2 10-' I 10
S
hvB

Fig. 9-Iniformation efficiency of a binary counter pertuLrbed by
various amounts of incoherent noise. The niumbers n represenit
the average niumber of noise photoelectrons per pulse interval
B-. Note that the efficiency drops off when nhlB > S, and that for
n greater than 0.1, the efficiency of the biniary couinter is always
less than that of the coherent amplifier.

great majority of intervals it receives a reasonably
large numiber of photons.
The calculation is carried out in the Appenidix and

gives the results that an exponeintial probability dis-
tribution for the energy of the tranismnitted pulses is
approximately optimum, anid that for this distributioni
and nio noise the iinformnationi capacity of the couniter
system is [see (13)]

Ccounter = 2 e - B[log V-2-r + 0.289 log el. (7)

In the limuit of very high power the conistant termii can be
neglected, anid the quanitumii counter then extracts half
of the informationi in the wave. It is likelyr that wheni the
wave capacity is small enough so that the seconid tertm-
beginis to be signiificant, the exponiential distribution is
no loniger optinmumii.

Haviing gonie this far we perhaps should go oni to add
nioise to the wave anid againi calculate the informationi
capacity. In fact oiie cani do so usinlg sinilar approxi-
mate methods. Again onie finids that in the limliit of high
power the couniter systemn achieves half the capacity of
the wave. The calculationi is mlluch like that in the Ap-
pendix, an-d in order niot to bore the reader excessively,
we shall omit it here.
The fact that a systemn usinig ani energy-sensitive re-

ceiver has a capacity Ino greater thani half of the wave
capacity in the limnit of high power (i.e., high signial-to-
noise ratio) is just what we imiight expect. In this limit
the classical theory should give an adequate description
of physical pheinomenia. Classically, when the signal-to-
noise ratio is high, then equal amounts of informationi
may be obtained froin measurements of amplitude and
m-ieasuremenits of phase; and the energy senisitive re-
ceiver automatically rejects all phase information.
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X. SUMMARY

We have found an expression for the absolute rate at
which entropy is carried by an electromagnetic wave
having the statistical properties of white noise, in a
transmission medium which supports a single trans-
mission mode. Further, we have found an upper limit
for the information capacity of a wave consisting of sig-
nal with average power S in the presence of white noise
with average power N. We have investigated the in-
formation capacity of a number of communication sys-
tems. The results of this investigation may be sum-
marized as follows:

1) When the received signal or noise power is much
larger than hvB, where v is the center frequency of
the wave and B its bandwidth, a receiver using an
ideal coherent amplifier or an ideal heterodyne
converter can extract essentially all the informa-
tion that can be incorporated in the wave, while
an ideal energy-sensitive receiver is limited to
about half the capacity of the wave. The ideal
homodyne converter is intermediate between
these two.

2) When the total received power is much less than
hvB, a binary quantum counter can extract essen-
tially all the information that can be incorporated
in the wave, while the other types of receivers be-
come increasingly less efficient.

3) For a given power and bandwidth, the upper limit
to the information which can be incorporated in an
electromagnetic wave begins to drop off fairly
rapidly when v increases beyond P/hB. Viewed
from another angle, for a given frequency and
bandwidth there is a kind of threshold for received
power below which the information capacity of a
communications channel drops off rapidly. When
external noise is absent, this power level is about
hvB.

APPENDIX

THE QUANTUM COUNTER WHEN S>>hvB
Our first step will be to calculate the conditional

entropy H.(y). If the transmitter sends a pulse of M
photons in a particular interval with any reasonably
small uncertainty and there is no additive noise, the
probability distribution for received photons is, as be-
fore, known to be a Poisson; that is, the probability of
reception of m photons when M were sent is

(m-)me-mn
PM(m) =

m!

Here m is the expected number of received photons.
in- is of course MT, where T is the transmission co-
efficient of the transmission line. By supposition, T is
much less than unity. The conditional entropy of the
received signal, HM(m), may then be written as

HM(m) = - E p(M) , PM(m) log PM(m).
M m

Now

log PM(m) = m logn -m log e - log (i!)

and since we assume m is large in the great majority of
instances we may use Stirling's approximation for mn!,
which is

log m! z (m + 2) log m- m log e + log V/2ir.
Using this relation we find

log PM(m) ; login- - (m + 2) log m- (m -m) log e

- log v,/2r,

whence

E PM(m) log PM(m)

in- login - log V/2r - PM(m) (m + 2) log m.
m

It remains to evaluate the last term. To do this we ex-
pand log m in a power series in (m -mn)/li, according to
the prescription

logm logim + log 1 +

~m-m 1 (m - )2
-log mn + _ 2 + ***log e.

We can then make the necessary summation in terms of
the moments of the Poisson distribution PM(m), for
which we know that

E PM(m)(in - Fn) = 0, E PM(m) (i -)2 =
m m

E PM(i)(m - in-) 3 = im, etc.
m

Doing this we find that

EPM(m)(m+ ) logm=
(im + 2) log inm + 2 log e + O(1/m).

Substituting this in (8) we find the relation

-E~ PM(im) log PM(m) = 2 log (27reFn) + 0
m m

and so the conditional entropy is given very nearly by

1
HM(m) = - E p(M) log (2iremi).2 M

Since M is exceedingly large over most of its significant
range, we can replace this summation by an integral,
thus

Hm(m) ;-: dMp(M) log (2ireifl)

and finally since mn is a known function of M, we have

HM(in) +2fJ dmip(mi) log (2irem) (9)
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where p(im-) is the probability7 distributioni of the ex-
pected value of the niumber of photons inicident on the
receiver and p(inm)dn-p=p(M)dM.
Now let us ask how the conditional entropy varies

with the choice of the expected signal distributionl
p(mn-). We inust know this in order to maximize the in-
formation content of the siginal. As before we can ex-
panid log(27remi) in a power series in min-m, where m is
the average value of m1 over the distributioni p(in-).
Thus

log 2iremi
= log 2irem + log I + -- )

m/

log 2re-ern + log e

ltmJ 9t ! } 3t m

where

m-i= j p@()dixi
Substitutiing this in (9), we find

1,h(mn) . 2 log 27rei-h + '(log e)

rt_ ("]}-n) 2 (m-m
Jo 2m ' 3 21 p(mn)dm-, ( 10)

It is clear fromil (10) that if =m is large, aiid if the dis-
tributioni p(m) is any reasonably sharp distribution, the
coniditional entropy is very niearly giveni by thle first
ternm aloine; i.e.,

Hld(m) ~ log (2wremn)

anid thlius is depenidenit only! oni the average siginal power.
Thlus the problemii of imiaximiiizinig the iniformiiation ini the
signal subject to a giveni average power (therefore, a
giveni valuLe of m) reduces simiply to tlle lproblemn of
ml-aximiiizing the received enitropy. Thlis we already, know
how to (1o. It reqltires ani exponienitial probability dis-
tributioni for received photonis. For this distribution
the receivedl enltropy is given by (3) vith m-i replacing
Hm, and for large Vm may be approximilate(d by

H(m) _ log mn + log e = log (em). (11)

The Imiost straightforward way to obtain a,n exponeni-

tial probability distributionl at the receiver is to geni-

erate ani exponienitial probability distributioll at the
transimiitter. Our finial task is theii to check whethier our

result for the coniditionial entropy at the receiver is validl
for this very broad distribution as well as for narrow
ones. For the exponential distributioni with a reasonably
large average, the probability dlistribution- for tlle ex-
pected niumber of received )hotons may be assumied to
be very nearly continiuous and giveni by

p(in) =-expy--i
mm

For this distributioni the series expansion (10), for the
conditional probability converges embarrassingly slowly,
so we must go back to the integral form (9). Doing this
we obtain for the conditional entropy

1 co I\n-
H<'I(m) 2-j dn t- exp (--) log (27reffi).

Substituting x =-ml/m we find

1 1 00

HAt(m) 2 log (2reem) + - dx exp (-x) log x.

The integral evaluates to 0.577 log e, so that

Hli(i) = 2 log (2-reem) + 0.289 log e. (12)

Comparison of this result with (10) shows that by going
to the broad exponiential distributionl we have slightly
inicreased the coniditional entropy, but probably inot
enlough to inivalidate the conclusion that for large m the
exponential distributioni is the optimllum one.

Finallv, we obtaini for the inforimiation per symbol ob-
tainied b)y- the idleal quantumi couLnter,

I = H(m) - H1i(m)

whiere I-I.fr(m) is given by- (12) and 1I(m) by (11). We
can express this as

J = fH(m) - ( log 2wx + 0.289 log e).

Sinice 1311(m) for thise case is just the iniformationi capac-
itv of the wvIve, CIvsV(4., we find(l for the inforimiation
capacity of the ideal qua'lItum11 coutiter, at high power
levels, thle expressioni

CcoLLmiter 13 Ci,,-tve- B(' log 27r + 0.289 log e). (13)
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