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Quantum Effects in Communications Systems®

j. P. GORDONY

Summary—The information capacity of various communications
systems is considered. Quantum effects are taken fully into account.
The entropy of an electromagnetic wave having the quantum sta-
tistical properties of white noise in a single transmission mode is
found, and from it the information efficiency of various possible sys-
tems may be derived. The receiving systems considered include
amplifiers, heterodyne and homodyne converters and quantum
counters. In the limit of high signal or noise power (compared to
hvB, where h is Planck’s constant and » and B are, respectively, the
center frequency and bandwidth of the channel) the information
efficiency of an amplifier can approach unity. In the limit of low
powers the amplifier becomes inefficient, while the efficiency of the
quantum counter can approach unity. The amount of information
that can be incorporated in a wave drops off rather rapidly when the
power drops below hvB.

I. INTRODUCTION
WITH THE ADVENT of the possibility of

broad-band communications at frequencies in

the infrared and optical range, it has become
important to investigate the effects of the quantization
of radiation on the capacity of electromagnetic waves
to transmit information. Unlike the situation prevail-
ing in the microwave range, where thermal noise gen-
erally provides an ultimate limit to our ability to
transmit information, in the infrared and optical range
this limit is provided by what may be called quantum
noise.

Our work stems principally from the classic work of
Shannon' on discrete and continuous information
channels. Gabor?:? introduced the concept of quantiza-
tion into electromagnetic communication channels and
coined the term “quantum noise.” In consideration of
the problem of field measurements by a receiver, he used
an electron beam probe. The shot noise in the beam in-
fluenced his results in an important and, in the light of
present knowledge, unnecessary way. Stern*® has con-
sidered information rates in “photon channels.” His
conclusion® that the information efficiency of a linear
amplifier can be no greater than 50 per cent conflicts

0 * Received March 22, 1962; revised manuscript received June 7,
1962.
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with the results presented here. The major difference
may be traced to the fact that he takes no account of
the information that may be stored in the signal phase;
and phase information approaches 50 per cent of the
total possible information in the large signal-to-noise
case where the quantum theory and the classical theory
approach one another. Lasher® 7 has also obtained ex-
pressions for information capacity based on quantum
mechanical principles. His results agree qualitatively
with ours; the quantitative differences presumably
arise from the approximate methods which he used.
We? have previously discussed some of the ideas which
are utilized in this paper. In other recent work the im-
portant question of the statistical properties of quantum
noise in linear amplifiers has been studied.®'""!

Our ruminations will be limited to waves existing in a
transmission system for which only a single transmission
mode of the field is utilized. That is, the polarization and
distribution of the field over any plane perpendicular to
the direction of propagation are considered invariant.
This situation is typical of transmisssion in a coaxial
line or in a waveguide. It will also very likely be true
for long-distance broad-band optical communication
systems. A possible departure from such a single-mode
system would involve the use of the two orthogonal
field polarizations to provide two independent channels.

During the course of passage from transmitter to re-
ceiver, the signal is presumed to suffer a large attenua-
tion and, in general, to be supplemented by some
amount of additive white!? noise power. At the receiver
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Fig. 1—Typical communication system.

as much as possible of the information remaining in
the received wave is extracted. The receiver may in-
corporate an amplifier at the carrier frequency or it may
not. We will investigate both of these cases. Fig. 1 shows
a typical communications channel such as we have
described.

So long as the electromagnetic waves may be de-
scribed classically, 4.e., without quantization, Shan-
non' has shown that the information capacity C of a
signal of average power S in the presence of additive
white noise power N in a channel of bandwidth B is
given by

C = Bl (1+S) (1)
= 0! ——
¢ N

If the logarithm is taken to the base 2, C is in units of
bits per second. To realize this capacity the signal must
be modulated in such a way as to have also the statis-
tical randomness of white noise.

In deriving (1) Shannon noted that information and
entropy were closely allied quantities. In fact he identi-
fied information as prescribed entropy. He was able to
show that the entropy rate R of a continuous wave,
having the statistical properties of narrow-band white
noise and average power P, could be expressed as

R = Bl (P)
= ogl —
g Pe

where the constant P, is arbitrary. To obtain (1) he
subtracted the entropy rate for the noise alone from the
entropy rate for the combined signal and noise. The
latter also has the statistical properties of white noise
when both signal and noise have these properties in-
dependently. Thus the constant is cancelled out and

C =Bl (S+N) Bl (N> Bl (1+ S)
= Blo — Blogl —) = —.
8 Py & Py 8 N

C is the additional entropy occasioned by the presence of
the signal. Since the signal is completely prescribed, the
added entropy is prescribed entropy, or information.
Eq. (1) says that the information capacity ap-
proaches infinity as the signal-to-noise ratio approaches
infinity. This is because as the noise decreases we can
make more and more accurate measurements of the
state of the signal field. However, the uncertainty prin-

(2)

ciple of quantum mechanics tells us that in fact we can-
not measure a field to arbitrary accuracy, and so as
N—0, fundamental quantum limitations on information
capacity make their appearance.

II. ENTROPY OF WHITE NOISE

The fact that an electromagnetic wave is quantized
allows us to obtain an absolute value for its entropy
without the arbitrary constant of (2). Consider the wave
in a transmission line traveling toward the receiver.
Assume that the wave velocity is v and that there is no
dispersion. Then, in time ¢, the receiver measures the
field which had previously occupied a length L=ut of
the line. To describe this field we can expand it into a
series of orthogonal modes, and then measure the state
of excitation of each mode as well as possible. A com-
monly used expansion is a spatial Fourier series. For
this expansion the ¢th mode varies with distance and
time according to the exponential factor

L 2 t)]
exp [jq 3 (z — o) |.
The condition for orthogonality of the modes is that the
different values of ¢ differ by integers. It is also clear
from the above expression that the mode g has fre-
quency ¢v/L. Thus the frequency separation between
adjacent modes is Av=v/L. In a bandwidth B there are
B/Av =BL/v orthogonal modes. Since L =uvt we see that
in time ¢ the receiver measures the state of excitation of
Bt such modes. The rate of arrival of independent
field modes at the receiver is therefore B.

The complete description of the field requires meas-
urement of the state of excitation of each mode. Clas-
sically this would involve independent simultaneous
measurements of the amplitude and phase of each
mode, or equivalently simultaneous measurement of the
electric and magnetic fields associated with each mode.
Thus, classically, we make 2B independent measure-
ments per second to identify the wave. In quantum
mechanics the measurements of electric and magnetic
fields are not independent, so we must consider that we
make only B independent measurements per second,
each measurement specifiying the state of one particular
field mode.

Now we know that a white noise wave must have the
most random possible excitation of the various modes
consistent with the average power in the wave. This
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allows us to calculate the entropy of such a wave. Let
us specify the state of each mode by assigning to it ex-
actly m photons, 7.e., an excitation energy mhv. From
statistical mechanics’® we know that the entropy per
mode for a large number of modes is given by the ex-
pression

H=— 3 p(m) log p(m)

where p(m) is the probability that a mode will contain
just m photons. The average energy per mode is given
by

E = hvii = hv ), mp(m)

and of course since p(m) is a probability, the p(m)’s
must tulfill the requirement that

2. pm) = 1.

To find the most random possible excitation consistent
with a given average power, we must maximize H by
varying the probabilities p(m) while keeping Zp(m) and
Zmp(m) constant. This is a simple problem in the cal-
culus of variations. The set of p(m) which maximize H

are
1 - I m 1 ! m

The average power P in this wave is

p(m) =

P = EB = mhvB

since E=mmhy is the average energy per mode and B
modes per second are incident on the receiver. This
exponential probability distribution for the excitation
of the modes is consistent with the exponential power
distribution which we know is characteristic of white
noise. The entropy per mode for white noise is thus

= — 2 p(m) log p(m)
L
meﬁw+m+mm(tmﬂ
m

li

1
= log(l—l—n‘z)+ﬁlog(1+—:)- (3)
n

Since # =P/hvB where P is the average power in the
wave, we may express the entropy per mode as

P ) n hvB )
hvB P

One may object that the specification of the excita-

H=log(1+ 10g(1+

B

13 R, C. Tolman, “The principles of statistical mechanics,” Oxford
University Press, Oxford, England, 1938. See also Shannon and
Weaver.!
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tion of each mode in terms of exact numbers of photons
is not the only possible way. However, the number of
distinguishable excitations within an energy range from
E to E+AE should be independent of the quantities
used for the field specification, and so we are free to
choose the most convenient specification, as we have
done. Finally we note that the rate of arrival of entropy
at the receiver for a white noise wave is

R=uB=Blog(14+ )+ Liog(1+"2). @
°g< +hvB)+ v Og( * P) @
Eq. (4) is the quantum equivalent of (2).

Of the terms in (4) the first has a form quite similar
to the classical expression and predominates when the
average number of photons per mode is large compared
to unity. We can call it the mode entropy. It is equal to
the rate of arrival of modes, B, times the logarithm of
m~+1, which may be thought of rather loosely as the
number of frequently occurring mode occupation num-
bers in a typical noise wave. By mode occupation num-
ber we mean the number of photons in the mode.

The second term of (4) is of fundamental quantum
origin. It is the predominant term at power levels less
than #vB where the mean occupation number # becomes
less than unity. We can call it the photon entropy. It is
equal to the rate of arrival of photons, P/hv, times the
logarithm of the number of frequently occurring in-
tervals (i.e., modes) for each photon. We shall see that
at least part of this entropy can take the form of in-
formation which is recoverable if we use a photocell or
some other energy-sensitive device as a receiver.

If we approach classical theory by the frequently used
artifice of supposing that £ becomes very small, it may
be seen that (4) approaches (2) with the arbitrary con-
stant evaluated as

Po = ]’WB/B

where ¢ is the Naperian base for natural logarithms.
Since the arbitrary constant contains £, it is clear that
it could not be determined from a classical description.

IT1. ENTROPY AND INFORMATION

In Section 11 we found an absolute expression for the
entropy of white noise, utilizing a particular quantum
mechanical description of the possible excitations of the
field modes. It is not obvious, however, that all of this
entropy can be prescribed as a signal, and so constitute
information. This is not to say that we cannot modulate
a CW carrier wave in such a way as to give the resulting
wave the statistical properties of white noise in the
prescribed bandwidth B, but rather that there is very
likely some part of the resulting entropy which is
essentially irretrievable as information. We must confess
that we do not know at present the answer to this
problem. In any event the entropy of the wave is cer-
tainly an upper limit to the amount of information it
may contain, and as such it is a useful quantity.
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IV. INFORMATION CAPACITY IN THE PRESENCE
oF ADDITIVE NOISE

Suppose we have a signal with average power S ac-
companied by additive white noise with average power
N. Following the ideas of Shannon we note that the in-
formation in the wave can be no greater than the en-
tropy of the combination of signal plus noise less the un-
informative entropy of the noise alone. The entropy of
the combined signal and noise is maximized when the
total wave has the statistics of white noise. Quantum
mechanically as well as classically, this implies that the
signal alone should also have the characteristics of white
noise. The entropy rate for the combined wave is then
given by (4) with P=S+ N, while the entropy rate for
noise alone has P=N. The upper limit to the informa-
tion in the wave, which we will label Cy.v., for a signal
of average power S in the presence of white noise of
average power NV is thus given by

Cw:\ve = R(P-—-S+N) - R(P=.’\')

or
Cwave = Bl 1
Og( + N + hvB)
" S+ Nl (1 N hvB ) N (1 " hl/B) 3)
hy 8 S+ N hv log

For a bandwidth of 10° cps and an additive noise power
N taken as arising from a black body at 290°K, s.e.,

hy !
N = wB [exp (———) - 1] ,
290k

the information limit, Cwave, is plotted in Fig. 2 as a
function of frequency for power levels ranging from 107
to 1071 watt.

A. Classical Limit

If the noise power N is considerably greater than hvB,
we have a situation where a classical description of the
wave should be adequate. Expansion of (5) to first order
in the small quantities AwB/N and (WwB)/(S+N)
yields

wave
g N

Under the assumed condition N>>hvB, the second
term is always much smaller than the first, independent
of the value of S/N, so the classical description which
results in (2) is quite good.

If there is no additive noise, but the signal is much
larger than kvB, we find

hvBS
—————loge - - ]
2N(S + N)

S
Cwnve = B [log (1 + ) + lOge + ]
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Fig. 2—Upper limit to the information that may be incorporated into
an electromagnetic wave in a single transmission mode. Thermal
noise, as originating from a black body at 290°K, is assumed to
accompany the wave.

In the limit of very high signal power this expression is
nearly the same as one would obtain from the classical
expression (1), by assuming the presence of an equiv-
alent “zero-point” noise power hvB/e. Note, however,
that this equivalence is not exact.

V. INFORMATION CAPACITY AFTER TRANSMISSION

As our transmitted signal travels toward the receiver,
it is attenuated and usually some noise power is added to
it. If we assume that the added noise is white then the
information capacity of the received wave is limited by
(5) where S is the received signal power and N the
added noise power.

VI. INFORMATION CAPACITY AFTER
COHERENT AMPLIFICATION

Suppose now that the first element of the receiver is
an amplifier at the carrier frequency. This could be a
maser, a nondegenerate parametric amplifier or any
other type of linear amplifier. Assume that the amplifier
has high gain. There is always internal white noise
generated in such an amplifier which, referred to the in-
put, may be described by an effective input noise, Neg:.
In the case of the maser this noise is known to be

Z\Tpn = KIZVB,

where K =n,/(n:—n1) and ns and n, are, respectively,
the deunsities of upper-state and lower-state atoms in the
active medium. In terms of a negative temperature of
the active medium T, we have

K=[1-en(- H’fﬂ)]'
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For the parametric amplifier V. may be written in a
similar way, with K also greater than or equal to unity.!
After much amplification the additive noise, given by
the gain times the sum of the incident noise plus the
effective input noise,” is a/ways much greater than wB
and so the classical formula applies for the information
capacity. We find, therefore, that after much amplifica-
tion the information capacity of the wave is reduced to

(6)

Camiier=Bl 1+_"—-_—)
it °g< N + KinB

where S is the incident signal, N is the incident noise
and K >1. Thus the best possible amplifier, for which
K =1, retains only the first term in the incident wave in-
formation limit, (5). We now can define the information
efficiency of an amplifier as Cumplitier/Cwave. For the
interesting case of a perfect amplifier this is plotted for
various values of signal strength in Fig. 3. The incident
noise is assumed the same as for Fig. 2.

After much amplification we may assume that all of
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Fig. 3—Information efficiency for an ideal amplifier of high gain.
Because of spontaneous emission, the ideal amplifier has an
effective input noise power of kvB, which is responsible for the
lowering of its efficiency at high frequencies.

4 W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctu-
ations and noise in parametric processes. 1,” Phys. Rev., vol. 124, pp.
1646-1654; December, 1961.

15 It has now been established?®19:11 that the simple addition (volt-
agewise) of the amplified effective input noise to the classically
amplified signal and real input noise accounts for all fluctuations in
the output wave. That is, if the signal wave leaving the transmitter
has the form v, cos (wi-+¢,), then the amplified wave has the form
(G/L)2 v, cos (wt+¢s)+G2 v, cos (wt+¢,), where G and L are the
gain and loss of the amplifier and attenuator, respectively, and where
the added term in the amplified wave is the fluctuating white noise
voltage. This is rigorously true no matter how small, in terms of
quanta per mode, the signal may be at the amplifier input. We are of
course assuming that the gain and loss are not subject to fluctuations
caused by such things as variations in the density of attenuating or
amplifying particles, variations in pumping of a parametric amplifier,
etc.
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the information remaining in the wave can be extracted,
so (6) also gives the information capacity of a system
using a high gain coherent amplifier at the carrier fre-
quency as the first element of the receiver.'® For small
N the efficiency drops off for signal levels less than
about AvB, indicating a substantial loss of information
in this region for such a system.

VII. THE HETERODYNE RECEIVER

Instead of amplifying the wave we might immediately
make use of a photoelectric device in a heterodyne re-
ceiver.'”!® To do this we might let the signal and power
from a CW local oscillator fall simultaneously on a
photosensitive element.

Then the photocurrent is proportional to the in-
stantaneous power Pj, incident on the element. If the
quantum efficiency of the photosensitive device is €, the
current is given by

ePinsm

hvﬁ ¢

I =

where ¢ is the electronic charge. Let the signal frequency
be wsi; and the local oscillator frequency be wioear. If the
local oscillator power is much greater than the signal
power, the instantaneous power will have the form

Pinge = Plocal + 2‘\/Psig-Ploca—lCOS (wsig - wlocal)l + -

where Pg;, is the instantaneous input signal power and
Pocar is the local oscillator power. The photocurrent thus
consists of a dc component

€
Iy = ;1; Plocnl

and a signal current at the intermediate frequency whose

mean square is
_ €q\?
Isig2 =2 h— SPlocal

v

where S is the average input signal power. Because of the
dc current there will be shot noise, whose mean square
is

— €
IN2 = 2q[()B =2 (’_) q2PlocalB-
hy

16 It might appear that we are departing somewhat from common
usage here by speaking of the information capacity of a system using
a specific receiver. The reason for it is that in quantum mechanics the
properties of the measuring apparatus (i.e., the receiver) inevitably
influence to some extent the quantities to be measured. Thus, while
we can obtain from entropy considerations an upper limit to the
capacity of any system, from which we may derive “efficiencies” for
particular systems, this upper limit cannot be termed a capacity. It
would seem that we cannot obtain any expression which might
properly be called a channel capacity unless we include as an essen-
tial part of the channel such elements of the receiver as are necessary
to insure that subsequent measurement can be performed with no
further appreciable reaction back on the channel itself.

17 A. Javan and R. Kompfner, private communication.

18 B. M. Oliver, “Signal-to-noise ratios in photoelectric mixing,”
Proc. IRE, vol. 49, pp. 1960-1961; December, 1961.
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The ratio [,i2/Ix? is the signal-to-noise ratio at the IF,
which comes out to be simply €S/hvB. This implies an
information capacity for the IF signal of

S
Cheterodyne = B lo 1+ ——)’
peterody g( ehuB

It is not difficult to include the effect of incident additive
noise coming in with the signal. This simply reduces the
signal-to-noise ratio at the IF to

S

1
N+ — B

€

and the information capacity to

( S
Cheterodyne = B lOg I 1 +

1 .
N + — vB
€

The information capacity of a system using a heterodyne
receiver thus has the same form as that of a system using
a coherent amplifier, with K replaced by e

VII1I. TuE HoMODYNE RECEIVER

It was pointed out by B. M. Oliver!®® that the homo-
dyne receiver has quite interesting properties. In this
case we confine the modulation to emplitude modula-
tion, along with an allowed phase shift of w, and then
use a local oscillator in the receiver which has exactly
the same frequency and phase as the signal carrier. Since
cos(Wsig —Wioca1) is then always equal to *1, the in-
stantaneous power incident on the photocell is

P = Plocal + 2\/—}75;\/})10031 + R ]

where the quantity +/P,;; may range through positive
and negative values according to the modulation ampli-
tude and phase. The dc component of the photocurrent
is again

€
Io = Plocal~
hv

For this case, however, the signal current is at baseband
and has bandwidth B/2, where B is the high-frequency
band used for transmission. The mean-square shot
current at baseband is therefore

_— €
IN2 = ZqIO(B/Z) = (;‘) q2PloealBy
v

while the mean-square signal current is now

N g\’
Ii> = 4 hf) SPiocal

14

19 B, M. Oliver, “Comments on ‘Noise in photoelectric mixing,"”
Proc. IRE (Correspondence), vol. 50, pp. 1545-1546; June, 1962.
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where again S is the average signal power, i.e., the aver-
age of Ps;,. The signal-to-noise ratio is therefore

T/ =42,
hvB

and so the information capacity of the baseband sig-
nal is

B S
Chomodyne = 710g 1 + 4 ﬁ .

As in the heterodyne case we may include incident noise
without too much difficulty. The result is
28 !

Chomodyn e

Bl 1+
BEPIRG: 1

N + — wB
2e

where N is the average received noise in the high-fre-
quency band B.

Oliver pointed out that in this case the equivalent in-
put quantum noise is only half as large as that occurring
in the heterodyne receiver or in the equivalent maser. At
first sight this is somewhat curious. In fact it simply
indicates that perhaps one cannot always deduce the
effects of quantum noise simply on the assumption of
some fixed equivalent input noise which is the same in
all situations. In no case is the capacity of a system
using a homodyne receiver greater than the capacity
limit, (5), of a wave of average power S in the presence
of the average incident noise N. Such a result would be
truly surprising. In Fig. 4 the information efficiency for

S/hyB
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Fig. 4—Information efficiency for various receivers for an average
received signal power of 10 w, a bandwidth of 10? cps, and an
external noise temperature of 290°K. Note that at the higher fre-
quencies the coherent amplifier is not as good as the other types
of receivers.
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an ideal (e=1) homodyne system is also plotted against
frequency, for a signal power of 107* w and an external
noise temperature of 290°K. For comparison the in-
formation efficiency of an ideal amplifier is plotted also,
as well as that of an ideal detector using a binary quan-
tum counter (see Section IX-A, and note that for fre-
quencies of 10" cps or greater the external noise may be
completely neglected).

IX. TeE QuanTUuM COUNTER

Instead of using any of the aforementioned receivers,
we might simply allow the signal to fall on some photo-
electric device and count the photoelectrons as they are
produced. If we could do this with unity quantum
efficiency and with perfect discrimination between
different numbers of photoelectrons, we would surely
have an ideal power-sensitive receiver. The information
capacity for this general case can in principle be found
since the probability distribution for the various num-
bers of received photons resulting from the transmission
of some known number of photons has been computed.?
Unfortunately, attempts to calculate the information
capacity of a communication system using such a re-
ceiver encounter rather great computational difficulties.
Nevertheless in some simple cases the problem can be
solved approximately. When S/awB is either much
larger or much smaller than unity, we may obtain
approximately correct values for the capacity.

A. The Binary Counter

For the case SKhvB, the average number of photons
per independent field mode is much smaller than unity,
so that only the two events, no photon received or one
photon received, have appreciable probabilities. Con-
sider, then, the following communication system. The
transmitted signal consists of a series of pulses, each of
duration 1/B and of constant amplitude. The pulses
occur in a statistically random sequence with the
probability Q of sending a pulse in any particular time
interval. A typical transmitted message would then
appear as in Fig. 5. The average power in the signal is Q
times the pulse power, or if the energy in each pulse is
E the average power is QEB. The receiver measures the
number of received photons in each time interval 1/B;
thus it makes B measurements per second, which is
consistent with the notion that there are B independent
field modes received per second. If the receiver simply
distinguishes between no photons received or some
photons received, we will have a system which should
do nearly as well as possible when the average number of
photons received per interval is much smaller than unity
but of course is rather inefficient for larger average

20 K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuations
in the amplification of quanta with applications to maser amplifiers,”
J. Phys. Soc. Japan, vol. 12, pp. 686-700; June, 1957.
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numbers of photons. This system has the advantage
that one can compute its information capacity exactly,
and we shall now proceed to do this.

Fig. 6 shows the communications channel under con-
sideration. In each time interval 1/B the transmitter
either emits a pulse or it does not. The probability of
occurrence of a pulse in any particular time interval is Q.
If the receiver detects at least one photon in any time in-
terval, it records a 1; if not, it records a 0. To simplify
matters, let us assume that the quantum efficiency of the
receiver is unity, and at first let us assume that there is
no noise in the channel. In this case if the transmitter
does not send a pulse, the receiver definitely records a 0.
This is indicated in Fig. 6. On the other hand if the
transmitter sends a pulse, the receiver does not definitely
record a 1. There is a finite probability that no photons
reach the receiver even when the pulse is sent. This
probability is known, however. So long as the number of
photons in the transmitted pulse is reasonably well
known, the probability distribution g(m) for the various
numbers m of photons received after large transmission
loss is a Poisson distribution, from which

m

gim) = — e,
m!

Here the average or expected number of received
photons in the pulse is labeled s. Thus the probability of
receiving no photons is ¢, and the probability of re-
ceiving at least one is of course 1 —e. These probabili-
ties are also indicated on Fig. 6.

Now to compute information capacity we must use
some further results of Shannon’s work.! He showed
that the information I per symbol (i.e., time interval)

Fig. 5—Typical sequence of pulses in a message suitable for a binary
communication system. The statistical probability for the occur-
rence of a pulse is 0.25 in this message.

PROBABILITY =
PROBABILITY| pyisE 1-e~5 PULSE | PROBABILITY
Q=" sent RECEVED FQ(1-e-3)
@\\9
NoT ! RECEVED
————
SENT
E ©

Fig. 6—Schematic diagram for a noiseless binary channel. The vari-
ous probabilities neces: for the solution of the information
problem are indicated on the diagram.



1962

for such a discrete communication channel is given by
I =H(y — H)

where H(y) is the entropy per symbol of the received
message, given by

H(y) = — 2 p(y) log p()

summed over the probabilities p(y) for the possible re-
ceived symbols v, while H,(y) is the conditional
entropy of the received message, given by

Hi(y) = — 2 p(x) 2 pa(y) log pa(3).

Here the quantities
[- X 0 108 2200

are the entropy per symbol of the received message when
the transmitted symbol (x) is known, and H,(y) is this
entropy averaged over the probability distribution
p(x) for transmitted symbols. Thus H(y) is the total
received entropy, while H,(y) is that part of the re-
ceived entropy which does not contain information.

With the help of these formulas we are able to com-
pute the information capacity of the channel. For a
probability Q of sending a pulse, the total probabilities
for receiving a 1 or a 0 are

p() =Ql —e7);  p(0) =1-0(1 —e)

while the conditional probabilities are

Ppulse(o) = e¢%; Ppulse(l) =1- e—s, Pno pulse(o) = 1;
Ppo pulse(l) = 0.

The received entropy is then
H(y) = - 01 — ¢ log [0(1 — ¢*]
—[1 =00 —e)]log[1 — 01 — ¢)]
and the conditional entropy is
Hy(y) = — Qlelog e + (1 — ™) log (1 — ¢7)]
- 1 - 0lo].

Subtracting the two, we find

I=—-Q(—e?)logQ—[1 -0~ e
Jlog [1 — Q1 — e)] + Qe log e.

To find the maximum information per symbol we
must maximize I with respect to Q, under the constraint
that the average power remain constant. Now since s is
the average number of received photons per pulse, and
Q the probability of sending a pulse, the average number
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of photons per time interval is Qs. This is the quantity
which must remain constant and was called 7 in Sec-
tion I. If we therefore substitute Q =/s, where i is a
constant, into I, differentiate with respect to s and set
the result equal to 0, we obtain the condition for maxi-
mum 1. This is

s
loge[?+e‘8-—-1]= _
m ( et

_1)
s+ 1

To find Inmax this transcendental equation must be solved
for s, assuming some value of #, and then the result
used to evaluate I. In Fig. 7, s is plotted against . It
may be seen that s does not drop off very rapidly for
small 7. Finally In.x can then be calculated, and the in-
formation capacity of this system

Cbinary = ImaxB

may be compared to the information limit for a noise-
less wave of the same average power (z.e., mhvB) at the
receiver input. The efficiency of the system

Cbinary/cwave

is plotted in Fig. 4. It may be-seen to approach unity
slowly at small signal levels. One can in fact show that at
very very small signal levels, 7.e., for log,(1/#)>>1, the
information per symbol approaches

1
Inox — 1 log — -
i

This may be compared to H of (3).

@
)

o

H

LJNL I N B R B e |

PULSE AMPLITUDE, S, IN PHOTONS

2 0 1 1 L i ]
-6 -5 -4 -3 -2 -
LOG; oM
0 1 1 1 i 1
0 ] 2 3 4 5 6

m
AVERAGE SIGNAL STRENGTH IN PHOTONS PER INTERVAL

Fig. 7—Optimized average received pulse amplitude for the noiseless
binary channel as a function of the average number of received
photons per available time interval. The probability of sending a
pulse is given by Q=1/s.
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Fig. 8—Schematic diagram for a noisy binary channel.
O.Zr—
From this fairly simple example the mathematical :
. . 107
complexity of the quantum counter system is reason- o | . I L L L
. . -8 -5 -4 -3 -2 -1
ably evident. However, the case of the binary counter 10 10 10 10 s 10 10 ! 10
with noise is also simple enough to be calculated. There hvB

are two cases of possible interest involving noise. The
first is when the noise in the counter results from
noise power in the transmission mode accompanying
the signal. It is then important to consider the effects
of interference between noise and signal. However, there
seems little use in calculating information capacities
for this case since, for a given noise temperature, the
number of noise photons per interval 1/B, as a function
of frequency, is for the greater part of the frequency
range either greater than one—when v <k7T, or much
less than one—when Av>k7. In the former case the
binary counter is clearly not the most efficient receiver,
in the latter the noise may be ignored so long as it is
much less than the signal.

The second case involving noise in the counter is when
the noise and signal are statistically independent. This
would occur if the noise results from dark current in the
photodetector, or from the effects of stray light incident
in the receiver from modes other than the transmission
mode or at frequencies outside of the useful band. 1f we
assume that the noise photoelectrons arise from a large
number of statistically independent causes, then the
probability distribution of noise photoelectrons is also a
Poisson. From this the conditional probabilities given in
Fig. 8 follow. The results of a calculation of In.x for
these probabilities, based on the equations of the previ-
ous section, are given in Fig. 9. For comparison, [, for
the noiseless case, is plotted there also.

B. The Quantum Counter When S>hvB

In the previous subsection we considered a particular
communication system using a quantum counter for
which the capacity could be calculated exactly, but
which approximates an ideal receiver only when
S+ NKLhvB. We can also obtain an approximate result
for an ideal quantum counter system which is valid at
high power levels. We assume again that the transmitter
sends out a sequence of pulses, each of duration 1/B,
but with varying amplitudes. We suppose that the re-
ceiver tells the exact number of photons it receives in
each such time interval, and we may assume that in the

Fig. 9—Information efficiency of a binary counter perturbed by
various amounts of incoherent noise. The numbers # represent
the average number of noise photoelectrons per pulse interval
B!, Note that the efficiency drops off when nkhvB > S, and that for
n greater than 0.1, the efficiency of the binary counter is always
less than that of the coherent amplifier.

great majority of intervals it receives a reasonably
large number of photons.

The calculation is carried out in the Appendix and
gives the results that an exponential probability dis-
tribution for the energy of the transmitted pulses is
approximately optimum, and that for this distribution
and no noise the information capacity of the counter
system is [see (13)]

Ceounter = 2Cyave — Bllog v/2r + 0.289 loge|.  (7)

In the limit of very high power the constant term can be
neglected, and the quantum counter then extracts half
of the information in the wave. It is likely that when the
wave capacity is small enough so that the second term
begins to be significant, the exponential distribution is
no longer optimum.

Having gone this far we perhaps should go on to add
noise to the wave and again calculate the information
capacity. In fact one can do so using similar approxi-
mate methods. Again one finds that in the limit of high
power the counter system achieves half the capacity of
the wave. The calculation is much like that in the Ap-
pendix, and in order not to bore the reader excessively,
we shall omit it here.

The fact that a system using an energy-sensitive re-
ceiver has a capacity no greater than half of the wave
capacity in the limit of high power (i.e., high signal-to-
noise ratio) is just what we might expect. In this limit
the classical theory should give an adequate description
of physical phenomena. Classically, when the signal-to-
noise ratio is high, then equal amounts of information
may be obtained from measurements of amplitude and
measurements of phase; and the energy sensitive re-
ceiver automatically rejects all phase information.
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X. SUMMARY

We have found an expression for the absolute rate at
which entropy is carried by an electromagnetic wave
having the statistical properties of white noise, in a
transmission medium which supports a single trans-
mission mode. Further, we have found an upper limit
for the information capacity of a wave consisting of sig-
nal with average power S in the presence of white noise
with average power N. We have investigated the in-
formation capacity of a number of communication sys-
tems. The results of this investigation may be sum-
marized as follows:

1) When the received signal or noise power is much
larger than AvB, where » is the center frequency of
the wave and B its bandwidth, a receiver using an
ideal coherent amplifier or an ideal heterodyne
converter can extract essentially all the informa-
tion that can be incorporated in the wave, while
an ideal energy-sensitive receiver is limited to
about half the capacity of the wave. The ideal
homodyne converter is intermediate between
these two.

2) When the total received power is much less than
hvB, a binary quantum counter can extract essen-
tially all the information that can be incorporated
in the wave, while the other types of receivers be-
come increasingly less efficient.

3) For a given power and bandwidth, the upper limit
to the information which can be incorporated in an
electromagnetic wave begins to drop off fairly
rapidly when » increases beyond P/kB. Viewed
from another angle, for a given frequency and
bandwidth there is a kind of threshold for received
power below which the information capacity of a
communications channel drops off rapidly. When
external noise is absent, this power level is about
hvB.

APPENDIX
TrHE QuaNTUM COUNTER WHEN S>hvB

Our first step will be to calculate the conditional
entropy H,(y). If the transmitter sends a pulse of M
photons in a particular interval with any reasonably
small uncertainty and there is no additive noise, the
probability distribution for received photons is, as be-
fore, known to be a Poisson; that is, the probability of
reception of m photons when M were sent is

(m) m e—;

Py(m) = o

Here 7 is the expected number of received photons.
i is of course M T, where T is the transmission co-
efficient of the transmission line. By supposition, T is
much less than unity. The conditional entropy of the
received signal, Hy(m), may then be written as

Hy(m) = — Z p(M) Z Py(m) log Pu(m).
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Now
log Py(m) = m log i — i log e — log (m!)

and since we assume # is large in the great majority of
instances we may use Stirling’s approximation for 7!,
which is

logm! = (m 4+ 3) logm — m log e + log /2.
Using this relation we find
log Py(m) =~ logm — (m + 3) logm — (m — i) log e
— log +/2m,

whence
22 Pu(m) log Py (m)

=7 log — log /2 — 3, Py(m)(m + 1) log m.
It remains to evaluate the last term. To do this we ex-

pand log m in a power series in (m — ) /#, according to
the prescription

m — m
logm = logm + log [1 + —T—':'
7

[m —m 1 (m—m)?
= logm + - —
m 2 m?

+---:|loge.

We can then make the necessary summation in terms of
the moments of the Poisson distribution Py (m), for
which we know that

2 Pulm)(m —m) =0, 3 Py(m)(m — ) = i
E Py(m)(m — m)® = m, etc.

Doing this we find that

22 Pu(m)(m + 3) log m =
" (@ + %) log# + % log e + O(1/7m).
Substituting this in (8) we find the relation

1
— > Py(m) log Py(m) = % log (2nem) + O(—_—),
m m
and so the conditional entropy is given very nearly by
1
Hy(m) = — 2 p(M) log (2mem).
M

Since M is exceedingly large over most of its significant
range, we can replace this summation by an integral,
thus

1 0
Hy(m) =~ 7[ dMp(M) log (2wem)
0
and finally since 7% is a known function of M, we have

1 ©
Hy(m) = ) f dmp(im) log (2mwein) 9
(1]



1908

where p(i) is the probability distribution of the ex-
pected value of the number of photons incident on the
receiver and p(m)dm =p(M)dM.

Now let us ask how the conditional entropy varies
with the choice of the expected signal distribution
p(m). We must know this in order to maximize the in-
formation content of the signal. As before we can ex-
pand log(2mem) in a power series in 7 —m, where 7 is
the average value of # over the distribution p(#).
Thus

log 2mein

m— m
= log 2wem 4+ log (1 + )

m

= log 2wem + loge

[E55)-2C5 365 -]

where

o= f 7p () di.

Substituting this in (9), we find

Hy(m) = % log 2wem + 3(loge)

* (m—m? 1 (m— m _
0 2m* 3 mé

It is clear from (10) that if m is large, and if the dis-
tribution p() is any reasonably sharp distribution, the
conditional entropy is very nearly given by the first
term alone; 7.e.,

Hy(m) = % log (2wem)

and thus is dependent only on the average signal power.
Thus the problem of maximizing the information in the
signal subject to a given average power (therefore, a
given value of m) reduces simply to the problem of
maximizing the received entropy. This we already know
how to do. It requires an exponential probability dis-
tribution for received photons. For this distribution
the received entropy is given by (3) with m replacing
i, and for large # may be approximated by

(11)

The most straightforward way to obtain an exponen-
tial probability distribution at the receiver is to gen-
erate an exponential probability distribution at the
transmitter. Our final task is then to check whether our

H(m) = log m + log e = log (em).
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result for the conditional entropy at the receiver is valid
for this very broad distribution as well as for narrow
ones. IFor the exponential distribution with a reasonably
large average, the probability distribution for the ex-
pected number of received photons may be assumed to
be very nearly continuous and given by

1 n
pim) = :exp(— —;)
m m

For this distribution the series expansion (10), for the
conditional probability converges embarrassingly slowly,
so we must go back to the integral form (9). Doing this
we obtain for the conditional entropy

1 » 1 7
Hy(m) = 7f dm (%) exp (— TTt) log (2mefm).

Substituting x = /7 we find
1 1 e
Hy(m) = 5 log (2wem) + —2~f dx exp (—x) log .
0

The integral evaluates to 0.577 log e, so that

Hy(m) = § log (2wem) + 0.289 log e. 12)

Comparison of this result with (10) shows that by going
to the broad exponential distribution we have slightly
increased the conditional entropy, but probably not
enough to invalidate the conclusion that for large m the
exponential distribution is the optimum one.

Finally, we obtain for the information per symbol ob-
tained by the ideal quantum counter,

I = H(m) — Hy(m)

where Hy(m) is given by (12) and H(m) by (11). We
can express this as

I'=3H(m) — (3 log 2r + 0.289 log €).

Since BII(m) for thise case is just the information capac-
ity of the wave, Cyuve, we find for the information
capacity of the ideal quantum counter, at high power
levels, the expression

Cmuntvr = Bl = %C‘\v:n'e - B(% ]Og 2w 4 0.289 lOg 8). (13)
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