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Low-Complexity Art 

Jurgen Schmidhu ber 

I n their introduction to Kolmogorov complexity, 
Li and Vitanyi wrote: 

We are to admit no more causes of natural things (as we are 
told by Newton) than such as are both true and sufficient to 
explain their appearances. This central theme is basic to the 
pursuit of science, and goes back to the principle known as 
Occam’s razor: “if presented with a choice between indifferent 
alternatives, then one ought to select the simplest one.” Un- 
consciously or explicitly, informal applications of this prin- 
ciple in science and mathematics abound [ 11. 

The principle of Occam’s razor is not only relevant to sci- 
ence and mathematics, but to fine arts as well. Some artists 
consciously prefer “simple” art by claiming: “art is the art of 
omission.” Furthermore, many famous works of art were ei- 
ther consciously or unconsciously designed to exhibit regu- 
larities that intuitively simplify them. For instance, every stylis- 
tic repetition and every symmetry in a painting allows one 
part of the painting to be described in terms of its other parts. 
Intuitively, redundancy of this kind helps to shorten the 
length of the description of the whole painting, thus making 
it “simple” in a certain sense. 

It is possible to formalize the intuitive notions of “simplic- 
ity” and “complexity.” Appropriate mathematical tools are 
provided by the theory of Kolmogorov complexity, or algorith- 
mic complexity [2]. The Kolmogorov complexity of some 
computable object is essentially the length (measured in num- 
ber of bits) of the shortest algorithm that can be used to com- 
pute it. The shorter the algorithm, the simpler the object [3]. 

In this paper, I use basic concepts from the theory of algo- 
rithmic complexity to serve as ingredients for a novel form of 
simple art that I call “low-complexity art.” Although the focus 
in this article will be on black-and-white cartoons, the basic 
ideas are not limited to this type of application. 

BASIC CONCEPTS 
The following are a few basic concepts of the theory of 
Kolmogorov complexity (see the Appendix for formal details): 

Compiler theorem. Informally, this theorem says that any 
program for a given computer can be compiled into an 
equivalent program for a given universal computer by a 
compiler program whose length does not depend on the 
programs it compiles. 
Kolmogorov complexity. The Kolmogorov complexity of 
a computable object is the length of the shortest program 
that computes it on a universal computer and then halts. 
Invariance theorem. Essentially, the invariance theorem 
says that the Kolmogorov complexity of some object does 
not depend of the particular computer used, leaving aside 
an additive, machine-specific, object-independent con- 
stant. This objectivity is due to the compiler theorem. 

Noncomputability of Kolmo- 
gorov complexity. I t  can be 
shown that there is no single 
algorithm that can generate 
the shortest program for com- 
puting arbitrary given data on 
a given computer [4]. 

LOW-COMPLEXITY ART 
Suppose an artist’s task is to pro- 
duce a drawing that obeys a set of 
(possibly informal) pre-deter- 
mined specifications. The goal of 
low-complexity art is to represent 
the depicted object’s essence by 

A B S T R A C T  

M a n y  artists when repre 
senting an object try to convey its 
“essence.” In an attempt to formal- 
ize certain aspects of depicting 
the essence of objects, the author 
proposes an art form called Iow- 
complexity art. It may be viewed 
as the computer-age equivalent of 
minimal art. Its goals are based on 
concepts from algorithmic infor- 
mation theory. A low-complexity 
artwork can be specified by a 
computer algorithm and should 
comply with two properties: (1) 
the drawing should ”look right,” 
and (2) the Kolmogorov complexity 
of the drawing should be small 
(the algorithm should be short) 
and a typical observer should be 
able to see this. Examples of low- 
complexity art are given in the 
form of algorithmically simple car- 
toons of various objects. Attempts 
are made to relate the formalism 
of the theory of minimum descrip 
tion length to informal notions 
such as ”good artistic style” and 
“beauty.” 

achieving two conflicting goals simultaneously: 
Goal 1. Given the specifications, the drawing should “look 

right.” 
Goal 2. (a) The Kolmogorov complexity of the final design 

should be provably small. In other words, the algorithm com- 
puting the drawing (by generating appropriate instructions 
for a printer, say) should be short. (b) It should be easy for an 
informed observer to perceive the algorithmic simplicity of 
the drawing and to see the object’s essence extracted by the 
low-complexity artist. 

It is predicted that the observer will like drawings that 
achieve both goals. The next section addresses the extent to 
which both goals are subjective. 

How Subjective Is Low-Complexity Art? 
Goal 1 is clearly subjective in the sense that it strongly de- 
pends on a given observer and the way he or she interprets 
the (possibly informal) specifications. What “looks right” to 
an observer from one (sub)culture.may “look wrong” to an 
observer from another (sub)culture (or another time). 

Goal 2a depends on the nature of the computer running 
the algorithm. In what follows, this dependency will be ig- 
nored. Ultimately this is justified by the above-mentioned in- 
variance theorem. 

Like Goal 1, Goal 2b depends on the observer. But in a 
sense, Goal 2b is less subjective than Goal 1. This is because 
intelligent human observers, in principle, can learn to com- 
pute anything a digital computer can compute (the reverse is 
a matter of controversy). In particular, a short algorithm that 
can run on a conventional digital machine can be quickly 
taught to an intelligent human being. Note that if the human 
observer were another universal computer, then we could im- 
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mediately apply the invariance theorem, 
thus (ultimately) eliminating subjectivity 
from Goal 2b. Then the only remaining 
subjective aspect of low-complexity art 
would be that of Goal 1. 

Low-Complexity Art Is Hard To 
Create 
This paper describes the goals of low- 
complexity art, not a way to achieve 
those goals. The latter requires intuition 
and, as with any other form of art, a 
sometimes rewarding but often frustrat- 
ing struggle to capture “the essence” of 
what is being depicted. Initial attempts 
to create a work of low-complexity art 
will usually have unpredictable results. 

The noncomputability of Kolmogorov 
complexity implies that there is no gen- 
eral method for finding the shortest de- 
scription of a piece of data [ 5 ] .  This 
seems to indicate that low-complexity 
art will always represent a challenge to 
any artist willing to pursue it. 

Low-Complexity Design 
Regarding the difference between art 
and design (this difference is important 
to many artists), I use the expression 
“low-complexity design” instead of “low- 
complexity art” in cases where no artistic 
purpose is pursued by a designer trying 
to achieve Goals 1 and 2. 

FRACTAL CIRCLES FOR 
ENCODING DRAWINGS 
The fractal [6] coding scheme I intro- 
duce here is general enough for design- 
ing arbitrary drawings. It is also sophisti- 
cated enough to allow for specification 
of non-trivial drawings with a limited 
amount of information. Finally, it is 
simple enough to be implemented by a 
short algorithm and to be taught quickly 
to a typical human observer. 

The ancient Greeks considered the 
circle to be the ideal two-dimensional 
geometric form. Without necessarily 
agreeing with the Greeks, I have used 
circles as the basis for designing draw- 
ings. One reason is that a circle can be 
drawn by a very short algorithm. An- 
other reason is that circles are some- 
thing most humans can relate to: most 
people know something about circles 
and their properties. These reasons 
make it easy to explain the algorithmic 
simplicity of the drawing to a typical ob- 
server (and thus achieve Goal 2b). 

Sizes and relative positions of “legal” 
circles will be greatly limited by the fol- 
lowing set of fractal rules. 

Rules for Making Legal Circles 
Initialization: Draw a circle of arbitrary 
radius and center position. Arbitrarily 
select a point on the first circle and use 

Fig. 1. Fractal result of an iterative application of Rules 1 and 2 (following initialization). 
This self-similar figure builds the basis of all the figures that follow. On each legal circle 
there are the centers of six legal circles with equal radius. For clarity, each legal circle is 
drawn with a width proportional to the logarithm of its radius. Parts of legal circles located 
outside the initial circle (the “frame”) are not shown. Also, circles with radius less than %6 

the radius of the frame are not shown. 

i t  as the center of a second circle with 
equal radius. The first two circles are de- 
fined as legal circles. 

The rules for generating additional 
legal circles are as follows: 

Rule 1. Wherever two legal circles of 
equal radius touch or intersect, draw an- 
other legal circle of equal radius with 
the intersection point as its center. 

Rule 2. Within every legal circle with 
center point p and radius r, draw an- 
other legal circle whose center point is 
also p but whose radius is f i .  

Figure 1 shows the result of a recur- 
sive application of the above rules. 

Rules for Making Legal 
Drawings 
A legal drawing is defined by (a) legal 
arcs or (b) legal areas. The rules for le- 
gal arcs and areas are: 
Rule 3. Each legal arc must be a seg- 
ment of a legal circle. 
Rule 4. At both endpoints of a legal arc, 
some legal circles must touch or inter- 
sect. 
Rule 5. The arc width of a legal arc must 
be equal to the radius of some legal 
circle. 
Rule 6. A legal area is an area whose bor- 
der is a closed chain of legal arcs. Legal 
areas may be shaded using a small set of 
grey levels. 

Comments 
1. On each legal circle the centers of six 
legal circles with the same radius can be 
found. 
2. If the radius of the initial circle is de- 
fined as 1, the radius of any legal circle 
can be written as 2-n, and any arc width 
can be written as 2-”, where n, m are 
non-negative integers. 
3. On a given area, there are about four 
times as many circles with radius 2+l, as 
there are circles with radius 2-’I. 
4. Low-complexity art is in no way lim- 
ited to Rules 1-6. For instance, a draw- 
ing that only partly obeys Rules 1-6 may 
be a work of low-complexity art, as long 
as the deviations can be uniquely deter- 
mined by a short algorithm. 

Coding Drawings by Circle 
Numbers 
There are many straightforward schemes 
for encoding drawings generated by 
Rules 1-6. Referring again to Fig. 1, let 
us define the radius of the initial circle 
(the frame) as 1. A visi6le circle is any 
circle wholly or partly covered by the ini- 
tial circle. Starting with the initial circle, 
we generate all visible circles; each is 
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Fig. 2a. Butterfly approaching a vase with a flower. Only Rules 1-6 
were used to design the drawing. 

given a number. The  initial circle is 
given the number 1. There are 12 visible 
circles with radius 1 intersecting the ini- 
tial circle. They are numbered 2, 3, . . . , 
13 (in some deterministic fashion- 
clockwise, for instance). There are 31 vis- 
ible circles with radius ?h (partly) cov- 
ered by the initial circle. They are 
numbered 14,15,. . . ,44, and so on. 

Obviously, there are few big circles 
with small numbers. There are many 
small circles with large numbers. In gen- 
eral, the smaller a circle, the more bits 
needed to specify its number. 

An unshaded drawing (forget Rule 6 
for the moment) is specified by a set of 
legal arcs. For each legal arc 1, we need 
to specify the number of the corre- 
sponding circle c,, the starting point s,, 
the end point e,, and the arc width wr By 
convention, arcs are drawn clockwise 
from sL to e,. Once we know c,, we can 
specify sL by specifying the number of 
the circle touching or intersecting c,at sr 
In general, an extra bit is necessary to 
differentiate between two possible inter- 
sections; similarly for er Thus, all pixels 
of a legal arc may be compactly repre- 
sented by a trio of circle numbers plus 
two bits for intersection differentiation 
and a few bits for the arc width. 

Clearly, the larger the circles used, the 
fmer the number of bits needed to speafj the 
corresponding legal arcs and the simpler (in 
general) the drawing. By using very many 
very small circles (beyond the resolu- 
tion of the human eye), anything can be 

Fig. 2b. Illustration of the low Kolmogorov complexity (or algorith- 
mic simplicity) of Fig. 2a. All circles shown are taken from Fig. 1; 
very few of them, however, are needed to specify this drawing. Many 
of the arcs are large and do not require many bits to be specified. 

drawn (using Rules 4 and 5 )  so that it 
looks “right.” This would not be very im- 
pressive, however, because a lot of infor- 
mation would be required to specify the 
drawing. It would be more impressive if 
it were possible to draw something non- 
trivial that looks right using only legal 
arcs defined by a few large circles. In a 
way, this would be related to capturing 
an  object’s essence, provided one  
agrees that the essence of an object is 
inherent in the shortest algorithm de- 
scribing the object. Such compact rep- 
resentation can be difficult, however. I 
found that it is much easier to come up 
with acceptable complex drawings than 
with acceptable simple drawings of 
given objects. 

Why use fractal circles instead of 
fractal squares? Since I prefer to sketch 
living objects as opposed to inanimate 
objects, and since I found it hard to 
sketch living objects convincingly with- 
out using curved lines of some kind or 
another, I decided to use circles as a ba- 
sis for my fractal scheme. 

EXAMPLES OF CARTOONS 
BASED ON RULES 1-4 
The following is a set of informal speci- 
fications of the cartoons I will present: 

Figure 2a: The (informal) goal was 
to draw a butterfly approaching a 
vase containing a flower. 
Figure 3a: The goal was to design a 
woman’s profile. 

Figure 4a: The goal was to design a 
logo for a gym based on a weight 
lifter’s upper body. 

Figures Za, 3a and 4a are examples of 
cartoons designed by using Rules 1-6 
only. Instead of providing each 
drawing’s somewhat opaque coding se- 
quence, I refer the reader to Figs 2b, 3b 
and 4b, which graphically illustrate the 
algorithmic simplicity of the corre- 
sponding cartoons. In conjunction with 
Fig. 1, each graphic illustration allows 
the algorithmic simplicity of its corre- 
sponding cartoon to be described 
quickly to the human observer. 

I should mention, however, that sim- 
plicity of expression is a defining fea- 
ture of cartoons. Although great artists 
often are distinguished by their ability 
to communicate the most expressive 
content using the  fewest strokes of 
brush or pen, successful cartooning us- 
ing low-complexity drawings does not 
necessarily translate to other artistic dis- 
ciplines. 

The  figures demonstrate that the 
circle scheme is quite flexible. In terms 
of bits, it is more efficient to encode all 
cartoons (Figs 2a, 3a and 4a) simulta- 
neously than to encode each cartoon 
separately because the algorithm for 
generating legal circles and their num- 
bers is shared by all three cartoons. In 
the terminology of algorithmic informa- 
tion theory, the cartoons share a non- 
trivial amount of mutual algorithmic in- 
formation. The circle scheme can be 
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3a. Woman’s profile. Again, only Rules 
were used to design the drawing. 

Fig. 
1-6 

viewed as something like a common, 
recognizable artistic style. 

A drawing that can be computed by a 
short algorithm typically exhibits strong 
relationships between the whole and its 
parts, essentially because the same short 
pieces of code have to be used repeat- 
edly to generate all parts of the drawing. 
In the terminology of algorithmic infor- 
mation theory, there is a great deal of 
mutual algorithmic information (coher- 
ence) between different parts of the 
drawing and also between the whole and 
its parts. The circle cartoons exemplify 
this: many of their details are based on 
identical o r  similar shapes and arcs, 
computed by the same subprogram ex- 
ecuted again and again. Likewise, many 
parts of the drawings are self-similar. 

ON BEAUTY AND MINIMUM 
DESCRIPTION LENGTH 
Sometimes an artist is appreciated for a 
distinctive style. Sometimes certain 
works of art are perceived as beautiful. 
This section attempts to relate the for- 
malism of the theory of minimum de- 
scription length (MDL) [7] to informal 
notions such as “beauty” and “good artis- 
tic style.” This section, however, is not 
intended to address all aspects of beauty 
and interest, but only those related to 
“capturing the essence.” 

Fig. 3b. Illustration of the low Kolmogorov complexity (or algorith- 
mic simplicity) of Fig. 3a. All circles shown are taken from Fig. 1. 
Most of the circles used (drawn with thicker lines) are compara- 
tively large-their unique specification requires only a few bits. 
Note the symmetries in nose, lips and chin-many of the same con- 
tours reappear throughout the image, and thus the various parts 
are suited to each other. 

What Is a Beautiful Drawing? 
What is beautiful? What is not? There 
clearly are no objective answers to these 
questions. What is considered beautiful 
by one observer may be regarded as ugly 
by another observer. Ideals of beauty are 
different in different cultures and sub- 
cultures, they have changed over the 
centuries, and they are not even stable 
with respect to a single individual. 
Therefore, any theory of beauty has to 
take the observer into account. 

Following common sense, I assume 
that a typical human observer tries inter- 
nally to represent input data in terms of 
what is familiar. Regarding the 
observer’s subjectivity, I assume as true 
the Church-Turing thesis (everything 
that can be computed by a human being 
can be computed by an appropriate pro- 
gram for a general-purpose computer) 
and postulate the following setting. At a 
given time, a human observer’s current 
knowledge about visual scenes can be 
described as a coding algorithm. This al- 
gorithm maps input data (such as reti- 
nal activity caused by a work of art in the 
visual field) onto internal representa- 
tions of the data. The coding algorithm 
C, the data D and its internal representa- 
tion D‘ can be written as strings of sym- 
bols from a finite alphabet. If D’ conveys 
all information about D, but the length 
of D‘ is less than the length of 0, then D 

is compressible or redundant with re- 
spect to the observer’s knowledge. The 
observer already knew something about 
D. Similar statements can be made in 
cases where D’ allows only for partial re- 
construction of D. 

The observer’s subjectivity is embod- 
ied by the coding algorithm C. One may 
be tempted to define the beauty of a 
drawing with respect to C. In the follow- 
ing preliminary attempt to d o  so (in- 
spired by the MDL approach), I assume 
that “beauty” simply corresponds to 
“high conditional probability given &”: 
given C, the best way of selecting a draw- 
ing s from a set or class S of possible 
drawings satisfying certain specifications 
may be to maximize P ( s  I C ) ,  the condi- 
tional probability of s, given C. Bayes’s 
formula tells us 

P(C I s)P(s) 
P(c)  ’ 

P(s I C) = 

or, equivalently, 

-logP(sIQ = -logP( Cis) 
+ l ogP(Q - logP(s) .  

Let us interpret this. Since Cis given, 
P( C)  may be viewed as a normalizing 
constant. It can be disregarded. -logP 
( C  I 5)  can be interpreted as the infor- 
mation (or length of the observer’s 
shortest algorithm) required to com- 
pute C from s. P(s) is given by some a 



Fig. 4a. Cartoon of a weight lifter’s upper body, designed for the logo 
of a gym. Again, only Rules 1-6 were used to specify the cartoon. 

Fig. 4b. Illustration of the low Kolmogomv complexity (or algorithmic 
simplicity) of Fig. 4a. All circles shown are legal circles taken from 
Fig. 1. Note that shoulders and biceps/triceps are shaped by circles of 
equal size. This may be viewed as an idealization of what can be ob- 
served in certain human weight lifters. The same circle size is used 
for many additional features, such as the top of the head, parts of the 
chest, etc. Mirror symmetry is broken only for the abdominal 
muscles. The visible part of the dumbbell belongs to a legal circle 
with nearly infinite radius (drawn with a huge but legal an: width). 

priori distribution on the drawings. For 
simplicity, let us assume that this prior 
distribution is uniform. Then, given C, 
drawing sin set S is optimal (most likely, 
most “beautiful”) if the information re- 
quired to compute C from s is mini- 
mized. 

How can this be related to human ex- 
perience? The following example at- 
tempts to establish such a relationship. 

“Beautiful” Faces. Human beings ap- 
pear to have a certain coding scheme for 
storing faces in memory. This scheme is 
certainly different from the circle scheme 
described earlier. It is probably based on 
previous experiences with many different 
faces, and it is probably adapted to code 
many faces efficiently. One way of doing 
so is to store a prototype face and to code 
new faces by coding only the deviations 
from the prototype. 

The principle of minimum descrip- 
tion length suggests that the “ideal” 
(most likely) prototype F,, maximizes 
P(F, I F ) ,  thus minimizing 

-logP(FIF,,) - -logP(F,,) 

where F is a given set of all faces to be 
coded. In other words, the optimal pro- 
totype minimizes the sum of the descrip- 
tion lengths of all faces relative to the 
prototype, as well as of the description 

length of the prototype itself (relative to 
the observer’s remaining knowledge 
about visual scenes). 

Assuming that all faces are equally 
likely to appear in the visual field, the 
formalism above predicts that the most 
beautiful face is the one that can be 
most easily computed from the coding 
scheme. It seems reasonable to assume 
that the information required to specify 
the coding scheme is dominated by the 
information required to specify the pro- 
totype face. If the current face looks like 
the prototype face, then there is very 
little additional information to coni- 
pute. This would imply that the proto- 
type face is perceived as the most beau- 
tiful one. 

Previous Work on Attractive Faces. The 
statement above seems compatible with 
results presented by Langlois and  
Roggmann [8], who claim that the “av- 
erage face” (computed by digital blend- 
ing of numerous photos of real faces) is 
perceived as the most attractive one. 
Perrett, May and Yoshikawa [9] partly 
dispute this claim, however. Their test 
subjects also appreciated average faces 
computed by blending [ 101 but 
prefered “attractive average faces” con- 
structed from faces perceived as attrac- 
tive. Indeed, the most attractive faces 

were caricatures obtained by digitally 
exaggerating the deviations between “av- 
erage” and “attractive average.” 

Critique of Previous Work. The studies 
above, however, do not say much about 
the plausibility of the algorithms used to 
compute average faces. Let us assume 
that the brain does indeed support face- 
processing by an ideal (in the informa- 
tion theoretic sense) prototype face. It 
would be naive to assume that the ideal 
face equals the one computed by blend- 
ing. There are many plausible algo- 
rithms for computing prototypes, based 
on many plausible metrics for “dis- 
tances” (i.e. differences) between faces. 
Therefore the studies above, including 
the statement that the average face is not 
the most attractive one, have to be 
judged with skepticism. The presented 
claims depend on the definition of “aver- 
age” and the corresponding nature of 
the blending algorithms, which may not 
be very closely related to a hypothetical 
method the brain might be using for 
generating the “optimal” prototype F,,. 
Unfortunately, at the present time it 
seems impossible to analyze the way the 
human brain stores representations of 
objects. Therefore it also seems impos- 
sible to test the predictions made by my 
own formalism presented above. 
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Comments 

Beauty and Evolution. One may con- 
tinue to speculate as follows: A society 
with a distribution of faces correspond- 
ing to an algorithmically simple proto- 
type face may have an evolutionary ad- 
vantage. This is because face recognition 
(based on the given hardware, the brain) 
may be more successful or  efficient in 
such a society. Evolutionary pressure may 
favor beautiful prototypes, where beauty 
is defined by the nature of the computa- 
tions our brain handles well. O n  the 
other hand, the nature of these computa- 
tions is influenced by typical face recog- 
nition tasks to be solved. It is difficult to 
analyze such mutual dependencies. 

Learning Coding Schemes. Most cer- 
tainly, the fractal circle scheme I discuss 
is different from the typical human cod- 
ing scheme. Therefore, the most beauti- 
ful cartoons relative to the circle scheme 
will be different from the most beautiful 
cartoons relative to the coding scheme 
of most humans. Unfortunately, I cannot 
extract the latter (although many artists 
implicitly try to guess it, I believe). How- 
ever, humans can learn new coding 
schemes. In particular, it is not hard to 
learn the circle scheme. Therefore I 
hope that the cartoons in this paper will 
be easily comprehended and appreci- 
ated by some readers. 

Something “Beautiful” Need Not Be 
“Interesting.” Interest has to do  with 
the unexpected. But not everything that 
is unexpected is interesting-just think 
of white noise. One reason for the inter- 
estingness (for some observers) of some 
of the pictures shown here may be that 
they exhibit unexpected structure. Cer- 
tain aspects of these pictures are not 
only unexpected (for a typical observer), 
but unexpected in a regular, non-ran- 
dom way. The formalization of “interest- 
ingness” requires an extension of my for- 
malism introduced in the preceding 
section “On Beauty and Minimum De- 
scription Length.” This, however, is be- 
yond the scope of this discussion, 

What Is Good Artistic Style? 
I made use of the fact earlier that humans 
can learn new coding algorithms. In a 
way, the coding algorithm we are born 
with is universal enough to allow for 
implementing new coding algorithms. 
One important subgoal of low-complexity 
art is to devise good coding algorithms. 
What does this mean? A new coding 

scheme may be considered “good” by a 
given observer if (1) it does not require 
many bits to be specified (given the 
observer’s previous knowledge), and (2) 
many different drawings (satisfying typi- 
cal specifications) can be encoded effi- 
ciently by it. In that case the drawings 
share a non-trivial amount of algorithmic 
information, and the coding scheme r e p  
resents something like a common style. A 
given coding scheme may be representa- 
tive for a given artist, which will make that 
artist stylistically recognizable. 

More formally, the quality of an artistic 
style or coding scheme C may be evalu- 
ated as follows. An optimal style C maxi- 
mizes P( C I 3, the conditional probability 
of the style, given a set of drawings S (de- 
fined by a set of specifications). Equiva- 
lently, an optimal style C minimizes 

-logP(CIS) = -logP(SIC) 
i logP(S)  - logP(C). 

Since S is given, P(S) may be viewed as 
a normalizing constant, and it may be ig- 
nored. The term -logP(SI C) can be inter- 
preted as the information required to 
compute all elements in S from C. The 
term P( C) is given by some a priori distri- 
bution on the coding schemes and de- 
pends on the observer. The term -logP(C) 
can be interpreted as the information 
necessary to specify C, given the 
observer’s knowledge. Thus, given S, Cis 
optimal (most likely) if the sum of two 
terms is minimized: (1) the information 
required to compute S from Cand (2) the 
information required to compute C from 
the observer’s previous coding scheme. 

The  circle scheme is easy to teach, 
which may be another way of saying that 
not much information is required to 
compute it from typical human knowl- 
edge. In this case, the second term ap- 
pears negligible. Therefore, given the 
drawings presented in this paper, the 
circle scheme appears to correspond to 
a “good” (although probably non-opti- 
mal) artistic style. 

universal algorithm for generating low- 
complexity a r t  is known. At the mo- 
ment, a human artist is still required. 

I found it difficult to discover accept- 
able but  algorithmically simple car- 
toons. I found it easier to come up with 
acceptable cartoons that appeared to be 
algorithmically complex. 

Relation to Previous Work 
This paper certainly is not the first to in- 
troduce formal rules in art. For instance, 
Lyonel Feininger, in the notes accompa- 
nying one of his exhibitions, wrote: 

Aber die Erkenntnis ist mein, dass es in 
der ganzen Welt, in allen Welten, nichts 
Ungesetzliches, nichts Zufilliges, nichts 
ohne Form und Rhythmus gibt noch 
geben kann. Warum dann gerade in 
der Kunst? Sol1 diese nicht dann, 
indem sie des Menschen sch6p- 
ferischen Willen offenbart, gerade voll 
Form, voll Gesetz und Geist sein? 

(But the insight is mine, that in the 
whole world, in all worlds, nothing un- 
lawful, nothing random, nothing with- 
out form and rhythm exists nor can ex- 
ist. Why then in the arts? Shouldn’t the 
arts, by exhibiting man’s creative will, 
be filled with form, law and spirit?) 

The  ancient Greeks, Leonard0 da  
Vinci, Albrecht Diirer, LeCorbusier and 
many others devised formal rules to draw 
things. Most rules are based on simple 
proportions-for example, “The dis- 
tance between the eyes should equal the 
eye-width’’ (origin unknown), and “The 
ratio of the distance from toes to navel 
and the distance from toes to top of the 
head should equal the harmonic propor- 
tion” (LeCorbusier). (The harmonic 
proportion is obtained when a straight 
line of length a is divided into two seg- 
ments of lengths 6 and c, such that 

a -  b 
b c  

_ -  - 

One solution is 

FINAL REMARKS 

On the Difficulty of Creating 
Low-Complexity Art 
This paper discusses (and exemplifies) 
the nature of low-complexity art without 
providing a general method for creating 
it. Although it is trivial to redraw the 
concrete examples shown here,  they 
seem to appear “out of the blue,” with- 
out giving indication of how they were 
discovered. Nor do  they give many clues 
about how to draw other objects. N o  

Artists know many rules like that. 
Most of these rules, however, are very in- 
formal and leave almost everything to 
intuition. In contrast to previous infor- 
mal approaches, I adopt an  extreme 
standpoint. I advocate the position that 
the simplicity of a work of art should be 
proven by demonstrating that it can be 
computed by a short algorithm. Nothing 
in a work of low-complexity art should 
be without such a motivation. 

I d o  not  claim to be the first to 
present examples of low-complexity art, 
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however. Certain representations of ar- 
tistically interesting and aesthetically 
pleasing representations of fractal ob- 
jects may be regarded as works of low- 
complexity art, such as pictures of hills, 
coastlines, etc. [ 111. This is because they 
are based on relatively short and under- 
standable algorithmic descriptions. 
Also, certain data-compression methods 
can be used to generate patterns that 
can be regarded as works of low-com- 
plexity art  [12] .  Similar statements 
could be made about certain other sim- 
plifying computer models for represent- 
ing objects [13]. Also, many graphic de- 
signers consciously or unconsciously use 
their tools to come up  with algorith- 
mically simple designs. 

Apparently, however, nobody so far 
has identified low-complexity art and 
low-complexity design as such in its most 
general form. An aim of this paper is to 
make explicit the nature of low-complex- 
ity art and low-complexity design-the 
creation of understandable works of art 
(or designs) with low Kolmogorov com- 
plexity. This also provides a framework 
for the categorization of previous work. 

Finally, it should be mentioned that 
there have been attempts to use classic 
information theory [ 141 to formalize 
what is aesthetically pleasing [15]. An- 
other contribution of this paper is to of- 
fer an alternative approach based on al- 
gorithmic information theory. 

Outlook 
Possibilities for artistic expression de- 
pend on available technology. The cave 
artists from the stone age did not have 
the technology for creating the colors 
that made impressionism possible. The 
impressionists did not have today's com- 
puter graphics. This does not imply that 
the best cave drawings are less perfect 
than the best impressionist paintings, 
nor that the best impressionist paintings 

the machine via data gloves or similar de- 
vices). For instance, with a virtual atelier 
it will be easy to extend the circle scheme 
to an analogous sphere scheme or bubble 
scheme. The algorithmic atelier will per- 
mit the artist to quickly generate se- 
quences of three-dimensional sketches of 
sculptures, to evaluate them with respect 
to their artistic value and to discard them 
or refine them. 

In principle, the technology for build- 
ing virtual ateliers is available. Given the 
current inflation of cheap computing 
power, we may expect that it will not 
take long before many artists will have 
access to acceptable virtual ateliers. 

APPENDM: TECHNICAL 
DETAILS OF KOLMOGOROV 
COMPLExrry 
This appendix represents a formal 
equivalent of the basic concept dis- 
cussed in the article. 

Each Turing machine (TM) C (map- 
ping bitstrings to bitstrings, without loss 
of generality) computes a partial func- 
tion f,: [O,l)* LE [0,1]* (r, is undefined 
where C does not halt). 

Compiler Theorem 
There is a universal TM Uwith the follow- 
ing property: for every TM C there exists 
a constant prefix &(a bitstring) such that 
fc(p) =f,(p,p) for all bitstrings p .  pcis the 
compiler that compiles programs for C 
into equivalent programs for U. 

Kolmogorov Complexity 
The Kolmogorov complexity K,( s) of a 
finite string s is the length of the shortest 
program p that computes son a universal 
Turing machine Uand then halts, where 
the set of possible halting programs 
forms a prefix code (no halting program 
can be the prefix of another one) : 

are less perfect than the best computer 
graphics. Each age, however, tends to 
have its preferred means of artistic ex- 
pression. What can we expect with re- 
gard to the future of low-complexity art? 

There will be tools that will simplify the 
creation of low-complexity art. I expect 
significant extensions of the programs 
used to speed up and simplify the cre- 
ation of the drawings shown here. In par- 
ticular, I expect "virtual ateliers" imple- 
mented on powerful machines. A virtual 
atelier will be accessible via stereoscopic 
virtual-reality interfaces. It will allow com- 
plex three- or higher-dimensional objects 
to be quickly composed from simpler 
ones by hand movements (perceived by 

where I p I denotes the length of p .  In 
general, KJs)  is noncomputable [ 161. 

Invariance Theorem 
Due to the compiler theorem, K, (s) = 
K,(s) + 0 ( 1 )  for two universal machines 
U, and U,. We choose one particular uni- 
versal machine Uandwrite K(s) = KJs) .  
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