
6.4 HASHING 547 

b) The storage allocation for hash tables is often somewhat difficult; we 
have to dedicate a certain area of the memory for use as the hash table, and 

it may not be obvious how much space should be allotted. If we provide too 

much memory, we may be wasting storage at the expense of other lists or other 

computer users; but if we don’t provide enough room, the table will overflow. 

By contrast, the tree search and insertion algorithms deal with trees that grow 

no larger than necessary. In a virtual memory environment we can keep memory 

accesses localized if we use tree search or digital tree search, instead of creating a 

large hash table that requires the operating system to access a new page nearly 

every time we hash a key. 

c) Finally, we need a great deal of faith in probability theory when we use 

hashing methods, since they are efficient only on the average, while their worst 

case is terrible! As in the case of random number generators, we can never be 

completely sure that a hash function will perform properly when it is applied 

to a new set of data. Therefore hash tables are inappropriate for certain real- 

time applications such as air traffic control, where people’s lives are at stake; the 

balanced tree algorithms of Sections 6.2.3 and 6.2.4 are much safer, since they 

provide guaranteed upper bounds on the search time. 

History. The idea of hashing appears to have been originated by H. P. Luhn, 

who wrote an internal IBM memorandum in January 1953 that suggested the 

use of chaining; in fact, his suggestion was one of the first applications of linked 

linear lists. He pointed out the desirability of using buckets that contain more 

than one element, for external searching. Shortly afterwards, A. D. Lin carried 

Luhn’s analysis further, and suggested a technique for handling overflows that 

used “degenerative addresses”; for example, the overflows from primary bucket 

2748 were put in secondary bucket 274; overflows from that bucket went to 

tertiary bucket 27, and so on, assuming the presence of 10000 primary buckets, 

1000 secondary buckets, 100 tertiary buckets, etc. The hash functions originally 

suggested by Luhn were digital in nature; for example, he combined adjacent 

pairs of key digits by adding them mod 10, so that 31415926 would be compressed 
to 4548. 

At about the same time the idea of hashing occurred independently to 
another group of IBMers: Gene M. Amdahl, Elaine M. Boehme, N. Rochester, 

and Arthur L. Samuel, who were building an assembly program for the IBM 701. 

In order to handle the collision problem, Amdahl originated the idea of open 

addressing with linear probing. 

Hash coding was first described in the open literature by Arnold I. Dumey, 

Computers and Automation 5,12 (December 1956), 6-9. He was the first to 

mention the idea of dividing by a prime number and using the remainder as 

the hash address. Dumey’s interesting article mentions chaining but not open 

addressing. A. P. Ershov of Russia independently discovered linear open ad- 

dressing in 1957 |Doklady Akad. Nauk SSSR 118 (1958), 427-430]; he published 
empirical results about the number of probes, conjecturing correctly that the 

average number of probes per successful search is < 2 when N/M < 2/3.



048 SEARCHING 6.4 

A classic article by W. W. Peterson, IBM J. Research & Development 1 
(1957), 130-146, was the first major paper dealing with the problem of search- 

ing in large files. Peterson defined open addressing in general, analyzed the 

performance of uniform probing, and gave numerous empirical statistics about 

the behavior of linear open addressing with various bucket sizes, noting the 

degradation in performanee that occurred when items were deleted. Another 

comprehensive survey of the subject was published six years later by Werner 

Buchholz [IBM Systems J. 2 (1963), 86-111], who gave an especially good 
discussion of hash functions. Correct analyses of Algorithm L were first pub- 

lished by A. G. Konheim and B. Weiss, SIAM J. Appl. Math. 14 (1966), 1266- 
1274; V. Podderjugin, Wissenschaftliche Zeitschrift der Technischen Universitat 
Dresden 17 (1968), 1087-1089. 

Up to this time linear probing was the only type of open addressing scheme 

that had appeared in the literature, but another scheme based on repeated ran- 

dom probing by independent hash functions had independently been developed 
by several people (see exercise 48). During the next few years hashing became 

very widely used, but hardly anything more was published about it. Then Robert 

Morris wrote a very influential survey of the subject [CACM 11 (1968), 38-44], 
in which he introduced the idea of random probing with secondary clustering. 

Morris’s paper touched off a flurry of activity that culminated in Algorithm D 

and its refinements. | 

It is interesting to note that the word “hashing” apparently never appeared 
in print, with its present meaning, until the late 1960s, although it had already 

become common jargon in several parts of the world by that time. The first 

published appearance of the word seems to have been in H. Hellerman’s book 
Digital Computer System Principles (New York: McGraw-Hill, 1967), 152; the 

only previous occurrence among approximately 60 relevant documents studied 

by the author as this section was being written was in an unpublished mem- 
orandum written by W. W. Peterson in 1961. Somehow the verb “to hash” 

magically became standard terminology for key transformation during the mid- 

1960s, yet nobody was rash enough to use such an undignified word in print 
until 1967! 

Later developments. Many advances in the theory and practice of hashing 

have been made since the author first prepared this chapter in 1972, although 

the basic ideas discussed above still remain useful for ordinary applications. For 

example, the book Design and Analysis of Coalesced Hashing by J. S. Vitter 

and W.-C. Chen (New York: Oxford Univ. Press, 1987) discusses and analyzes 
several instructive variants of Algorithm C. 

From a practical standpoint, the most important hash technique invented in 

the late 1970s is probably the method that Witold Lipski called linear hashing 

|[Proc. 6th International Conf. on Very Large Databases (1980), 212-223]. Linear 
hashing — which incidentally has nothing to do with the classical technique of 

linear probing — allows the number of hash addresses to grow and/or contract 

gracefully as items are inserted and/or deleted. An excellent discussion of linear



6.4 HASHING 549 

hashing, including comparisons with other methods for internal searching, has 

been given by Per-Ake Larson in CACM 31 (1988), 446-457; see also W. G. 

Griswold and G. M. Townsend, Software Practice & Exp. 23 (1993), 351-367, 

for improvements when many large and/or small tables are present simultane- 

ously. Linear hashing can also be used for huge databases that are distributed 

between many different sites on a network |see Litwin, Neimat, and Schneider, 

ACM Trans. Database Syst. 21 (1996), 480-525]. An alternative scheme called 

extendible hashing, which has the property that at most two references to external 

pages are needed to retrieve any record, was proposed at about the same time by 

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong [ACM Trans. Database 

Syst. 4 (1979), 315-344]. Both linear hashing and extendible hashing are prefer- 

able to the B-trees of Section 6.2.4, when the order of keys is unimportant. 
In the theoretical realm, more complicated methods have been devised by 

which it is possible to guarantee O(1) maximum time per access, with O(1) 

average amortized time per insertion and deletion, regardless of the keys being 

examined; moreover, the total storage used at any time is bounded by a constant 

times the number of items currently present, plus another additive constant. 

This result, which builds on ideas of Fredman, Komlés, and Szemerédi [JACM 

31 (1984), 538-544], is due to Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der 
Heide, Rohnert, and Tarjan [SICOMP 23 (1994), 738-761]. 

EXERCISES 

1. [20] When the instruction 9H in Table 1 is reached, how small and how large can 
the contents of rIl possibly be, assuming that bytes 1, 2, 3 of K each contain alphabetic 

character codes less than 30? 

2. [20| Find a reasonably common English word not in Table 1 that could be added 
to that table without changing the program. 

3. [23] Explain why no program beginning with the five instructions 

LDi K(1:1) or LDIN K(1:1) 

LD2 K(2:2) or LD2N K(2:2) 

INC1 a,2 

LD2 K(3:3) 

J2Z 9F 

could be used in place of the more complicated program in Table 1, for any constant a, 

since unique addresses would not be produced for the given keys. 

4. [M30] How many people should be invited to a party in order to make it likely 
that there are three with the same birthday”? 

5. [15] Mr. B. C. Dull was writing a FORTRAN compiler using a decimal MIX com- 
puter, and he needed a symbol table to keep track of the names of variables in the 

FORTRAN program being compiled. These names were restricted to be at most ten 

characters in length. He decided to use a hash table with M = 100, and to use the fast 
hash function h(K) = leftmost byte of K. Was this a good idea? 

6. [15] Would it be wise to change the first two instructions of (3) to LDA kK; ENTX 0? 

7. (HM30| (Polynomial hashing.) The purpose of this exercise is to consider the 

construction of polynomials P(x) such as (10), which convert n-bit keys into m-bit


