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Abstract
The Turing test for artificial intelligence is widely acoepted,
but is aubjective, qualitative, non-repeaable, and dfficult to
implement. An alternative test without these drawbacks is to
insert a machine's language model into a predictive encoder
and compressa corpus of natural language text. A ratio of 1.3
bits per character or lessindicates that the machine has Al.
Three pieces of evidence support this claim. First, text
compresgon is $own to be more stringent than the Turing
test under reasonable asumptions. Second, humans use
high-level knowledge in character prediction tests. Third,
compresgon, like Al, is unsolved: under conditions in which
human text-prediction tests siow an entropy of 1.3 hits per
character or less the best compresson algarithm known
achieves 1.87 bits per character.

I ntroduction

We propose using data compresson as a measure of
artificial inteligence (Al), rather than the Turing test.
The widely-accepted Turing test says that a machine has
Al if it cannot be distinguished from a human by another
human, based on communication through a terminal.
Unfortunately the test is subjedive; the outcome depends
not just on the machine, but on the expertise and
motivations of bath humans. Furthermore, the qualitative
and non-repeatable nature of the test makes it difficult to
evaluate and compare candidate systems.

Data compresson has none of these drawbacks. The
test is quick, quantitative, objedive, and repeatable. A
candidate system is tested by inserting its language model
(the estimated probability distribution of input/output
pairs) into a predictive encoder and compressng an
appropriate  @rpus of natural language text. A
compresson ratio o 1.3 hits per character or less
represents Al. Thisis the upper bound on the entropy of
written 27-character literature (monocase letters and
spaces) as measured using human character-prediction
tests.

Prior work with stochastic language acquisition
suggests that Al and compresson are related (Hutchens
and Alder 1997, 1998&). We present three arguments in
favor of this position. Firgt, it can be shown that, using a
reasonable model, a compresson test is more stringent

than the Turing test. Secwnd, people use al levels of
observable knowledge in character prediction: lexical,
syntactic, semantic, and rea-world. And third,
compresson, like Al, is unsolved. We find that the best
data compresson algorithm achieves only 1.87 bits per
character on 27-character English literature.

Limitations of the Turing Test

If machines could think, how would we know? In 195Q
Alan Turing brushed aside phil osophical arguments and
proposed a strictly behavioral test. It is generaly accepted
that people @n think, whatever thinking is, and
furthermore, that people @n rewgnize intdligent
behavior in others. Therefore, if a machine @nnot be
distinguished from a human, based on communication via
a terminal, then the machine ehibits artificia
intelli gence (Shieber 1994. The imitation game, better
known as the Turing test is now a widely accepted
definition of Al (Rich and Knight 1991). Passng the
Turing test is informally considered an Al-complete
problem, the hardest probem in natural language
processng (Raymond 1997. In order for a machine to
appear human, it must perform just as wel at natural
language subtasks auch as language trandation,
information retrieval, and prodfreading. Turing predicted
that by 2000 we would have machines that would be
mistaken for humans 30% of the time after 5 minutes of
conversation, a goal yet to be met.

As a practical tod for evaluating and comparing Al
systems, the Turing test is expensive, subjedive and gves
variable results. The outcome wuld depend greatly on
whether we use @mputer experts, psychologists, or
children in the test. Also, the test rewards machines for
reproducing human weaknesss as well as grengths, such
as simulating human error.

These shortcomings are best ill ustrated by the Loebner
competition, held annually since 1990 (Flinders
University 1998 Hutchens 199&, Shieber 1994. In a
typical competition, 4 to 8 machines and 2 to 6 human
confederates (colledively called agents) communicate
with 10 judges via text-oriented terminals. The judges
independently rank the agents from most human to least



human, and also classfy each agent as human or machine.
The machine with the highest median ranking (using the
mean ranking to kreak ties) wins $2000 If the highest
ranking machine is ranked higher than the lowest ranking
confederate, it wins $25000 No machine has won this
prize, but in 1998 (6 machines, 4 confederates) the
winning machine was ranked higher than a human in
15% of the 40 possible judge-confederate pairings.
Examination of the transcripts reveals me interesting
phenomena that have nothing to do with Al. Some of the
human confederates also tried to mislead the judges with
statements such as | am a computer. One @nfederate
adopted the maddening habit of always responding to the
seoond to last input from the judge, as if to simulate some
type of computer error.  The judges were not foded. A
simple distinguishing test would be to look for spelling

and typing errors, which were absent in most machines.

Shieber criticized the goals of the Loebner competiti on
as being at odds with Al research. Instead of rewarding
advances in understanding intelligent behavior, the
contest rewarded machines that exploited human
weaknesses, such as the tendency to interpret random text
as non-sequitor, to assgn meaning where none eisted.
Some machines would steg the @nversation to some
narrow domain, for instance, a fictional life story. Others
exploited the Eliza effect, named after a 1971 pogram
that imitated a Rogerian psychotherapist by echoing back
the user’'s gatements, swapping you for |, etc. One entry,
Parry, imitated a paranoid schizophrenic, spewing
random, incoherent text. Claude Shannon ill ustrated how
an order-2 approximation to English (sequences of 2
words have the same probability distribution) appears
halfway readable, with the following example (Shannon
and Weaver 1949, p. 14):

THE HEAD AND IN FRONTAL ATTACK ON AN
ENGLISH WRITER THAT THE CHARACTER OF THIS
POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE
PROBLEM FOR AN UNEXPECTED
Hutchens' entry, MegaHAL, which took second place in
1998 used a similar strategy with higher-order statistics,
in addition to some @nned responses. Considering that
Shannon’s example was generated in 1949 without a
computer, it is remarkable how little progress we have
made.

The Compression Test for Al

In order to determine if a machine has artificial
intelli gence, we propose the following test. We take the
language model, the estimated probability distribution of
input/response pairs, and measure the aoss entropy of a
corpus of natural language text relative to the model. The
result isjust the ompresson ratio that we would get if we

used the model to assgn codes in a predictive encoder.
Lower ratios are better, and 13 bits per character (the
entropy measured using humans) indicates Al.

A language modd is a generdlizaion of the formal
model of computation to interactive, stochastic systems.
In the forma model, a machine accepts a string (a finite
sequence of characters drawn from a finite aphabet) as
input, and produces a string as output. The machine's
behavior can be described using a language L, a set of
strings.  If the machine responds to input string x with
output string y, then the string x/y/ is an element of L.
We will use the distinguished character “/” to denote the
end of a message.

An interactive system alternates between input and
output. A machine responds to successve inputs X, Xo,
ceoy Xn With oUtputs v, Vs, ..., yn if and only if the string
Xu/YilXolYol .. IXnlYy IS in L. We al an aternating
sequence of zero a more input and output messages a
dialog.

A stochastic system does not always respond the same
way to a given input. Instead, a language L represents a
probability distribution over the set of al dialogs. We
define L(x) asthe probability that a dialog will have prefix
X:

L= Y POYIL)

Thus, the probability of responding to input x with output
yis

L(x/y/)
P(y|x,L)=———=
L=

Similarly, given the language L and an arbitrary string x =
X1X2.. X, Of length [x| = n characters, then the @nditi onal
probability that the next character will bg.xis
P(tyalx, L) = %)
L(x)

Thus, every system can be modeed as one which
generates output by sdeding characters x,.; with this
probability.

When we build a machine in an attempt to copy the
behavior of an existing system, we may not know the exact
probability distribution of its language. If M is an
estimate or model of a language L, then one measure of
the accuracy of M isthe cross entropy of L with resped to
M, denoted (L), and defined as

1 1

H, (L) =lim= L(x)log, ——

w(D=lims 5 Lglog: 7
This is the epeded compresson ratio (in bits per
character) for strings of length n, if each string x is
asdgned a code of length log, /M(x) bits and x occurs
with probebility L(x). By the Kraft inequality (Abramson
1963, this code length is the smallest we @n use so that
every string x is asdgned a unique mde. By Shannon’s



first theorem, or the noisdless discrete channe capacity
theorem (Shannon and Weaver 1949, Hy(L) is
minimized (achieving optimal compresson) when M
exactly equals L. We call H(15 H.(L) the entropy of L.

We dtill cannot find Hy (L) if L is not known. Suppose
instead that we have some large sampling of n dialogs,
X = X1X2.. X, generated by L, the system that we wish to
moddl. If the dialogs are independent, L(xix;) = L(x;)L(x;)
for all 1<i,j < n, then we @n estimate the aossentropy
as the number of hits per character in an optimal encoding
of x using language model M,

1
H, (L)=—log
D=5 M(x) |x|Z "% M%) M(x)
because each accurs with probability L.

The sample dialogs dould contain examples of the
behavior we wish to smulate. If we wish to smulate
human behavior, then the dialogs sould consist of natural
language text. For instance,

2+2=/4/
“white house” in Spanish is/casa blanca/

What is the largest state?/Alaska/What's its capitol?/Juneau/

Large quantities of text for testing are now available on
the Internet, though not exactly in this form.
Neverthdless a mode that does wel at predicting
succesgve dharactersin the dialog above must have solved
the same types of problems nealed to do well on strings
such as

The largest state in the U.S. is

Argumentsfor the Compression Test

We present three arguments for compresson. Firgt,
compresson is more stringent than the Turing test.
Sewnd, prediction requires observable knowledge, as
evidenced by its use by people. Third, we find that
compression, like Al, is unsolved.

1. Equivalence to the Turing Test

We proposed using text prediction to test for artificial
intelligence with compresson (using optimal encoding)
as a measure. We now show that compresson is a more
stringent test than the Turing test. An optimal solution to
modeling a human language L under compresson is an
exact modd M = L. Thismodd will beindistinguishable
from human, so should pass the Turing test by being
migudged 50% of the time. However, there are two
conditi ons under which a machine will be misudged more
than 50% of the time. One is when the human
confederate and judge use language models that are more
disparate than the judge and machine. The sewmnd is
when the machine, rather than giving a human
distribution of responsesy to input x, P(y) = L(xy)/L(x), it
favors the most likely response, max, L(xy)/L(x). In other

words, just because people sometimes give the wrong

answer doesn’t mean that a machine must make the same

mistakes.

The Turing test depends on the human ahility to
reaognize intelligent behavior. It assumes that, if given
two dialogs x and y, then people @n estimate, say, L(x) >
L(y), and conclude that x is more likely to be generated by
ahuman thany. Converting generation to prediction in a
Markov process is a simple transformation (Abramson
1963, but it doesn't mean that people @n do it.
Neverthdess there is drong evidence from
psychalinguistics (Hormann 1979 that people do indeed
use the same distribution L to generate and recognize (and
store) messages:

* People make fewer speedr recognition errors in a
noisy environment when the speet consists of
meaningful sentences rather than nonsense syllables,
or when the number of posshle words is reduced
(Miller, Heise, Litchen 1951 cited by Hormann p.
86).

* People perform better in short-term recll tests on
random sequences of words when the order of
approximation to English increases (Miller and
Selfridge 1950, cited by Hérmann p. 104-105).

* People perform worse in short-term recll tests if
syntactic onstraints are removed by randomly
reordering words, or if lexical congraints are
removed by using nonsense words (Epstein 1962
cited by Hormann p. 205. The following example
used in the study obeys gntactic but not lexical
constraints: A haky deebs reciled the dison tofently
um flutest pav. The following obeys lexical and
syntactic but not semantic constraints: Wavy books
worked singing clouds to empty slow lamps.

Thus, recll and reaognition improve as the entropy of the

generator deaeases, evidence that the same language

model is used in all three proceses. (The short-term
recl experiments, which are not diredly reevant to the

Turing test, suggest a fixed storage @pacity of 50 to 100

bits after compression).

The Turing test involves a machine, a human
confederate, and a judge who must dedde which is which
based on the two dialogs between the judge and each
agent. Suppose that the judge prepares a list of n
questions, ji, j2, ..., jn for the two agents, generating two
dialogs, jc = j1C1j2Co..jnCn With the confederate and jm =
jimj>mo...jom, with the machine. The three languages
used to generate the dialogs are L, for the judgg, Lc for the
confederate, and Ly, for the machine. Thejudge @l culates
the probabiliti es
P(jc is human) and P(jm is human), knowing only that one
is human and the other is not. In atest with many agents,
the probabiliti es would be used to rank them. In a two-



agent test, we would say that the machine has artificial
intelligence if odds(jm is human) = 1, where odds(x) =
P(X)/(1- P(x)).

The judge does not know Lc or Ly, SO uses Lj as an
estimate of the human language L., and makes no
asumptions about Ly. Let Lyc) and Lym) dencte the
probabiliti es that L; would generate the responses ¢ = ¢y,
Cp ..., Gy @nd m = myg, My, ..., M, respedively, if given

iNputs j =1, j2, -y b
- - LJ(jlcl"'in)
SO G )
and similarly for m. Then the odds that jm is human,
given what the judge knows, is
Ly(m)
L, (c)
This can be shown as follows (implicitly assumiryy L
P(human(jm)|jm, jc)
_ P(jm, jclhuman(jm)) P(human(jm))

odds(human(jm)|L,, jm, jc) =

P(jm jc)
= LC(m) LM (C)%
3(Le(mLy, () + Ly (M Lc(c))
- L(m
T Ly(m+L,(0
odds(human( jm)|jm, jc,L,) = GG _L,(m
T Lete  LO

In the first step, we apply Bayes law. In the secnd step,
we use the independence of jm and jc to conclude
P(im,jchuman(jm)) = P({mjhuman(jm))P(jclhuman(jm)).
The last step of the first equation applies because the judge
usesL;asan estimate of L¢, and knows nothing abaut Ly,.
Thus, as far as the judge knows, Ly(m) = Ly(c), and the
Lm(c)/2 can be factored out. In practice a judge may
dedde that one response is more “machine-like’ than
another, but a fair test requires that there be no
communication between judge and agents prior to the test,

S0 no assumptions about machine behavior are justified.

Next, we ask what conditi ons maximize the probability
of foding the judge. Given the languages L;, L¢, Ly, and
the knowledge that jm is not human, we find the expeded
value of the log of the odds of foding the judge over all
possble dialogs. Note that log(odds(x)) is a strictly
increasing function of P(x).

og, (odds(human(jm)|jm, jc, L ;))O
%LJ,LC,LM,—'hurran(jm) %

- L, (m)
= ; Z Ly (MLc(c)log, L.©

= Z Z L,, (ML (0)(log, L,(m) - log, L, (c))

=Y Ly(mlog, L,(m - ¥ Le(c)log, L,(c)

=-H,(Ly)+H;(Lc)

The first step takes the weighted average over all posshble
dialogs, which are distributed according to Ly and Lc.
The third step uses the fact tRat (x) = Z,Luy(X) =1

We pass the Turing test when the difference of the
cross entropies is nonnegative. This happens when the
odds of foding the judge are at least 1 (probability 1/2).
This condition holds when the modd is exact, Ly = Lc.
However, this lution is not optimal. First, any error in
the judge’s approximation of the mnfederate’s language
will i ncrease the adossentropy, HyLc). Sewond, since we
are varying Ly rather than L; we @n minimize Hy(Ly) by
favoring the most common responses, setting Ly(m) = 1
for the largest value of Ly(m) and Ly(m) to O for al other
m.

im,jc

2. Knowledge as a Property of L anguage

It is apparent that people use bath low and high leve
knowledge to predict successve daracters in natura
language text. For instance to complete the string roses
are r_, we ombine knowledge at several levels. From
lowest to highest:
» Lexical- A leadingr is usually followed by a vowel.
« Syntactic- An adjective is likely afteare.
e Semantic — Roses have physical properties sich as
color.
Real-world— Roses are red (except in Texas).
By using a probabili stic language modd, we implicitly
asaume that any knowledge that is relevant to a text-based
Al system is a statistical property of the language in which
it is expressed. As evidence we simply observe that the
most common statements in any natural language are
those that are lexicaly, syntactically, semantically, and
factually correct, such agsesarered.

People use expressible knowledge to predict text. Only
expresshle knowledge is relevant to a text-based Al
system, because only expresshle knowledge is observable.
Examples of inexpressble knowledge might be a
description of a person’s face the taste of a banana, or the
skillsneaded torideabicycle. It is difficult to imagine
questions that could test for any knowledge that couldn’t
also be taught through words.

Some knowledge @n be learned bath verbally or
nonverbally; a blind person can know the wlor of roses



even if the information is meaningless Such knowledge
is dill expressble, and therefore testable in an Al system
and relevant to text prediction.

3. Human vs. Machine Prediction

We now compare text prediction in humans and
machines, with the reasauring result that humans are
superior. Shannon bounded the entropy of written English
by having people solve daracter-completion puzzles
(Shannon 1951). Text samples were taken from a variety
of sources, such as classc literature or technical manuals.
The text was reduced to a 27 character alphabet of
monocase letters and spaces. Subjeds guessed at each
letter until corred, and were alowed to use references
such as dictionaries and character frequency tables.
Shannon egtimated that the entropy or uncertainty of

written English is between 0.6 and 1.3 bits per character.

The uncetainty in Shannon’s measurement results
because many different rankings can result in the same
probability distribution. Cover and King (1978 had
subjeds assgn probabiliti es direaly in a betting game,
and ohtained an upper bound of 1.3 bits per character.
Tan (1981 used this technique to okain 1.3 hits per
character for Malay text (which has the same aphabet as
English).

These entropy measurements were compared with the
compresson ratios obtained using the best known data
compresson programs. Three English text files were
reduced to 27 characters (lower case letters and spaces) to
reproduce the nditions under which the human tests
were performed. In theory, a compresson ratio of 1.3 hits
per character should be posshle. In redity, the best
program averaged 187 hits per character on the threetest
filess. Results are shown in table 1, along with
compresson results for the Calgary Corpus (1993, a
widely-used benchmark of 14 text and binary files in a
variety of formats totaling 3141,622 bytes. The test files
were:

« alice — Alicein Wonderland (Carroll 1865 from the
Gutenberg press The lega header was removed.
Upper case dharacters were replaced with lower case,
and then all nonalphabetic character sequences were
replaced with a single space The resulting file was
135,059 characters.

e hardy - from the file bookl in the Calgary corpus,
“Far from the Madding Crowd”, by Thomas Hardy.
SGML tags (enclosed in <angle brackets>) were
removed, and the file processed as above. The file
was reduced from 768,771 to 729,966 characters.

« witten — from the file book2 in the Calgary corpus,
“Principles of Computer Speed” by lan Witten, in
UNIX troff format. All li nes beginning with a period,
or that contained characters other than letters, spaces

or the punctuation characters . , ?! ; ' and “ were
removed. This removed most troff codes, tables, and
mathematical formulas, leaving mostly readable
English text. The file was then reduced to 27
characters as in alice, reducing it from 610856 to

315,749 characters.

The cmpresson programs tested are of two types, Ziv-

Limpel (LZ) and prediction by partial match (PFM), bath

described in (Bell, Witten, Cleary 1989. LZ compressors

are the most popuar, due to their high rate of
deompresdon, but PRAM achieves a better compresson
ratio. UNIX compress, pkzp (PKZIP 1993, and gzp

(Gailly 1993) are all LZ compressors.

Al compresson algorithms exploit the lexica
redundancy found in most files, including text files; the
tendency of some daracter strings to accur more often
than others. In an LZ compressor, the second and
subsequent occurrences of a substring are replaced with
pointers to a previous ocaurrence whenever the pointer
can be encoded using fewer bits.

A predictive arithmetic encoder (a classthat includes
PPM) has two parts, a predictor, and an encoder. The
predictor assgns a probability P(x) to each successve
character x;, given the previous text, X;X,..Xi-;. The
encoder assgns a code of length log, 1/P(x;) bits. Using
arithmetic encoding, it is possble to effedively asdgn
fractional code lengths by assgning a single a@de of
length og, 1/P(x)0bits to the entire file, x. An order-n
PRV encoder uses only the @mntext of the last n characters,
Xi-n..Xi-1 10 determine P(x;), based on statistics from
previous ocaurrences of the same mntext. Going beyond
order-4 or 5 rarely helps. It has been shown that LZ is a
spedal case of predictive encoding (Bell, Witten, Cleary
1989).

The following compresson programs were tested.
Options $own were sdleded for maximum compresson
when possble. For archivers, which compress multiple
files into a single file, the overhead of storing the
filename, date, chedksum, etc., is not included in table 1
for individual files.

e pkzip version 2.04e. A popular LZ archiver (PKZIP
1993).

e 07p386 -9 verson 124. An LZ compressor
equivalent to gzip (but faster) for DOS on x386 and
higher processors (Gailly 1993).

 haa2version 0.98, an order-5 PRM archiver (Hirvola
1993, the best compresson on the Calgary corpus
(apparently as of 1993 according to (Data
compresson FAQ 1998, and excealing the best
reported by (Bell, Witten, Cleary 1989).

e ppmz version 9.1, a PPV compresor, reported to be
the best known, improving on ha (Bloom 1998.
Demmpresgon fail ed, so results could not be verified,



although sizes are mnsistent with those reported by
the author for files from the Calgary corpus.

e boa-ml5 (maximum memory option, 15MB), version
0.58 beta, an archiver, probably PPM, athough the
documentation gives no details (Sutton 1998. Best
compresson known as of Sept. 1998 on bath the
Calgary corpus and on text, acocording to the Archive
Comparison Test (Gilchrist 1998, and improving on

ha andppmz.
pkzip  gzip ha ppmz  boa
alice 2616 2301 1989 1.877 1.871
hardy 2955 2.922 2.028 failed 1.957
witten 2511 2.482 1828 1.688 1.682
calgar 2.629 2591 2155 1935 1.913

Yy

Table 1. Data compression results, bits per character.

The PRM encoders, led by boa, give the best compresson,
1.86 bits per character over the three text files.

Conclusion

We described the technique of using data compresson on
a corpus of text to measure the intelli gence of a language
model of an Al system. Like the Turing test, we use a
gtrictly behavioral definition of intelligence The Turing
test says that a machineisinteli gent if people beieve it to
be human. A data compresson test says that a machineis
intelligent if it predicts text as well as a human. We
showed that the cmmpresson test is more stringent than
the Turing test. A compresson test is also oljedive,
guantitative, and easier to implement.

In our proodf, we reduced observable human knowledge
to a statistical property of language, devoid of meaning.
This reduction is supported bath by psycholinguistic
evidence and by the probabili stic language model as a
generalization of formal computation.

One ohjedion to considering compresson as an Al
task isthat unlike other problems, people aren’t goad at it.
That is because decompresson requires an exact copy of
the prediction model used duing compresson, and we
cannot copy the human brain.

The euivalence of compresson and Al means that
advances in either field could be applied to the other. For
Al, it suggests applying datistical approaches to
knowledge, learning, and reasoning. For compresson, it
suggests that better results could be obtained by adding
syntactic and semantic rules.

As a final chedk, we mmpared human and machine
models in text prediction. It is ssmewhat comforting to
find that compression, like Al, is still unsolved.
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