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Abstract

Previous work on estimating the entropy of written natural language has focused
primarily on English. We expand this work by considering other natural languages, in-
cluding Arabic, Chinese, French, Greek, Japanese, Korean, Russian, and Spanish. We
present the results of PPM compression on machine-generated and human-generated
translations of texts into various languages.

Under the assumption that languages are equally expressive, and that PPM com-
pression does well across languages, one would expect that translated documents
would compress to approximately the same size. We verify this empirically on a novel
corpus of translated documents. We suggest as an application of this finding using
the size of compressed natural language texts as a mean of automatically testing
translation quality.

1 Introduction

Accurately estimating the entropy of written natural language has great practical impor-
tance for a variety of applications in information theory and language modeling. Most
directly, entropy provides a theoretical lower bound and a target for compression. Simi-
larly, entropy provides a guide for language modeling; a language model should accurately
reflect the entropy of the underlying language. Accurate language models are important
in a variety of areas, including speech recognition, handwriting recognition, spell-checking,
etc.

Estimating the entropy of the English language therefore unsurprisingly has a long
history in the information theory literature. Since the true probability distribution of
symbols in English is unknown, the entropy of English cannot be computed directly. In-
stead, one can approximate the probability distribution of symbols by some probability
model and compute the cross-entropy, which provides an upper bound on the true entropy
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of the source. Early experiments in estimating the entropy of written English by Shan-
non, and later by Cover and King, estimated the probability distribution of English by
measuring the ability of human subjects to predict the next character in a body of text.
Shannon estimated an entropy between 0.6 and 1.3 bits per character (bpc)[10]; Cover
and King estimated 1.25 bpc [4]. Later experiments in estimating entropy have used
machines to measure the performance of compression algorithms on English text, based
on the concept that an efficient compression algorithm can closely approximate the true
entropy of a source. In particular, the PPM compression algorithm appears to compress
English text quite effectively. The lowest estimates of entropy produced via compression
have been achieved using a variation of PPM by Teahan and Cleary, who report estimates
of 1.46 bpc on Dumas Malone’s Jefferson the Virginian, the same text used by Shannon
in his human experiments [13].

We extend prior work on estimating the entropy of English text by comparing the en-
tropy of each of the following written languages: Arabic, Chinese, English, French, Greek,
Japanese, Korean, Russian, and Spanish. Using PPM as an approximation to an ideal
compression algorithm, we compress both human- and machine-generated translations of
a variety of written texts in each of these languages. We have several motivations for
this exercise. One is purely technical; it is interesting to have these numbers for vari-
ous languages, especially languages with alphabets and character sets very different from
English, such as the Asian languages.

But perhaps our primary motivation is to answer the following natural thought ex-
periment. Under the assumption that languages are equally expressive, and that PPM
compression does similarly well across languages, one would expect that translated docu-
ments would compress to approximately the same size. If this were not the case, it would
suggest that either languages are fairly disparate in expressiveness, violating conventional
wisdom in linguistics [5], or the success of PPM compression is language-specific, either of
which would be interesting results.! Previous studies of natural languages indicate that
they share many statistical similarities, perhaps the most famous of which is Zipf’s law,
which says that word frequency follows a power-law distribution [14, 6]. The structure of
most languages follow other well-formed similar patterns [5]. One such pattern bearing
particular relevance to the comparative performance of a Markov-based compression al-
gorithm such as PPM across languages is the universal tendency for semantically related
words to appear next to each other, sequentially, in a sentence [1]. Prior work motivates
our suggestion that the information content of a text should be similar no matter what lan-
guage it is written in, and hence that translated texts should compress to approximately
the same size.

We verify that translated documents do appear to have the same information content
empirically on a novel corpus of translated documents. We believe that this cross-language
corpus is itself one of the contributions of this work; the corpus will be made publicly
available.

We suggest as an application of this finding using the size of compressed natural
language texts as a means of automatically testing translation quality. Machine-generated
translations have been growing substantially with the advent of business on the World

' A third alternative would be that the translations are extremely poor; more on this below.



Wide Web. Anecdotal experience relating poor translation quality abounds; automatic
tests that can help spot poor translations before they are used could help in determining
which texts require more human input. While humans can spot good and poor translations
fairly easily, automating the task appears to be challenging. There are examples of work
in this area [7, 9], but the problem is not yet adequately solved. Our work follows the
spirit of program checking [3], which involves trying to find methods to check a program
that are computationally less expensive than the original program. Our suggestion is that
compressing the original translated texts and performing a size comparison may provide a
tool for catching poor translations. Before presenting our methodology and experimental
results, we outline the thought experiment that motivates this application below.

2 Compressing Translations: A Thought Experiment

We suggest that the compressed size of texts with the same information content should
remain close to constant across languages, even when the uncompressed texts vary in size.
That is, the number of bits required to encode a particular text should be independent of
the encoding and language used.

Our hypothesis is based on the following intuition. As stated above, the estimates
of the entropy of English are based on a finite stochastic model of the language. The
relevant attributes of these models can be applied to all natural languages. The first is
the set of statements that can be expressed in this language. Technically, statements are
simply characters strings; however, the loose concept of meaning is meant to be embodied
by this informal term.

SL = {SL: SF is an statement that can be expressed in the language}

Our conclusions rely on the assumption that S* is the same for all natural languages.
In other words, all natural languages are equally expressive. This assumption appears
backed by a commonly held belief in linguistics theory, which states that all natural
languages possess grammars and lexicons that are rich enough to express and communicate
any conceivable thought [8, 5]. Over this set, we have a probability distribution describing
the likelihood that a statement is expressed, or output by the source.

)

p* = {(SF,pl) : pF is the probability that SE is expressed in this language L}

We believe that this distribution will be extremely similar across languages. This is not
to say that every statement has the same probability in each language; for example, “I am
speaking English” appears more likely to be spoken in English. Furthermore, we do not
presume that all languages are equally capable of encoding a particular statement using
the same optimal number of bits. Statements containing highly specialized lexical subsets
of a language (such as those written in jargon) could result in considerable variation
in the length of the encoding of the statement when expressed in different languages.
For example, a user’s manual for an automobile might suffer considerable bloating in the
number of bits required to transmit the information contained when the manual undergoes
translation from its original language to a language spoken by an agricultural people



without automobiles. We believe that when a sufficiently broad collection of statements
is considered, discrepancies in the expressive power of different languages with regard to
their ability to encode a particular statement efficiently will tend to even out.

As a whole, therefore, for large samples of statements, the probability distributions
for different languages are likely to be quite similar. Given the set S* and the probability
distribution p” an optimal encoding of ideas can be determined; standard information
theory says that the approximate length ¢& for a given statement S should be:

1
ﬁz'L = [log, ﬁ]
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This length, EiL, is what we are approximating empirically using compression; with
a good compression algorithm we expect to come close to this size. If our assumptions
that p” is roughly the same across all languages is true, we would expect compressed
translations to have approximately the same size. Again, if this is not true, this says
something interesting about linguistic variation across languages.

3 Methodology

While our results yield potentially interesting bits-per-symbol statistics for various lan-
guages, for comparison purposes we compare the total length of compressed texts.

We present results for both human- and machine-generated translations of texts. As
human-generated translations are time-consuming and expensive to produce, we limited
our experiments to texts with existing translations available electronically in multiple
languages. In our experiments we used the Bible, which we obtained in Arabic, Chinese,
English, French, Spanish, Korean, Japanese, and Russian.

The other large human-translated corpus that we used is a set of treaties from the
United Nations Treaty Collection with translations available in English, Spanish, French,
Chinese, Arabic, and Russian. The collection contains nineteen documents in all. All
of them are present in English, Spanish, French, and Chinese. Eighteen are present in
Russian, and eleven are present in Arabic. These texts are suitable for our experiments
for two reasons. First, as these documents were prepared by the UN, the translations are
presumably extremely accurate. Second, a treaty should, in theory, have a very exact and
literal meaning, and should therefore be the same in each language. On the negative side,
the legal style of the English texts seems more disjointed than standard prose, especially
after preprocessing.

We generated machine translations of the Bible using the commercially available Sys-
tran PRO Premium 3.0 translation software. Systran translation software is used for
example in the translation engine Altavista Babelfish.

We performed some preprocessing of the texts in each language to standardize their
format before analysis. It has been customary in previous work in estimating the entropy
of written English to convert all letters to uppercase and delete any characters other than
letters and spaces, leaving a twenty-seven character alphabet [10][13]. We performed this
conversion for English and similarly filtered the other languages. Furthermore, while En-
glish text can be represented using the standard ASCII encoding table, other languages



Language ‘ Encoding H Language ‘ Encoding

English ASCII French I[SO-8859-1
Spanish | ISO-8859-1 Chinese | EUC-CN (GB2312)
Korean EUC-KR Japanese | EUC-JP

Arabic Windows CP-1256 || Russian ISO-8859-5

Table 1: Encodings used for various languages.

require additional characters. We used a common encoding for each language. For ex-
ample, French and Spanish texts were first converted to the ISO-Latin-1 8-bit character
set, then filtered. The resulting alphabet of the French texts included 15 accented char-
acters beyond the twenty-seven character alphabet for English, while that of the Spanish
texts included 6 accented characters beyond the English alphabet. For Chinese, we used
texts in the GB character set with EUC-CN encoding, in which each Chinese ideograph
is represented by a two-byte sequence. Our Chinese text alphabet consists of all Chinese
characters, without any spaces or other non-character data. See Table 3 for a complete
listing of the encodings we used for each language.

Our baseline was the PPMD+ compression algorithm as implemented by Teahan [12].
Our experiments also used a Linux port of Charles Bloom’s variation of PPM called PPMZ
[2, 11]. PPMZ is essentially an improved version of PPMD+ using more efficient escaping
mechanisms and local order estimation, and has empirically outperformed PPMD+.

For both algorithms, it has been shown that using similar texts to train the PPM
model results in significantly better results. We indicate below the training that was done
for each different set of texts.

4 Experimental Results

Our results are described below. For each set of texts, we report the following measure-
ments: the text’s original size, its compressed size, the ratio of the text’s original size to
the original size of its English translation, and the ratio of the text’s compressed size to
the compressed size of its English translation. Since we claim that the size of a given com-
pressed text should be similar across languages, we expect the ratio between compressed
sizes to be close to 1.

4.1 Results for the Bible

We split the Bible into training and testing sets as follows: the first 20 books, from Genesis
to Proverbs, were used to train the PPM model, then the remaining books were compressed
using the trained model to obtain the above results. This setup produced reasonable
results for the English text, the compressed text contained 1.62 bits per character in the
original.

As Table 2 shows, all ratios between compressed text sizes in different languages
become substantially closer to 1 after compression; the compressed text sizes are within
roughly 15% of English. Note that the languages deviating the most from English in



Language | Original Size Ratio | Compressed Size Ratio

(bytes) | (Original) (bytes) | (Compressed)
English 1936473 1 390846 1
Spanish 1804756 0.932 384681 0.962
French 1896459 0.979 393805 1.01
Chinese 884860 0.457 337505 0.864
Korean 1259920 0.651 346478 0.886
Arabic 1875204 0.968 418443 1.071
Japanese 1519224 0.785 452337 1.157
Russian 1506920 0.778 376162 0.962

Table 2: Results for the Bible using the PPMD compression algorithm. The ratio is the
ratio of the size in the language divided by the size in English. We expect the ratio of the
compressed sizes to be close to 1.

original size, namely Arabic, Chinese, and Korean, are between 3-10 times closer to English
in size after compression. The other languages besides Japanese are close to English in
size both before and after compression. We remark further on the Japanese translation
below.

As we suggested previously, there are three possible reasons we might expect deviation
from the ideal ratio of 1: poor translations, insufficiently powerful compression algorithms,
or differences in the expressiveness of languages. Some of this is likely due to the fact
that the books are not strictly translations, in the sense that the Spanish version was
derived directly from this specific English text; they are simply both representations of
the Bible. We initially conjectured that there is still some variation due to the difference
in compression performance across languages.

To support this conjecture, we further experimented with PPMZ, which should yield
better compression. The results of PPMZ on the same Bible corpus appear in Table 3.
As can be seen, PPMZ indeed yields better compression for most languages, the apparent
exceptions being Chinese and Korean. Overall, the ratios are significantly closer to 1
under these experiments.

The only consistently surprising outcome is with the Japanese translation, which per-
forms poorly under both compression algorithms. We speculate on a possible cause. The
Japanese Bible source we used initially had editorial comments; we tried to remove as
many of these comments as possible. However, because none of the authors is fluent
in Japanese, there may be additional extraneous content remaining in the text we com-
pressed. Hence, we believe this is an example of a poor translation, in that extraneous
text appears. This is a demonstration that comparing the compressed size can potentially
be a useful tool for finding poor translations, a point we elaborate on below.

Note that the Bible comprises sixty-six different books, each with its own unique style
and subject matter. For the most part, the books were written independently by different
authors. This diversity of writing style within the text can cause problems for adaptive
compression algorithms such as PPM, which struggle with changing contexts and styles
because the probability models they build may not reflect the underlying probability



Language | Original Size Ratio | Compressed Size Ratio

(bytes) | (Original) (bytes) | (Compressed)
English 1936473 1 363288 1
Spanish 1804756 0.932 360535 0.992
French 1896459 0.979 359903 0.991
Chinese 884860 0.457 341850 0.941
Korean 1259920 0.651 352440 0.970
Arabic 1875204 0.968 395242 1.09
Japanese 1519224 0.785 438135 1.206
Russian 1506920 0.778 362207 0.997

Table 3: Results for the Bible using the PPMZ compression algorithm

Language | Original Size Ratio | Compressed Size Ratio

(bytes) | (Original) (bytes) | (Compressed)
English 1936473 1 411732 1
Spanish 1804756 0.932 414206 1.006
French 1896459 0.979 422532 1.026
Chinese 884860 0.457 370168 0.899
Korean 1259920 0.651 387532 0.941
Arabic 1875204 0.968 448962 1.090
Japanese 1519224 0.785 481649 1.170
Russian 1506920 0.778 412354 1.002

Table 4: Results for the Bible using the BZIP2 compression algorithm

distribution of the text immediately after a shift in context.

Finally, we note that as a check of these results, we have also compressed these texts
using gzip and bzip2. Neither compression scheme achieves the compression results of
the PPM algorithms, and hence the entropy estimates for the languages are necessarily
less accurate using these compression schemes. It is worthwhile noting, however, that in
comparing the ratios, the same basic trends are apparent, including the behavior of the
Japanese text.

4.2 Results for the United Nations Treaties

Results for the UN treaties vary somewhat. We see similar results for Arabic and Chinese;
the compressed sizes are much closer than before compression, and very close to the ideal
ratio of 1. The other languages, however, do not seem to do as well. They all compress
to around 10-15% larger than English. We cannot determine a clear explanation for this;
however, we suspect that the legal nature and jargon included in the text may not be
amenable to translation, potentially causing the deviations. While the ideas contained
in the Bible are likely to be universal in that they can be readily lexicalized in a variety
of languages, the ideas expressed in the UN treaties belong to a specialized subset of



Language | Original Size Ratio | Compressed Size Ratio

(bytes) | (Original) (bytes) | (Compressed)
English 1936473 1 562720 1.000
Spanish 1804756 0.932 559261 0.994
French 1896459 0.979 572904 1.018
Chinese 884860 0.457 438738 0.780
Korean 1259920 0.651 510311 0.907
Arabic 1875204 0.968 627727 1.116
Japanese 1519224 0.785 654144 1.162
Russian 1506920 0.778 532343 0.946

Table 5: Results for the Bible using the GZIP compression algorithm

Language | Original Size Ratio | Compressed Size Ratio

(bytes) | (Original) (bytes) | (Compressed)
English 977885 1 110848 1
Spanish 1064225 1.088 123695 1.116
French 1050979 1.075 125214 1.130
Chinese 420178 0.430 109279 0.986
English 944778 1 106501 1
Russian 1009347 1.068 127750 1.200
English 478026 1 65310 1
Arabic 328606 0.687 69350 0.942

Table 6: Results for the UN Treaties using the PPMZ compression algorithm

language which can result in the generation of long explanations of word meanings in the
target language after translation.

Hence, this may again be an example of poor translations, or it may be an instance
where certain statements (say legal statements) are indeed more probable in certain lan-
guages than in others. This remains an interesting point of study for future work.

4.3 Machine Translation

We performed machine translation of the KJV Bible into a variety of European languages
using Systran software. We note that the results here also do not show the ideal ratio of
1; instead, the ratios of the compressed sizes are closer to the original sizes.

We notice from Table 7 that all of the machine-translated texts are in general larger
than we would expect, which is not the case with human-translated versions of the Bible.
Again, we have found one possible reason for this that is a flaw in the translation process.
When the translation software does not recognize an English word, it simply outputs the
English word directly into the translated text. Unfortunately, this occurs rather often
because of the KJV’s use of archaic English vocabulary and conjugation (e.g. ’gaveth’
instead of 'gave’). This causes a possible complication in building the probability model



Language | Original Size Ratio | Compressed Size Ratio

(bytes) | (Original) (bytes) | (Compressed)
English 1936473 1 390846 1
French 2150962 1.111 432672 1.107
Spanish 2048227 1.058 406895 1.041
German 2113502 1.091 422693 1.081
Italian 2097506 1.083 439109 1.123

Table 7: Results for the Machine Translated Bible using the PPMZ compression algorithm

for PPM because the algorithm must take into account vocabulary from both languages.

Again, this test highlights a possible use of compression to detect poor translations:
a ratio between the compressed text size before and after translation that is substantially
far from 1 may be a means of detecting poor translations. This experiment provides an
example, in that the ratios larger than 1 appear to be due to a flaw in the translation
process.

We emphasize that a ratio close to 1 does not necessarily imply a faithful translation.
(Indeed, one could achieve a ratio of 1 with our test by doing no translation at all!)
The compression-based test we propose is therefore one-sided, in that it can detect poor
translations, but it can only be considered as auxiliary evidence that a translation is good.
Designing additional automatic tests for determining fidelity in translation remains a topic
for further work.

5 Conclusion

We extend prior work on estimating the entropy of English text by using PPM compression
results to compare the entropy of each of the following written languages: Arabic, Chinese,
English, French, Greek, Japanese, Korean, Russian, and Spanish. We suggest a direct
relationship between the size of compressed natural language texts and the information
content of those texts that is independent of the text’s language and encoding. Our
initial tests, although preliminary, provide some support to our conjecture that translation
preserves information content. Based on this conjecture, we suggest compression as a
possible means for detecting poor translations.

We believe that our work opens the way for future work involving compression and
translation across languages. An important question is whether current compression tech-
niques are biased toward languages with a Roman alphabet. Although most compression
schemes are designed to work for general sources, in practice specifics of the language may
affect performance. Our initial work suggests that PPM techniques perform well across
languages, but of course PPM is rather expensive computationally in practice. Another
question is whether there is a more suitable corpus available. We suspect, for example,
that there may be a more representative corpus than the UN documents we have used here;
extending our work to include a wider sample of genres would be a worthwhile exercise.
More generally, we have asked how one might check machine translations automatically,
using fewer resources than the translation itself requires. Compression offers a possible



means of finding poor translations; we believe this idea can be developed further, to find
for example smaller sections of the text that may be translated poorly.
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