Cycle-Sort: A Linear Sorting Method

B. K. HADDON*

Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309-0425, USA

Two sorting algorithms are described, general_cycle_sort, and special_cycle_sort, based upon the decomposability of a
permutation into a product of cyclic permutations. Under the conditions in which these algorithms are applicable, the

sorting can be accomplished in linear time.

Received May 1987, revised April 1990

1. INTRODUCTION

The two sorting algorithms to be presented here have
applications in rather specialised situations, but situa-
tions that are not uncommon in practice. They both
operate in linear time, and sort ‘in place’.

The first of the algorithms, general_cycle_sort, is useful
where the following conditions apply:

(1) The keys are integers drawn from a reasonably

small set (or can be mapped into such a set):

(2) The number of occurrences of each key is known.

These circumstances can arise when the elements to be
sorted are subject to some earlier processing pass, in
which the keys are examined and a histogram counting
the occurrences of each key is accumulated. For example,
the keys could indicate membership of one of a small
number of sets. Programs that classify symbols (e.g.
compilers), analyse data (e.g. cluster analysis), play
games (e.g. form groups of like moves), etc., can all
generate the appropriate circumstances.

To make this clear, consider a compiler that lists, after
other processing, all symbols collected together by type.
Each type can be denoted within the compiler by some
small ordinal, and the number of occurrences of
declarations of symbols of each type can be counted as
the source program is compiled. The conditions for
general_cycle_sort are then met, and the sorting can be
accomplished in linear time.

It frequently happens that in specific sorting applica-
tions, each key occurs just once. For example, if

transaction records are numbered as they are input, with

the object of returning them to input order after some
other processing, then the keys for resorting to that order
constitute such a case. This is the situation in which the
second method, special_cycle_sort may be used.

1.1 Overview of method

An array of elements to be sorted can be viewed as a
permutation of the elements of the sorted order desired.
An arbitrary permutation can be represented as a product
of cyclic permutations, or ‘cycles’ (Ref. 4, p. 66). A cycle
can be represented by a vector, written in the form:

(ay,a,,a,,...,a,)

where c is the length of the cycle, and the cycle described
is the one where the element at a, moves to position a,,
and the element at a, moves to position a,, and so on,
and the element at @, moves to position a,.

* Now at R-1032/WRZ, Ciba-Geigy AG, CH-4002 Basel, Switzer-
land.

A permutation can be represented by a function p()),
say, where j is the position of the element in the array to
be sorted, that is to be at position p(j) when it is sorted.
Sorting consists of determining p(j), which can be
computed by finding the value of j (uniquely) in one of
cycles in the product forming p(/), and taking as the
value of p(j) the value (circularly) to the left of j in that
cycle.

The cycle sorting method consists of finding a
representative array element in each cycle of the
permutation of the unsorted array, and then performing
the cyclic permutation specified by that cycle, for each of
the cycles in the permutation’s product. The result is then
the desired sorted array.

2. THE GENERAL CASE

The first of the algorithms is named general_cycle_sort. It
makes use of a histogram that counts the occurrences of
each of the keys in the records that are to be sorted. The
histogram is converted to a ‘cumulative’ form at the
beginning of processing, and is used thereafter to track
the position into which the record with the corresponding
key is to be placed as the sort proceeds.

2.1 The algorithm

For the moment, it will be assumed that the keys of the
elements to be sorted is the set of integers 1..m, where
the cardinality m is of a size that the appropriate arrays
may be declared (this assumption will be examined
further below). In the following discussion, and in the
algorithm shown in Fig. 1, the array to be sorted will be
of the type described by these (Pascal) declarations:

const n = ... {the size of the array to be sorted}
m = .. {cardinality of the key set}
type array_size = 1..n;
element_count = 0..n;
key_set = 1..m;
array_element =
record key: key_set;
element_body: ...
end;
sort_array = array [array_size] of array_element;
histogram = array [key_set] of element_count;

The sort_array is initialised to contain the elements to be
sorted, and the histogram is initialised to contain the
counts of the elements with keys of each value in the
key_set.

When the general_cycle_sort is called, the initialisation

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 365

ST0Z ‘9 ARJAl UO AJISIOATU() UMO039FI090) Je /310 s[ewmolpioyxo Tulwos//:dyy woiy pepeo[umoq



B.K. HADDON

procedure general_cycle_sort
(var a: sort_array; n: array_size;
var h: histogram; m: key_set);
var i, j: array_size;
k: key_set;
p: histogram,
save, temp: array_element

begin
()  pll:=0;
2) for k:=1tom—1do
3) plk+ I:= plk]+ hlk];
@) fori:=1tondo
%) begin

(6) k:= a[i] . key;
) Ji=plkl+1;

8) if i > j then

9) begin
(10) if i + j then
(11) begin
(12) save: = d[i];
(13) repeat
(14) temp: = alj];
(15) alj]: = save;
(16) save:= temp;
a7 plk]:=J;
(18) k:= save.key;
(19) Ji=plk]+1
(20) until i = j {repeat};
21 ali]: = save
(22) end {if [ + j};
(23) plk]:=1i
(24) end {if i > j}

(25) end {for ;.= I to n}
end {procedure general_cycle_sort};
Figure 1

and loop of lines (1)~(3) of Fig. 1 compute a new,
cumulative, histogram, which represents (one below, to
simplify the Pascal type declarations) the place in the sort
array where the first element for each key value is to be
placed, i.e. for key value k, p[k](+1) is the place in the
array a where the first element with that key value should
be placed.

The remainder of the procedure body, lines (4)—(25), is
a loop searching for elements that are to be placed at a
position below (i.e. at positions of lesser index value) in
the array than where they currently are. The element at
position i has a key value k, and this element should be
at the position indexed by j, where j= p[k]+1. The
element is too far up the array if i > j. (The test at line (8)
is for i > j — the case i = j will be discussed below — the
test i & j at line (11) restricts consideration to i > j in
lines (12)—(19).

The repeat loop starting at line (13) takes the element
that is out of place, and puts it at the position determined
by p[k], saving the element that was there, in the interim.
The entry p[k] is then incremented by one, to indicate
where the next element with a key value of k is to be
placed. The loop continues until an element that belongs
in position i is found, and the cycle is closed.

If an element is found in position i that belongs in
position i (a unit cycle, the case i = j), the corresponding
plk] is incremented, so that when another element with a
key value of k is found, it will be placed following the one
that was just examined.

2.2 An application

In an investigation being made by this author of a
program playing the game of Mastermind,! all moves
gaining the same scoring response must be sorted into a
‘partition’ that collects all equivalent moves. As each
move is evaluated, the scoring response is mapped into
a set of integers, and the corresponding entry of a
histogram is incremented. After all the moves feasible at
each stage have been evaluated, the sorting into partitions
is accomplished with general_cycle_sort.

For the standard game, using six colours of pegs, with
four pegs in each pattern, a move can be any of the
possible 1260 (6*) patterns. It can be shown that the score
can be mapped into the set of integers 1..16. Thus in the
Pascal declarations above, n is 1260, and m is 16. The
element_body for this application is the vector of four
colours used in the pattern, hence the following declara-
tions are needed:

type colour = (black, blue, green,
red, yellow, white);
array_element =
record key: key_set;
element_body: array [1..4] of colour;
end;

3. A SPECIAL CASE

The conditions for the special case are those that make p
just the identity mapping, corresponding to just a single
occurrence of each key, and the keys run from 1 to the
number of items to be sorted. Thus the type key_set is the
same as array_size.

Assuming this, general_cycle_sort can be modified,
removing the variable k and the array p, and the
references to them. The resulting procedure, special-
_cycle_sort, is shown in Fig. 2. special_cycle_sort has the
same time complexity as general_cycle_sort, but requires
no additional storage for the histogram (or its cumulative
form).

procedure special_cycle_sort
(var a: sort_array; n: array_size);
var i, j: array_size;
save, temp: array_element

begin

(1) for i:=1to ndo

2) begin

(3) Ji= ali].key;

4 if i + j then

(&) begin

(6) save: = a[i];

7 repeat

(8) temp: = alj];

9 alj]: = save;
(10) save:= temp;
(11) j:= save.key,
(12) until / = j {repeat};
(13) ali]: = save;
(14) end {if | + j};

(15) end {for i:= 1 to n}
end {procedure special_cycle_sort};

Figure 2

366 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

ST0Z ‘9 ARJAl UO AJISIOATU() UMO039FI090) Je /310 s[ewmolpioyxo Tulwos//:dyy woiy pepeo[umoq



CYCLE-SORT: A LINEAR SORTING METHOD

3.1 An application

In the ‘garbage collection’ method previously reported,?
an entry was made in a rolling table for each region of
unallocated memory. The table is ‘ rolled’ between entries
being made, thus at the end of the scan of the memory,
the table is not in memory address order. In this
application, use was made of the fact that each new entry
is generated in address order as memory is scanned from
lower addresses to higher addresses, and unused space in
the entry was used to hold the ordinal of the entry. Thus
at the end of the scan, this ordinal field satisfies the
requirements for special_cycle_sort, and the table could
be reorganised into the required order in linear time.

4. CORRECTNESS, AND REQUIREMENTS

An informal discussion of the correctness of the cycle
sorts starts with the observation that once a cycle has
been entered, it can be seen that all the elements of the
cycle are placed in their proper respective positions.

The algorithms must necessarily find all cycles, since
either a cycle will be a unit cycle, or it must contain at
least one element that is at a ‘higher’ position in the
array that it should be, for if it did not, we would have
the condition that:

a<a,<a,<..<a,<a,

which is not possible. The algorithm passes over all pairs
for which the * < ’-relation holds, and enters it when the
inverse condition is found. Hence all cycles are found.
Moving the elements around a cycle decomposes it into
a product of unit cycles, and, as discussed above,
elements of unit cycles are not moved, p[k] is simply
incremented. Hence elements are not moved a second
time.

A formal proof of the correctness of the cycle sorts can
be derived by observing that they are effectively
modifications of the procedure permute of Ref. 2, where,
in general_cycle_sort, p is the inverse function of the
function f of that paper. The amount of moving of data
is reduced in the cycle sorts over permute by following the
cycle, rather than doing a series of exchanges as each
element of the cycle is rediscovered by a linear scan. The
changes to p as the cycle is traversed are just the changes
needed to make p be the inverse of f for the new

permutation generated by moving elements around their
cycle.

4.1 Time requirements

At worst, each element in the sort array is touched twice
by the procedures — once by the scan controlled by i, and
once when the cycle containing the element is traversed.
The time cost of the cycle traversal of each of the
algorithms is therefore O(n). General_cycle_sort requires
additionally the initialisation of the histogram into
cumulative form, which is an operation of O(m).

The time complexity of the algorithms is therefore
bounded by O(m+n). For practical applications, this is
linear in n.

4.2 Space requirements

The caller to general_cycle_sort must provide the space

for the array to be sorted, and for the histogram. The
major storage requirement of the general_cycle_sort
procedure is the cumulative histogram array that is
declared locally.

If there is no necessity to preserve the caller’s
histogram, the procedure can be modified by renaming
the parameter / to p, replacing the declaration for the
local histogram by two variables s and v of type
element_count, and replacing lines (1)—(3) by:

1) s:=0;

(2) for k:=1to mdo
(3a) begin

(3b)  v:=plkl;

(Bc)  plk]l:=s;

(Bd) s:=s+v

(3e) end;

The actual size of the histogram is, of course, dependent
upon the cardinality of key_set, which, in turn, is
determined by the particular problem.

5. CONCLUSION

The cycle sort techniques are not universally applicable,
but in those places where they can be used, they offer the
advantage of a linear time complexity for little or no
additional storage. In a sense, the cycle_sorts can be
regarded to be variants of the class of radix sorts, with
the cycles being the buckets.

It is interesting to note that since efficient general
sorting methods are of a time complexity of O(nlogn),
and that the cycle sorting methods use a histogram of key
occurrences to create conditions in which the sorting
may be accomplished in a time complexity of O(n), then
the histogram must represent, on the average, logn bits
of information per element to be sorted, or (logn)/m per
entry.

In applications where it is possible to create the needed
histogram, the actual time required to do this is itself of
O(n), hence the entire job of creating the histogram and

performing a cycle sort may be accomplished in linear
time.

Acknowledgements

Professors H. Jordan and W. M. Waite, of the De-
partment of Electrical and Computer Engineering at the
University of Colorado at Boulder, and an anonymous
referee, made several helpful suggestions, based on
earlier drafts, regarding the presentation of the material.

REFERENCES

1. L. H. Ault, The Official Mastermind Handbook. A Signet
Book, The New American Library, NJ, pp. 136 (1977).

2. A.J. W. Duijvestijn, Correctness proof of an in-place
permutation. Bit 12, 318-324 (1972).

3. B. K. Haddon and W. M. Waite, A compaction procedure
for variable-length storage elements. The Computer Journal
10 (2), 162-165 (1967).

4. W. Ledermann, Introduction to the Theory of Finite Groups.
Oliver and Boyd, London, p. 174 (1961).

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 367

ST0Z ‘9 ARJAl UO AJISIOATU() UMO039FI090) Je /310 s[ewmolpioyxo Tulwos//:dyy woiy pepeo[umoq



