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There is a strategy by which an automaton can examine itself to obtain a 
complete description of its own constituent structure. This strategy is here 
employed to show that machine self-reproduction by means of self- 
inspection is possible. Since the parent automaton structure serves as the 
sole model for the structure of offspring, the result shows that there is a 
logically consistent strategy of self-reproduction in which any acquired 
structural characteristics of parent could perforce be transmitted to the 
offspring. 

1. Introduction 

John von Neumann’s successful strategy of machine self-reproduction 
(von Neumann, 1966) makes use of an active machine reading, and then 
employing information obtained from a separate passive “blueprint” 
description. (Very roughly speaking we can equate the active components of 
von Neumann’s machine with enzymatic proteins of the cell, and the separate 
passive description with nucleic acids.) At the same time, ‘van Neumann 
(1966, p. 122) was aware of alternative possible reproductive strategies, 
including the idea that a machine might “read” itself directly and act upon 
the information thereby disclosed, to reproduce itself. (In the cell this could, 
for example, mean that the active protein machinery might somehow analyze 
itself and use this information to implement reproduction, only incidentally 
if every being in possession of a separate description of the protein machinery.) 
He rejected this strategy however since there were evident practical difficulties 
of automaton implementation, and he also feared there might even be an 
essential logical paradox inherent in the notion of a system actively inspecting 
its active self. 

Arbib (1966, p. 217) however was somewhat more sanguine, stating that 
he was not convinced that there is any logical paradox in a machine examining 
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itself and thereby obtaining a description it can use for carrying out complete 
self-production. Indeed, Burks (1961) had already conjectured that it is 
possible for a machine to inspect all of its structure and obtain a complete 
description of its structure which it can store for its use within a proper part 
of itself. Laing (1976) has shown the Burks conjecture to be true; there is a 
strategy by which a machine can examine itself to obtain for its use a complete 
structural description. 

In the present paper, this result is employed to show that self-reproduction 
by means of self-inspection is possible. In effect, there is no logical necessity 
for the presence of an explicit blueprint in the reproduction of completely 
general information transactional systems. Also, since the complete “mature” 
original parent machine serves as the model for the offspring machine, there 
exists a logically consistent strategy of reproduction in which acquired 
characteristics of parent could be transmitted to the offspring. 

In the rest of this introductory section, we describe briefly and informally 
our kinematic system, and list its essential features; we then explain how 
reproduction by self-inspection can therein be carried out. (We call our 
automaton system a kinematic system although it might better be termed a 
“quasi-kinematic” system since it employs not only the notion of spatial 
physically interacting componentry but also state-changing notions drawn 
from the cellular automaton concept.) 

The System. The basic components of our system consist of strands or 
strings of primitive constituent finite state automata, these component strings 
being in sliding contact. [See Laing (1975) for a general discussion of several 
kinds of such systems.] A primitive constituent of a string can be in an acti- 
vated or a passive state. An active primitive constituent in contact with a 
passive constituent of another string will interact with the passive constituent 
in precisely defined ways only. These ways include changing the state of the 
contacted passive primitive, reacting to the state of the contacted passive 
primitive, sliding to the next neighbor of the contacted passive primitive. 
Since one string (an active string) can be designed to play the part of any 
Turing machine finite-state read-head, and another string (a passive string) 
can be designed to play the part of a Turing machine tape, we can carry 
out any Turing computation in this kinematic machine system. (See 
Fig. 1 for an illustration of what a Turing machine would look like in our 
system.) 

Some important features 

The following are some behavioral and organizational properties of our 
system important in securing our results. 
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(1) The major components of our system being connected strings of simpler 
cell-automaton primitives, one string can, by sliding, obtain direct contact 
access to all primitives of a second string. [This contrasts with von Neumann’s 
two-dimensional “checkerboard” cellular automaton system (von Neumann, 
1966) where access to interior cells of a machine can be attained only by 
penetrating the intervening exterior cells of the machine.] 

(2) At any one time, only a singZe primitive constituent need be activated 
in order to carry out the actions necessary for our inspection and repro- 
duction results. (This again contrasts with the von Neumann cellular system 
where although the general course of system action as he described it is 
sequential, in implementing certain processes, activation is sometimes 
required to be simultaneously present at many locations.) 

(3) Both strings of the system can contain potentially active primitives, and 
the active and passive roles of the strings can be exchanged. (This contrasts 
with the usual Turing machine notion where the roles of active automaton 
and passive tape remain fixed.) 

(4) The assumption is made that available to the system is a population of 
passive, “null” primitive constitutents. These primitives can be recruited and 
attached at the ends of passive strings. (This is analogous to the “automatic” 
addition of blank squares at the end of a Turing machine tape, and related to 
the von Neumann cellular system notion of a machine having available to it 
an environment of quiescent cells.) 

(5) By a series of actions directed at null primitives, these primitives can 
be converted to any of the other primitive constituent automaton types. 
(This is analogous to the conversion of quiescent cells of the von Neumann 
cellular system to any of the other cell-types.) 

(6) The process by which a null primitive can be converted to any other 
primitive type, including returning to the null type itself, can be employed to 
ascertain the type of any unknown primitive of the system. This is the central 
concept employed in this paper in establishing the self-inspection result which 
obviates the need for any permanent and separate passive description in 
self-reproduction. The central idea of the analysis process is as follows. As 
part of the system, there is a primitive which when active and in contact with 
a null primitive “detects” this fact by altering its own behaviour (it communi- 
cates a different activation). In paragraph (5) above we have said that the 
system can, by a series of distinct actions convert any known primitive back 
to a null. Alternatively we can subject an unknown primitive to a series of 
conversion actions and test (with our null-detector) for the arrival of the null 
status. The record of the conversion actions which reduced the unknown 
primitive to the null status reveals what the primitive type must have been 
before the conversion to null took place. By this mean the system can identify 
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unknown primitives. It should also be pointed out that not knowing what the 
primitive in question was before the conversion process began, and knowing 
that it is presently null, we can by a series of constructive conversion actions, 
restore the primitive to its original type. 

Outline of principal results 

The result, that a machine can achieve complete self-inspection and by this 
means obtain the information needed for self-reproduction, can take many 
forms. We first briefly outline the version of the result as prepared for in 
section 4 and presented in section 5, and then also the informal version of 
section 6. 

In the first version, the original machine is a single string of constituents. 
This initially active string constructs a second string consisting principally of 
an analyzer. The first string relinquishes activation to this second string, 
which then analyzes the original string and produces a description of it. 
Activation is then relinquished back to the original machine which employs 
the newly available description of itself to produce a new copy of itself. The 
original machine may now (optionally) destroy (reduce to null primitives) 
the second string (along with the temporary description) so that we are left 
with the original initial machine and a copy of it. (See Fig. 4 for an illustration 
of this process.) 

In another version (that of section 6), the original machine consists of two 
strings which need not be identical, but each containing, in some form, an 
analyzer and constructor. The initially active string analyzes its passive 
partner and constructs a copy of it. It then relinquishes activation to the 
passive partner which analyzes the initially active string and constructs 
a copy of it. The system has thus reproduced itself without recourse 
to a distinct description of itself. (See Fig. 6 for an illustration of this 
process.) 

We conclude this introduction with some remarks on our use of language. 
When in our machine system an active primitive has contacted a passive 
primitive and activation has afterward been routed to precisely one of two 
different possible adjacent primitives according to whether the passive 
primitive was a type we call zero or a type we call one, we shall simply say 
that the machine read the primitive; when a certain primitive is now active 
and because of this activation all further action the machine may take will be 
different than if some other primitive was now active, we may simply say that 
the machine now “knows” something it did not know before. That is, where 
used in respect to machine behavior, such words as “read”, “know”, “recall”, 
“discover”, “discern”, etc. have a precise technical interpretation in terms of 
specific, completely determined actions and states; such words are employed 
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solely as an expositional shorthand, and are not intended to suggest the 
presence or necessity in the machine system of any unexplained, or unanalyzed 
psychological capabilities. 

2. A Kinematic Machine System 

The machines for which our results are shown are kinematic machines 
which compute and construct by means of a repertoire of simple mechanical 
actions: viz. sliding local shifts of contact, local changes of state, and local 
detections of such state changes. 

.A machine will consist of basic simple finite state automaton primitives, 
organized into strings. The primitives (and consequently the strings) possess 
a forward and backward direction. For most of our discussion the specific 
machines employed will consist of at most two separate strings of interacting 
primitives. At any one time at most one of the two possible strings will possess 
an active primitive. That the active and passive roles of strings may be 
exchanged is an important feature of this machine system. In operation, the 
two strings are always in sliding contact at a single point. One characteristic 
action is for the activated primitive of the active string to act upon the con- 
tacted passive primitive so as to change its state, and then (automatically) 
relinquish activation and contact to its own next immediate neighbor 
primitive in the forward direction of the active string. 

We now describe the basic primitives of our system. 
‘Three primitives N (nuN), 0 (zero), 1 (one) will principally be employed in 

the passive recording of information. If in the present system an N, 0, or 1 
should be part of an active string and undergo activation, it will merely pass 
activation and contact to its next forward direction neighbor, thus behaving 
as a “no operation” primitive. A string consisting entirely of N, 0, and I 
primitives thus takes no action toward other strings. 

‘The two primitives PO (print zero) and Pl (print one) will principally be 
employed in acting upon N, 0, and 1 primitives, to change their states. A PO 
will act upon an N, 0, or 1 to make it a 0, and a Pl will act upon an N, 0, 
or 1 to make it a 1. After completion of this action, a PO or :Pl will auto- 
matically relinquish activation and contact to its next neighbor primitive in 
the forward direction in its string. (Thus, in contrast to strings consisting 
entirely of N, 0, and 1 primitives, these primitives and others to be described 
below, can be activated to produce actions on primitives of other-strings.) 

The two primitives F (forward) and B (backward) cause the active string 
to slide to the next primitive of the passive string in the forward or backward 
direction, respectively. If application of an F or B primitive would result in 
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a physical disengagement by “running off the end” of the passive string, an 
N primitive is assumed always to be available and to be automatically 
attached to the end of the passive string. After completion of the move 
action, an F or B primitive automatically relinquishes activation to its next 
neighbor primitive in the forward direction in the active string. 

The primitive H (halt), if activated, terminates all activity. 
There are three conditional transfer primitives, of the form TX, y where 

X is N, 0, or 1 (the condition to be satisfied) and y is the address of a primitive 
in the program. If for example a TN, y primitive is active and in contact 
with an N primitive in the passive string, then activation and contact are 
routed to the primitive with the address y in the active string; when an 
activated TN, y is in contact with a passive primitive other than N, then 
TN, y simply relinquishes activation and contact to the next neighbor in the 
forward direction. 

The primitive Ty is the unconditional transfer which when activated will 
shift activation and contact to address y. 

[The above description of conditional and unconditional transfer action 
does not explain how the active string actually carried out shifts of activation 
to an arbitrary address y in the active string. There are many ways in which 
transfers may be implemented. Here, for expositional simplicity, we merely 
assume that such transfers can be effected. Various transfer implementation 
techniques for kinematic machines are discussed in Laing (1975, 1976).] 

The A (activation) primitive when activated will produce an activation of 
the pussiue primitive contacted and an immediately subsequent loss of 
activation in the active string. The effect of this primitive is to produce an 
exchange of the active and passive roles of the strings. 

The AD (activate and detach) primitive when activated will produce an 
activation of the passive primitive contacted and an immediute detachment of 
the two strings, without a loss of activation in the active string. The role of 
this primitive is to create an independent activated string. 

The C (conversion) primitive is such that if active it will systematically 
convert any passive primitive (including a passive C primitive) with which it 
is in contact into another primitive type. The C conversions are set forth in 
Table I. Notice that the conversion sequence forms a closed loop: some 
specific number of C actions will convert any primitive type to any other 
primitive type, including itself. The function of the C primitive is to enable us 
to obtain any of our primitive types, beginning with a freely available N 
primitive, and to provide a means by which the type of an arbitrary unknown 
primitive can be ascertained. 

(This latter capacity of the system is critical to our principal result, for as 
will be seen in the next section, it will enable the system to determine its own 



REPRODUCTION BY SELF-INSPECTION 443 

TABLE 1 

C conversions 

C(N)+0 
C(0) --f 1 
C(1) + PO 
C(P0) -+ PI 
C(Pl)+P 
C(F) + B 
C(B) -+ H 
C(H) --+ TO 

C(T0) + Tl 
C(T1) -+ TN 
C(TN) --f T 
C(T) -j AD 
C(AD) + A 
C(A) + C 
C(C) --I N 

structure. It should be emphasized though, that the analysis method 
described here and upon which the complete self-inspection result depends, 
is not the only tactic, employing a “biological vocabulary”, by which the 
determination of primitive constituents could be carried OUL. It is the logical 
equivalent of any of several means by which a system can ascertain the type 
of its own constituents. The C-conversion procedure was chosen since it is 
a straightforward adaptation of the biological-like process of synthesis of 
primitives required for construction in our system. We might, alternatively. 
have made the analysis procedure distinct from the construction procedure 
by introducing the notion that every primitive has permanently attached to it 
a RNA-like complex in which the anti-codon characters can be read, one-by- 
one, by a set of character detecting primitives.‘) 

3. Some Basic Kinematic Machines 

In this section we describe some basic kinematic machines and establish 
some preliminary results; in section 4 we will combine these machines and 
results to show that there is a machine possessing the sought after capacity 
to reproduce by employing self-inspection. 

RESULT 1 

Arbitrary Turing computations can be carried out in the kinematic system. 
This follows immediately from the fact that the properties of our kinematic 
system with active strings composed only of F, B, PO, Pl, TN, TO, Tl, and 
H primitives and passive strings of N, 0 and I primitives only can carry out 
the actions of any Wang “programmed” Turing machine, a class of machines 
which (Wang, 1957) has been shown capable of carrying out any Turing 
computation. (Fig. 1 illustrates what a Turing machine would look like in 
our kinematic machine format.) 
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FIG. 1. A Turing machine in kinematic machine format. The lower string consists of 
program primitives which if activated will act on the passive “tape” primitives of which the 
upper string is composed. 

Fixed sequence emitter 

A fixed sequence emitter is a string consisting entirely of PO, Pl and F 
primitives, each PO or Pl followed by an F. When activated, such a string 
of primitives (acting on a passive string consisting of N, 0 and 1 primitives) 
will produce a particular sequence of zero and one primitives. Clearly for 
any particular fixed finite sequence of zeroes and ones desired, there is a 
unique fixed, finite emitter which can be designed to create the desired 
sequence. 

Example. The emitter PI-F-PO-F-PI would (starting with a string con- 
sisting entirely of N, 0, or 1 primitives) produce the string 1-0-l. 

Since our kinematic machines are composed of a fixed finite number of 
primitive types, we can assign a unique fixed finite length code word of 
zeroes and ones to each primitive type. (For concreteness we might assign 
N = 0000, 0 = 0001, 1 = 0010, PO = 0011, etc.) The description of a 
kinematic machine will be the code words of the primitives of each of its 
strings in order (beginning at the top of the originally activated string and 
proceeding in the forward direction) and (if necessary) employing a special 
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code word marking the end of the first string and the beginning of the second. 
For any machine, a fixed sequence emitter can be designed which will print 
out the description of the machine. 

Emitter inferrer 

An emitter inferrer is an active string which can examine a passive zero- 
one description and infer the composition of the fixed sequence emitter which 
produced it. The inferrer works as follows. It reads the first primitive of the 
passive description string (by means of TO, Tl primitives). If the first 
primitive is a one, (as in the emitter example above) the inferrer “knows” 
that it had to have been produced by a PI primitive present as the first 
primitive of the emitter (similarly, if the first description primitive was a 
zero, it must have been produced by a PO, as the first primitive of the emitter). 
If the description continues (there is a second zero or one) it must have been 
a consequence, first, of the application of an F primitive, followed by a PO 
or PI according as the second description primitive was a zero or a one. 
Proceeding in this fashion, the inferrer can deduce the complete sequence of 
ernitter primitives. 

Special purpose constructor 

Beginning with “null” primitives recruited from the environment, or 
assuming a passive string of all null primitives, a (unique) active program 
string (consisting of proper sized blocks of C primitives separated by F 
primitives) can be designed to construct any fixed finite string. 

Example. The constructor -C-C-C-C-F-C-C-C-C-C-F-C-C-C-F-C- 
CC-C-C-F-C-C-C-C- will, starting with N primitives produce the string 
Pl-F-PO-F-PI, (e.g. the emitter of our earlier example). 

Analyzer 

There exists an (active) string which when presented with any (passive) 
string can analyze and identify the passive string primitives one by one and 
produce a description of the passive string. An analyzer will consist of a 
series of C primitives, each C followed by a TN primitive. For each primitive 
type there is a unique number of C stimulations followed by a TN “test and 
transfer” primitive which will enable a machine to ascertain the type of any 
primitive, and then to transfer to a location where this information can be 
acted upon. 

Example. In the analyzer segment TN-C-TN-C-TN-C-TN-C-TN . 
the first TN will detect if the unknown primitive is already an ‘N, the second 
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TN will detect if the unknown primitive is a C, the third TN will detect if the 
unknown primitive is an A, etc. (See Table 1; a part of an analyzer is illus- 
trated in Fig. 2.) 

Analyze and restorer 

The anlyzer can be augmented with distinct construction routines such that 
after a primitive type has been determined (by reduction to N) an appropriate 
re-construction routine (of active C primitive applications) can restore the 
primitive to its original form. This is possible because the system will know 
what the primitive now is (N), what it was and should be restored to (it has 
just discovered this), and the number of C stimulations necessary to convert 
an N to any desired primitive type. 

FIG. 2. A segment of analyzer. The lower string represents a segment of analyzer which 
subjects primitives of the upper string to a series of C conversion stimuli, and then tests (by 
means of TN primitives) whether the primitive under analysis has yet been converted to N. 
In the case illustrated, the F primitive in contact will have to undergo ten more C stimuli 
before it is detectable by a TN. 

Example. If the analyzer has just established that the unknown primitive 
was an AD (i.e. exactly three C stimulations have converted the unknown to 
an N), then the TN which detected this can route activation and contact to 
a “restore” route C-C-C-C-C-C-C-C-C-C-C-C (12 C stimuli) which will 
convert the present N back to the AD it was originally. 

Special-purpose constructor inferrer 

As with the emitter of a description, whose structure can be inferred from 
the description produced, so can the unique constructor of any string be 
inferred from the string produced. This is done as follows. An analyzer 
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determines the primitive type, and then transfers to an inference routine. 
For each primitive type, a unique number of C stimulations were required 
to convert an initial N to the discovered type. A description of the required 
number of C primitives can be set down, followed by the description of an 
F primitive, necessary in the original construction routine to move on to the 
next N to be converted. We then transfer back to the analyzer to determine 
the next primitive, etc. 

Example. Given the string PI-F-PO-F-PI (our example emitter which 
was constructed by our example constructor) the inferrer analyzes the first 
primitive and determines that it is a type Pl ; a Pl is produced by C-C-C-C, 
and a description (in the zero-one code) for four successive C’s can be set 
down. The emitter then moves on to analyze the F primitive, etc. 

Special-purpose fixed destroyer 

For any particular known (passive) string, an (active) string consisting of C 
primitives and F primitives only, can be designed which can reduce each 
primitive of the string to an N. 

Example. We wish to “destroy” the string T-A. This can be done by the 
string C-C-C-C-F-C-C (see the C conversion table). 

General destroyer 

Any (initially unknown passive) string can be completely reduced to N 
primitives, either by analyzing the primitives in turn to determine their type 
and then applying the requisite number of active C primitives, or by applying 
C primitives one-by-one and testing for the arrival of the N status 

Substring locator 

We shall frequently wish to have our active string move along the passive 
string and locate a particular region or sub-string of the passive string. The 
regions of interest in the passive string can be prefaced by a unique zero-one 
sequence label, and we can have the active string identify a sought-for label 
by carrying out a scanning and decoding routine. For example, starting at 
the top end of the passive string, the active locator routine will search for the 
first symbol of the desired label; if it is found, the locator examines the next 
primitive to see if it is also correct. If it is, the decoding continues. If it is 
not, the locator returns to its initial state and moves on to the next label 
code block and begins again the decoding process. 

T.B. 20 
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RESULT 2 
There exist self-describing kinematic machines. Self-description of a 

kinematic machine will take place if beginning with an active string (either 
alone or together with an all null passive string) the active string finally halts 
having created a passive string containing a complete correct description of 
itself in the agreed upon zero-one code. This can be accomplished (Laing, 
1975; Lee, 1963; Thatcher, 1963) as follows. 

The self-describing machine will be an active program string composed of 
the following substrings: any desired (optional) finitely long substring, an 
emitter inferrer, and an emitter of the description of the optional substring 
(if any) and of the emitter inferrer. 

We begin by activating the emitter. At the conclusion of its operation, the 
passive string will contain a description of the optional substring (if included) 
and a description of the emitter inferrer. Activation is then shifted to the 
emitter inferrer. The inferrer will examine the passive string and infer the 
description of the emitter which produced it, and print out the description of 
the emitter. This completes the self-description. (See Fig. 3 for an illustration 
of the self-description process.) 

FIG. 3. Self-description process. (Note: no attempt has been made to reflect the fact that 
thl string segments pictured would possess very different relative sizes.) (i). An initial 
optional segment (A), an inferrer @), and emitter (C) of the description of (A) and (B). 
(ii). The emitter (C) produces its stored description of (A) and (B). (iii). The inferrer (B) 
now reads the description of (A) and (B), and from this infers the description of (C), and 
produces it, completing the self-description process. 

RESULT 3 
There exist general-purpose kinematic machine constructors. A general- 

purpose kinematic machine constructor is an active string such that if it is 
given the description of any string, the constructor will produce the string 
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desired. Such a general-purpose constructor will work as follows. It will read 
the first code block of the description and determine the primitive type to 
be constructed. It will then transfer to the subroutine for the production of 
such a primitive, viz., the number of continguous C primitives whose appli- 
cation will produce the desired primitive. Activation will then be transferred 
back to the description reading routine, where the description of the next 
desired primitive is decoded, etc. At the conclusion of construction, the newly 
produced machine can be activated by means of an A primitive. Note that 
the general-purpose constructor can, in reading a description, be equipped 
to preserve or to destroy the description in the process. 

RESULT 4 

There exist self-reproducing kinematic machines. Since [by the Lee (1963), 
Thatcher (1963) results; our result 21 a kinematic machine can produce its 
own complete description, and since given any description of a machine a 
kinematic machine exists which can construct the machine, a machine con- 
sisting of a self-describer and a general-purpose constructor can reproduce 
itself (Thatcher, 1970). 

Result 4 is a variant of the original von Neumann (1966) result that an 
automaton can reproduce itself if supplied with a description of itself. It is 
an automaton model of the logic of biological reproduction as it is believed 
actually to take place in living organisms, viz., by means of a nucleic acid 
reserved description acted upon by enzymatic protein macro-molecular 
machinery. 

The principal result of the present paper, that in self-reproduction the 
presence of an explicit prior description can be dispensed with entirely, is 
shown in the next section. 

4. Reproduction by Self-inspection 

We are now prepared to show how a machine can reproduce itself, using 
itself as model. 

RESULT 5. (PRINCIPAL RESULT) 

Machine reproduction by self-inspection can be exhibited in the kinematic 
system. We begin with an initial single string “parent” machine consisting 
of the following substrings. 

(A) A special purpose emitter-constructor which can construct a new second 
string. This second string which (A) constructs will consist of ( 1) an analyzer 
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and restorer, (2) an inference routine of the sort which can take a description 
and infer the description of the emitter which could produce the given 
description, (3) a general purpose constructor, (4) a general purpose destroyer. 

(B) A destroyer which can convert strings back to null primitives, 
(C) A fixed finitely long optional substring, capable of carrying out some 

desired general behavior; this substring plays no active role in the self- 
analyzing and self-reproducing process. 

(D) A general-purpose constructor which takes the description of any string 
and constructs the string. 

The process of reproduction can be carried out as follows. (See Fig. 4)) 
(i) (A) is activated and constructs the new second string consisting of (1) 

(analyzer-restorer), (2) (emitter inference routine), (3) (general-purpose 
constructor), and (4) (destroyer). 

(ii) Activation is relinquished to the new string and the new string analyzes 
the original string, and constructs at the end of the original machine a new 
substring (E) which is an emitter of the description of (A), (B), (C) and (D). 

(iii) The new string now relinquishes activation to (E) of the first string. 
(E) then constructs, as part of the second string, (5), the description of 
(4 (9 (Cl (D). 

The first string now consists of (A) (B) (C) (D) (E) and the second of (l), 
(2), (3), (4), and (5), the description of (A) (B) (C) (D). 

(iv) Activation is now relinquished to (4) the destroyer, of the second 
string. (4) then reduces (E) back to null primitives. 

(v) Activation is now relinquished back to (B) of the original string which 
destroys all but (5) the description of the second string. 

(vi) Activation is transferred to (D), the constructor of the first string, 
which using the description (5) of (A), (B), (C), (D) constructs a copy (A)‘, 
(BY, (9, (D)‘. 

(vii) Activation in the first string is now passed to the destroyer (B), which 
reduces (5) to null primitives, leaving the second string consisting of the copy 
of (A) (B) (C) (D) only. This copy can now be activated and released by 
application of an AD primitive. 

We thus have reproduced our original machine, by an examination of its 
structure. Whatever properties the original possessed at the time of repro- 
duction are now recreated in the offspring. Roughly speaking, we have here 
a model of reproduction in which the use of a distinct description is not 
central to the process and in which any acquired characteristics of the 
original parent string would be reproduced in the offspring string. 

Many slight variations of this reproduction by self-inspection can be 
devised; the sequence of the “clean-up” activities can, for example, be altered. 
In the next sections we exhibit some more radical variants of the process. 
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FIG. 4. Reproduction by self-inspection. Initial situation. (A) special-purpose constructor 
(B) destroyer, (C) optional substring, (D) general-purpose constructor. (i) (A) constructs (I ) 
analyzer, (2) inferrer, (3) general-purpose constructor, (4) destroyer. (ii). analyzer (1) 
identifies the primitives of (A), (B), (C), (D), and inferrer (2) uses this information to 
instruct general-purpose constructor (3) to produce (E), the emitter of a description of (A), 
(B), (C), (D). (iii). The emitter (E) produces the description (5) of (A), (B), (C), (D). 
(iv). Destroyer (4) removes the emitter (E). (v). Destroyer (B) removes (l), (2), (3), (4). 
(vi). Constructor (D), using description (5), produces (A)‘, (B)‘, (C)‘, (D)‘. (vii). Destroyer 
(B) removes description (5). 
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5. An Improved Result 

Although we have just shown that a machine can achieve a complete 
reproduction of itself by employing itself as model, the strategy is not entirely 
satisfactory, requiring as it does the creation and later destruction of whole 
substrings (in particular the creation and destruction of new active analyzers 
and constructing routines, and the creation and destruction of both a des- 
cription of the initial machine and an emitter of this description. 

We now show how the self-reproduction by self-inspection can be 
simplified. (See Fig. 5.) In particular, we re-design our system so that the 
information acquired by the new analysis string need not be temporarily 
stored in the description and emitter of a description, but is acted upon as 
it is acquired. In this strategy, only the analyzer of the second string will 
prove eventually to be redundant and thus condemned to dissolution in the 
final “clean up”. 

RESULT 6 
Machine reproduction by self-inspection without recourse to temporary 

self-description can be exhibited in the kinematic system. 

(ii) (0) 1 (C) j (6) 1 (A) / (“) 
T- 
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1 
lII@cm [jqgcc,‘-J T-ifl- (A j: i 

FIG. 5. Temporary description dispensed with. Initial situation. Initial machine consists 
of (A), a special-purpose constructor of an analyzer and a locator, (B), a constructor, 
(C), a destroyer, and (D), an arbitrary substring. (i). (A) constructs the second string 
consisting of (1) analyzer and (2) locator. (ii). Analyzer (1) inspects original machine, 
primitive-by-primitive, and communicates identities of primitives to locator (2) which 
activates appropriate constructor region within (II). (iii). Constructor (B) produces copies 
of the newly identified primitives of itself to form (A)‘, (II)‘, (C)‘, (D)‘. (iv). Destroyer (C) 
removes (1) and (2). (v). Final situation: two topics of the original machine. 
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We begin with an initial string which first produces and then activates a 
separate analyzer string equipped with a locator subroutine. The new 
analyzer string is to be used to discover the primitives of its “parent” the 
original string, one by one, and to disclose them to the original string. It 
does this by the following process. After analyzing and ascertaining the type 
of a primitive of the first string, the second string switches to its locator and 
moves along the first string to a region which, if activated, will construct a 
copy of the newly identified primitive type. In effect, the first string will 
contain regions for constructing each of the primitive types, and the second 
string will locate the proper constructor region and transfer activation to it. 
The now active first string can construct and append to a reserved part of the 
second string a copy of the primitive named. Activation is then transferred 
back to the second string, and the second primitive of the first string is read. 
Continuing thus, a complete copy of the original string can be constructed and 
appended to the second string. At the conclusion of the creation of the second 
copy of the original string, the first string can destroy the originally created 
locator portion of the second string, leaving only the copy of itself. This copy 
can be activated and dispersed, completing the reproduction by means of self- 
inspection. 

Here our model effectively dispenses entirely with even the temporary use 
of a separate description. 

6. Simpliled Reproduction by Means of Self-inspection 

Although by the construction of the last section, the self-inspection 
reproduction process can be made considerably simpler, it remains complex, 
and also still requires that at each reproduction cycle an organ be created 
which is later destroyed. The source of these characteristics lies principally 
in the design and ground rules of our underlying automaton system and in 
particular in the requirement that active strings always have their action 
directed toward the (sole) possible other string. By re-designing slightly our 
underlying automaton system we can eliminate this need to create and 
destroy a subroutine, and can greatly simplify the description of the 
reproductive process. (See Fig. 6.) 

RESULT 7 

Machine reproduction by self-inspection without creation and destruction 
of auxiliary strings can be exhibited in the kinematic system. 

In our re-designed automaton system for exhibiting reproduction by means 
of self-inspection, the initial machine will consist of a pair of associated 
strings (which need not be identical), and reproduction will have taken place 
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when there are two pairs of these associated strings. The first string of the 
initial pair will consist of an analyzer (with restorer) and a constructor (and 
may optionally include some additional string of primitives not directly 
taking part in the reproductive process). The action of the analyzer will be 
directed toward the second string of the initial pair; the action of the con- 
structor will be directed toward producing the second string of the offspring 
machine pair of string. The second string of the initial pair will also consist 
of an analyzer (with restorer) and a constructor. The action of the analyzer 
will be directed toward the first string of the initial pair, and the action of 
the constructor will be directed toward producing the first string of the off- 
spring pair of strings. 

The reproduction process can now be informally described as follows. 
The analyzer of the first string of the initial machine examines the second 
string of the initial machine and constructs a separate copy of the second 
string. Activation is now transferred to the second string of the initial 
machine. This second string now examines the first string of the initial 
machine and constructs a separate copy of it. This new first string of the 
(offspring) second machine is now activated, and the offspring pair of strings 
is detached and dispersed (our automaton system provides at present no 
explicit implementation of this separation process). This completes our 
description of a simplified form of reproduction by means of self-inspection 
(and consequent transmission of any acquired characteristics). 

This model of reproduction by self-inspection is more reconomical and 
elegant since we have eliminated the necessity for construction of temporary 

[ (C3) 1 (82) ( (Al) / 

FIG. 6. Simplified reproduction by self-inspection. Initial situation. There are two initial 
strings each possessing an analyzer-restorer (Al), (A2), a constructor (Bl), (B2); (Al) and 
(A2) as well as (Bl) and (B2) may differ in their structure but carry out the same functions; 
(Cl) and (C2) are free to be completely different in both structure and function. (i). The 
analyzer (Al) and constructor (Bl) of the first string of the initial pair read (A2), (B2), 
(C2) of the second string of the initial pair and produce a copy (A2)‘, (B2)‘, (C2)’ of the 
second string. (ii). (A2) and (B2) act on (Al), (Bl), (Cl) and produce a copy (Al)‘, (Bl)‘, 
(Cl)‘. (iii). Separation of original and new pair is implemented. 
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substrings and their later destruction. On the other hand, this model of self- 
reproduction is more complex in that actions must systematically be directed 
toward several diflerent strings, and joining and separating mechanisms for 
associated pairs of strings must be employed, properties we have as yet not 
made an explicit part of our kinematic system. 

7. Discussion 

It should be emphasized that what we have presented here is not an 
abstraction from and explanation of any particular known biological reality, 
hut an abstraction from and explanation of a possible biological reality. It 
can thus be viewed as a contribution to a true theoretical biology which takes 
as subject matter the explication and explanation of the processes of all 
possible living systems, not merely those which are now known to exist, and 
which engage our interest and attention. 

The machine self-reproduction result of von Neumann showed that 
machines are capable of carrying out a process once widely thought possible 
only for biological organisms. Our results in this paper show that machines 
ar’e capable of carrying out a process which had quite generally been thought 
impossible for both machines and organisms, viz. complete self-inspection 
of structure, and by this means, self-reproduction. It is thus clear that a 
physical art$cial automaton system could be designed and constructed 
which would exhibit this self-inspection and self-reproduction process. 
Whether reproduction by self-inspection (by the strategy employed here, OI 
by any other strategy) is presently exhibited (or has ever been exhibited) in 
any natura1l.v occurring organism or system is a question of great 
interest. 

The capacity of a system generally to explore its own structure and produce 
a complete description of it for its perusal and use (for example, in generation 
and evaluation of behavioral options open to it) seems a valuable one, and 
if such a prima facie advantageous capacity is not exhibited anywhere in 
na.turally occurring systems, this in itself seems of interest. It is possible of 
course that complete self-inspection, possibly necessitating special properties 
and organization, is costly relative to its benefits, and that a simpler partial 
self-inspection capacity is, all things considered, superior. 

In either case, the techniques devised here by which a system can extract 
and employ partial or complete models of itself may contribute to the 
explication of the logical bases of several complex biological processes closely 
allied to reproduction. For example, development can in part be seen as a 
process of reconciling by the appropriate constructive or destructive action a 
phenomic description of what the organism is at the present instant, to what 
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a reserved genetic description says it should be. Since our system possesses 
the means by which both present phenomic and “ideal” genomic descriptions 
can be obtained (as well as the constructive and destructive capacity for 
implementing system modification) we thereby have the basis for a logical 
explication of the processes of development. Similarly with homeostasis, and 
repair and re-generation, since these processes too take the same logical form 
of comparing the actual state of affairs with a stored standard, and then 
acting to reconcile the differences between the two. 
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