
J. theor. Biol. (1977) 66,437-456

Automaton Models of Reproduction by Self-inspection

RICHARD LAING

Logic of Computers Group,
Department of Computer and Communication Sciences,

The University of Michigan, Ann Arbor, Michigan 48104, U.S.A.

(Received 23 February 1976, and in revised,form 13 Ju!y 1976)

There is a strategy by which an automaton can examine itself to obtain a
complete description of its own constituent structure. This strategy is here
employed to show that machine self-reproduction by means of self-
inspection is possible. Since the parent automaton structure serves as the
sole model for the structure of offspring, the result shows that there is a
logically consistent strategy of self-reproduction in which any acquired
structural characteristics of parent could perforce be transmitted to the
offspring.

1. Introduction

John von Neumann’s successful strategy of machine self-reproduction
(von Neumann, 1966) makes use of an active machine reading, and then
employing information obtained from a separate passive “blueprint”
description. (Very roughly speaking we can equate the active components of
von Neumann’s machine with enzymatic proteins of the cell, and the separate
passive description with nucleic acids.) At the same time, ‘van Neumann
(1966, p. 122) was aware of alternative possible reproductive strategies,
including the idea that a machine might “read” itself directly and act upon
the information thereby disclosed, to reproduce itself. (In the cell this could,
for example, mean that the active protein machinery might somehow analyze
itself and use this information to implement reproduction, only incidentally
if every being in possession of a separate description of the protein machinery.)
He rejected this strategy however since there were evident practical difficulties
of automaton implementation, and he also feared there might even be an
essential logical paradox inherent in the notion of a system actively inspecting
its active self.

Arbib (1966, p. 217) however was somewhat more sanguine, stating that
he was not convinced that there is any logical paradox in a machine examining

437

438 R. LAING

itself and thereby obtaining a description it can use for carrying out complete
self-production. Indeed, Burks (1961) had already conjectured that it is
possible for a machine to inspect all of its structure and obtain a complete
description of its structure which it can store for its use within a proper part
of itself. Laing (1976) has shown the Burks conjecture to be true; there is a
strategy by which a machine can examine itself to obtain for its use a complete
structural description.

In the present paper, this result is employed to show that self-reproduction
by means of self-inspection is possible. In effect, there is no logical necessity
for the presence of an explicit blueprint in the reproduction of completely
general information transactional systems. Also, since the complete “mature”
original parent machine serves as the model for the offspring machine, there
exists a logically consistent strategy of reproduction in which acquired
characteristics of parent could be transmitted to the offspring.

In the rest of this introductory section, we describe briefly and informally
our kinematic system, and list its essential features; we then explain how
reproduction by self-inspection can therein be carried out. (We call our
automaton system a kinematic system although it might better be termed a
“quasi-kinematic” system since it employs not only the notion of spatial
physically interacting componentry but also state-changing notions drawn
from the cellular automaton concept.)

The System. The basic components of our system consist of strands or
strings of primitive constituent finite state automata, these component strings
being in sliding contact. [See Laing (1975) for a general discussion of several
kinds of such systems.] A primitive constituent of a string can be in an acti-
vated or a passive state. An active primitive constituent in contact with a
passive constituent of another string will interact with the passive constituent
in precisely defined ways only. These ways include changing the state of the
contacted passive primitive, reacting to the state of the contacted passive
primitive, sliding to the next neighbor of the contacted passive primitive.
Since one string (an active string) can be designed to play the part of any
Turing machine finite-state read-head, and another string (a passive string)
can be designed to play the part of a Turing machine tape, we can carry
out any Turing computation in this kinematic machine system. (See
Fig. 1 for an illustration of what a Turing machine would look like in our
system.)

Some important features

The following are some behavioral and organizational properties of our
system important in securing our results.

REPRODUCTION BY SELF-INSPECTlOb 439

(1) The major components of our system being connected strings of simpler
cell-automaton primitives, one string can, by sliding, obtain direct contact
access to all primitives of a second string. [This contrasts with von Neumann’s
two-dimensional “checkerboard” cellular automaton system (von Neumann,
1966) where access to interior cells of a machine can be attained only by
penetrating the intervening exterior cells of the machine.]

(2) At any one time, only a singZe primitive constituent need be activated
in order to carry out the actions necessary for our inspection and repro-
duction results. (This again contrasts with the von Neumann cellular system
where although the general course of system action as he described it is
sequential, in implementing certain processes, activation is sometimes
required to be simultaneously present at many locations.)

(3) Both strings of the system can contain potentially active primitives, and
the active and passive roles of the strings can be exchanged. (This contrasts
with the usual Turing machine notion where the roles of active automaton
and passive tape remain fixed.)

(4) The assumption is made that available to the system is a population of
passive, “null” primitive constitutents. These primitives can be recruited and
attached at the ends of passive strings. (This is analogous to the “automatic”
addition of blank squares at the end of a Turing machine tape, and related to
the von Neumann cellular system notion of a machine having available to it
an environment of quiescent cells.)

(5) By a series of actions directed at null primitives, these primitives can
be converted to any of the other primitive constituent automaton types.
(This is analogous to the conversion of quiescent cells of the von Neumann
cellular system to any of the other cell-types.)

(6) The process by which a null primitive can be converted to any other
primitive type, including returning to the null type itself, can be employed to
ascertain the type of any unknown primitive of the system. This is the central
concept employed in this paper in establishing the self-inspection result which
obviates the need for any permanent and separate passive description in
self-reproduction. The central idea of the analysis process is as follows. As
part of the system, there is a primitive which when active and in contact with
a null primitive “detects” this fact by altering its own behaviour (it communi-
cates a different activation). In paragraph (5) above we have said that the
system can, by a series of distinct actions convert any known primitive back
to a null. Alternatively we can subject an unknown primitive to a series of
conversion actions and test (with our null-detector) for the arrival of the null
status. The record of the conversion actions which reduced the unknown
primitive to the null status reveals what the primitive type must have been
before the conversion to null took place. By this mean the system can identify

440 R. LAING

unknown primitives. It should also be pointed out that not knowing what the
primitive in question was before the conversion process began, and knowing
that it is presently null, we can by a series of constructive conversion actions,
restore the primitive to its original type.

Outline of principal results

The result, that a machine can achieve complete self-inspection and by this
means obtain the information needed for self-reproduction, can take many
forms. We first briefly outline the version of the result as prepared for in
section 4 and presented in section 5, and then also the informal version of
section 6.

In the first version, the original machine is a single string of constituents.
This initially active string constructs a second string consisting principally of
an analyzer. The first string relinquishes activation to this second string,
which then analyzes the original string and produces a description of it.
Activation is then relinquished back to the original machine which employs
the newly available description of itself to produce a new copy of itself. The
original machine may now (optionally) destroy (reduce to null primitives)
the second string (along with the temporary description) so that we are left
with the original initial machine and a copy of it. (See Fig. 4 for an illustration
of this process.)

In another version (that of section 6), the original machine consists of two
strings which need not be identical, but each containing, in some form, an
analyzer and constructor. The initially active string analyzes its passive
partner and constructs a copy of it. It then relinquishes activation to the
passive partner which analyzes the initially active string and constructs
a copy of it. The system has thus reproduced itself without recourse
to a distinct description of itself. (See Fig. 6 for an illustration of this
process.)

We conclude this introduction with some remarks on our use of language.
When in our machine system an active primitive has contacted a passive
primitive and activation has afterward been routed to precisely one of two
different possible adjacent primitives according to whether the passive
primitive was a type we call zero or a type we call one, we shall simply say
that the machine read the primitive; when a certain primitive is now active
and because of this activation all further action the machine may take will be
different than if some other primitive was now active, we may simply say that
the machine now “knows” something it did not know before. That is, where
used in respect to machine behavior, such words as “read”, “know”, “recall”,
“discover”, “discern”, etc. have a precise technical interpretation in terms of
specific, completely determined actions and states; such words are employed

REPRODUCTlON BY SELF-INSPECTION 441

solely as an expositional shorthand, and are not intended to suggest the
presence or necessity in the machine system of any unexplained, or unanalyzed
psychological capabilities.

2. A Kinematic Machine System

The machines for which our results are shown are kinematic machines
which compute and construct by means of a repertoire of simple mechanical
actions: viz. sliding local shifts of contact, local changes of state, and local
detections of such state changes.

.A machine will consist of basic simple finite state automaton primitives,
organized into strings. The primitives (and consequently the strings) possess
a forward and backward direction. For most of our discussion the specific
machines employed will consist of at most two separate strings of interacting
primitives. At any one time at most one of the two possible strings will possess
an active primitive. That the active and passive roles of strings may be
exchanged is an important feature of this machine system. In operation, the
two strings are always in sliding contact at a single point. One characteristic
action is for the activated primitive of the active string to act upon the con-
tacted passive primitive so as to change its state, and then (automatically)
relinquish activation and contact to its own next immediate neighbor
primitive in the forward direction of the active string.

We now describe the basic primitives of our system.
‘Three primitives N (nuN), 0 (zero), 1 (one) will principally be employed in

the passive recording of information. If in the present system an N, 0, or 1
should be part of an active string and undergo activation, it will merely pass
activation and contact to its next forward direction neighbor, thus behaving
as a “no operation” primitive. A string consisting entirely of N, 0, and I
primitives thus takes no action toward other strings.

‘The two primitives PO (print zero) and Pl (print one) will principally be
employed in acting upon N, 0, and 1 primitives, to change their states. A PO
will act upon an N, 0, or 1 to make it a 0, and a Pl will act upon an N, 0,
or 1 to make it a 1. After completion of this action, a PO or :Pl will auto-
matically relinquish activation and contact to its next neighbor primitive in
the forward direction in its string. (Thus, in contrast to strings consisting
entirely of N, 0, and 1 primitives, these primitives and others to be described
below, can be activated to produce actions on primitives of other-strings.)

The two primitives F (forward) and B (backward) cause the active string
to slide to the next primitive of the passive string in the forward or backward
direction, respectively. If application of an F or B primitive would result in

442 R. LAING

a physical disengagement by “running off the end” of the passive string, an
N primitive is assumed always to be available and to be automatically
attached to the end of the passive string. After completion of the move
action, an F or B primitive automatically relinquishes activation to its next
neighbor primitive in the forward direction in the active string.

The primitive H (halt), if activated, terminates all activity.
There are three conditional transfer primitives, of the form TX, y where

X is N, 0, or 1 (the condition to be satisfied) and y is the address of a primitive
in the program. If for example a TN, y primitive is active and in contact
with an N primitive in the passive string, then activation and contact are
routed to the primitive with the address y in the active string; when an
activated TN, y is in contact with a passive primitive other than N, then
TN, y simply relinquishes activation and contact to the next neighbor in the
forward direction.

The primitive Ty is the unconditional transfer which when activated will
shift activation and contact to address y.

[The above description of conditional and unconditional transfer action
does not explain how the active string actually carried out shifts of activation
to an arbitrary address y in the active string. There are many ways in which
transfers may be implemented. Here, for expositional simplicity, we merely
assume that such transfers can be effected. Various transfer implementation
techniques for kinematic machines are discussed in Laing (1975, 1976).]

The A (activation) primitive when activated will produce an activation of
the pussiue primitive contacted and an immediately subsequent loss of
activation in the active string. The effect of this primitive is to produce an
exchange of the active and passive roles of the strings.

The AD (activate and detach) primitive when activated will produce an
activation of the passive primitive contacted and an immediute detachment of
the two strings, without a loss of activation in the active string. The role of
this primitive is to create an independent activated string.

The C (conversion) primitive is such that if active it will systematically
convert any passive primitive (including a passive C primitive) with which it
is in contact into another primitive type. The C conversions are set forth in
Table I. Notice that the conversion sequence forms a closed loop: some
specific number of C actions will convert any primitive type to any other
primitive type, including itself. The function of the C primitive is to enable us
to obtain any of our primitive types, beginning with a freely available N
primitive, and to provide a means by which the type of an arbitrary unknown
primitive can be ascertained.

(This latter capacity of the system is critical to our principal result, for as
will be seen in the next section, it will enable the system to determine its own

REPRODUCTION BY SELF-INSPECTION 443

TABLE 1

C conversions

C(N)+0
C(0) --f 1
C(1) + PO
C(P0) -+ PI
C(Pl)+P
C(F) + B
C(B) -+ H
C(H) --+ TO

C(T0) + Tl
C(T1) -+ TN
C(TN) --f T
C(T) -j AD
C(AD) + A
C(A) + C
C(C) --I N

structure. It should be emphasized though, that the analysis method
described here and upon which the complete self-inspection result depends,
is not the only tactic, employing a “biological vocabulary”, by which the
determination of primitive constituents could be carried OUL. It is the logical
equivalent of any of several means by which a system can ascertain the type
of its own constituents. The C-conversion procedure was chosen since it is
a straightforward adaptation of the biological-like process of synthesis of
primitives required for construction in our system. We might, alternatively.
have made the analysis procedure distinct from the construction procedure
by introducing the notion that every primitive has permanently attached to it
a RNA-like complex in which the anti-codon characters can be read, one-by-
one, by a set of character detecting primitives.‘)

3. Some Basic Kinematic Machines

In this section we describe some basic kinematic machines and establish
some preliminary results; in section 4 we will combine these machines and
results to show that there is a machine possessing the sought after capacity
to reproduce by employing self-inspection.

RESULT 1

Arbitrary Turing computations can be carried out in the kinematic system.
This follows immediately from the fact that the properties of our kinematic
system with active strings composed only of F, B, PO, Pl, TN, TO, Tl, and
H primitives and passive strings of N, 0 and I primitives only can carry out
the actions of any Wang “programmed” Turing machine, a class of machines
which (Wang, 1957) has been shown capable of carrying out any Turing
computation. (Fig. 1 illustrates what a Turing machine would look like in
our kinematic machine format.)

444 R. LAING

FIG. 1. A Turing machine in kinematic machine format. The lower string consists of
program primitives which if activated will act on the passive “tape” primitives of which the
upper string is composed.

Fixed sequence emitter

A fixed sequence emitter is a string consisting entirely of PO, Pl and F
primitives, each PO or Pl followed by an F. When activated, such a string
of primitives (acting on a passive string consisting of N, 0 and 1 primitives)
will produce a particular sequence of zero and one primitives. Clearly for
any particular fixed finite sequence of zeroes and ones desired, there is a
unique fixed, finite emitter which can be designed to create the desired
sequence.

Example. The emitter PI-F-PO-F-PI would (starting with a string con-
sisting entirely of N, 0, or 1 primitives) produce the string 1-0-l.

Since our kinematic machines are composed of a fixed finite number of
primitive types, we can assign a unique fixed finite length code word of
zeroes and ones to each primitive type. (For concreteness we might assign
N = 0000, 0 = 0001, 1 = 0010, PO = 0011, etc.) The description of a
kinematic machine will be the code words of the primitives of each of its
strings in order (beginning at the top of the originally activated string and
proceeding in the forward direction) and (if necessary) employing a special

REPRODUCTION BY SELF-INSPECTION 445

code word marking the end of the first string and the beginning of the second.
For any machine, a fixed sequence emitter can be designed which will print
out the description of the machine.

Emitter inferrer

An emitter inferrer is an active string which can examine a passive zero-
one description and infer the composition of the fixed sequence emitter which
produced it. The inferrer works as follows. It reads the first primitive of the
passive description string (by means of TO, Tl primitives). If the first
primitive is a one, (as in the emitter example above) the inferrer “knows”
that it had to have been produced by a PI primitive present as the first
primitive of the emitter (similarly, if the first description primitive was a
zero, it must have been produced by a PO, as the first primitive of the emitter).
If the description continues (there is a second zero or one) it must have been
a consequence, first, of the application of an F primitive, followed by a PO
or PI according as the second description primitive was a zero or a one.
Proceeding in this fashion, the inferrer can deduce the complete sequence of
ernitter primitives.

Special purpose constructor

Beginning with “null” primitives recruited from the environment, or
assuming a passive string of all null primitives, a (unique) active program
string (consisting of proper sized blocks of C primitives separated by F
primitives) can be designed to construct any fixed finite string.

Example. The constructor -C-C-C-C-F-C-C-C-C-C-F-C-C-C-F-C-
CC-C-C-F-C-C-C-C- will, starting with N primitives produce the string
Pl-F-PO-F-PI, (e.g. the emitter of our earlier example).

Analyzer

There exists an (active) string which when presented with any (passive)
string can analyze and identify the passive string primitives one by one and
produce a description of the passive string. An analyzer will consist of a
series of C primitives, each C followed by a TN primitive. For each primitive
type there is a unique number of C stimulations followed by a TN “test and
transfer” primitive which will enable a machine to ascertain the type of any
primitive, and then to transfer to a location where this information can be
acted upon.

Example. In the analyzer segment TN-C-TN-C-TN-C-TN-C-TN .
the first TN will detect if the unknown primitive is already an ‘N, the second

446 R. LAING

TN will detect if the unknown primitive is a C, the third TN will detect if the
unknown primitive is an A, etc. (See Table 1; a part of an analyzer is illus-
trated in Fig. 2.)

Analyze and restorer

The anlyzer can be augmented with distinct construction routines such that
after a primitive type has been determined (by reduction to N) an appropriate
re-construction routine (of active C primitive applications) can restore the
primitive to its original form. This is possible because the system will know
what the primitive now is (N), what it was and should be restored to (it has
just discovered this), and the number of C stimulations necessary to convert
an N to any desired primitive type.

FIG. 2. A segment of analyzer. The lower string represents a segment of analyzer which
subjects primitives of the upper string to a series of C conversion stimuli, and then tests (by
means of TN primitives) whether the primitive under analysis has yet been converted to N.
In the case illustrated, the F primitive in contact will have to undergo ten more C stimuli
before it is detectable by a TN.

Example. If the analyzer has just established that the unknown primitive
was an AD (i.e. exactly three C stimulations have converted the unknown to
an N), then the TN which detected this can route activation and contact to
a “restore” route C-C-C-C-C-C-C-C-C-C-C-C (12 C stimuli) which will
convert the present N back to the AD it was originally.

Special-purpose constructor inferrer

As with the emitter of a description, whose structure can be inferred from
the description produced, so can the unique constructor of any string be
inferred from the string produced. This is done as follows. An analyzer

REPRODUCTION BY SELF-INSPECTION 447

determines the primitive type, and then transfers to an inference routine.
For each primitive type, a unique number of C stimulations were required
to convert an initial N to the discovered type. A description of the required
number of C primitives can be set down, followed by the description of an
F primitive, necessary in the original construction routine to move on to the
next N to be converted. We then transfer back to the analyzer to determine
the next primitive, etc.

Example. Given the string PI-F-PO-F-PI (our example emitter which
was constructed by our example constructor) the inferrer analyzes the first
primitive and determines that it is a type Pl ; a Pl is produced by C-C-C-C,
and a description (in the zero-one code) for four successive C’s can be set
down. The emitter then moves on to analyze the F primitive, etc.

Special-purpose fixed destroyer

For any particular known (passive) string, an (active) string consisting of C
primitives and F primitives only, can be designed which can reduce each
primitive of the string to an N.

Example. We wish to “destroy” the string T-A. This can be done by the
string C-C-C-C-F-C-C (see the C conversion table).

General destroyer

Any (initially unknown passive) string can be completely reduced to N
primitives, either by analyzing the primitives in turn to determine their type
and then applying the requisite number of active C primitives, or by applying
C primitives one-by-one and testing for the arrival of the N status

Substring locator

We shall frequently wish to have our active string move along the passive
string and locate a particular region or sub-string of the passive string. The
regions of interest in the passive string can be prefaced by a unique zero-one
sequence label, and we can have the active string identify a sought-for label
by carrying out a scanning and decoding routine. For example, starting at
the top end of the passive string, the active locator routine will search for the
first symbol of the desired label; if it is found, the locator examines the next
primitive to see if it is also correct. If it is, the decoding continues. If it is
not, the locator returns to its initial state and moves on to the next label
code block and begins again the decoding process.

T.B. 20

448 R. LAING

RESULT 2
There exist self-describing kinematic machines. Self-description of a

kinematic machine will take place if beginning with an active string (either
alone or together with an all null passive string) the active string finally halts
having created a passive string containing a complete correct description of
itself in the agreed upon zero-one code. This can be accomplished (Laing,
1975; Lee, 1963; Thatcher, 1963) as follows.

The self-describing machine will be an active program string composed of
the following substrings: any desired (optional) finitely long substring, an
emitter inferrer, and an emitter of the description of the optional substring
(if any) and of the emitter inferrer.

We begin by activating the emitter. At the conclusion of its operation, the
passive string will contain a description of the optional substring (if included)
and a description of the emitter inferrer. Activation is then shifted to the
emitter inferrer. The inferrer will examine the passive string and infer the
description of the emitter which produced it, and print out the description of
the emitter. This completes the self-description. (See Fig. 3 for an illustration
of the self-description process.)

FIG. 3. Self-description process. (Note: no attempt has been made to reflect the fact that
thl string segments pictured would possess very different relative sizes.) (i). An initial
optional segment (A), an inferrer @), and emitter (C) of the description of (A) and (B).
(ii). The emitter (C) produces its stored description of (A) and (B). (iii). The inferrer (B)
now reads the description of (A) and (B), and from this infers the description of (C), and
produces it, completing the self-description process.

RESULT 3
There exist general-purpose kinematic machine constructors. A general-

purpose kinematic machine constructor is an active string such that if it is
given the description of any string, the constructor will produce the string

REPRODUCTION BY SELF-INSPECTIOK 449

desired. Such a general-purpose constructor will work as follows. It will read
the first code block of the description and determine the primitive type to
be constructed. It will then transfer to the subroutine for the production of
such a primitive, viz., the number of continguous C primitives whose appli-
cation will produce the desired primitive. Activation will then be transferred
back to the description reading routine, where the description of the next
desired primitive is decoded, etc. At the conclusion of construction, the newly
produced machine can be activated by means of an A primitive. Note that
the general-purpose constructor can, in reading a description, be equipped
to preserve or to destroy the description in the process.

RESULT 4

There exist self-reproducing kinematic machines. Since [by the Lee (1963),
Thatcher (1963) results; our result 21 a kinematic machine can produce its
own complete description, and since given any description of a machine a
kinematic machine exists which can construct the machine, a machine con-
sisting of a self-describer and a general-purpose constructor can reproduce
itself (Thatcher, 1970).

Result 4 is a variant of the original von Neumann (1966) result that an
automaton can reproduce itself if supplied with a description of itself. It is
an automaton model of the logic of biological reproduction as it is believed
actually to take place in living organisms, viz., by means of a nucleic acid
reserved description acted upon by enzymatic protein macro-molecular
machinery.

The principal result of the present paper, that in self-reproduction the
presence of an explicit prior description can be dispensed with entirely, is
shown in the next section.

4. Reproduction by Self-inspection

We are now prepared to show how a machine can reproduce itself, using
itself as model.

RESULT 5. (PRINCIPAL RESULT)

Machine reproduction by self-inspection can be exhibited in the kinematic
system. We begin with an initial single string “parent” machine consisting
of the following substrings.

(A) A special purpose emitter-constructor which can construct a new second
string. This second string which (A) constructs will consist of (1) an analyzer

450 R. LAING

and restorer, (2) an inference routine of the sort which can take a description
and infer the description of the emitter which could produce the given
description, (3) a general purpose constructor, (4) a general purpose destroyer.

(B) A destroyer which can convert strings back to null primitives,
(C) A fixed finitely long optional substring, capable of carrying out some

desired general behavior; this substring plays no active role in the self-
analyzing and self-reproducing process.

(D) A general-purpose constructor which takes the description of any string
and constructs the string.

The process of reproduction can be carried out as follows. (See Fig. 4))
(i) (A) is activated and constructs the new second string consisting of (1)

(analyzer-restorer), (2) (emitter inference routine), (3) (general-purpose
constructor), and (4) (destroyer).

(ii) Activation is relinquished to the new string and the new string analyzes
the original string, and constructs at the end of the original machine a new
substring (E) which is an emitter of the description of (A), (B), (C) and (D).

(iii) The new string now relinquishes activation to (E) of the first string.
(E) then constructs, as part of the second string, (5), the description of
(4 (9 (Cl (D).

The first string now consists of (A) (B) (C) (D) (E) and the second of (l),
(2), (3), (4), and (5), the description of (A) (B) (C) (D).

(iv) Activation is now relinquished to (4) the destroyer, of the second
string. (4) then reduces (E) back to null primitives.

(v) Activation is now relinquished back to (B) of the original string which
destroys all but (5) the description of the second string.

(vi) Activation is transferred to (D), the constructor of the first string,
which using the description (5) of (A), (B), (C), (D) constructs a copy (A)‘,
(BY, (9, (D)‘.

(vii) Activation in the first string is now passed to the destroyer (B), which
reduces (5) to null primitives, leaving the second string consisting of the copy
of (A) (B) (C) (D) only. This copy can now be activated and released by
application of an AD primitive.

We thus have reproduced our original machine, by an examination of its
structure. Whatever properties the original possessed at the time of repro-
duction are now recreated in the offspring. Roughly speaking, we have here
a model of reproduction in which the use of a distinct description is not
central to the process and in which any acquired characteristics of the
original parent string would be reproduced in the offspring string.

Many slight variations of this reproduction by self-inspection can be
devised; the sequence of the “clean-up” activities can, for example, be altered.
In the next sections we exhibit some more radical variants of the process.

REPRODUCTION BY SELF-INSPECTION 451

[(D) j CC) 1 (B) 1 Cg

(i)i 1 (C) - l(B)lyy

FIG. 4. Reproduction by self-inspection. Initial situation. (A) special-purpose constructor
(B) destroyer, (C) optional substring, (D) general-purpose constructor. (i) (A) constructs (I)
analyzer, (2) inferrer, (3) general-purpose constructor, (4) destroyer. (ii). analyzer (1)
identifies the primitives of (A), (B), (C), (D), and inferrer (2) uses this information to
instruct general-purpose constructor (3) to produce (E), the emitter of a description of (A),
(B), (C), (D). (iii). The emitter (E) produces the description (5) of (A), (B), (C), (D).
(iv). Destroyer (4) removes the emitter (E). (v). Destroyer (B) removes (l), (2), (3), (4).
(vi). Constructor (D), using description (5), produces (A)‘, (B)‘, (C)‘, (D)‘. (vii). Destroyer
(B) removes description (5).

452 R. LAING

5. An Improved Result

Although we have just shown that a machine can achieve a complete
reproduction of itself by employing itself as model, the strategy is not entirely
satisfactory, requiring as it does the creation and later destruction of whole
substrings (in particular the creation and destruction of new active analyzers
and constructing routines, and the creation and destruction of both a des-
cription of the initial machine and an emitter of this description.

We now show how the self-reproduction by self-inspection can be
simplified. (See Fig. 5.) In particular, we re-design our system so that the
information acquired by the new analysis string need not be temporarily
stored in the description and emitter of a description, but is acted upon as
it is acquired. In this strategy, only the analyzer of the second string will
prove eventually to be redundant and thus condemned to dissolution in the
final “clean up”.

RESULT 6
Machine reproduction by self-inspection without recourse to temporary

self-description can be exhibited in the kinematic system.

(ii) (0) 1 (C) j (6) 1 (A) / (“)
T-

[pq <c-qpy -[-(A)] -__..-- -.. - __

1
lII@cm [jqgcc,‘-J T-ifl- (A j: i

FIG. 5. Temporary description dispensed with. Initial situation. Initial machine consists
of (A), a special-purpose constructor of an analyzer and a locator, (B), a constructor,
(C), a destroyer, and (D), an arbitrary substring. (i). (A) constructs the second string
consisting of (1) analyzer and (2) locator. (ii). Analyzer (1) inspects original machine,
primitive-by-primitive, and communicates identities of primitives to locator (2) which
activates appropriate constructor region within (II). (iii). Constructor (B) produces copies
of the newly identified primitives of itself to form (A)‘, (II)‘, (C)‘, (D)‘. (iv). Destroyer (C)
removes (1) and (2). (v). Final situation: two topics of the original machine.

REPRODUCTION BY SELF-INSPECTION 453

We begin with an initial string which first produces and then activates a
separate analyzer string equipped with a locator subroutine. The new
analyzer string is to be used to discover the primitives of its “parent” the
original string, one by one, and to disclose them to the original string. It
does this by the following process. After analyzing and ascertaining the type
of a primitive of the first string, the second string switches to its locator and
moves along the first string to a region which, if activated, will construct a
copy of the newly identified primitive type. In effect, the first string will
contain regions for constructing each of the primitive types, and the second
string will locate the proper constructor region and transfer activation to it.
The now active first string can construct and append to a reserved part of the
second string a copy of the primitive named. Activation is then transferred
back to the second string, and the second primitive of the first string is read.
Continuing thus, a complete copy of the original string can be constructed and
appended to the second string. At the conclusion of the creation of the second
copy of the original string, the first string can destroy the originally created
locator portion of the second string, leaving only the copy of itself. This copy
can be activated and dispersed, completing the reproduction by means of self-
inspection.

Here our model effectively dispenses entirely with even the temporary use
of a separate description.

6. Simpliled Reproduction by Means of Self-inspection

Although by the construction of the last section, the self-inspection
reproduction process can be made considerably simpler, it remains complex,
and also still requires that at each reproduction cycle an organ be created
which is later destroyed. The source of these characteristics lies principally
in the design and ground rules of our underlying automaton system and in
particular in the requirement that active strings always have their action
directed toward the (sole) possible other string. By re-designing slightly our
underlying automaton system we can eliminate this need to create and
destroy a subroutine, and can greatly simplify the description of the
reproductive process. (See Fig. 6.)

RESULT 7

Machine reproduction by self-inspection without creation and destruction
of auxiliary strings can be exhibited in the kinematic system.

In our re-designed automaton system for exhibiting reproduction by means
of self-inspection, the initial machine will consist of a pair of associated
strings (which need not be identical), and reproduction will have taken place

454 R. LAING

when there are two pairs of these associated strings. The first string of the
initial pair will consist of an analyzer (with restorer) and a constructor (and
may optionally include some additional string of primitives not directly
taking part in the reproductive process). The action of the analyzer will be
directed toward the second string of the initial pair; the action of the con-
structor will be directed toward producing the second string of the offspring
machine pair of string. The second string of the initial pair will also consist
of an analyzer (with restorer) and a constructor. The action of the analyzer
will be directed toward the first string of the initial pair, and the action of
the constructor will be directed toward producing the first string of the off-
spring pair of strings.

The reproduction process can now be informally described as follows.
The analyzer of the first string of the initial machine examines the second
string of the initial machine and constructs a separate copy of the second
string. Activation is now transferred to the second string of the initial
machine. This second string now examines the first string of the initial
machine and constructs a separate copy of it. This new first string of the
(offspring) second machine is now activated, and the offspring pair of strings
is detached and dispersed (our automaton system provides at present no
explicit implementation of this separation process). This completes our
description of a simplified form of reproduction by means of self-inspection
(and consequent transmission of any acquired characteristics).

This model of reproduction by self-inspection is more reconomical and
elegant since we have eliminated the necessity for construction of temporary

[(C3) 1 (82) ((Al) /

FIG. 6. Simplified reproduction by self-inspection. Initial situation. There are two initial
strings each possessing an analyzer-restorer (Al), (A2), a constructor (Bl), (B2); (Al) and
(A2) as well as (Bl) and (B2) may differ in their structure but carry out the same functions;
(Cl) and (C2) are free to be completely different in both structure and function. (i). The
analyzer (Al) and constructor (Bl) of the first string of the initial pair read (A2), (B2),
(C2) of the second string of the initial pair and produce a copy (A2)‘, (B2)‘, (C2)’ of the
second string. (ii). (A2) and (B2) act on (Al), (Bl), (Cl) and produce a copy (Al)‘, (Bl)‘,
(Cl)‘. (iii). Separation of original and new pair is implemented.

REPRODUCTION BY SELF-INSPECTION 4.55

substrings and their later destruction. On the other hand, this model of self-
reproduction is more complex in that actions must systematically be directed
toward several diflerent strings, and joining and separating mechanisms for
associated pairs of strings must be employed, properties we have as yet not
made an explicit part of our kinematic system.

7. Discussion

It should be emphasized that what we have presented here is not an
abstraction from and explanation of any particular known biological reality,
hut an abstraction from and explanation of a possible biological reality. It
can thus be viewed as a contribution to a true theoretical biology which takes
as subject matter the explication and explanation of the processes of all
possible living systems, not merely those which are now known to exist, and
which engage our interest and attention.

The machine self-reproduction result of von Neumann showed that
machines are capable of carrying out a process once widely thought possible
only for biological organisms. Our results in this paper show that machines
ar’e capable of carrying out a process which had quite generally been thought
impossible for both machines and organisms, viz. complete self-inspection
of structure, and by this means, self-reproduction. It is thus clear that a
physical art$cial automaton system could be designed and constructed
which would exhibit this self-inspection and self-reproduction process.
Whether reproduction by self-inspection (by the strategy employed here, OI
by any other strategy) is presently exhibited (or has ever been exhibited) in
any natura1l.v occurring organism or system is a question of great
interest.

The capacity of a system generally to explore its own structure and produce
a complete description of it for its perusal and use (for example, in generation
and evaluation of behavioral options open to it) seems a valuable one, and
if such a prima facie advantageous capacity is not exhibited anywhere in
na.turally occurring systems, this in itself seems of interest. It is possible of
course that complete self-inspection, possibly necessitating special properties
and organization, is costly relative to its benefits, and that a simpler partial
self-inspection capacity is, all things considered, superior.

In either case, the techniques devised here by which a system can extract
and employ partial or complete models of itself may contribute to the
explication of the logical bases of several complex biological processes closely
allied to reproduction. For example, development can in part be seen as a
process of reconciling by the appropriate constructive or destructive action a
phenomic description of what the organism is at the present instant, to what

456 R. LAING

a reserved genetic description says it should be. Since our system possesses
the means by which both present phenomic and “ideal” genomic descriptions
can be obtained (as well as the constructive and destructive capacity for
implementing system modification) we thereby have the basis for a logical
explication of the processes of development. Similarly with homeostasis, and
repair and re-generation, since these processes too take the same logical form
of comparing the actual state of affairs with a stored standard, and then
acting to reconcile the differences between the two.

This research was supported in part by the National Science Foundation through
Grant No. DCR71-01997.

REFERENCES
ARBIB, M. (1966). Towards a Theoretical Biology 2. Sketches (C. H. Waddington, ed.),

p. 204. Chicago: Aldine.
BURKS, A. W. (1961). Behavioral Sri. 6, 5.
LAING, R. (1975). J. theor. Biol. 54, 63.
LAING, R. (1976). J. Camp. System Sci. 13, 172.
LEE, C. (1963). Mathematical Theory of Automata, p. 155. Brooklyn, New York:

Polytechnic Press.
THATCHER, J. (1963). Mathematical Theory of Automata, p. 165. Brooklyn, New York:

Polytechnic Press.
THATCHER, J. (1970). Essays on Cellular Automata (A. W. Burks, ed.), p. 101. Urbana:

University of Illinois Press.
VON NEUMANN, J. (1966). Theory of Self-reproducing Automata (A. W. Burks, ed.).

Urbana: University of Illinois Press.
WANG, H. (1957). J. Assoc. Comp. Mach. 4, 63.

