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Cellular Neural Networks: Theory 
LEON 0. CHUA, FELLOW, IEEE, AND LIN YANG, STUDENT MEMBER, IEEE 

Abstract -A novel class of information-processing systems called cellu- 
lar neural networks is proposed. Like a neural network, it is a large-scale 
nonlinear analog circuit which processes signals in real time. Like cellular 
automata, it is made of a massive aggregate of regularly spaced circuit 
clones, called cells, which communicate with each other directly only 
through its nearest neighbors. Each cell is made of a linear capacitor, a 
nonlinear voltage-controlled current source, and a few resbtiue linear 
circuit elements. 

Cellular neural networks share the best features of both worlds; its 
continuous time feature allows real-time signal processing found wanting 
in the digital domain and its local interconnection feature makes it tailor 
made for VLSI implementation. 

Cellular neural networks are uniquely suited for high-speed parallel 
signal processing. Some impressive applications of cellular neural networks 
to image processing is presented in a companion paper 111. 

I. INTRODUCTION 
NALOG CIRCUITS have played a very important A role in the development of modern electronic tech- 

nology. Even in our digital computer era, analog circuits 
still dominate such fields as communications, power, auto- 
matic control, audio and video electronics because of their 
real-time signal processing capabilities. 

Conventional digital computation methods have run into 
a serious speed bottleneck due to their serial nature. To 
overcome t h s  problem, a new computation model, called 
“neural networks,” has been proposed, which is based on 
some aspects of neurobiology and adapted to integrated 
circuits [2]-[4]. The key features of neural networks are 
asynchronous parallel processing, continuous-time dy- 
namics, and global interaction of network elements. Some 
encouraging if not impressive applications of neural net- 
works have been proposed for various fields such as opti- 
mization, linear and nonlinear programming, associative 
memory, pattern recognition and computer vision [5]-[12]. 

In this paper, we will present a new circuit architecture, 
called a cellular neural network, which possesses some of 
the key features of neural networks and which has im- 
portant potential applications in such areas as image 
processing and pattern recognition. This archtecture is 
presented in Section II .  An in-depth analysis of cellular 
neural networks then follows. In particular, the practical 
question of dynamic range is derived in Section 111 and a 
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Fig. 1. A two-dimensional cellular neural network. The circuit size is 
4 x 4 .  The squares are the circuit units called cells. The links between 
the cells indicate that there are interactions between the linked cells. 

stability analysis is presented in Section IV. Computer 
simulations and typical dynamic behaviors of a simple 
cellular neural network will be discussed in Section V. All 
of these results, though given only for single-layer cellular 
neural networks, is generalized, mutatis mutandis, to 
multi-layered cellular neural networks in Section VI. Fi- 
nally, two similar mathematical models are compared with 
our cellular neural network in Section VII. 

11. ARCHITECTURE OF CELLULAR 
NEURAL NETWORKS 

The basic circuit unit of cellular neural networks is 
called a cell. It contains linear and nonlinear circuit ele- 
ments, which typically are linear capacitors, linear resis- 
tors, linear and nonlinear controlled sources, and indepen- 
dent sources. The structure of cellular neural networks is 
similar to that found in cellular automata; namely, any cell 
in a cellular neural network is connected only to its 
neighbor cells. The adjacent cells can interact directly with 
each other. Cells not directly connected together may 
affect each other indirectly because of the propagation 
effects of the continuous-time dynamics of cellular neural 
networks. An example of a two-dimensional cellular neural 
network is shown in Fig. 1. Theoretically, we can define a 
cellular neural network of any dimension, but in th s  
paper, we will concentrate on the two-dimensional case 
because we will focus our attention on image processing 
problems. The results can be easily generalized to higher 
dimension cases. 

Consider an M X N cellular neural network, having 
M X N cells arranged in M rows and N columns. We call 
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Fig. 2. The neighborhood of cell C ( i ,  j )  defined by (1) for r =1, r = 2 and r = 3, respectively. 
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Fig. 3. An example of a cell circuit. C is a linear capacitor; R,, R,, and R are linear resistors; I is an independent voltage 
source; I x u ( i ,  j ;  k ,  1 )  and I (i,  j ;  k ,  1 )  are linear voltage-controlled curred sources with the characteristics I (i ,  j ;  k ,  l )  = 
A(i ,  j ;  k ,  / ) u y k  and I x u ( i , T  k ,  I )  = B ( i ,  j ;  k ,  / )uuk1 for all C ( i ,  j )  E N(i, j ) ;  I = (l/F.v)f( U,, ) is a p%ewise-linear 
voltage-controiled current source with its characteristic f(.) as shown in Fig. 4; -I!,, is an independent voltage source. 

the cell on the ith row and the j t h  column cell ( i ,  j ) ,  and 
denote it by C( i ,  j )  as in Fig. 1. Now let us define what we 
mean by a neighborhood of C ( i ,  j ) .  

Definition 1: r-neighborhood 
The r-neighborhood of a cell C( i ,  j ) ,  in a cellular neural 

network is defined by 

N,( i ,  j )  = { C( k ,  I)lmax{ Ik - i ( ,  I1 - j l }  < r ,  

l < k < M ; l < I < N }  (1) 

where r is a positive integer number.’ 

Fig. 2 shows 3 neighborhoods of the same cell (located 
at the center and shown shaded) with r =1, 2 and 3, 
respectively. Usually, we call the r =1 neighborhood a 
“3 x 3 neighborhood,” the r = 2 neighborhood a “5 X 5 
neighborhood,” and the r = 3 neighborhood a “7  X 7 
neighborhood.” It is easy to show that the neighborhood 
system defined above exhibits a symmetry property in the 
sense that if C( i ,  j )  E N,( k ,  I ) ,  then C( k ,  I) E Nr( i ,  j ) ,  for 
all C(i, j )  and C ( k ,  I)  in a cellular neural network. 

A typical example of a cell C( i ,  j )  of a cellular neural 
network is shown in Fig. 3, where the suffices U ,  x, and y 
denotg the input, state, and output, respectively. The node 
voltage uxlJ of C ( i ,  j )  is called the state of the cell and its 

‘To avoid clutter, we will often suppress the subscript r 

initial condition is assumed to have a magnitude less than 
or equal to 1. The node voltage uu,, is called the input of 
C(i, j )  and is assumed to be a constant with magnitude 
less than or equal to 1. The node voltage U,,,,/ is called the 
output. 

Observe from Fig. 3 that each cell C ( i ,  j )  contains one 
independent voltage source E, J ,  one independent current 
source I ,  one linear capacitor C, two linear resistors R ,  
and R,, and at most 2m linear voltage-controlled current 
sources whch are coupled to its neighbor cells via the 
controlling input voltage uUkl, and the feedback from 
the output voltage uyk, of each neighbor cell C ( k ,  I), 
where m is equal to the number of neighbor cells. In 
particular, Ixy( i ,  j ;  k ,  I )  and Ixu(i ,  j ;  k ,  I )  are linear volt- 
age controlled current sources with the characteristics 
IXy( i ,  j ;  k ,  I )  = A ( i ,  j ;  k ,  I ) u y k l  and IXu( i ,  j ;  k ,  1 )  = 
B(i ,  j ;  k ,  l ) u u k l  for all C ( k ,  I )  E Nr(i, j ) .  The only nonlin- 
ear element in each cell is a piecewise-linear voltage-con- 
trolled current source I = ( l / R y ) f (  U,, , )  with character- 
istic f (.) as shown in Fig. 4. 

All of the linear and piecewise-linear controlled sources 
used in our cellular neural networks can be easily realized 
using operational amplifiers (op amps) [13], [14]. A simple 
example of an op amp implementation of a cell circuit is 
given in the Appendix. Without loss of generality, the cell 
circuit archtecture in Fig. 3 will be used throughout this 
paper. 

Y” 
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Applying KCL and KVL, the circuit equations of a cell 
are easily derived as follows: 

1259 

n 

Remarks: 

(a) All inner cells of a cellular neural network have the 
same circuit structures and element values. The in- 
ner cell is the cell whch has (2r  + 1)2 neighbor cells, 
where r is defined in (1). All other cells are called 
boundary cells. A cellular neural network is com- 
pletely characterized by the set of all nonlinear 
differential equations (2) associated with the cells in 
the circuit. 

(b) Each cell of a cellular neural network has at most 
three nodes. (Sometimes we will choose E,,  = 0 if 
B ( i ,  j ;  k ;  1 )  = 0 for all cells in a cellular neural net- 
work. In this case, there are only two nodes in a cell 

State equation: 

Constraint conditions: 

Parameter assumptions: 

A ( i ,  j ;  k ,  I )  = A ( k ,  1; i, j ) ,  

1 < i ,  k < M ;  1 < j ,  I < N .  (2f) 
C B 0, R ,  > 0. (2g) 

Fig. 4. The characteristic of the nonlinear controlled source 

are local, the associated matrix node equation is 
extremely sparse for large circuits. 

(c) The dynamics of a cellular neural network has both 
output feedback and input control mechanisms. The 
output feedback effect depends on the interactive 
parameter A ( i ,  j ;  k ,  1 )  and the input control effect 
depends on B ( i ,  j ;  k, I ) .  Consequently, it is some- 
times instructive to refer to A ( i , j ;  k , l )  as a feed- 
back operator and B ( i ,  j ;  k ,  1 )  as a control operator. 
The assumptions in (2f) are reasonable because of 
the symmetry property of the neighborhood system. 

(d) The values of the circuit elements can be chosen 
conveniently in practice. R x  and R ,  determine the 
power dissipated in the circuits and are usually 
chosen to be between 1 kL? and 1 Ma.  CR,  is the 
time constant of the dynamics of the circuit and is 
usually chosen to be 10ps-10-5 s. 

111. DYNAMIC RANGE OF CELLULAR 
NEURAL NETWORKS 

Before we design a physical cellular neural network, it is 
necessary to know its dynamic range in order to guarantee 
that it will satisfy our assumptions on the dynamical 
equations stipulated in the preceding section. The follow- 
ing theorem provides the foundation for our design. 

Theorem I 
All states uxlJ in a cellular neural network are bounded 

for all time t > 0 and the bound U,, can be computed by 
the following formula for any cellular neural network: 

circuit.) Since all cells have the same datum node, 
and since all circuit elements are voltage controlled, 
our cellular neural networks are ideally suited for 

Proof: First, let us recast the cell dynamical equation 
(2) as 

1 
" X f  J ( + f , J  ( t ,  + gf J ( + ', ~- -- - nodal analysis. Moreover, since the interconnections duXIJ ( t ,  

dt RXC 
21n practice, the magnitude of the signal can always be normalized to 

satisfy these conditions. 
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where (6) and (7) that 

and 

I=- 
C 

where U [ EijIl MN indicates an MN-dimensional con- 
stant input vector. Equation (4a) is a first-order ordinary 
differential equation and its solution is given by 

Now let 

It follows that 

) u X i j ( t )  16 Iux , j (0 )e - ' /R~CJ  then since U,, is independent of the time t and the cell 

< IuX i j (o )  l e - f / R x C  For any cellular neural network, the parameters R,, C, I ,  
A ( i ,  j ;  k ,  I )  and B ( i ,  j ;  k ,  I )  are finite constants, therefore 
the bound on the states of the cells, U,,, is finite and can 
be computed via formula (3) .  0 

[ J k j ( 7 )  + lg"(U) + ''I1 d7 

Q I u , , ~ ( o )  Je-f/RxC 
Remark: 
In actual circuit design, it is convenient to choose the 

0 scale of the circuit parameters such that R,lZl =1,  
R,JA( i ,  j ;  k ,  I ) ] -1  and R,IB(z, j ;  k ,  I ) ]  =1,  for all i ,  j ,  

(6) k ,  and 1. Hence, we can easily estimate the upper bound 
on the dynamic range of our cellular neural networks. For 
example, if a neighborhood of the cellular neural network 
is 3 x 3,  then we can have U,, - 20 V, which is within the 
typical power supply voltage range of IC circuits. 

+ [ ej  + G , ~  + lil] Jte-(f-T)/RxCd7 

< I U,, (0) I + R,C [ E ;  + G, + lil] 
where 

e.j = max I fij( t )  I 
f 

1 
< /. 1 A ( 9 j ;  k?  1 max 1 ( l )  1 (7a) IV. STABILITY OF CELLULAR NEURAL NETWORKS 

and 

G , , - m ~ I g l , ( u ) l  

1 
< - c ( B ( i ,  j ;  k ,  0 Imaxl~,k,l. (7b) 

C ( k , l )  E I )  

Since ~uxf,(0)~ and ~ u w f , ~  satisfy the conditions in (2d) 
and (2e), and since luyf,(t) l  satisfies the condition 

l u y l , ( t ) l < l ,  for a ~ ~ t  (8) 

in view of its characteristic function (2b), it follows from 

One application of cellular neural networks is in image 
processing, which we present in a companion paper [l]. 
The basic function of a cellular neural network for image 
processing is to map or transform an input image into a 
corresponding output image. Here, we restrict our output 
images to binary images with - 1 and 1 as the pixel values. 
However, the input images can have multiple gray levels, 
provided that their corresponding voltages satisfy (2e). 
This means that our image processing cellular neural net- 
work must always converge to a constant steady state 
following any transient regime which has been initialized 
and/or driven by a given input image. How can we 
guarantee the convergence of cellular neural networks? 
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What are the conditions or restrictions for such conver- 
gence to be possible? In this section, we will discuss the 
convergence property and its related problems for cellular 
neural networks. 

One of the most effective techniques for analyzing the 
convergence properties of dynamic nonlinear circuits is 
Lyapunou's method. Hence, let us first define a Lyapunov 
function for cellular neural networks. 

Definition 2: 
We define the Lyapunov function, E ( t ) ,  of a cellular 

neural network by the scalar function 

1 
E ( t ) = - -  A ( i , j ; k , z ) u y i j ( t ) u y k / ( t )  

( 1 , ; )  ( k . 0  

1 

Remarks: 

(a) Observe that the above Lyapunov function, E ( t ) ,  is 
only a function of the input, U,, and output, u ~ ,  
voltages of the circuit. Although it does not possess 
the complete information contained in the state vari- 
ables uxi j ,  we can nevertheless derive the steady-state 
properties of the state variables from the properties 
of E ( t ) .  

(b) The Lyapunov function, E ( t ) ,  defined above, can be 
interpreted as the "generalized energy" of a cellular 
neural network, although its exact physical meaning 
is not very clear. As the following theorems will 
show, E ( t )  always converges to a local minimum, 
where the cellular neural network produces the de- 
sired output. 

In the following theorem, we will prove that E ( t )  is 

Theorem 2 
The function E ( t )  defined in (12) is bounded by 

bounded. 

m u I E ( t ) l g E m u  (134 

where 

1 
Em,=- C C l ~ ( i , j ; k y l ) l  

+ c c I B ( i J ; k W  

(1,;) ( k , O  

(i,;) ( k , O  

for an M X N cellular neural network. 

1261 

Proof: From the definition of E ( t ) ,  we have 

Since u y l J ( t )  and uUlJ are bounded as stipulated in (2d) 
and @e), we have 

1 1 
IE(t)lQT c c l4 i>j ;kol+MN- 

( 1 , ~ )  ( k , O  2RX 

+ c c l B ( L j ; k l ) l + M ~ I 1 l .  (15) 
( 1 ,  J )  ( k , O  

It follows from (13b) and (15) that E ( t )  is bounded as 

Not only can we show that E ( t )  is bounded, but we can 

Theorem 3 
The scalar function E ( t )  defined in (12) is a monotone- 

claimed in (13a).0 

also prove that it is a monotone decreasing function. 

decreasing function, that is 

Proof: To differentiate E ( t )  in (12) with respect to 
time t ,  take the derivative of u y I J ( t )  on the right side of 
(12) with respect to u x I J ( t ) ,  and then differentiate uxIJ ( t )  
with respect to time t :  

Here we have used the symmetry assumption (2f). 

ing relations 
From the output functions in (2b), we obtain the follow- 

and 

uxi j  = ~ y r , ,  lux1jl <I -  

(Here, we define (duyIJ/duxIJ)  = O, for IuxlJl = 1.) And 
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according to our definition of cellular neural networks, we second expression in the Lyapunov function E (  t )  in 
have (12) by 

A ( i ,  j ;  k ,  I )  = 0 ,  B ( i ,  j ;  k ,  I )  = 0, 
for C ( k ,  I )  E Nr(i, j ) .  (18c) 

It follows from (17) and (18) that and then differentiating E (  t )  directly to obtain 
du du (I) _ _  2 x r /  W t )  -- 

dt ( I ,  J )  duXIJ dt 

1 This Lyapunov function is similar to the one used by 
Hopfield in [26] and can be interpreted as the total co-con- 
tent function of an associated nonlinear resistive circuit 
[27]. . 

From Theorems 2 and 3, we can easily prove the follow- 
ing important result: 

Theorem 4 
For any given input vu and any initial state ux of a 

1 
cellular neural network, we have 

lim E ( t ) = constant ( 2 1 4  
1 - m  

1 and 
+ B ( i , j ; k , l ) u u k / + I  

C ( k ,  I) E N,( ; .  J )  

Substituting the cell circuit equation (2) into (19), and 
recalling C > 0 in assumption (2g), we obtain 

Remarks: 

(1) For future analysis (e.g., corollary to Theorem 4), it 
is convenient to rewrite (20a) as follows: 

- 0. lim -- d E ( t )  
t - m  dt 

Proot From Theorems 2 and 3, E ( t )  is a bounded 
monotone decreasing function of time t .  Hence E ( t )  con- 
verges to a limit and its derivative converges to 0.0 

Corollary 
After the transient of a cellular neural network has 

decayed to zero, we always obtain a constant dc output. In 
other words, we have 

1 < i < M ;  1 < j < N (21c) lim U , ,  , ( t )  = constant, 

< 0. 

2 1 - 0 0  ’ >  

or 

2 - 0 ,  1 < i < M ;  1 < j < N .  (21d) 
duy, ( t )  lim ~- 

1 - 0 0  dt 
Let us investigate next the steady-state behavior of cellu- 

lar neural networks. It follows from the proof of Theorem 
3 that under the condition (dE( t ) / d t )  = 0, there are three 
possible cases for the state of a cell as t tends to infinity: 

(2) In the above proof, we have assumed that uYl,= 
f( U,, is a piecewise-linear function and have de- 
fined its derivative at the break points, Iuxl,l = 1. In 
any hardware (e.g., VLSI) inplementation, uyt, = 

f ( u x l , )  is a smooth function in the sense that it is 
continuously differentiable. Fortunately, Theorem 3 
can be proved to hold for any sigmoid function3 
uyIJ  = f( U,,,), which satisfies the condition 
( dv,,,/du,,,) >, 0. To prove this, simply replace the 

3The sigmoid function f ( x )  is defined by the properties I f ( x ) l  d M 
and ( d f ( x ) / d x )  >, 0, where M is a constant. 

(3) 

because of the characteristic of the piecewise-linear output 
function (2b). 

This will be clear if we consider Fig. 4. When 1 uxl,  ( t  ) I < 1, 
we have u,,,,(t) = uxl,(t)  and therefore (du, , , ( t ) /dt)  = 

(du,, ,( t) /dt) .  From Theorem 4 and its corollary, case (1) 
follows. But for ~ u x l l ( t ) ~  >1, since u y l , ( t )  # u x l , ( t ) ,  where 
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Fig. 6. The steady-state equivalent circuit of a cell in a cellular 
network. 

neural 

both described by (23a), which we rewrite for simplicity as 
follows: 

. d u ( t )  
~- 

I 
Fig. 5. The characteristic of the nonlinear resistor in the equivalent cell - - f ( u ( t ) ) + g ( t )  = f ( u , t > .  (24) circuit. dt 

u,,,(t) = 1 is a constant, we do not have the precise 
waveform of u,,,(t). In the case where u,,,(t) = constant, 
we have case (2). Otherwise, case (3) applies and u,,,(t) 
may be a periodic or an aperiodic but bounded function of 
time, in view of Theorem 1. 

Is it possible for all three cases to co-exist among the 
different state variables when a cellular neural network is 
in its steady state, or can only one or two of three cases 
exist? We claim that only case (2) can exist for all U,,, in 
the steady state under a mild assumption on the range of 
the circuit parameters A ( i ,  j ;  i ,  j )  and R,. 

To prove this claim, let us rewrite cell equation (2) as 
follows: 

where 

f ( uXij ( t )) = - 0.5A ( i ,  j ;  i ,  j ) (  I uxi j (  t ) + 1 I - I uXi j  ( t ) - 1 I) 
1 + -uX j j ( t )  (23b) 

R X  

+ B ( i ,  j ;  k ,  I )  uUkl)  + I .  (23c) 
Let us first make some restrictions on the function f( .) 

in (23b). Suppose that A ( i ,  j ;  i ,  j )  > l / R x ;  for conveni- 
ence and without loss of generality, let A ( i ,  j ;  i ,  j )  = 2, 
R,  = 1, and C = 1, in the following analysis. Then f( U,,,) 
has the characteristic shown in Fig. 5. 

Consider next the equivalent circuit of a cell in a cellular 
neural network as shown in Fig. 6. There are only three 
circuit elements: a linear capacitor with a positive capaci- 
tance C ,  a piecewise-linear voltage controlled resistor with 
its driving point characteristic i, = f( U,) (f( .) is the same 
function as in Fig. 5) ,  and a time-varying independent 
current source whose output is given by g( t ) .  The two 
circuits in Figs. 3 and 6 are equivalent because they are 

For g ( t )  = 0, the equilibrium points and the dynamic route 
[13], [14] of the equivalent circuit are shown in Fig. 7a. 
There are three equilibrium points in this circuit, one of 
them, U = 0, denoted by a circle is unstable; the other two, 
U = - 2 and U = 2, are stable, and are denoted by solid 
points. The unstable equilibrium point is never observed in 
physical electronic circuits, because of unavoidable ther- 
mal noise. Therefore, after the transient, and depending on 
the initial state, the circuit will always approach one of its 
stable equilibrium points and stay there thereafter. For 
example, if the initial state of the circuit is U = 0.5, then 
the steady state will be observed at the stable equilibrium 
point U = 2; but if the initial state of the circuit is U = - 0.5, 
then the steady state will be observed at the stable equi- 
librium point U = -2. 

If g( t )  = constant # 0, there are six different cases of the 
dynamic behavior of the equivalent circuit as shown in 
Fig. 7(b)-(g). For the cases in Fig. 7(b) and (c), there are 
also three equilibrium points; one of them is unstable, while 
the other two are stable. For the cases in Fig. 7(d) and (e), 
there are two equilibrium points; one is unstable and the 
other is stable. For the dynamic route in Fig. 7(f) and (g), 
there is only one equilibrium point for the circuit, and it is 
stable. Observe that all of the stable equilibrium points 
corresponding to the seven dynamic routes associated with 
the equivalent circuit of a cell in a cellular neural network 
share the common property IuI > 1. 

Let us return now to the basic cell circuit of our cellular 
neural networks. Since g ( t )  is a function of only the 
outputs, uyk,(t), and the inputs, uukl, of the neighborhood 
of the cell, it follows from the results of Theorem 4 that all 
of the steady-state outputs of our cellular neural network 
are constants. Hence, after the initial transients our as- 
sumption g ( t )  = constant is valid for the study of the 
steady-state behavior of cellular neural networks. Let us 
summarize our above observation as follows: 

Theorem 5 
If the circuit parameters satisfy 
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-2 +A?Y -1 
I 

(f) (g) 

Fig. 7. Dynamic routes and equilibrium points of the equivalent circuit for different values of g( t ) .  
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0.0 1.0 0.0 For any C ( k ,  I )  E Nr(i,  j )  with r =1, i.e., for any 3X 3 
2.0 -::i5 -:::5] neighborhood system (see Fig. 2), let 

0.0 1.0 0.0 0.0 -0.25 0.0 
A ( i ,  j ;  i - 1 ,  j - 1 )  = 0 ;  

(a) (b) 

here is W'. 
Fig. 8. Cloning templates of an interactive cell operator. The unit used A ( i ,  j ;  i -1, j )  

A ( i ,  j ;  i -1, j + I )  = O 

a- ' ;  

A ( i , j ; i , j - I )  9-l; 
then each cell of our cellular neural network must settle at 
a stable equilibrium point after the transient has decayed to 
zero. Moreover, the magnitude of all stable equilibrium 
points is greater than 1. In other words, we have the 
following properties: 

A ( i ,  j ;  i ,  j )  = 2 . 0 ~ 1 0 - ~  Q-'; 
A ( i ,  j ;  i ,  j + ~ )  Q-' 

A ( i ,  j ;  i +1, j - I )  = 0 ;  
A ( i , j ; i + I , j )  =iop3  9-l; 

lim I u x i j ( t ) l > l ,  l < i < M ;  l < j < N  (26a) . A (  i ,  j ;  i + 1, j + 1 )  = O 
t - m  

c = 1 0 - 9  F; ~ , = 1 0 3  Q; I = O ;  

B (  i ,  j ;  k ,  I )  = 0,  for C (  k ,  I )  E Nl( i ,  j )  . and 

lim v y i j ( t ) = + l ,  l < i < M ; l < j < N .  (26b) Since B ( i , j ; k , I ) = O ,  t h e 3 x 3  coefficients A ( i , j ; k , Z )  
alone determine the transient behaviors of the cellular 
neural network. We will often specify these coefficients in 

t + m  

Remarks: - -  
the form of a square array as shown in Fig. 8(a), hence- 
forth called the cloning template which specifies the dy- 
namic rule of the cellular neural network. 

The dynamic equations of the cellular neural network 
corresponding to the above parameters are given by 

(a) The above theorem is significant for cellular neural 
networks because it implies that the circuit will not 
oscillate or become chaotic [15 ] ,  [16]. 

(b) Theorem 5 guarantees that our cellular neural net- 
works have binary-value outputs. This property is 
crucial for solving classification problems in image 
processing applications. dt 

(c) It can be easily shown by the same technique that 
without the constraint of (25) both case (1) and case 
(2) can co-exist but case (3) cannot. This implies that 
remark (a) is true even without the condition (25). 

(d) Since A ( i ,  j ;  i ,  j )  corresponds to a feedback from 
the output of cell C ( i ,  j )  into its input, condition(25) 

dux,, ( t ) -- - IO6 [ - U,,, ( t )  + 2UY,,(t) 

Uyz, ( t )  = 0 4  I U,,, ( t >  + 1 I - I U X l ,  (1) - 1 I). 

+ u ~ ~ , - l ( t ) +  u ~ , - l , ( t ) +  u ~ ~ + l ~ ( t ) +  u ~ ~ , + l ( t ) ]  (27a) 
and 

for 1 < i < 4; 1 < j < 4. (27b) 

In 

stipulates a minimum amount of positive feedback' in' 
order to guarantee that the steady-state output of each 
cell is either + 1 or -1. Note that this condition is 
always violated in a Hopfield neural network since its 
diagonal coupling coefficients are all assumed to be 
zero [2]. To guarantee a similar & 1 binary output in 
the Hopfield model, it is necessary to choose an in- 
finite slope [26] in the linear region of the nonlinear 
functionfl:) in Fig. 4. In contrast, the corresponding 
slope in a cellular neural network is always chosen to 
be equal to one. 

V. COMPUTER SIMULATIONS OF A SIMPLE 

this section, we will present a very simple example to 
CELLULAR NEURAL NETWORK 

It is convenient to recast the right-hand side of (27a) 
into the symbolic form 

- 
T 

with the help of the two-dimensional convolution operator * 
defined below: 

Definition 3: 
For any cloning template T (such as the example shown 

in Fig. 8(a)) whch defines the dynamic rule of the cell 
circuit, we define the convolution operator * by 

T * u , , =  T ( k - i , l - j ) u k ,  (29) 
C ( k , l )  E N , ( I , J )  

illustrate how the cellular neural network described in 
Section I1 works. This example will also help to provide a 
better understanding of the theorems proved in the preced- 
inn sections. 

where T ( m ,  n )  denotes the entry in the mth row and nth 
of the cloning template, = - 1 ,  o, and = 

- 1,0,1, respectively. - 
The cellular neural network for this example is the same 

as that shown in Fig. 1,  that is, the network size is 4x4 .  
The circuit element parameters of the cell C ( i ,  j )  are 
chosen as follows. 

Note that in the above definition A( i ,  j ;  k ,  I )  is assumed 
to be independent of i and j for this cellular neural 
network. This property is said to be space inuariant, which 
implies that A( i ,  j ;  k ,  I )  can be expressed as A ( k  - i ,  I - 
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-0.8 1.0 

1.0 1.0 

-1.0 0 .9  

-0.9 -1.0 

j ) .  Unless stated otherwise, all cellular neural networks are 
assumed to have the space invariant property. This prop- 
erty allows us to specify the dynamic rules of cellular 
neural networks by using cloning templates. 

To study the transient behavior of (27a), let us apply an 
initial voltage ux,,(0) across the capacitor of each cell 
C ( i ,  j ) .  Each initial voltage may be assigned any voltage 
between -1  and 1, as stipulated in (2d). 

The circuit simulator we used to obtain our transient 
response is PWLSPICE [17], which is a modified version of 
SPICE3 [ 181 for piecewise-linear circuit analysis. The input 
and output files are the same as those for SPICE3. 

The transient behavior of the above cellular neural net- 
work with the initial condition specified in the array of 
Fig. 9(a) has been simulated. The state variables of the 
circuit, U,, at t = 5 p S  are shown in Fig. 9(b). The maxi- 
mum absolute value of the state variables at t = 5 p S  is 
equal to 6 ,  approximately. The upper bound U,, of vx as 
computed from equation (3) of Theorem I is equal to 7, 
which is very close to 6!  

The corresponding outputs, uy, at t = 5 p S  are shown in 
Fig. 9(c). Observe that all output variables assume binary 
values, either 1 or -1, as predicted by Theorem 5. (Here 
the condition A ( i ,  j ;  i ,  j )  > l / R x  is satisfied.) 

Since it would take too much space to display the 
transient of the entire circuit, we only display the transient 
behavior of one cell C(2,2) in Fig. 9(d). The initial value of 
the state variable is equal to 1.0, and the value at t = 5 p S  
is equal to 2.02, approximately. The maximum value of 
u X z 2 ( t )  is equal to 3 and occurs at t = 0.8 p S ,  approxi- 
mately. Since the state variable is kept above 1.0 during 
the entire transient regime, the corresponding output re- 
mains constant at 1.0, as predicted from Fig. 4. 

Before we investigate how many distinct values that 
ux, , ( t )  can assume in the steady state, consider first the 
following: 

Definition 4: 
A stable cell equilibrium state, U:,, of a typical cell of a 

cellular neural network is defined as the state variable uxr, 
of cell C ( i ,  j ) ,  which satisfies 

-1.0 -0.6 

1.0 -1.0 

-1.0 -0.8 

-0.7 -0.8 

under the assumption uykl = f l  for all neighbor cells 
C ( k ,  1)  E W ,  j ) .  

Remark: 
Definition 4 holds for any assumed combination of uykl 

= f 1, and, therefore, may not represent an actual compo- 
nent of an equilibrium state of the overall circuit. 

For our current example, equivalently, the stable cell 
equilibrium states of an inner4 cell circuit C ( i ,  j )  are the 
solutions uxij of the dc cell circuit equations obtained by 

3.95 

2.98 

-2.98 

-3.98 

4The same method is applicable for the boundary cells as well. 

2.98 -2.97 -3.98 

2.02 -3.94 -4.96 

-3.94 -5.94 -1.97 

-4.96 -4.97 -3.98 

-1.0 -1.0 -1.0 

' ' O  r1 

(C) (4 
Fig. 9. Computer simulation of a 4x4 cellular neural network. (a) 

Initial states. (b) Final states. (c) Outputs at steady state. (d) Transient 
waveforms of cell circuit C(2,2). 

replacing all capacitors by open circuits; namely, 

uxr, = 2uyr, + Uyr-1, + Uyr+l, + uyr,-1+ Uyr,+l, (314 

IUxk,lZ1, 1 < k ,  1 ~ 4  ( 3 W  

Iuykll=l, l g k ,  1 ~ 4 .  (314 

under the conditions: 

and 

Substituting condition (31c) into the dc equation (31a) 
and using the sgn(. ) function defined by 

1, x > o  
sgn(x)=  0,  x = o  i -1 ,  x < o  

we obtain 

0x1, = 2sgn ( U y r , )  + sgn (Uyr-1,) 

+ Sgn(U,,+,,) + s g n (  uy,,-l> + sgn(  Uyr,+l). (32) 

Furthermore, since sgn( uyl,) = sgn( U,,,) from (2b), it 
follows that 

uxr, - 2 sgn ( Uxr, 1 = sgn ( uyr - 1, ) + sgn( Uyr + 1,) 

+ sgn ( Uyz, - 1 1 + sgn ( Uyr, + 1 1 . (33) 

Observe that the right-hand side of (33) can only assume 
five possible values; namely, -4, -2, 0, 2, and 4. It 
follows that the corresponding values that can be assumed 
by the state variable uxl, are -6 ,  -4, (-2 or 2), 4, and 6 .  

It follows from the above analysis that each inner cell 
circuit for our present example can have only six possible 
stable cell equilibrium states; namely, -6 ,  -4, -2, 2, 4, 
and 6 .  

The actual stable cell equilibrium state attained by each 
cell clearly depends on its initial state as well as those of 
its neighbor cells. Hence a cell may eventually approach 
any one of its stable equilibrium state even if its initial 
state remains unchanged. For example, consider the 
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2.98 -2.97 -3.98 

2.02 -3.94 -4.96 

-3.94 -5.94 -4.91 

-4.96 -4.91 -3.98 

-3.98 -2.95 2.98 

-2.95 -1.92 3.99 

2.98 3.94 5.95 

3.98 4.91 4.91 

3.98 

4.91 

4.91 

3.98 

(0 
Fig. 10. Six different sets of initial conditions in which the initial states Fig. 11. The final states corresponding to the initial conditions in 

of cell C(2,2) are the same. Fig. 10. 

six distinct set of initial conditions in Fig. 10. In all the 
cases, the initial state of cell C(2,2) are the same, that is, 
~ ~ ~ ~ ( 0 )  = 1.0. After the transient has decayed sufficiently at 
t = 5 p S ,  the states corresponding to these initial condi- 
tions are shown in Fig. 11. Observe that the states of cell 
C(2,2) at t = 5 pS are given, respectively, by 5.97, 3.99, 
2.02, - 1.92, - 3.96, and - 5.94. It' is clear that all six 
distinct stable cell equilibrium states of C(2,2) will be 
attained in the steady state. The transient behaviors of the 
cell C(2,2) for the six initial conditions in Fig. 10 are 
shown in Fig. 12. Observe that even though they all start 
from the same initial point, the steady states approach 
different points via different routes. Observed also that the 
transient response is not necessarily monotonic; the re- 
sponse in Fig. 12(c) is a case in point. 

Another interesting phenomenon can be observed by 
choosing the 4 distinct sets of initial conditions in Fig. 13. 
Observe that even though these initial conditions are very 
different, their corresponding final states at t = 5 p S  in Fig. 
14 are virtually identical. The corresponding outputs in 
Fig. 15(a) are exactly the same, as expected. 

Let us now focus on the global dynamic behavior. 

1.0 

1.0 Y i 

-1.0 I 
0.0 1.0 2 .0  3.0 4 . 0  5.0 

t h e  11.0e-6 S I  

Fig. 12. The transient behaviors of cell C(2,2) corresponding to the 
initial conditions in Fig. 10. 

Definition 5: 
A stable system equilibrium point of a cellular neural 

network is defined to be the state vector with all its 
components consisting of stable cell equilibrium states. 

librium point after the transient has decayed to zero. From 
the dynamic system theory Point of view, the transient of a 
cellular neural network is simply the trajectory starting 
from some initial state and ending at an equilibrium point 
of the system. Since any stable system equilibrium point, 
as defined in Definition 5, of a cellular neural network is a 
limit point of a set of trajectories of the corresponding 

It follows from the above definition that a cellular 
neural network is always at one of its stable system equi- 
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0.1 

0.9 

-1.0 

-0.8 

-0.8 -0.9 -0.1 
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(c) 

1.0 0.8 0.2 

-0.5 1.0 1.0 

0.9 -1.0 -0.8 

-1.0 -0.1 0.2 

0.5 1.0 0.8 

0.9 0.5 0.4 

-0.9 -0.9 -0.4 

-0.9 0.0 -0.1 

-0.2 

1.0 

-0.8 

0.2 

Fig. 13. Four different sets of initial conditions. 

1.0 1.0 1.0 -1.0 

- 1 . 0  1.0 1.0 -1.0 

1.0 1.0 1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

(a) 

3.96 

2.98 

-2.99 

-3.98 

4.91 4.91 3.98 

3.98 3.98 2.99 

-3.98 -3.98 -2.98 

-4.96 -4.91 -3.91 

-2.99 -3.98 -3.91 -2.98 

-3.98 -4.96 -4.97 -3.91 

( 4  
Fig. 14. The final states corresponding to the initial conditions in 

Fig. 13. 

~ 

-1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

(a) (b) 
Fig. 15. (a) The outputs corresponding to the initial conditions in Fig. 

13. @) The stable system equihbrium point corresponding to the initial 
conditions in Fig. 13. 

-0.8 

-0.8 -0.8 -0.8 -0.8 

Fig. 16. Another initial condition. 

ri-_. 
-1.99 -1.14 -1.14 -1.49 

(4 (b) 
Fig. 17. The outputs of a cellular neural network with its dynamic rule 
as prescribed by the cloning template in Fig. 8 (a) and (b), respectively, 
and with its initial condition given by Fig. 16. 

1.0 ;;. ;; -AOl 

1.0 -1.0 1.0 -1.0 

I .o -1.0 

-1.0 -1.0 -1.0 -1.0 

(b) 
Fig. 18. The final states corresponding to the outputs in Fig. 17. 

differential equations (2), such an attracting limit point has 
a basin of attraction; namely, the union of all trajectories 
converging to this point. Therefore, the state space of a 
cellular neural network can be partitioned into a set of 
basins centered at the stable system equilibrium points. 

It follows that all four initial states in Fig. 13 are located 
within the basin of the same stable system equilibrium 
point, which is shown in Fig. 15(b). 

Our final goal in this section is to take a ghmpse at the 
effects on the choice of a dynamic rule for the cellular 
neural network. Let us consider the initial condition shown 
in Fig. 16. First, let us use the same dynamic rule de- 
scribed by the cloning template in Fig. 8(a). The final state 
at t = 5 pS and its corresponding output of the cellular 
neural network starting from this initial state are shown in 
Figs. 17(a) and 18(a), respectively. Next, let us change the 
dynamic rule by using the new cloning template shown in 
Fig. 8(b). The final state at t = 5 pS and its corresponding 
output starting from the same initial state of Fig. 16 are 
shown in Figs. 17(b) and 18(b), respectively. Although the 
only difference between the two outputs shown in Fig. 18 
occurs in cell C(2,2), which have opposite values, we will 
see in [l]  that these two dynamic rules perform very 
different functions when applied to image processing. 

Generally speaking, a cellular neural network processes 
signals by mapping them from one signal space into another 
one. In our example, the cellular neural network can be 
used to map an initial state of a system into one of many 
distinct stable system equilibrium points. If we consider 
the initial state space as [-1.0,1.OIMXN and the output 
space as { - l , l}MxN, then the dynamical map F, can be 
defined as 

{ - l , l } M x N .  (34) M X N -  F:  [ -1.0,1.0] 

This means that the map F can be used to partition a 
continuous signal space into various basins of attractions 
of the stable system equilibrium points via a dynamic 
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process. This property can be exploited in the design of 
associative memories, error correcting codes, and fault- 
tolerant systems. 

In general, the limit set of a complex nonlinear system is 
very difficult, if not impossible, to determine, either ana- 
lytically or numerically. Although, for piecewise-linear cir- 
cuit, it is possible to find all dc solutions by using either a 
brute force algorithm [19] or some more efficient ones [20], 
[21], it is nevertheless very time consuming for large sys- 
tems. For our cellular neural networks, in view of the 
nearest neighbor interactive property, we can solve for all 
system equilibrium points by first determining the stable 
cell equilibrium states, and then using the neighbor inter- 
active rules to find the corresponding system equilibrium 

As presented above, the dynamic behavior of a cellular 
neural network with zero control operators ( B ( i ,  j ;  k ,  I )  = 
0)  and nonzero feedback operators ( A ( i ,  j ;  k ,  I )  # 0 )  is 
reminiscent of a two-dimensional cellular automaton 
[22]-[25]. Both of them have the parallel signal processing 
capability and are based on the nearest neighbor interac- 
tive dynamic rules. The main difference between a cellular 
neural network and a cellular automata machine is in their 
dynamic behaviors. The former is a continuous time while 
the latter is a discrete-time dynamical system. Because the 
two systems have many similarities, we can use cellular 
automata theory to study the steady state behavior of 
cellular neural networks. Another remarkable distinction 
between them is that while the cellular neural networks 
will always settle to stable equilibrium points in the steady 
state, a cellular automata machine is usually imbued with a 
much richer dynamical behavior, such as periodic, chaotic 
and even more complex phenomena. Of course, we have 
tamed our cellular neural networks by choosing a sigmoid 
nonlinearity. If we choose some other nonlinearity for the 
nonlinear elements, many more complex phenomena will 
also occur in cellular neural networks. These two models 
will be compared in more detail in Section VII. 

points. 

VI. MULTILAYER CELLULAR NEURAL NETWORKS 
We can generalize the single-layer cellular neural net- 

work introduced in Section I1 to a multilayer cellular 
neural network. Instead of only one state variable in the 
single-layer case there may be several state variables in 
each cell of a multilayer cellular neural network. The 
concept of multilayering emphasizes the interactions of the 
state variables on the same layer. To avoid clutter, it is 
convenient to use the convolution operator *, as defined 
in Definition 3, in the following. Using the convolution 
operator, we can rewrite (2a) as 

dv . . ( t )  -1  C L -  - - U ~ ; ~ ( ~ ) + A *  v y i j ( t ) +  B * u U i j + I ,  
dt RX 

1 < i < M ;  1 < j < N .  (35) 

Then, for multilayer cellular neural networks, the cell 
dynamic equations can be expressed in the following com- 

pact vector form: 
du . . ( t )  c x l j = -  dt R - b x i j ( t ) + A  * u y i j ( t ) + B * u u i j +  I ,  

where 

(374 

' l u i j  

"muij ' m x i j  Vmyi j 

I =  (374  

and where rn denotes the number of the variables in the 
multilayer cell circuit. Here, the convolution operator * 
between a matrix and a vector is to be decoded like matrix 
multiplication but with the operator * inserted between 
each entry of the matrix and of the vector. 

Observe that C and R are diagonal matrices, whereas A 
and B are block triangular matrices. 

Remarks: 

(a) For multilayer cellular neural networks, all of the 
results presented in the previous sections still hold 
with some minor modifications. The stability can be 
proved from the bottom layer (layer 1) to the upper 
ones by noting the block triangular structures of the 
A and B matrices. 

(b) Since there are several state variables in a cell cir- 
cuit, we can choose multiple dynamic rules concur- 
rently for the different state variables. This property 
makes the network extremely flexible and allows us 
to deal with more complicated image processing 
problems. 
In addition to using multiple dynamic rules as men- 
tioned in (b), we can choose different time constants 
for the different state variables of the cell circuits. 
As a limiting case, we can choose Cq = 0 for some 
state variable vqxij, thereby obtaining a set of dif- 
ferential and algebraic equations. This property gives 
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us even more flexibility in the design of cellular 
neural networks for practical problems. 

VII. RELATION TO PARTIAL DIFFERENTIAL 
EQUATIONS AND CELLULAR AUTOMATA 

In general, cellular neural networks can be characterized 
by a large system of ordinary differential equations. Since 
all of the cells are arranged in a regular array, we can 
exploit many spatial properties, such as regularity, sparsity 
and symmetry in studying the dynamics of cellular neural 
networks. 

There are two mathematical models which can char- 
acterize dynamical systems having these spatial properties. 
One is partial differential equation, and the other is cellular 
automata. Partial differential equation, cellular automata, 
and our cellular neural networks share a common prop- 
erty; namely, their dynamic behavior depend only on their 
spatial local interactions. Our objective in this section is to 

dynamics nonlinear 

equations 

Linear (for (38)) nonlinear 

- u ; j ( t ) ,  for all i ,  j .  (41) 

Comparing (41) with (2), we see a remarkable similarity 
between the two equations. They are both ordinary dif- 
ferential equations with the nearest neighbor variables 
involved in the dynamic rules. The important difference 
between these two equations is that our cell equation (2) is 
a nonlinear (piecewise linear) ordinary differential equa- 
tion whereas (41) is a linear ordinary differential equation. 

Consider next the relationship between our cellular neu- 
ral network model and the cellular automaton model. The 
two-dimensional cellular automaton is defined by [22] 

a j j ( n + l )  = + [ a , , ( n )  fora l lC(k , l )  € N r ( i , j ) ] .  (42) 

If we discretize the time, t ,  in the cell equation (2) and let 
B(i ,  j ;  k, 1)  = 0 for all i, j ,  k and I ,  we would obtain 

1 
= - -uxii(nh) 

RX 

and 

uYi,(nh) = 0.5R,( Iuxi j (nh)  + I ]  - ~uxj , (nh) - l~) ,  1 d i d  M ;  1 < j < N .  (43b) 

identify the relationships between our cellular neural net- 
works and these two mathematical models. 

Consider a partial differential equation first. The well- 
known heat equation from Physics is 

(38) 
a2+, y ,  t )  d 2 U ( X ,  y ,  t )  1 q x ,  y ,  t )  

= -  + a x 2  ay K dt 

where K is a constant, called the thermal conductivity. The 
solution, u ( x ,  y ,  t )  of the heat equation is a continuous 
function of the time, t ,  and the space variables, x and y.  
If the function u ( x , y , t )  is approximated by a set of 
functions ui , ( t ) ,  which is defined as 

u i j ( t )  = u(ihx,  jh,, t )  (39) 
where hx and h ,  are the space interval in the x and y 
coordinates, then, the partial derivatives of u ( x ,  y ,  t )  with 
respect to x and y can be replaced approximately by 

a 2 u ( x ,  y ,  t )  + d 2 U ( X ,  y ,  t )  

a x  2 a y 2  

- u i , ( t ) ,  for aNi, j .  (40) 
Thus the heat equation can be approximately by a set of 

After rearranging (43a) and substituting the resulting ex- 
pression for uxi,((n + l ) / h )  into (43b), we obtain 

" y ; j (  = +'[ uxjj  ( n), Uyk,(  .) for all c( k ,  l )  E Nr( i ,  j ) ]  

(44) 

U,;,(.) 9 u Y i j ( n h ) ,  ux i , (n )  A uxi , (nh)  (45a) 
where 

+ ' [ u x i j ( n ) , u y , ,  f o r a l l ~ ( k , l )  ~ ~ r ( i , j ) ]  

h +-  1 
( k , O ' = N , ( i , j )  

and 
1 

g[z]  =-(Iz+lI-Iz-lI). 2 (454 

Comparing (42) and (44), we can once again see a 
remarkable similarity between them. The main difference 
is that for cellular automata, the state variables are binary 
value variables and the dynamic function is a logic func- 
tion of the previous states of the neighbor cells, whereas 



CHUA AND YANG: CELLULAR NEURAL NETWORKS: THEORY 1271 

(b) 
Fig. 19. An op amp implementation of a simplified cell circuit of cellular neural networks. 

for cellular neural networks, the state variables are real- on cellular neural networks, there are clearly many theoret- 
valued variables and the dynamic function is a nonlinear ical and practical problems yet to be solved in our future 
real function of the previous states of the neighbor cells. research on this subject. Nevertheless, some rather impres- 

Our comparisons of the above three mathematical mod- sive and promising applications of cellular neural networks 
els are summarized in Table I. to pattern recognition have already been achieved and will 

be reported in a companion paper 111. VIII. CONCLUDING REMARKS 
In this paper, we have proposed a new circuit architec- 

ture, called a cellular neural network, which can perform 
parallel signal processing in real time. We have proved 
some theorems concerning the dynamic range and the 
steady states of cellular neural networks. We have also 
used computer simulation to illustrate some dynamic prop- 
erties of simple cellular neural networks. In view of the 
nearest neighbor interactive property of cellular neural 
networks, they are much more amenable to VLSI imple- 
mentation than general neural networks. In spite of the 
“local nature” of the nearest neighbor interconnections, 
cellular networks are nevertheless imbued with some global 
properties because of the propagation effects of the local 
interactions during the transient regime. In fact, in a 
companion paper [l], this transient regime will be ex- 
ploited to show how our ability to analyze the “local” 
dynamics (via the dynamic route approach in [13]) will 
allow us to steer the system trajectories into a configura- 
tion of stable equilibria corresponding to some global 
pattern we seek to recognize. Indeed, our ability to control 
the local circuit dynamics will stand out as one of the most 
desirable features of cellular neural networks. Further- 
more, cellular neural networks have practical dynamic 
ranges, whereas, general neural networks often suffer from 
a severe dynamic range restrictions in the circuit imple- 
mentation stage. Since this paper represents the first study 

APPENDIX 

The circuit in Fig. 19(a) is a simplified cell circuit 
of cellular neural networks. It consists of the basic 
circuit elements, namely, a linear capacitor C;  a linear 
resistor R,; a linear voltage controlled current source 
I ( i ,  j ;  k ,  E )  = A ( i ,  j ;  k ,  l )uykl;  a subcircuit with the piece- 
wise-linear function uyi, = 0.5 ( (uXi,  + 11 - I uXi, - 11). 

One possible op amp implementations of the above 
circuit is shown in Fig. 19(b). The voltage controlled 
current source Ixy( i ,  j ;  k ,  E )  is realized by op amp A,  and 
resistors R I - R , .  It can be shown that 

xIy 

(46) 
- R2 
RIR, 

I x y ( i ,  j ;  k, 1 )  = -Uykl 

under the condition that 

(47) 
R ,  R , + R ,  
RI R3 
_-- - 

The output resistance of I xy. ( i ,  j ;  k ,  I )  is infinite under this 
condition (47). The piecewse-linear function uyi, ( uXi,) is 
realized by op amps A,, A ,  and resistors R , - R ,  with the 
constraint that 

R , + R ,  R , + R ,  
+ I K C I  -- -- 

R 6  R9 
where V,, is the voltage of the power supply. 
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The two circuits in Fig. 19 are equivalent‘ in the sense [19] L. 0. Chua and P. M. Lin, Computer Aided Analysis of Electronic 
Circuits: Algorithms and Computational Techniques. Englewcmd 
Cliffs. NJ: Prentice-Hall. 1975. that they have the same state and output equations. 
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