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Lothar Collatz has defined the function

_jn/2 (n even)
9(n) = {3n+ 1 (nodd)

and conjectured that for any positive integer n, there exists k such that

g*(n) =1.
The conjecture is still unproven, but has been verified for n < 10° by D.H. and
Emma Lehmer and J.L.Selfridge. It prompts consideration of more general func-
tions
gn)=amn+b (m=i mod P)

where ao, bg,...,ap_1,bp_1 are rational numbers chosen so that g(n) is always
integral. What can be predicted about the iterates g*(n)? Here we show that even
when b; = 0, the behavior is unpredictable, in general.

THEOREM. If f is any computable function, there is a function g such that
(1) g(n)/n is periodic (with rational values)
(2) 2 = gk(2n), where k is minimal positive subject to g*(2™) a power of
2.

COROLLARY. There is no algorithm, which, given a function g with g(n)/n
periodic, and given a number n, determines whether or not there is k with g* (n) =1.
The word “computable” will mean “computable by a Minksy program”, as defined
below. This is equivalent to (partial) recursive.

Minsky machines. These have registers a,b,c,... capable of holding arbi-
trary non-negative integers, and two types of order:

m 3 @ 5% : at the point m in the program, we add 1 to

register a, and proceed to n.

n e : at the point m of the program, we subtract 1

from register b and proceed to n, if b > 0, while if & = 0 we simply proceed to p.
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A Minsky program consists of such orders:

All entry and exit points are conventionally labelled 0. Other labels are distinct
positive integers.

The example is a program to add the contents of register a to each of registers
b and ¢, and clear a to 0. It is easy to write Minsky programs to simulate the orders
of more conventional computing machines (multiplication, etc.) so that functions
computable by such machines are computable in our sense. Equally, all (partial)
recursive functions are Minsky computable in the sense that there is a Minsky
program which started with register contents n, 0,0, ... ends with register contents

f(n),0,0,....

Vector games. Suppose wo are given a finite list of vectors with integer co-
ordinates and the same dimension, e.g.:

(0,0,0]1,-1)
(-1,0,0] -3,1)
(0,0,0] —3,0)
(0,0,1| -2,3)
(0,1,0] -1,2)
(-1,0,0|-0,1)
(0,0,0| —0,0)

Then we can play the following game. Starting with a vector v with non-
negative integer coordinates, add to v the first vector from the list which preserves
this property. What happens when we repeat this indefinitely?

We show that for any computable f, there is a vector game, which when started
at (n,0,0,...) reaches (f(n),0,0,...). In fact we use vector games to simulate
Minsky programs, as follows.

We have one coordinate for each register, and two more coordinates (after

the vertical bar). For an order ™M 5 @ 5§ we have a vector
n

a

(1,0,...| ~m,n) and for an order 'y Q we have a pair of
p

b b
vectors (0,—1,0,... | —m,n), (0,0,0,... | —m, p) in that order. These vectors are
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listed in decreasing order of m, and preceded by the vector (0,0,... ] 1,—1). In
this way, our example of a Minsky program yields the given vector-list.

It is easy to see how the vector game so defined simulates the correspond-
ing Minsky program. Maybe some industrious reader will produce a short prime-
generating vector game.

Rational games. Suppose we have a finite list of rational numbers 1,72,
...,7s. Then we can play another game. Starting with an integer n, replace n by
g(n) = r; - n for the least ¢ for which this is an integer. What happens when we
iterate?

Obviously, if we replace a vector (a,b,c,...) by the number 2°3%5°..., we
obtain this game from our previous one. So we have proved that for any computable
function f, there is a rational game, which started at 2", gets to 27 (") without
finding any intermediate power of 2.

Our main theorem now follows from the observation that for this function
g(n), g(n)/n is periodic, with period dividing the least common denominator of
the ;. Since it is undecidable whether or not a given partial recursive function is
everywhere defined and identically zero, we obtain also the Corollary.

Of course, particular games of this type can still have predictable properties, so
that (for instance) our theorem says nothing about the Collatz game. But it does
prohibit any general solution to games of this type, and also shows that there exist
special cases for which the prediction problem is unsolvable.

It is amusing to note that the Theorem contains the Kleene Normal Form
Theorem for recursive functions, since the functions g(n), 2%, etc., are obviously
primitive recursive.

California Institute of Technology Jan.-Aug. 1972
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Editorial Commentary

(1) This paper was one of the earliest mathematical papers on the 3z 41 prob-
lem. The results here grew out of J. H. Conway’s interests in the theory of com-
putation and games. Some of his early studies in computation appear in his 1971
book Regular Algebra and Finite Machines [2]. In this paper Conway challenges
some industrious reader to produce a prime-generating vector game; this challenge
was answered in 1983 by R. K. Guy [12]. The computational model underlying this
paper using fractions was later formalized as FRACTRAN by Conway [4] in 1987.
This name was clearly intended as a pun on FORTRAN. Just as FORTRAN has
since become Fortran, FRACTRAN has since become Fractran.

(2) The Minsky machines defined in this paper are the counter machines de-
scribed in the textbook of Marvin Minsky [15, Sect. 11.1]. Minsky originally
introduced them to show the unsolvability of Post’s problem of ‘tag’ in 1961 ([14]).

(3) The Kleene Normal Form theorem for partial recursive functions (Kleene
[18, Sec. 63, Theorem XIX]) states, when specialized to the one-variable case, the
following:
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Theorem. There are primitive recursive functions U(y) and T1(y,e,z) such
that for any one-variable partial recursive function f(z) there is some positive in-
teger e (“Gddel number”) such that

f(z) =U(uyTi(y,e,x) = 0)

where py is a quantifier that enotes the least positive integer y such that T1(y, e, z) =
0, and is undefined otherwise ([13, Sec. 57]). Furthermore the primitive recursive
function U(y) has the additional property that

f(z) =Uly), for any y such that T1(y,e,z) = 0.

Kleene [13, Sec. 58, Theorem IX] gives a construction of suitable primitive recur-
sive functions U and Ti(y, e, ).

(3) John Horton Conway (1937-) is well known for his work in geometry, group
theory, algebra and various other subjects of his own invention. He was educated
in Cambridge at Gonville and Caius College, where he received his BA in 1959.
He completed a PhD at Cambridge with supervisor Harold Davenport in 1964 on
Waring’s problem for degree five, showing that each integer can be written as a
sum of 37 fitth powers. This result was not published because it was independently
proved and published first by Chen Jing-run. He is most well known for the con-
struction of several of the sporadic finite simple groups, the Conway groups, which
are obtained from automorphism groups of the Leech lattice. With Simon P. Nor-
ton he proposed conjectures giving connections between the Monster simple group
and modular forms, termed “monstrous moonshine”. These conjectures were even~
tually proved by his student Richard Borcherds, who was awarded a Fields medal
in part for this work. Some of his work on groups and lattices appears in the book
with N. J. A. Sloane on Sphere Packings, Lattices and Groups ([10]). In algebra
he studied Quaternions and Icosians, both introduced by William Rowan Hamilton
(see [11]). He is known for inventing a new system of numbers, the field of “surreal
numbers”, which include all ordinal numbers, and for an extended theory of com-
binatorial mathematical games (see [3], [1]). The set of all (equivalence classes of)
games form a group containing the field of surreal numbers. This theory includes
as a special case, the game of Life, which is a 2-dimensional cellular automaton,
now proved to be universal. He has published on a wide range of subjects, on
each of which he has his own viewpoint, full of stimulating ideas. These include
books on algebra and computation ([2]), on numbers (with Richard Guy [8]) and
on integral quadratic forms ([7]). Two of his more remarkable results involving re-
cursive constructions are his study of “audioactive decay” sequences (Conway [5])
and constructions of lexicographic codes ([9], [6]).
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