FRACTRAN: A SIMPLE UNIVERSAL PROGRAMMING
LANGUAGE FOR ARITHMETIC

J.H. Conway

Department of Mathematics
Princeton University
Princeton, NJ 08544

s \iliz,
1. Your Free Samples of FRACTRAN.
71\

To play the fraction game corresponding to a given list

Jofo oo fi

of fractions and starting integer N , you repeatedly multiply the integer
you have at any stage (initially N) by the earliest f; in the list for which
the answer is integral. Whenever there is no such f;, the game stops.

(Formally, we define the sequence {N,} by Noy=N, N, =f;N,,
where i (1 <i<k)is the least i for which f; N, is integral, as long as
such an [exists.)

Theorem 1: When PRIMEGAME:

17 78 19 23 29 77 95 77 1 11 13 15 1 55

— — — — — — — — — — — — —

91 85 51 38 33 29 23 19 17 13 11 2 7 1

is started at 2, the other powers of 2 that appear, namely,
22 23’ 25, 27 oll 213 917 919 523 229 L

are precisely those whose indices are the prime numbers, in order of mag-
nitude.

4

T. M. Cover et al. (eds.), Open Problems in Communication and Compuration
© Springer-Verlag New York Inc. 1987

Theorem 2: When PIGAME:

365 29 79 679 3159 83 473 638 434 89 17 79
46 161 575 451 413 407 371 355 335 235 209 122

31 41 517 111 305 23 73 61 37 19 89 41 833 53

— — — — — — — — —

183 115 8 83 79 73 71 67 61 59 57 53 47 43

86 13 23 67 71 83 475 59 41 1 1 1 1 89

41 38 37 31 29 19 17 13 291 7 11 1024 97 1

is started at 2", the next power of 2 to appear is 2™, where for

n=01234567289 10 1112 13 14 15 16 17 18 19 20 ..

mn)=31415926535 89 7 9 3 2 3 8 4 6

For an arbitrary natural number 7, m(n) is the nth digit after the
point in the decimal expansion of the number n.

Theorem 3: Define f(n) = m if POLYGAME:

583 629 437 82 615 371 1 33 43 23 341
559 551 527 517 329 129 115 86 53 47 46

41 47 29 37 37 299 47 161 527 159 1 1
7 13

43 41 37 31 31 29 23 15 19 7

2!
3

when started at 22", stops at 2%, and otherwise leave f.(n) undefined.
Then every computable function appears among fy, fi, for - - - -

2. The Catalogue.

We remark that the "catalogue numbers" ¢ are easily computed for
some quite interesting functions. Table 1 and its notes give f. for any ¢
whose largest odd divisor is less than 210 = 1024.

5.

Table 1. The Catalogue

c All defined values of f,
0 none
1 n—n
2 01
4 0—>2
8 152 In this Table,
16 2—-3 n denotes an
64 1-3 arbitrary
¥4 n—0 non-negative
128 0—-3 integer.
133 0—-0
255 n+l—->n+1
256 354
847 n—o1
37485 0-0,n+1—>n
2268945 n—-n+1
2"& a—>bif2b -29=¢
7 - 112 n—k
1—75-10292‘H n—n+k
Cx n — m(n)
We also have
fZ*A =f0 >

Forg = For s forge = fpnr

ke =F775 Forer = foaz s

fsz =f]33 (k=0) or fo (k>0);

fzkE =f255 k= 0) or fzk (k>0);

&

where

A is any odd number < 1024 not visible below:

B is 1,3,9,13,17,27,39,45,51,81,105,115,117,135,145,153,155,
161,169,185,195,203,205,217,221,235,243,259,287,289,315,
329,345,351,405,435,459,465,483,507,555,585,609,615,651,
663,705,729,777,861,945,975,987,1017, . . .

B’ is 165495, .

C is 7791,231,273,385,455,539,1015, . .

C’ is 847,1001,..

D is 133, 285, 399, 665, 855, . ..

E is 255, .

Figure 1 gives a ¢ for which f.(n) is the above function 7(n)

g 3;665 101-100! %1012100! 795 101100! 4—7-1-101“100!
2100t 4 o +2 +257 +245
319 01000 Bos000 A390171000 S3Bot1000 43410191001
49 413 4+ 0407 49371 4+ 2355 + 0335
89 10 17 11 79 12 31 ;413 41 14
B o000 2 go1Mi00r -2-101"2100! 101%1000 2L 10111001
+2235 +2209 +2122 +2133 03-~1001 +2115 2 e
30151000 Mliorsionr 3017001 2310181000 Z3101%100!
+2 8% +2 8 +27 +273 +27
%1011"100! 2;’ 10121000 210121000 210121000 AL 101241001
+297 +2 +2% +257 +253
%3 10125100! %101251001 iti1012"'100: Broi%ionr 231012100
) 42 +241 + 238 +237
57 101%1000 Lioitior oz i01%100 32 101%100!
+231 +229 +219 +2” +213
41 35 1 36 1 37 384
o500t Lio*oor L0100 —L101%*100!
+23 +27 421 +21024 QL=100; +210139100!

89-1011 »90-101! 101! —
X 57 17 % 23

Figure 1. The constant ¢, .
-7-

3. Avoid Brand X.

Works that develop the theory of effective computation are often writ-
ten by authors whose interests are more logical than computational, and so
they seldom give elegant treatments of the essentially computational parts
of this theory. Any effective enumeration of the computable functions is
probably complicated enough to spread over a chapter, and we might read
that "of course the explicit computation of the index number for any func-
tion of interest is totally impracticable." Many of these defects stem from
a bad choice of the underlying computational model.

Here we take the view that it is precisely because the particular com-
putational model has no great logical interest that it should be carefully
chosen. The logical points will be all the more clear when they don’t
have to be disentangled by the reader from a clumsy program written in an
awkward language, and we can then "sell" the theory to a wider audience
by giving simple and striking examples explicitly. (It is for associated
reasons that we use the easily comprehended term "computable function”
as a synonym for the usual "partial recursive function.")

4. Only FRACTRAN Has These Star Qualities.

FRACTRAN is a simple theoretical programming language for arith-
metic that has none of the defects described above.

® Makes workday really easy!

FRACTRAN needs no complicated programming manual - its entire
syntax can be leamed in 10 seconds, and programs for quite complicated
and interesting functions can be written almost at once.

e Gets those functions really clean!

The entire configuration of a FRACTRAN machine at any instant is
held as a single integer - there are no messy "tapes” or other foreign con-
cepts to be understood by the fledgling programmer.

8.

A

U
91

e Matches any machine on the market!

Your old machines (Turing, etc.) can quite easily be made to simulate
arbitrary FRACTRAN programs, and it is usually even easier to write a
FRACTRAN program to simulate other machines.

e Astoundingly simple universal program!

By making a FRACTRAN program that simulates an arbitrary other
FRACTRAN program, we have obtained the simple universal FRAC-
TRAN program described in Theorem 3.

5. Your PRIMEGAME Guarantee!

In some ways, it is a pity to remove some of the mystery from our
programs such as PRIMEGAME. However, it is well said [2] that ‘‘A
mathematician is a conjurer who gives away his secrets,”” so we’ll now
prove Theorem 1.

To help in Figure 2, we have labeled the fractions:

B C D E F G H I J K L M
78 19 23 29 77 9 77 1 11 13 15 1 55
85 51 383 33 29 23 19 17 13 1 2 7 1
and we note that AB=2X3,EF=2—, DG=2.
5x7 3 2

We let n and d be numbers with O<d<n and write
n=qd+r (0<r<d). Figure 2 illustrates the action of PRIME-
GAME on the number 5" 7913. We see that this leads to 5" 79! 13 or
5"1 7" 13 according as d does or does not divide n. Moreover, the
only case when a power of 2 arises is as the number 2" 74~! when d = 1.

5774 13
d@AaBy?ys
24 34 5n-d 11
V(EFY¥ K
24 srd 7d 13
L @By J
22d 3d §n-2d 11
L ERK
2% gn-2d 9d 13
L @By J

L (EFY K
294 5774 13
l (AB)Y A
on 37 Td—r—l 17

r>(y \=0
C I

on 3r'—1 7a‘-—r—1 19 on 7d—l
l (DG H LM+ N
3r-1 sn qdr 11 Jnsrtl 11
L (EF1K L (EF' K
5n 741 13 5ntl g 13

Figure 2. The action of PRIMEGAME.

It follows that when the game is started at 5" 7% 13, it tests all
numbers from n—1 down to 1 until it first finds a divisor of n, and then
continues with n increased by 1. In the process, it passes through a power
of 2" of 2 only when the largest divisor of » that is less than nis d= 1,
or in other words, only when » is prime.

-10-

6. FRACTRAN - Your Free Introductory Offer.

A FRACTRAN program may have any number of lines, and a typical
line might have the form

2 4
i 13: = 7, — 14 .
line 3—) 5—3»

At this line, the machine replaces the current working integer N by

%N, if this is again an integer, and goes to line 7. If %N is not an

integer, but %N is, we should instead replace N by %N, and go to line

14. If neither %N nor %N is integral, we should stop at line 13.

More generally, a FRACTRAN program line has the form

" P P2 Pk
line n:— —>n, —-on,...,— 2n.
9 92 9k

The action of the machine at this line is to replace N by ﬂN for the
i

least i (1 <i<k) for which this is integral, and then go to line n, ; or,

if no ?'N is integral, to stop at line n. (A line with k = 0 is permitted
i
and serves as an unconditional stop order.)

A FRACTRAN program that has just n lines is called a
FRACTRAN-n program. We introduce the convention that a line that

cannot be jumped to counts as a %-line. (Sensible programs will contain

at most one %-line, the initial line.)

We write
npo ok
91 D i

for the FRACTRAN-1 program

Wi

line l:ﬂ—>1, ﬁ—)lﬁ

q1 b 9k

— 1.

We shall see that every FRACTRAN program can be simulated by a
FRACTRAN-1 program which starts at a suitable multiple of the original

starting number. With a FRACTRAN-I% program, we can make this
multiple be 1.
The FRACTRAN-I% program

line 0:— — 1 ﬁ—3»1.. i—:»l
0, e, g
line I:ﬁ—:rl, &—)lﬂ—)1
US| Up) Ak
is symbolized by
hbBb HE e Py
0, O Qj 91 92 di

Note that the FRACTRAN-I% program

mififz o fk]
started at N, simulates the FRACTRAN-1 program

[fifa = fil

started at mN .

We shall usually suppose tacitly that our FRACTRAN programs are
only applied to working numbers N whose prime divisors appear among
the factors of the numerators and denominators of the fractions mentioned.

-12-

7. Beginners’ Guide to FRACTRAN Programming.

It's good practice to write FRACTRAN programs as flowcharts, with
a node for each program line and arrows between these nodes marked
with the appropriate fractions. We use the different styles of arrowhead

f f f f
—>L > pL
for the options with decreasing priorities from a given node, and if several

options with fractions f, g, h at a node have adjacent priorities, we often
amalgamate them into a single arrow:

\Geh
P

The different primes that arise in the numerators and denominators of
the various fractions may be regarded as storage registers, and in a state in
which the current working integer is

N=2030 594,
we say that
register 2 holds a, or r,=a
register 3 holds b, or r3=b
register 5 holds ¢, or rs=
register 7 holds d, or r,=d

etc.

FRACTRAN program lines are then regarded as instructions to
change the contents of these registers by various small amounts, subject to
the overriding requirement that no register may ever contain a negative
number. Thus the line

line 13:£—>7, i—1»14
3 5
either replaces ry, by ry+1, rg by r3—1 (if r3>0)
or replaces ry by ry+2, rg by rs—1 (if rs>0)
or stops (if r3=rs=0).
g5

In our figures, unmarked arrows are used when the associated frac-
tions are 1. A tiny incoming arrow to a node indicates that that node will
be used as a starting node; a tiny outgoing arrow marks a node that may
be used as a stopping node. A few simple examples should convince the
reader the FRACTRAN really does have universal computing power.
(Readers familiar with Minsky’s register machines will see that FRAC-
TRAN can trivially simulate them.)

The program

is a destructive adder: when started with r, =a, ry=>b, it stops with
rp=a+ b,r3=0. We can make it less destructive by using register 5 as
working space: the program

when started with r,=a, ry=b, rsy=0, stops with r,=a+5b,
r3=b, rs=0.

By repeated addition, we can perform multiplication: the program

started with ry=a, r3=b, rs=0, r;=c, stops with r,=a + bc,
r3=b, rs=r;,=0. We add an order -;— ("clear 3") at the
starting/finishing node and formulate the result as an official FRACTRAN

program:

& o

lincl:-l--—)z, %—)1

~

fine2 : 22 52, %—)»3

W

1ine3:%—93, %—n.

When started at line 1 with N = 3% 7¢, it stops at line 1, with N = 2b¢,
The program obtained by preceding this one by a new

: 21 1
1 P —_— , — I;
ine 0 2—)0 1—)

when started at line O with N = 2", stops at line 1 with N = 2" .

8. How to Use the FRACTRAN-1 Model.

You can use a FRACTRAN-1 machine to simulate arbitrary FRAC-
TRAN programs. You must first clear the given program of loops, in a
way we explain later, and then label its lines (nodes) with prime numbers
P,Q,R,. .. larger than any of the primes appearing in the numerators
and denominators of any of its fractions. The FRACTRAN-1 program
simulates

: a c e
lineP:— — 0, — R, — S R .
ine 5 0 d—) f—)S

by the fractions

aQ R &S
bP dP fP

in that order. If the FRACTRAN-0 program when started with N in state
P stops with M at line Q , the simulating FRACTRAN-1 program when
started a PN stops at OM .

Manufacturer’s note. Our guarantee is invalid if you use your
FRACTRAN-1 machine in this way to simulate a FRACTRAN program
that has loops at several nodes. Such loops may be eliminated by splitting
nodes into two.

-15-

The third of our examples

mlu

becomes

when each of the two nodes with a loop is split in this way, and the new
nodes are labeled with the primes 11, 13, 17, 19, 23. Accordingly, it is
simulated by the FRACTRAN-1 program

13 170 19 13 69 11
77 39 1317 95 19

~—
omed

If started with N =29327°11, this program stops with
N = 28+bc 3b 11 | (The factors of 11 here correspond to the starting and
stopping states of the simulated machine.)

We note that it is permissible to label one of the states with the
number 1, rather than a large prime number. The fractions corresponding
to transitions from this state should be placed (in their proper order) at the
end of the FRACTRAN-1 program. If this is done, loops, provided they
have lower priority than any other transition, are permitted at node 1. Thus
the FRACTRAN-1 program

16

(3o 3179519 7 3

simulates the previous program with a loop order % adjoined at the
starting/stopping node, which has been relabelled 1. This program, started
at 30 7¢ stops at 2bc |

A given FRACTRAN program can always be cleared of loops and
adjusted so that 1 is its only stopping node. It follows that we can simu-
late it by a FRACTRAN-1 program that starts at PN and stops at M when
the original program started at N and stopped at M . As we remarked in

Section 6, we can simulate this by a FRACTRAN-I% program

F ¢]

which starts at N and stops at M .

9. Your PIGAME Guarantee.

We now prove Theorem 2, which is equivalent to the assertion that
the program

[365 29 1 1]
46 161 11 1024
(obtained by ignoring factors of 97 and dropping the final fraction 81—9 of

PIGAME), when started at 2" - 89, stops at 2™", This FRACTRAN-1
program has been obtained from the FRACTRAN program of Figure 3 by
the method outlined in the last section. The pairs of nodes 13 & 59, 29 &
71, 23 & 73, 31 & 67, and 43 & 53 were originally single nodes with
loops.

We shall only sketch the action of this program, which we separate
into three phases. The first phase ends when the program first reaches
node 37, the second phase when it first reaches node 41, and the third
phase when it finally stops, at node 1.

=17=

243 7
1 N
13 : 59 29/§ 3 43 1
1 zjl zﬁ{ \7
1 T 3L 53 4] —<<>53
2 5 B AN
—>-89—<f—19-—9>—83. > 37 5/79 1m >~]+
; ¥ & ‘! 1 111
3 11 it 25 7,11,1024
1
47 —>—17 3
—
67: 154 > 31

Figure 3. A FRACTRAN program for digits of 7 .

The first phase, started at 89 with register contents
rp=n, r3=rs=r;=ry; =0,
reaches 37 with contents
r2=0, ?"331, r5=E, r7=2'].On, r11=0,

where E is a very large even number. To see this, ignore the 5 and 11
registers for a moment, and see that it initially sets r, =2 . Then each
pass around the triangular region multiplies r, by 5 and puts it into 73
and is followed by passes around the square region which double 75 and

put it back into r;. This is done n times, so that at the end of this phase
we have r; = 2 - 10", as desired.

The first pass around the square ends with 4 in rs5, and each subse-
quent pass at least doubles this number, while keeping it even. At the last
stage we pass around this region 10" times and finish with an even
number E > 4 x 2! in r5. It’s easy to check that registers 2, 3, and 11
end with the indicated values.

At the end of the second phase, we shall have

-18-

rp=rs=1=10,
r3 =2 x 10" X E(E-2)(E-2)(E-4)(E-4)(E-6)---4-4-2 2 2 N,
ry; = 1 X (E-1(E-1(E-3)(E-3(E-S5(E-S5)::+5:3:3-1 Ap.

This is fairly easy to check, the essential point being that each sojourn
in the upper region multiplies r; by rs and puts it into r;; (preserving the
value of rs but clearing r,), while in the lower region, we multiply
r3 by rs into r in a similar way, and then (at the left) transfer r,, back
to 3. Register 5 is decreased by 1 as we pass from the upper to the lower
region; but when r5 = 1 we instead clear it and pass to node 41, entering
the third phase.

Now Wallis’ product is

in which the successive fractions are obtained by alternately increasing the
denominator and numerator. If we truncate it so as only to include all fac-
tors whose numerator and denominator are at most K, we obtain an

il o i g | amm b4
approximation 7wy for m which is within at most X of . So our

N _ 10" - m. , where mx is a very good approximation indeed to 7. It is
E E ry g PP

D
in fact so good that the nth decimal digit of mg is the same as that of m.
This digit can be obtained by reducing the integer part of -g- modulo 10,

and it is easy to check that the third phase of our program does just this,
putting the answer in register 2 and clearing all other registers.

The assertion about the nth decimal digit of 7z is not trivial. For

n =0, our approximation Tz is my = % . For n=1 or 2, we have

| ng — | < e which is less than , and since ™ = 3.141 - - -

1
4 x 210 1000

195

the nth digits (n =1 and 2) after the decimal point in Tz must both be
correct.
For n = 3, the error in 7y is at most

b4 1 _ 10-3 % 10™! —42n
T < 00 10 < 1o,

The desired assertion now follows from Mahler’s [4] famous irra-

tionality measure for « : if 2 (in least terms) is any nonintegral rational
q

number, then

_2)s 1
| q|> 5

10. How to Use Our Universal Program.

In this section, we prove Theorem 3, using an ingenious lemma due to
John Rickard. We shall call a FRACTRAN-1 program [fi,f,...,f;]
monotone if fi<fo<fz3<:--<f;.

Lemma: Any FRACTRAN-1 program can be simulated by a monotone
one that starts and stops with the same numbers.

Proof. Choose a new prime P that is bigger than the ratio between any
two of the f; and bigger than the inverse of any f;. Then

[%.Pfl,szz,P3f3,...,P"fk] simulates [fy. fy far - - -+ fe] and is

monotone. The new program behaves exactly like the old one, except that
at each step a power of P is introduced, only to be immediately cleared
away before we copy the next step.

We shall call a FRACTRAN-1-- program

Fislaoes oy Uil « i)

monotone if

fich<--<f and fi<fp< - <fp

290

Then our universal program simulates monotone FRACTRAN-I-%

programs. It codes such a program by three numbers, M, M,and d,
defined as follows.

We take d to be any common denominator of all the fractions men-

tioned and suppose the given FRACTRAN-I% program is

* * *
m; mp) mJ ny mp . my]
d d d d d d

We then adjoin dummy numbers m:,-:l and my,,, which are both mul-
tiples of d and which satisfy

*

m?<m;< <mf<m+1, m<m< - <m<M,,

J J

and [-lz-M*]SM

where
* - -
M =2"M 42" ... 42T

M=2" 42"y o 4 M

The universal program POLYGAME, started at
N 3M sM" 17d-1 23
will simulate the given FRACTRAN-l% program, started at N . This

universal FRACTRAN-1 program was obtained from the FRACTRAN
program shown in Figure 4, and accordingly, we consider starting the
latter with ry = N, r3 =M, rg = M, ry7 = d-1, at the node 23.

This works roughly as follows. After a new N has been found, the
program computes successive multiples N, 2N, 3N, ..., mN, and simul-
taneously repeatedly halves M toget [M/2], [M/4],...,[MP2™]. If

[M/2™] is odd, so that m is one of the m; , it sees whether Nm is a
multiple of d, and if so resets M and takes a new N = mN/d , unless

m was my,, (i.e., [M/2™] = 1), when it arranges to stop at node 1 with
2=

register 2 containing N and all other registers empty. For the first pass,
it uses M" in place of M.

n 1 y 3
2 5 7
19 T
17 15
37&29 —>>— 23 47&41

13 —
17 7 215
19 11,7

Figure 4. A flowchart for POLYGAME.

Registers 13, 17, 19 function as a counter, whose count is stored in a
form from which we can see at once if it is a multiple of d . If

r3=gq, rg=r, riy=d-1-r, with 0<r<d,

then the count is the number gd + r . If the machine arrives at node 31
("enters the counter”) with these values, then when it next arrives at node
23 ("leaves the counter™), we shall have

r13=q, r.lg:r-l-l, r17=d—1—-(r+1), iff(d—l,
r13=q+1, r19=0, r17=d-1, ifr=d_1.
In other words, the value of the count will have increased by 1.
So if the machine is started at 23, with r5 = ry; = 0 and r, = N, it will
increase the count by N while transferring N from register 2 to register

11, and then go to node 47 (where its first action will be to retransfer N
from register 11 back to register 2).

22-

[uC/%]="n @vsuwouffq.avu%:

0 0 0 0 o0 0 0 N I
\ﬁ o wonon s ow @ A g
A N
= T+
’ " 0 -7 0 — W o 0 0 [Iv®Ly
1+ s
0= "y
Wy Wilppp W o o Ty N %4
w 0 W ™Wp—p ™ N ™y o M o |ww
O — R
. Yo M1p MB 0 MUy 0 "Ypw N £C
0#“s
Yo Yerp Mb o0 My o Wiy N I
Uy My ppo “w
Y Yer-p B o 0 Mw W N €T
uorjoe 61 L1 1 S A | L S € [4 apou
:s1318131 JO Sjudu0))

JNVOATTOJ O uondy ayj, °z ajqey,

-23-

After these remarks, the reader should have little difficulty in verifying the
transitions between particular configurations shown in Table 2.

We suppose that for particular positive numbers d, N, M , and M

with [%Mo] <M we define for varying values of m the numbers

M, q,, 1., bY
M, =[My2"]

mN=gq,d+r, (=<r,<d.

Then Table 2 shows that unless M,, is odd and r, =0, the special
type of configuration in the first line of the table leads to a similar one (in
the fifth line) with m increased by 1. In the excepted case, if M, ., # 0,
we obtain another such special configuration (in the seventh line), but with

m (and the count) reset to 0, the new initial value My = M for M,,, and

ﬂdN— as the new N . If instead M, , was 0, we arrive at the last line of

the table, and stop at node 1, with N in register 2 and all other registers
empty. The cases with M,, odd and r,, = O are called resets.

Now suppose we start the machine in the special configuration in the
top line of the table, with m = 0, and the initial value M, of M,, set to the
number

2" 4 M g g QT
where

m0<m1<"'<mk+1
and m,,, is divisible by d. Then before the next reset, we have the
equivalences

M, odd <= m is one of the m;
Tm=0 <= mN/d is an integer
M,.,=0 = m=m,.

So the next reset will be at the first of the m; for which m; N/d is

integral, and will either
g,V

replace N by m; N/d, and reset m to O and M,, to M (if i<k),

or stop at node 1, with N in register 2 and the rest empty (i = k) .

This completes the required verifications. Initially, we set m = 0 and
My = M", but all subsequent resets will put My = M, in accordance with

the rules for FRACTRAN—]% programs.

A FRACTRAN-1 program is a FRACTRAN—I% program with
M=M". For this we can use the alternate catalogue number
M 1741 41.

11. Applications, Improvements, Acknowledgments.

For the function

1
gN) =172
3N +1 (N odd),

N (N even)

the Collatz problem asks whether for every positive integer N there exists
a k for which g“(N) = 1 . See [3] for a survey of this problem.

We can ask similar questions for more general Collatz functions
gN) =ay N + by,
where ay and by, are rational numbers that only depend on the value of
N modulo some fixed number D . We proved in [1] that there is no
algorithm for solving arbitrary Collatz problems. Indeed, for any comput-
able function f(n), there is a FRACTRAN-1 program [f; f5 - - - f;] with

the property that when we start it at 2" , the first strictly later power of 2
will be 2/, In other words, we can define f by

270 = gk 27,
where k is the smallest positive integer for which g% (2%) is a power of

2, and the function g(N) , which has the above form, is just f; N for the

least i which makes this an integer. This result is an explicit version of

Kleene's Normal Form Theorem.
9%,

We note that g(N)/N is a periodic function with rational values, so
that g(N) is a Collatz function for which by, is always 0. So even for Col-
latz functions of this special type there can be no decision procedure. By
applying the argument to a universal fraction game, we can get a particu-
lar Collatz-type problem with no decision procedure.

(We remark that of course Collatz problems with arbitrary by are
harder to solve, rather than easier. We might, for instance, define one that
simulates a program written in 10 segments, each segment using only the
numbers ending in a given decimal digit, and in which control is
transferred between the segments only at certain crucial--and recursively
unpredictable--times.)

John Rickard tells me that he has found a seven fraction universal
program of type 22" . ¢ 5 22™ and a nine fraction one of type
2" - ¢ — 2/ However, it seems that his fractions are much too compli-
cated ever to be written down. I used one of Rickard’s ideas in Section
10. Mike Guy gave valuable help in computing the catalogue numbers in
Section 2. Of course, the responsibility for any errors in these numbers
rests entirely with him.

REFERENCES

[1] JH. Conway, ‘‘Unpredictable Iterations,”” in Proceedings of the
Number Theory Conference, Boulder, Colorado, pp. 49-52 (1972).

[2] J.H. Conway, ‘“FRACTRAN - A Simple Universal Programming
Language for Arithmetic,”” Open Problems Commun. Comput., pp. 4-
26 (1986).

[3] J.C. Lagarias, ‘“The 3x+ 1 Problem and Its Generalizations,”” Am.
Math. Monthly, 92, No. 1, pp. 3-25 (1985).

[4] K. Mahler, “On the Approximation of = ,”’ Indagnationes Math., 15,
pp. 30-42 (1953).

26-

