
VOLUME 64, NUMBER 20 PHYSICAL REVIEW LETTERS 14 May 1990 

Unpredictability and Undecidability in Dynamical Systems 
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We show that motion with as few as three degrees of freedom (for instance, a particle moving in a 

three-dimensional potential) can be equivalent to a Turing machine, and so be capable of universal com- 

putation. Such systems possess a type of unpredictability qualitatively stronger than that which has been 

previously discussed in the study of low-dimensional chaos: Even if the initial conditions are known ex- 

actly, virtually any question about their long-term dynamics is undecidable. 

PACS numbers: 05.45.+b, 02.50.+s, 05.40.+) 

Traditionally, physicists studied integrable systems 

where a formula could be found for all time describing a 

system’s future state. When we widened our scope in or- 

der to study the so-called “chaotic” systems, we were 

forced to relax our definition of what constitutes a solu- 

tion to a problem, since no such formula exists. Instead, 

we content ourselves with measuring and describing the 

various statistical properties of a system, its scaling be- 

havior, and so on: We can do this because the individual 

trajectories are essentially random. 

In this paper we introduce a class of dynamical sys- 

tems, with as few as two or three degrees of freedom, in 

which even these modest goals are impossible: rather 

than being merely random, the dynamics is highly com- 

plex. We will show that these systems have a stronger 

kind of unpredictability than a typical chaotic system, 
and that as a consequence almost nothing can be said 

about their long-term behavior. 

Complex behavior of this kind has already been dis- 

cussed in various distributed, many-degree-of-freedom 

systems such as cellular automata (CA’s),' partial 

differential equations (PDE’s),* neural networks,* and 

hard-sphere gases;* what is new about our examples is 

that they are embedded in a smooth, finite-dimensional 

dynamics. In particular, we will show how in principle 

to construct a three-dimensional potential in which the 

motion of a single particle can correspond to universal 

computation (i.e., a Turing machine). 
First, we discuss in what sense a canonical chaotic sys- 

tem is actually quite simple. Many physical systems 

contain within their dynamics a “horseshoe map” of the 

plane” like that shown in Fig. 1, in which some area in 

phase space is stretched, folded, and mapped back onto 

itself. These include®’ damped pendula, beam dynamics 

in accelerators, spin-orbit coupling, and, in fact, any 

FIG. 1. The Smale horseshoe map. 

chaotic Hamiltonian system or area-preserving map such 

as the standard map, as well as generic two-dimensional 

maps such as the Heénon map. In these systems, the 

horseshoe is generally thought of as the generator of 
chaos. 

This is because if we label points in the Cantor set 
with two-sided infinite sequences 

a=(a;)=...a- a -).a9a\a>... 

as shown in Fig. 2, the horseshoe is equivalent to the 

shift map o: a;—* a;+,. For instance, the fixed point in 

the lower-left-hand corner has the following sequence 

(0) =...000.000.... [We denote by (w) the periodic 
continuation of some sequence w.] 

This map is then considered chaotic because errors 

grow exponentially as faraway discrepancies in the 
point’s symbol sequence are shifted towards the origin. 

This also implies that, to accurately predict the system ¢ 

steps in the future, we need roughly ¢ digits of the initial 

00.10 10.10 11.10 01.10 

t t I 

OO 11 10 11 11.11 01.11 

00.01 10 01 11.01 01.01 

1 t ’ ! 

00 00 10.00 11.00 01 00 

FIG. 2. The invariant Cantor set contained in the horseshoe. 

Points are given an “address” consisting of a two-sided infinite 

sequence, in such a way that the map corresponds to shifting 

the sequence. The left and right halves dictate the x and y 

coordinates, respectively. 
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conditions; thus the amount of information needed for 

prediction grows with time. This is the usual type of 

“unpredictability” associated with chaotic systems. 

However, what we actually do with this information is 

trivial: If you want the ith digit ¢ steps in the future, just 

look up the (i+z)th digit. In addition, long-term 
dynamical questions about the system are easy to 

answer: For instance, the periodic points can be 

enumerated exactly, since they correspond simply to 

periodic sequences (0), (1), (01), (10), etc. This simple 
symbolic description makes it possible to calculate es- 

cape rates, Lyapunov exponents, etc., with exponential 

convergence.*? Thus we can say that this system is 

chaotic, but not complex. 

How can we invent a more complex action on se- 

quences while retaining the smoothness of the dynamics 

in the plane? Consider!® the following generalized shift 
(GS) map: 

®: a— of (a@Gla)). 

Here F is a map from a to the integers, and G is a map 

from a to finite sequences. The notation reads: First re- 

place a finite number of cells in a with the sequence 

G(a). Then shift the sequence left or right by the 
amount F(a). Furthermore, we require that F and G de- 
pend on a finite number of cells in a; we will call this 

area of a the domain of dependence (DOD). We will 
take examples with a small DOD, for instance the three 

cells centered around the origin; unless the DOD is kept 

as small as possible, things get out of hand. 

For example, consider the following GS, which we will 

call ®: 

a —|.A0a +| F G 

0.00 —] 0.11 

0.01 +1 1.01 

0.10 +] 1.11 

0.11 —] 0.00 

1.00 +1 0.01 

1.01 —] 0.10 

1.10 + | 0.11 

1.11 — I] 0.01 

To illustrate the dynamics, we show that the sequence 

(0)1.1(0) =. . .0001.1000... is fixed. The value on the 
DOD is 1.10, so the table tells us to change it to 

G =0.11, and then shift left since F=+1; but then we 

have the original sequence again. 

Then it turns out!° that any generalized shift is equi- 
valent to a piecewise linear map of the plane, in which 
shifting left and right correspond to stretching the y and 

z directions, respectively. This particular one is 

equivalent to the map shown in Fig. 3, and is 1-1 and 

onto: The eight blocks correspond to the 2?=8 possible 

states of the DOD. To construct the map, we simply use 
the same labeling of points with sequences that we did in 

the horseshoe. (In this figure we have closed the gaps of 

14 MAY 1990 

; (0)1.1(0) 

pA | 0B i q i B 

pec 1 tT) ; 

001 101 > Sa + (1).01(0) 

PG 1° H a _o 

FIG. 3. The map of the plane equivalent to the generalized 

shift example given in the text. The two fixed points are 

shown. The map is constructed as follows: Consider the block 

A, where the DOD is 0.10. The function G tells us to replace 

this with 1.11; each cell replaced corresponds to a reflection, 

and we end up upside down on D. Then since F = +1, we ap- 

ply the horseshoe map once to shift left (if F= — 1, we use the 

inverse) and arrive at the image 4’ shown. 

the Cantor set, and just shown the blocks—the discon- 

tinuities between blocks can be smoothed in a C™ 

way. '°) 
We pause here to note the difference between these 

maps and CA’s. In a CA, a rule is applied everywhere at 

once; in a GS, the action is purely local, and outside the 

DOD 1s just a shift. This turns out to be essential to the 

smoothness of the dynamics, as it corresponds to dif- 

ferentiability; as maps of the Cantor set, CA’s are con- 

tinuous but nowhere differentiable. 

In Fig. 4, we simulate this map on a random initial 

condition. The evolution of the sequence is shown as 

successive rows of a space-time diagram, with black and 

white pixels for 0 and 1, respectively. Instead of shifting 

the sequence left or right by F, for purposes of diagram- 

ming we shift the DOD by —F; in other words, instead 

of shifting the entire sequence we shift the “decimal 

point” the other way, leaving most of the sequence un- 

changed. Thus the area outside the DOD is stationary 

and appears as vertical stripes. 

These simulations show highly complex behavior, in- 

cluding intermittent periodicity in the neighborhood of 

various periodic points. These show up in the diagrams 

as propagating structures reminiscent of ‘“‘gliders” in 

CA’s:'' For instance, the fixed point discussed above ap- 

pears to move to the right each step, since the sequence 

around it is shifted to the left. The spectrum of periodic 

points is very irregular; the first few are 

x T ST 

(0)1.1(0) 1 (fixed) +1] 
(1).01(0) 1 (fixed) —] 

(0)10.101 (0) 7 —] 

(0)10.100€1) 7 —] 

(10)0.1000(0) 16 2 

(10")0.10"*7(10") 1S+n n+1 (for alln => 1) 

where T 1s the period and S7 is the total amount of shift- 

ing left or right during the course of the orbit. Some of 
these are visible in Fig. 4. 
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FIG. 4. Simulations of the example. The successive se- 

quences are plotted as rows, with time going downward. Black 

and white correspond to 0 and 1, respectively. Several periodic 

points are “magnified” and shown on the side. 
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PY
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When we simulate the equivalent map of the plane, 

shown in Fig. 3, orbits appear to fill up the entire square; 

thus this particular example appears to be ergodic. 

However, the divergence of close initial conditions is 

slower than exponential. This corresponds to the irregu- 

lar motion left and right of the DOD, as shown in the 

simulation; since shifting corresponds to doubling one 

direction or the other, the distance between nearby 

points grows as d = 2°" where 

{ 

S, = 2d F(@'(x)) 
‘= 

is the total amount of shifting after ¢ steps. Since S, 

grows slower than linearly with ¢, the map is not hyper- 

bolic and the divergence is subexponential. In this exam- 

ple the behavior turns out numerically to be diffusive 

(S,a7'/), examples exist !° where S, grows logarithmic- 
ally with t, maing d grow as a power law. In general, 

properties like these are highly irregular and difficult to 

classify, as we will now see. 

How can such maps be understood? To address this, 

we connect them with Turing machines.? These are 

idealized computers; they consist of a box with a finite 

number of internal states, and an infinite “tape” on 

which sequences of symbols may be written. The box is 

allowed to read only the one symbol at its present posi- 

tion on the tape, and on the basis of that and its internal 

state, it may (1) change its internal state, (2) change the 
tape symbol there, and (3) move one space left or right. 

Now it turns out that Turing machines are computa- 

tionally universal in the following sense: For any pro- 

gram written in Pascal, C++, or whatever, there is a 

Turing machine which will perform it using the tape as 

its registers and memory. Thus Turing machines can 

perform any finite computation: produce the digits of z 

on the tape, test a number written on the tape for pri- 

mality, etc. 

It is customary for the Turing machine to have some 

special states, designated as “halt” states, to announce 

that the computation is complete. Then a basic question 
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a dynamicist might ask is, will a given Turing machine, 

with a given initial state, ever halt? This is obviously a 

hard question: For instance, we could construct a Turing 

machine which searches for counterexamples to Fermat’s 

last theorem, and halts only if it finds one. Then to 

answer this so-called halting problem one would have to 
prove or disprove Fermat’s last theorem. 

In fact, Turing proved that this question is undecid- 

able; 1.e., there is no general algorithm to answer it. This 

can be generalized to other questions: Let H be the set 

of sequences on which the Turing machine will eventual- 

ly halt. Then Rice’s theorem!’ shows that virtually any 

question about H is undecidable, such as whether A is 

nonzero, infinite, dense, etc. Considered as a dynamical 

system, these are all questions about a basin of attrac- 

tion: Thus, the long-time behavior of a Turing machine 

is completely unpredictable. 

Note that this is a completely different kind of unpre- 

dictability from the chaotic behavior of the horseshoe. 

The horseshoe is unpredictable because our initial 

description will have small errors, and these errors grow 

until our prediction is completely off. Turing machines 

are unpredictable even if the initial conditions are 

known exactly. 

Now we show the correspondence between Turing 

machines and GS’s. We use a simple coding trick to ab- 

sorb the “‘box”’ directly onto the tape, as follows: If s is 

the internal state and (t;) the tape, write 

(s, ...,f-2l -ylol),.. Jo... f—-9t-)|.Stol)... 

to obtain a single sequence. Then the action of the Tur- 

ing machine is easily reproduced by a GS with F and G 

reading s and fo, modifying them appropriately, and then 

shifting left or right. 

How does the undecidability of the halting problem 

carry over? Being in a halt state corresponds to specify- 

ing one or more cells of the sequence, which in turn cor- 

responds to being in a particular block A of the Cantor 

set; so asking if the Turing machine ever halts for a 

given initial state becomes asking if a given initial point 

x will ever fall into A. But we have the result that this 

question is undecidable, even if x is known exactly (for 
instance, if its coordinates in the Cantor set are ration- 

al). This means that the basin of attraction of A is not a 
recursive set, i.e., that there is no algorithm to test 

whether or not a point is in it. Using various coding 

tricks and Rice’s theorem, !° we can extend this property 

to other dynamically generated sets, for instance, the set 

of periodic points: This, too, is nonrecursive; i.e., it is 

undecidable whether a given point x is periodic. 
This undecidability gives these sets a much more com- 

plex kind of structure than a fractal or multifractal; at 

every time scale, and correspondingly at every scale of 

magnification, qualitatively new behavior shows up. No 

nice scaling behavior ever takes over, unlike the situation 
previously discussed with regard to basins of attraction. !? 

This corresponds to the fact that there is no way to
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FIG. 5. Expanding or contracting trajectories in a billiard. 

The two parabolic arcs share the same focus. 

‘jump ahead” as there is with the horseshoe; if after 10° 

steps x has not yet fallen into A, it still might. The best 

one can do is to simulate the system and see what hap- 

pens. This is the “computational irreducibility” referred 

to by Wolfram. ! 

Thus even the simplest long-term properties of the 

motion are undecidable: For instance, we can calculate 

the average amount of shifting S, for any finite ¢, but its 

long-time behavior is uncomputable. This means that 

even the question of whether or not the map is chaotic 

(i.e., S; > © as t— ©) is undecidable. 

Can this type of dynamics be found in physical sys- 

tems? In fact, it can, even in the motion of a single par- 

ticle in a three-dimensional potential. The easiest way to 

do this is as a billiard. Let particles pass upward at unit 

speed through a plane surface of section, defining a point 

in the Cantor set. Then it is a simple matter to reflect 

the particle around so it approaches again from below; to 

carry out expansion or contraction along a given axis, we 
employ parabolic “mirrors” as shown in Fig. 5. We em- 

phasize that only a finite number of such mirrors are 

needed— one set for each block of the Cantor set. Thus 

a billiard can be devised with any generalized shift map 

as its Poincaré map. We can then “‘soften” these billiard 

walls to make a smooth potential for the particle to move 

in. 

These systems give us a “toy model” in which com- 

plexity in finite-dimensional systems can be discussed in 

a precise manner. Although the systems shown here are 

somewhat contrived, it is plausible that a similar level of 

complexity obtains in, say, the three-body problem. (It 

seems that with only one degree of freedom much less 

complexity is possible. '*) 
In conclusion, we have exhibited a kind of motion that 

is unpredictable in a qualitatively stronger way than 

what is usually referred to as “‘chaos,” even though the 

divergence of nearby initial conditions is typically less 

than exponential. Virtually any question about its long- 

term behavior is undecidable. Long-term average quan- 

tities like escape rates, Lyapunov exponents, or the mea- 

sure of a basin of attraction are impossible to compute. 

No nice scaling behavior, in time or phase space, ever 

takes over. Spectra of periodic points and basins of at- 

traction are completely irregular. Even the question of 

whether or not it is chaotic is impossible to answer. 
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