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Abstract. The n-body simulation problem is stated as follows: Given 

initial positions and velocities of n particles that have pair-wise force 

interactions, simulate the movement of these particles so as to determine 

the positions of the particles at a future time. 

In this paper, we give the first known n-body simulation algorithms with 

rigorous proofs of bounded error. The teachability problem is to determine 

if a specific particle will reach a certain region at some specified target 

time. In the case we require poly(n) bits of accuracy and where the target 

time is poly(n), our complexity bounds are surprisingly PSPACE. 

We also have matching lower bounds for n-body simulation problem 

(in comparison all previous lower bound proofs required either artificial 

external forces or obstacles). We show that the teachability problem for 

a set of interacting particles in three dimensions is PSPACE-hard. 

1 Introduction 

The n-body problem, is the problem of simulating a set of n charged particles in 

three dimensions, where the particles interact under the induced electrostatic or 

gravitational potential field. Generally the simulations are done by time step- 

ping. See [1, 6, 7, 8, 10] for details. These simulations are one of the heaviest 

users of super computer cycles (for example at the CRAY-YMP, at RTP, a study 

by MCNC recent showed that over 30 percent of all compute time was used for 

n-body simulation by molecular chemists), and are widely used by astronomers, 

chemists, and biochemists, and to a lesser degree physicists (note: certain physi- 

cists prefer other methods based on energy minimization). 

The equations of motion for each body are in fact given by Newton's sec- 

ond law of motion applied to each body; this results in a system of n ordinary 

differential equations. These equations can be approximately solved from initial 

positions and velocities by stepping in time, using the equations of motion and 

numerical integration to determine approximations to incremental movements 

and velocity changes of the bodies due to the forces exerted by the other par- 

ticles. The force vector associated with these potentials is calculated by taking 

the partial derivatives of the potential in each direction. This is the basis for 

most computer simulations of n-body systems. The main computational task 
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is the calculation of the potential field due to all other bodies, at the current 

location of each body. The naive algorithm for this potential computation re- 

quires quadratic work; however, the potential can be approximated to p bits 

of accuracy in O(np 2 logp) time using the multipole method of Greengard and 

Rokhlin [4, 5], or by the recent modified multipole method of Reif and Tate [11] 

that has time complexity O(np2). 

1.1 The n-body Reachability Problem 

In this paper, we consider the complexity of simulating a set of n charged parti- 

cles in three dimensions, where the particles interact under the induced electro- 

static potential field. 

Throughout this paper, n denotes the number of bodies. We require that the 

number of bits of the input description is polynomial in n. A k-bit rational is a 

ratio of two k-bit integers. Consider a set of n points satisfying a fixed electro- 

static potential law. We assume that we are given an initial poly(n)-bit rational 

position and velocity as well as a destination position, given by a ball, where 

the bali's position and radius is n-bit rational. The n-body teachability problem 
concerns the trajectories of these bodies; in particular we wish to determine if a 

given particle reaches a position within the given destination ball within a given 

time bound, where the ball's position and radius are poly(n)-bit rationals. 

We give the first known n-body simulation algorithms with rigorous proofs 

of bounded error. In the case we require poly(n) bits of accuracy and where 

the target time is poly(n), our complexity bounds are surprisingly PSPACE. 

Our algorithm requires the additional assumption that there is at least an expo- 

nentially small separation between all pairs of particles at all times during the 

simulation. 

Molecular Computers, Molecular Castles, and Our Lower Bounds for 

the n-body Simulation Problem. We also give the first lower bounds for 

these simulations, and show that the teachability problem for n-body simulations 

is PSPACE-hard. We prove this lower bound for the most practical version of 

this problem: inverse-square law forces in three dimensions. 

The hardness proof is via a reduction to machine simulation, and is novel due 

to the nature of the problem under study. In particular, non-trivial problems to 

overcome include the fact that machines work in discrete time steps and particle 

simulations are continuous, and the fact that realistic machines perform tran- 

sitions based on local state whereas the particle simulations have the property 

that all particles induce a force on all other particles (so all effects are global). 

To our knowledge, this is the first hardness proof to overcome these problems. 

The techniques involved in our lower bound proof include constructions in 

which the time-averaged potential of a small set of particles is almost identical 

to the potential due to solid, uniformly-charged plates which persists for expo- 

nential time. A side effect of this construction is a proof that given any set of 

polygons fixed at rational positions in 3D with f faces and sides (say a castle), 
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we can construct in 3D a stable configuration (for exponential time) of a set 

of O(f) charged particles (which move according to Newton's and Coulomb's 

laws) which generate a time averaged very close approximation (with exponen- 

tially small error) to this set of polygons. The physical implications of such a 

construction is interesting in its own right. 

Our PSPACE results for n-body teachability indicate that there is no polyno- 

mial time computable closed form representation of the equations for the motion 

or trajectory of n-body systems with above a certain constant number of parti- 

cles n, unless P = PSPACE. 

Theoretically, if the particles are placed with initial position and velocity of 

sufficient precision (polynomial bit precision will suffice), these PSPACE-hard 

n-body systems can be viewed as general computing machines executing in the 

real time at molecular sizes. However, we strongly caution that these n-body 

systems may not be practical, since the above assumptions of the classical laws 

of potential theory may not always hold in the physical world for small dis- 

placements. Our constructions can be scaled to as small a dimension as possible, 

and quantum mechanical effects minimized by using large mass, large charge 

particles at a small spatial scale -- in this case, as the masses and charges of 

the particles increase, the motion of the particles approaches the motion of an 

ideal Newtonian system. While this is fine in theory, actual subatomic particles 

with fixed charge and mass do indeed exhibit quantum mechanical effects that 

deviate from the simple Newtonian force laws that we use in this paper. 

Related Work in Hardness Results. Here we note that all previous hard- 

ness results for n-body simulation depend on sharp discontinuities in space (i.e., 

obstacles) or force in order for the proof to work. In contrast, our lower bound 

applies when the forces are realistic inverse-square law forces, and there are no 

obstacles present to produce discontinuities. 

A related result has been obtained by Moore [9] who investigated unpre- 

dictability in dynamical systems. He showed that motion of a body with as few 

as three degrees of freedom in the presence of a fixed, immobile potential field can 

simulate universal computation. His construction requires an artificially defined 

potential field that does not satisfy the usual potential laws for far distances (in 

fact, potentials from even moderately distant interactions are assumed by Moore 

to be 0, contradicting the classical potential laws). In contrast, in our work on the 

complexity of the n-body reachability problem, we assume the classical potential 

laws are in effect and no other external potential fields are assumed; therefore 

our lower bound requires a sophisticated construction to overcome the errors 

which accrue from each pair of bodies potential force. This causes a difficult to 

overcome accumulation of error due to the fact that all n bodies exert non-zero 

potential on each other, depending only on their distance. 

In addition, it follows from the "Billiard Ball Computer" construction of 

Fredkin and Toffoli [3] that the teachability problem for particles under elastic 

collisions (but no potential fields) is PSPACE-hard. However, this construction 

relies on the presence of fixed non-movable obstacles and thus is not applicable 
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to n-body simulations. A related lower bound result was obtained by Reif and 

Yoshida for the optical ray tracing problem [12]. Again, the use of fixed polygonal 

obstacles is vital to their proof. 

2 Simulation Algorithm and Error Bounds 

In this section, we present an algorithm for simulating a system of n charged 

particles under the induced electrostatic forces for some time T. The algorithm 

is the basic Euler method for evaluating a system of differential equations, and 

we prove error bounds that are specific to the problem of n-body simulation. In 

order for the error bounds to be reasonable, we require that no pair of particles 

is ever closer than unit distance apart (we explain below how we can handle 

situations where the particles can get exponentially close). 

The input to the simulation consists of the following information: 

Notation Description 

ml, m2, �9 �9 �9 mn Particle masses 

ql,q2, "",q~ Particle charges 

Xl, x2, ..., x,~ Initial positions 

vl, v2, �9 - �9 vn Initial velocities 

C Constant for Coulombic forces 

T The amount of time to simulate 

E The maximum allowable (position) error 

The simulation time T must be bounded by n c for some constant c, all 

masses must be at least n -r and the lengths of the binary representations of all 

the remaining variables must be bounded by n% The constant C is such that 

the force magnitude between two particles i and j is 

C qiqj 
IIx  - II 2 

From this equation, it is clear that if the distance between all pairs of particles 

is lower bounded by ,5 = 2 -'~ for some constant c, we can rescale space and 

particle charges by a factor of 1/A so that there is at least unit distance between 

all pairs of particles and the motion of all the particles is exactly the same as in 

the original system (but on the larger spatial scale). Specifically, we can create 

a new system with Xnew,i = (1/A)xl, Vnew,i = (1/A)vi, qnew,~ = (1/A)qi, and 

Cnew= (1/A)C. The induced force is thus a factor of (i/A) of the force in the 

original system, which is exactly what we need for the increased spatial scale. 

This system induces the exactly same particle motion as the original system, 

and yet it meets all of the assumptions in our problem statement -- the length 

of each scaled variable grows at most by an additive polynomial factor, and the 

minimum distance between pairs of particles is always at least 1. 

The simulation takes place by taking discrete time steps of length r, which 

defines approximate trajectories for each particle. The continuation of the dis- 

crete approximation position and velocity functions are ~k (t) and ~k (t), and we 
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denote the discrete "samples" as Kk,j = ~(jT) and 9k,d = 9(jr). The simulation 

can then be described by 

and 

{ 9k,j= 9k,j_l+ r ifj>O 

vk if j = 0 

{ ~k,j= ~k,j-l+~'k,j-lr+ r 2 if j>0 

Xk if j = 0 

In order to bound the error of these approximations, it is useful to note that 

the velocity and position are easily upper bounded. It is a simple calculation 

to calculate the total energy of the system to be simulated. Since all pairs of 

particles are required to stay unit distance apart at all times, we can lower bound 

the potential energy at any time, and thus upper bound the kinetic energy of 

the system, since the total energy is conserved. In particular, let B, denote the 

bound on the position norm, and By denote the bound on the velocity norm. It 
M e 

can easily be seen that Bx and Bv are both bounded by e , for some constant 

c. This ensures us that the velocity and position of all particles can always be 

represented by a polynomial number of bits, and since the only changing state 

in the simulation is the velocity and position of each particle, the described 

simulation is clearly in PSPACE. 

We use e,,k,j, ev,~,j, and ef,k,j to denote the error in the approximation xk,j, 

~k,j, and fk,j, respectively. For example, e~,~,j = xk(jr) - :~k,j. The error values 

are vectors, and we will denote the norm of the vectors by replacing the e with 

a 6. For example, 6~,k,j = Ile~,k,jll. 

Our main result for this problem is the following: 

Theorem 1. If T ~_ n b for some constant b, there exists a constant c such that 

if the above simulation is run with timestep v = e , then the final approxi- 

mate position of each particle after simulating T/v time steps is within e of it's 

correct position. Furthermore, all of the values required in the simulation can be 

represented by n c bits, so the simulation is in PSPACE. 

Proof. (Sketch) Now we sketch the proof of this theorem. More careful analysis 

of the constants involved will be included in the full paper. We first notice that 

at step j the exact velocity of particle k can be written as 

1 x(3)/e ~r2 vk(jr) = vk((J --1)r) + fk((J --1)r) r +-~ k ~1) , 
mk 

where x(3)(t) is the third derivative of the position function, and (j- 1)r < & < 

jr. The updated approximation velocity is therefore 

~'n k 

= v~((j - 1)T) + f~(U-~)~)~ + ~,k,~-~ + ~ 
= vk(jr)-I (3) %k ~7 ~x~ (&)r + e,,k,j-1 + . 
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The error is therefore updated as 

lx(3)(;l~r2 6$,k,j-1 
ev,k,j = ev,k,j-1 "+ r -- -'g k ~,s / 

mk z 

Similarly, the position error is updated as 

1 ei,k,J_lr 2 lx(a)/e ~r 3 
ex,k,j = e.,k,j-1 + ev,k,j-lr + 2 mk - --~ k ~,g2) 

By writing 
n 

Xk -- Xi 

fk(t) = IIx~ - xill 3Cqiqk ' 
i=1 

some algebraic manipulation yields 

(1) 

6l,k,j < 4n6~:,k,j + ae , 

where 6~ is the error introduced in the computation of (1), say by multipole 

approximation. We can, of course, choose 5~ to be such that 6y,k,j < 8n&:,kj. 

Furthermore, by noticing that x~(t) = fk(t)/rnk, we can bound 

3 
[Ix~3)(t)ll ~ ~ IIx~(t)ll + ~llxk(t)@x~(t) - x~(t)ll 

i=1 

3 3 B < nBv + ~nB, B,, = nBv(1 + -~ ,:) . 

Set B3 = nBv (1 + -~ B~), so Ba is a bound on the third derivative of the position. 

Putting all of this together we can bound the error propagation by the following 

formula. 

1+ 4~-~r2 a~kj-1 a 3 a,,k,j _< , . + . (2) 

For any linear recurrence yj < Ayj-1 + b with Y0 = O, we can bound the norm 

of vector yj by 

lAJma x - 
I[Y~II < ~_ lllbll (3) 

-- /~max 

where Am~x is the largest eigenvalue of A. By the Gerschgorin Circle Theorem 

(see, for example, [2, p. 489]), it is easy to bound 

4n 8n ) 
r+--+l r )~max ~ 1 + mk mk 
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for matrix equation (2). Using (3), we can bound 

)T/r 
rnk 4nr+8n+rnk 7" 1 B37_2 

5z,k,T/'r <~ (4nr+Sn+rn~)r 1 -~- mk "2 

mk T 4n'r'fsn"l'ml~ 
( ) (4 n I"'1"8 r*'l" mk) r mk rnkBz = 1 "1"- 4n'r+8n+mk T 

rnk 2(4n'r+8n+mk ) 7- 

T 4nr'{-Snq-mk rnkn,~ 

< e mk 2(4nr+8n+mk)7" 

<~ encT , 

for some constant c. Therefore, setting v = ee -n~ insures that 5x,k,T/r < e for 

all k. [] 

3 The N-body Reachability Problem is PSPACE-hard 

In this section we examine the n-body teachability problem: given an n-body 

system (namely, a set of n bodies that interact according to a harmonic potential 

function, and with no external forces present), an initial position and velocity 

of each body, and some fixed ball B, does a given body eventually reach B? 

We always assume that the initial position and velocity of each of the bodies are 

vectors of rationals, and that the destination ball B has rational coordinates. We 

prove a lower bound for the most practical version of this problem: inverse-square 

law (repulsive) forces in three dimensions. 

Our PSPACE-hardness proof uses a number of log-space reductions [13] be- 

tween various problems, of interest themselves. In the following, let a rectan- 
gular obstacle environment be a finite set of immobile rectangular surfaces in 

three dimensional space whose face-planes are described by linear equations with 

poly(n)-bit rational coefficients. The problems we consider are the following: 

1. n-body reachability problem, as defined above, 

2. The fixed potential field 1-body reachabilily problem is the 1-body reachability 

problem augmented with a fixed potential field generated by a rectangular 

obstacle environment, where each obstacle is a surface with uniform electro- 

static charge. 

3. The bouncing particle teachability problem is a 1-body teachability problem 

with no potential fields, but with a rectangular obstacle environment where 

we assume that the body bounces on the obstacle surfaces with perfect elastic 

collisions. We actually consider a restricted version of this problem, called 

the cr(n)-cenlered obstacle bouncing particle reachabilily problem, where we 

guarantee that if the particle hits an obstacle, it hits it "near" the center 

of the obstacle. Specifically, if dc is the distance from the point of impact 

to the center of the obstacle and de is the distance to the closest edge, then 

> ~(n). 
de -- 

The following class of functions will be useful in the following discussion. 
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Definition2. We use the notation exp(f(n)) to denote the function 2 s("). By 

writing simply exp-poly, we mean the class of all functions bounded by an 

exp(n c) function. In other words, 

exp-poly = U O(2"~ " 
c>O 

The functions exp(n c) have a very important property, and that is that 

for any two constants 1 < cl < c2 and sufficiently large n, it is true that 

2" exp(n ~I) << exp(nC~). In other words, exp(n ~) is more than an exponen- 

tial factor greater than exp(nC'), so any 0(2") factor of exp(n r is negligible 

when compared to exp(n~2). 

In the remaining part of this section, we give the reductions between the 

three previously mentioned problems. To keep the goal in mind, we quote our 

final result here. 

Theorem 8. The n-body reachability problem, as defined above, is PSPA CE- 

hard. 

First, modifying the PSPACE-hardness result for the ray tracing problem of 

Reif, Tygar, and Yoshida [12] to the c~(n)-centered bouncing particle teachability 

problem is straightforward. 

Theorem 3. For any ~r(n) E exp-poly, the o'(n)-centered bouncing particle reach- 

ability problem is PSPACE-hard. 

Proof. The proof of Reif, Tygar, and Yoshida that the raytracing problem with 

only reflective surfaces is PSPACE-hard [12] can be directly extended to show 

that the bouncing particle teachability problem is PSPACE hard. To show that 

the a(n)-centered bouncing particle reachability problem uses a similar con- 

struction, but a base a(n) encoding is used to encode the tape contents. In 

particular, if the tape of the simulated reversible Turing machine has contents 

(a,-1, ..., al, a0), this is represented by the distance 

n-1 

i-0 

In this way, all configurations with a0 = 0 are within distance o'(n) n-1 of each 

other, but are distance at least "(~)~ away from all configurations with a0 = 1. 
2 

In this way, the splitter obstacles (the only mirrors that violate the a(n)-centered 

constraint in [12]) can be centered in such a way that the collisions are all ~(n) 

centered. [] 

We next give a reduction from the ~(n)-centered bouncing particle reach- 

ability problem to the fixed potential field 1-body reachability problem. Every 

obstacle of the bouncing particle particle problem will be replaced by a box 

containing a single charged plate. Ideally, a particle entering the box should be 
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repelled by the plate in such a way that, to an observer standing outside the 

box, the particle seems to have bounced off the obstacle in the same way as in 

the bouncing particle problem. For our traveling particle, we choose a particle 

with unit charge and unit mass -- all other parts of the construction will be 

scaled to these units. 

To see how a particle can be repelled in such a way, consider the following 

special case: the point of the particle's closest approach to the plate is directly 

over the center of the plate (see Fig. 3). When the traveling particle is far away 

from the plate, the force on the particle is very small and the particle travels 

in approximately a straight line. In fact, as the distance is taken to infinity, the 

trajectory of the particle is a straight line. This line is marked on Fig. 3 as the 

dashed asymptote. By a simple symmetry argument, it can be shown that fixed 

potential field problems like this one have the following property: if a particle has 

trajectory x(t) from time 0 to time T, then if the particle is started at position 

x(T) with velocity -x'(T), then the trajectory will be exactly x(T - t) -- it 

exactly reverses the original trajectory. 

Let p be the position of the particle's closest approach to the charge plate, 

and let vp be the velocity vector at this point. By the above property, if we start 

a particle at point p with velocity -vp, it should exactly reverse the original 

trajectory. Since the potential field is symmetric about the center line, this is 

exactly the reflected outgoing trajectory of the original trajectory, so the entire 

trajectory is symmetric about this line. The immediate consequence of this argu- 

ment is that the angle at which the particle is repelled from the plate is exactly 

the same as the angle at which the angle approaches the plate. As simple as this 

seems, there are two non-trivial problems that arise in this construction. 

First, it is impossible to make a charged plate act exactly as an obstacle in 

the bouncing particle problem. In particular, if the particle's closest approach 

to the plate is not exactly above the center of the plate, then the reflected angle 

will be different from the incoming angle. We avoid this by guaranteeing that 

the closest approach of the particle is above a point on the plate that is near the 

center of the plate while never reaching the plate itself (recall the definition of 

the e(n)-centered bouncing particle teachability problem from above). Thus we 

can bound the error induced in the potential field model. 

Secondly, in the bouncing particle problem, when the particle is traveling 

between boxes it always follows a straight line, since there are no forces acting 

upon it. However, in the potential field problem, there is an electrostatic force 

at all points in space, including at points between the boxes. 

Both of the above problems involve error induced by approximating the 

bouncing particle with repelling potential fields. If the path that the bouncing 

particle takes is defined by the function xb(t), and the path the potential field 

particle takes is defined by the function xp(t), then we define an error function 

err(t) by 

err(t) = xb(t) - xp(t) 

Let f(t) denote the electrostatic force acting on the particle traveling in 

the potential field problem. We will decompose this force into two components, 
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intuitively the "good" force fg(t) and the "bad" force h(t). The good force will 

be the force necessary to simulate the bouncing particle, and the bad force will 

be the part that induces errors. Clearly, whenever the particle is outside of a 

box there should be no force acting on it, so all of the force is bad force. Inside 

a box, the good force is exactly the force needed to turn the path of the particle 

so that it leaves the box exactly the same way as it would have in the bouncing 

particle problem. Any additional force is defined to be bad force. Defined in this 

way, all of the error is induced by bad force, so if we can bound fb(t), then we 

can bound the error of our bouncing particle simulation. 

By the careful construction given below, we can ensure that at all times 

IIh(t)ll < exp(-n c+1) for any constant c, so for a time T = exp(n c) simulation 

the accumulated error is at most 

i]err(T)ll < i exp(_nC+l) (exp(nC))2 < exp(_nC) 
-- 2 

for n sufficiently large. 

To bound the bad force, we use the following lemma. 

Lemma4. Consider a point p with unit electrostatic charge, and a plate with 

uniform electrostatic charge Q. If d is the distance from p to the closest point on 
the plate, then the magnitude of the force induced on p is at most d~. 

To build a box that simulates a particle bouncing off an obstacle, we will 

place a uniformly charged, square plate centered at the location of the original 

obstacle. For a box with sides of length s, we want to set the distance of the 

particle's closest approach to the plate to be d. Noticing that the kinetic energy 

of the particle at infinity is 1 plus the error (which is exp(-ne)), we would like 

for the potential energy at the point distance d above the center of the plate 

1 We can achieve this by setting the total charge of the plate to be exactly 7. 

appropriately. We should note here that the charge required on the plate grows 

linearly in d. 2 By using obstacles that are only ~ wide (so the distance from the 

plate to the edge of the box is at least 3) and setting d = sexp(-n c) for a c 

that we specify in the following proof, we can insure a small error. 

Theorem5. The fixed potential field I-body teachability problem is PSPACE- 
hard. 

Proof. The proof of this theorem is essentially an analysis of the error introduced 

in our simulation, which will be shown to be very small. In this construction, 

2 The exact equation for potential over the plate is quite messy, but the growth rate 

can be proved to be linear in d by considering the growth rate of Q for a uniformly 

charged disk. The potential due to a charged disk is a fairly simple formula that 

grows as Q(vf~ + r 2 - d), where r is the radius of the disk. It is easy to see that 

Q grows linearly in x when solving for a fixed potential, and this must be the same 

as the growth rate of the charge required by a square plate (consider inscribed and 
circumscribed disks). 
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assume we want to achieve a simulation in which the bad force is always bounded 

by exp(-nCl). We perform the above construction with c2 = cl + 1. 

To analyze the amount of "bad" force due to this construction, first consider 

the bad force at positions outside of any box. The bad force due to any particular 

box of side-length s can be bounded by ~ ~176 = v, ,, ) = O(exp(-n~')). 

Therefore, the total bad force at points outside a box is O(n exp(-n~2)), which 

is much smaller than exp(-n r since c2 > Cl. 

We now bound the bad force within a box can be bounded by defining regions 

of the plate that induce the bad force. In particular, for a particle entering the 

box, we hit "near" the center of the box. Clearly, there is some subset of the 

plate that can be used to generate the good force: we take a subset such that 

the closest approach of the traveling particle is above the center of this plate. 

Now the trajectory due to the force induced by the subplate looks exactly like a 

reflection, by the previous argument. Since we hit near the center of the plate, 

the parts of the plate not included in our "good" region are small and at the 

boarder of the plate. We can easily bound the distance to the closest point on the 

"bad" region by -~, and the total charge of the bad region is significantly less than 

Q; a very loose bound on the bad force induced is therefore ~ = o(sexp!:n:2)). 

Once again, this is much smaller than exp(-n cl). 0 

3.1 Molecular Castles 

Finally, we reduce the fixed potential field 1-body reachability problem to the 

n-body reachability problem by simulating surfaces by rapidly moving points. 

For example, consider the simple problem of simulating the effect of a potential 

field generated by a line segment with uniform charge distribution. To simulate 

this, consider a point moving very quickly back and forth between two massive 

particles of similar charge (see Fig. 1). 

In the following discussion, we make the simplifying assumption that the 

outside masses are stationary; we will show how to remove the assumption later. 

In this idealized case, the lighter particle would bounce back and forth between 

the outside particles forever, repeating the same exact trajectory over and over. 

Let At denote the amount of time it takes the bouncing particle to trace out its 

trajectory once. In other words, if x(t) and x'(t) denote the position and velocity 

of the particle at time t, then x(t) = x(t + iAt) and x'(t) = x'(t + iAt) for all 

i = 1, 2, .... Now it can be seen that if the potential at a point x is averaged over 

one time span (0 to At, for example) we can see that the average potential is a 

good approximation of the potential of the line segment. In fact, if we restrict our 

attention to the potential at points that are in an area of width exp(-n c) times 

the distance between the endpoints, then we see that the velocity of the bouncing 

particle is constant with an error term of exp(-nr Furthermore, the charge of 

the bouncing particle is chosen so that the contribution to the average potential 

from times when the particle is outside this range is another exponentially small, 

exp(-nC). This means that at all points in our range of interest, the average 

potential of the bouncing particle approximates the potential of the bar with an 

error term of exp(-nC). 
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Of course, there is additional error involved because the above discussion 

made the simplifying assumption that the outside masses were stationary. Of 

course, in the general n-body problem, no particles have fixed position, so the 

outside masses will move slightly. However, by making the outside masses ex- 

ponentially more massive than the inside masses, they will move too little to 

cause any problems in our limited-time simulation. In particular, if the mass 

of the bouncing particle is exp(nCl), then by making the outside masses have 

mass exp(n c2) for some c2 > cl, the outside masses will move only an exponen- 

tially small amount over the polynomially bounded time of the simulation. By 

increasing c2 above, we can make the amount of movement in the outside masses 

arbitrarily small. The only additional error introduced into the system is related 

to the ratio of the time-step and the inverse of the velocity of the approaching 

particle. This error is analyzed in the proof of the following lemma. 

Lemma 6. Let cl and c2 be constants such that 1 < cl < c2. In the above con- 

struction, if the bouncing particle bounces between its endpoints with frequency 

exp(nC2), then the trajectory of a unit velocity particle approaching the line of the 

bouncing particle will differ from the trajectory of the same particle approaching 
a uniformly charged bar by at most exp(-nCl). 

Proof. In the text preceding the lemma, we showed that the average potential 

field of the bouncing point can be made arbitrarily close to the potential field of 

a uniformly charged bar, where the average is taken over a time interval of length 

At. To bound the error on the trajectory of the moving particle, we can consider 

the following equivalent formulation: the particle is moving toward a uniformly 

charged bar, but the force on the particle over time in the range (iAt, (i + 1)At] 

is taken to constant with the value of the force at the beginning of the interval. 

Since we have assumed that the traveling particle has unit mass, the acceleration 

is identical to the force at all times. Next we bound the error introduced by using 

this approximation for a single time step. 

Let aer r = maxo<t<at(a(t) - a(0)). Then the position error (denoted Xerr) 

induced between time 0 and time At can be bounded using elementary equations 

of motion: 

f0At f0 T z2t r xcr,- (a(t) a(O))didv_< f [ _1 2 = - aerr dtdr 2 a~r~ (At) . 
dO ,,10 

If we do this repeatedly over time T, then the number of steps required is T, 

so the accumulated error is amaxAtT, where arnax is the maximum acceleration 

induced on the particle by the bar over the simulation time T. This is obviously 

bounded since there is a finite minimum distance between the particle and the 

bar. By taking At = exp(-n c2) we make this error negligible. 

Therefore, the total error introduced by our simulation is bounded by the 

error of the average potential field plus the error from the discrete time stepping. 

Both quantities can be made exp(-n c2) for arbitrarily large c2, so by making 

C 2 > C 1 the simulation meets the desired error bound of exp(-n cl). [] 
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To construct the more complex structure of a square sheet with uniform 

potential, we can use the above construction to make the four repelling line 

segments that bound the desired square, and then set another particle sweeping 

out the area enclosed by the line segments (see Fig. 2). If viewed from a distance, 

the average potential (taken over the time of an entire sweep of the square) 

induced by the bouncing particle is very close to that of a uniformly charged 

plate. If the horizontal distance between successive vertical sweeps is exp(-nC2), 

then any particle at distance exp(-n cl ) will experience an average potential field 

that differs from the potential field of a square plate by only an exponentially 

small amount, say exp(-n r for ca > c2. This is formalized in the following 

lemma. 

Lemina7. Let cl, c2, and ca be constants such that 1 < cl < c2 < ca. Assume 

that lhe particle sweeping out the area of the square makes exp(n ca) sweeps of 

the entire square (each one involving exp(n c:) vertical sweeps) per time unit. 

Then the difference between the trajectory of a unit-velocity particle approaching 

this construction differs from the trajectory of the same particle approaching a 

uniformly charged plate by at most exp(-n cl). 

Proof. First, we need to prove that the average potential of the sweeping particle 

is a good approximation of a charged plate. If we could sweep a solid bar over the 

area, then the proof of this fact would be identical to the proof in the preceding 

lemma. The vertical sweeps of the sweeping particle look (on the average) like 

a set of vertical bars, with small error as described in the previous lemma. 

Intuitively, one would expect that if the vertical bars are packed densely enough, 

then the average potential field of all these bars would be only slightly different 

from the potential field of the plane, and in fact, this is true. The potential due 

to a charged plate can be calculated by integrating the potential clue to a bar 

over the width of the square. By using discretely placed bars, we are essentially 

using numerical integration to estimate the potential of the charged plate, and 

by making the integration step small enough (exp(-n c~) of the square width), 

we make the numerical integration error very small (exp(-n~)). 

We have shown that the average potential over a small timestep (exp(-n~3)) 

has an exponentially small error from that of a charged plate, so we can do 

a timestepping error analysis exactly like the previous lemma to complete the 

proof here. [] 

By replacing each uniformly charged plate in the 1-body fixed potential field 

problem with the above construction, we have reduced the 1-body problem to 

the n-body reachability problem. We can make the error of the new simulation 

exp(-n c) for arbitrarily large c, completing the proof of our main lower bound 

result. 

Theorem8. The n-body teachability problem, as defined above, is PSPACE- 

hard. 
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Fig. 1. Simulating the potential field of a line segment using three points. 
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Fig. 2. Simulating the potential field of a planar region. 
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Fig. 3. A particle being repelled by a uniformly charged plate with the closest point 

of approach being over the center of the plate. 


