
On Unsettleable Arithmetical Problems

John H. Conway

Abstract. It has long been known that there are arithmetic statements that are true but not

provable, but it is usually thought that they must necessarily be complicated. In this paper, I

shall argue that these wild beasts may be just around the corner.

1. INTRODUCTION. Before Fermat’s Last Theorem was proved, there was some

speculation that it might be unprovable. Many people noticed that the theorem and

its negation have a different status. The negation asserts that for some n > 2 there is

an nth power that is the sum of two smaller ones: Exhibiting these numbers proves

the negation and disproves the theorem itself. So if one shows that the theorem is not

disprovable, then one also shows there exist no such nth powers and therefore that the

theorem is true.

However, the theorem could conceivably be true without being provable. In this

case, its unprovability could not itself be proved since such a proof would imply the

nonexistence of a counterexample.

The same sort of arguments applied to the Four Color Theorem and still apply

to Goldbach’s Conjecture, that every even number greater than 2 is the sum of two

primes. (In fact, Goldbach asserted this of every positive even number since he counted

1 as a prime.) There has never been any doubt that Goldbach’s conjecture is true be-

cause the evidence for it is overwhelming.

What are the simplest true assertions that are neither provable nor disprovable? I

shall use the term unsettleable because for more than a century the ultimate basis for

proof has been set theory. For some of my examples, it might even be that the assertion

that they are not provable is not itself provable and so on. Of course this means that

you shouldn’t expect to see any proofs! My examples are inspired by

2. THE COLLATZ 3n + 1 PROBLEM. Consider the Collatz function 1

2
n | 3n + 1,

whose value is 1

2
n if this is an integer and otherwise 3n + 1. I shall call this a “bipartite

linear function” because its value is one of two linear possibilities. The Collatz 3n + 1

problem is, “Does iterating this function always eventually lead to 1” (starting at a

positive integer)? It certainly does if we start at 7:

7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 →

40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1.

Tomás Oliveira e Silva has verified [4] that it does for all numbers less than 5 × 1018.

There is a slight chance that this problem itself is unsettleable—some very similar

problems certainly are.

I generalize it by considering multipartite linear functions and the associated games

and problems. The value of the k-partite linear function

g(n) = g1(n) | g2(n) | · · · | gk(n)
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is the first one of the k linear functions gi (n) = ai n + bi that is integral (and is un-

defined if no gi (n) is integral). The corresponding Collatzian game is to repeatedly

replace n by g(n) until a predetermined number (1, say) is reached, or possibly g(n)

is undefined, when the game stops.

3. ARE THERE UNSETTLEABLE COLLATZIAN GAMES? There certainly

are. The proof is more technical than the rest of the paper, but the message is simple:

There is an explicit game with 24 simple linear functions for which there are numbers

n for which the game never stops, but this is not provable. Gödel’s famous Incom-

pleteness Theorem, published in 1931, shows that no consistent system of axioms can

prove every true arithmetical statement. In particular, it cannot prove an arithmetized

version of its own consistency statement. Turing translated this into his theorem about

computation—that the Halting Problem for an idealized model of computation is

undecidable.

Given these stupendous results, it is comparatively trivial to produce an unset-

tleable Collatzian game. In a 1972 paper “Unpredictable Iterations” [1], I showed

that any computation can be simulated by a Collatzian game of a very simple type,

namely a fraction game, where the multipartite linear function involved has the form

r1n | r2n | · · · | rkn determined by a sequence r1, r2, . . . , rn of rational numbers. The

later paper “Fractran: a Simple Universal Programming Language for Arithmetic” [2],

shows that the game whose fractions are:
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is universal in the sense that for any computable (technically, general recursive) func-

tion f (n), there is a constant c such that the game takes c · 22n
to 22 f (n)

. In this case we

define fc(n) to be f (n). Moreover, the result includes all partial recursive functions

(those that are not always defined) when we say that fc(n) is undefined if this game

does not stop or stops at a number not of the form 22m
.

From this it follows fairly easily that whatever consistent axioms we use to define

“settleable,” there is some number for which the game with one more fraction,
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never gets to 1, but this is not settleable. Instructions to the writer of a computer pro-

gram: If the machine succeeds in proving 0 = 1 from the nth axiom system, define

f (n) = 0, otherwise leave f (n) undefined. Then, precisely when the system is incon-

sistent, the 23-fraction game stops at 2, since 0 is the only possible value for f (n), and

so the 24-fraction one stops at 1.

What are the simplest Collatzian games that we can expect to be unsettleable? I

think I have one answer.

4. THE AMUSICAL PERMUTATION. The amusical permutation µ(n) maps

2k 7→ 3k, 4k + 1 7→ 3k + 1, and 4k − 1 7→ 3k − 1. This is obviously a tripartite
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linear function, since every number is uniquely of one of the three forms on the

left-hand side. Since every number is also uniquely of one of the forms on the right-

hand side, µ−1 is equally a tripartite linear function and so µ is a permutation. In

the abbreviated notation, the amusical permutation is 3n

2
| 3n+1

4
| 3n−1

4
and its inverse

is 2n

3
| 4n+1

3
| 4n−1

3
. Using {r} for the nearest integer to r , we could abbreviate the

permutation µ still further to 3n

2
| { 3n

4
} and µ−1 to 2n

3
| { 4n

3
}, but this might obscure the

fact that µ and µ−1 are tripartite rather than bipartite linear functions.

In the usual cycle notation (including possibly infinite cycles), µ begins

(1) (2, 3) (4, 6, 9, 7, 5) (44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59)

(. . . , 91, 68, . . . , 86, . . . , 97, 73, 55, 41, 31, 23, 17, 13, 10, 15, 11, 8,

12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, . . .)

(. . . , 77, 58, 87, 65, 49, 37, 28, 42, 63, 47, 35, 26, 39, 29, 22, 33, 25, 19, 14, 21, 16,

24, 36, 54, 81, 61, 46, 69, 52, 78, . . . , 88, . . . , 94, . . . , 89, 67, 50, 75, 56, 84, . . .)

(. . . , 98, . . . , 100, . . . , 95, 71, 53, 40, 60, 90, . . . , 76, . . .)

(. . . , 85, 64, 96, . . .) (. . . , 80, . . .) (. . . , 92, . . . , 82, . . .)

wherein the smallest element in each cycle is highlighted. I have shown what seem to

be all the finite cycles and the first six infinite ones, so as to include all numbers up

to 100.

Strictly speaking, I do not know that these statements are true. For instance, the

cycle containing 8 might be finite, or might be the same as the one containing 14.

However, the numbers in both of these cycles have been followed in each direction

until they get larger than 10400 and it’s obvious that they will never again descend below

100. We need a name for this kind of obviousness: I suggest probvious, abbreviating

“probabilistically obvious.”

Figure 1 makes this even more clear. It shows the cycles containing 8, 14, 40, 64,

80, and 82 on a logarithmic scale against applications of µ. These six curves have been

-20000 -10000 0 10000 20000

Figure 1. Cycles from 8, 14, 40, 64, 80, and 82 for 20 000 iterations

194 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 120

This content downloaded  on Tue, 19 Feb 2013 13:57:19 PM
All use subject to JSTOR Terms and Conditions



separated since on the scale displayed their least points are all indistinguishable from

1.∗ The spots indicate where they pass 10400. In both directions the growth is exponen-

tial, and µ has a slightly faster rate than µ−1. How can these facts be explained?

Let’s consider what is probably the case when the numbers get large. Since a

number n is equally likely to be even or odd, it will be multiplied on average by
√

3

2
× 3

4
=

√

9

8
per move. In twelve moves the expected factor is:

312

218
=

531 441

262 144
≈ 2.027.

For µ−1 we multiply by 2

3
in one case out of three and 4

3
in the other two cases, so the

expected increase in three moves is 32

27
and the expected increase in twelve moves is:

324

274
=

220

312
=

1 048 576

531 441
≈ 1.973.

Taking these two numbers to be 2 explains the name “amusical.” On a piano there

are twelve notes per octave, which represents a doubling of frequency, just as twelve

steps of the amusical permutation approximately doubles a number, on average. A

frequency ratio of

312

219
=

531 441

524 288
≈ 1.0136

is called the “Pythagorean comma,” and is that between B-flat and A-sharp and other

pairs of “enharmonically equivalent” notes. So there really is a connection with music.

However, since the series always ascends by a fifth modulo octaves, it does not sound

very musical, and it has amused me to call it amusical.

5. AMUSICAL UNSETTLEABILITIES? The simplest assertion about µ that I be-

lieve to be true but unsettleable is that 8 belongs to an infinite cycle.

Why is this true? Because the assertion that the logarithm of µn(8) increases linearly

is amply verified by Figure 1, and nobody can seriously believe that µn(8), having

already surpassed 10400, will miraculously decrease to 8 again (Figure 2, produced

after this text was written, shows that after 200 000 iterations it even surpasses 105000).

Being true, the assertion will not be disprovable.

If a Collatzian game does not terminate, is there a proof that it does not terminate?

The 24 fraction game of Section 3 (which was improved to 7 fractions by John Rickard

[3]) shows that in general the answer is no. In general, if a Collatzian game does not

stop, then there is no proof of this. So one should not expect the cycle of 8 to be

provably infinite in the absence of any reason why it should be. After all, there is a

very small positive probability that for some very large positive numbers M and N ,

µM(8) might just happen to be the same googol digit number as µ−N (8).

Some readers will still be disappointed not to be given proofs, despite the warning in

the Introduction that this is clearly impossible. I leave such readers with the intriguing

thought that the proportion of fallacies in published proofs is far greater than the small

positive probability mentioned in the previous paragraph.

∗The visible kink in the graph of the 82 cycle corresponds to the remarkable decrease (by a factor of more

than 75989) from µ1981(82) = 5 518 82 09 452 689 749 562 442 051 558 599 474 342 616 171 049

802 024 438 847 761≈ 5.519 · 1063 to µ2208(82) = 72 625 599 594 039 327 995 887 556 149 205 597

399 175 812 389 461 574 936 396 ≈ 7.263 · 1058. Admittedly this decrease by a factor of more than 216

where an increase of almost 219 was to be expected casts some doubt on the probabilistic arguments in the text.
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Figure 2. The same cycles for 200 000 iterations, showing much greater regularity in the long run, and further

confirming the probabilistic predictions

APPENDIX 1: Is the 3n + 1 problem settleable? The 3n + 1 game presents special

features, in that the probabilistic arguments suggest that large numbers decrease, rather

than increase as in the amusical permutation. If this were provable, the conjecture

would be settled by being provable. There is some slight hope that this might happen.

The celebrated Hardy-Littlewood circle method often makes it possible to prove results

that are predicted probabilistically.

Its most spectacular application has been Vinogradov’s proof that every sufficiently

large odd number is the sum of 3 primes. The method applies more generally to find

the number of representations of a number n as a sum of a given number of numbers

of some special form (primes, kth-powers, . . . ). Their estimate for this number takes

the form P + E , where P is a probabilistic estimate and E an error term. One hopes

to prove that |E | < P so that there is a representation.

P turns out to be a product containing factors Pp, where Pp (for prime p) is the

probability that n is p-adically (i.e., modulo all powers of p) the sum of the given

number of numbers of that form. (There is also a factor P∞, which is the proportion of

numbers near to N that are representable.) In other words, P is just what one would

naively expect from probabilistic considerations analogous to the ones we used for the

amusical permutation.

It is not entirely inconceivable that such a method might one day prove the Col-

latz 3n + 1 Conjecture, since all one has to do is prove that large enough numbers

eventually reduce. However, I don’t really believe it.

These remarks do not apply to the amusical permutation, whose behavior would not

be established even if one proved that almost all large numbers tend to increase, since,

for instance, the number obtained by applying µ a million times to 8 might just be the

same as the number obtained by applying µ−1 rather more times to 8 or 14, in which

case the cycle containing 8 would be either finite or the same as the cycle containing

14. This probviously doesn’t happen, but we can’t expect to prove it, and there’s no

reason to expect that either it or its negative follows the Zermelo–Fraenkel Axioms or

any likely extension of them. In other words, it’s probviously unsettleable.

Some other things are probvious but with a slightly smaller probability. For in-

stance, there is probviously an algorithm for telling whether n belongs to a finite cycle.

Just ask whether n is one of the twenty numbers:

1, 2, 3, 4, 5, 6, 7, 9, 44, 59, 62, 66, 70, 74, 79, 83, 93, 99, 105, 111;
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if so, say “yes,” if not, “no.” If there is another finite cycle this algorithm fails, but the

answer will still be computable unless there are infinitely many finite cycles, which

there very probviously aren’t.

I’ve already suggested that the assertion that 8 is in an infinite cycle, although prob-

vious, is unsettleable. I now propose that this unsettleability assertion is itself unprov-

able, and therefore unsettleable and so on arbitrarily far into the metatheory.

Even if this is wrong, mathematics is not defined by any system of set theoretical

axioms. In particular, it is likely that some simple Collatzian problems (possibly even

the 3n + 1 problem itself) will remain forever unsettleable.

APPENDIX 2: Some amusical paradoxes. With some relief let’s put deep problems

aside to discuss some simple puzzles about the behavior of the amusical permutation.

We have already noticed the “Either-way-up paradox,” that the numbers in the typical

cycle increase no matter which way we move along the cycle. It’s not really paradox-

ical, as Figure 1 shows. No matter where we start on the cycle and no matter which

direction we move, we’ll eventually pass the minimum and after that we go up.

Here is the “Congruence Paradox.” Since n < µ(n) just if n is even and n < µ−1(n)

just if n is not a multiple of 3, it satisfies both these inequalities (and so is a local min-

imum) just if n ≡ ±2 (mod 6), which happens in exactly one third of cases: Right?

Maybe not. It satisfies neither inequality just if n ≡ 3 (mod 6) and so is a local maxi-

mum in exactly one sixth of the cases. But in any sequence local minima and maxima

alternate, so there should be just as many of each. So which is right: Do we get these

turning points every third term or every sixth term?

Let’s think again. Whenever an increase is followed by a decrease we get a maxi-

mum, and since increases and decreases are equally likely, we should get a maximum

one quarter of the time and the same argument applies to minima, which happen when

a decrease is followed by an increase. So these things both happen once in four moves

rather than once in either three or six! We can get yet another answer by thinking back-

wards, when the two probabilities are 2

3
and 1

3
, leading to the conclusion that maxima

and minima both occur once every 4 1

2
moves.

What these arguments prove is not really paradoxical. If one follows a typical num-

ber one sees both maxima and minima equally often, namely once every four moves

going forwards or once every 4 1

2
backwards. We leave it to the reader to explain why

neither of these answers (once in 4 or 4 1

2
) agrees with either of the answers (once in 3

or 6) given by the Congruence Paradox.

Since the apparent contradictions are based on our experience with finite cycles,

one might think that they could be turned around to prove that most cycles are infinite,

or that at least there are some infinite cycles. However, having thought about it, I still

believe that these problems are unsettleable.

If you disagree try to prove or disprove either of the following statements.

1. There is a new finite cycle.

2. There is an infinite cycle.
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POSTSCRIPT. Added June 8th, 2012. The following argument has convinced me

that the Collatz 3n + 1 Conjecture is itself very likely to be unsettleable, rather than

this merely having the slight chance mentioned above. It uses the fact that there are
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arbitrarily tall “mountains” in the graph of the Collatz game. To see this, observe that

2m − 1 passes in two moves to 3m − 1, from which it follows that 2km − 1 passes

in 2k moves to 3km − 1. Now by the Chinese Remainder Theorem we can arrange

that 3km − 1 has the form 2ln, which passes by l moves to n. There is a very slight

possibility that n happens to be the same as the number 2km − 1 that we started with.

Let’s suppose that the starting number 2km − 1 is about a googol; then the downward

slope of the mountain certainly contains a number between one and two googols, so

the chance that this is the same as the starting number is at least one googolth. (This

is justified by observations for smaller n showing that the first iterate that lies in the

range [n, 2n) is approximately uniformly distributed in this range.) In my view the

fact that this probability, though very small, is positive, makes it extremely unlikely

that there can be a proof that the Collatz game has no cycles that contain only large

numbers. This should not be confused with a suggestion that there actually are cycles

containing large numbers. After all, events whose probability is around one googolth

are distinctly unlikely to happen!

I don’t want readers to take these words on trust but rather to encourage those who

don’t find them convincing to try even harder to prove the Collatz Conjecture!
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