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Glossary

Computable Capable of being worked out by
calculation, especially using a computer.

Mechanism A machine or part of a machine that
performs a particular task computation; the use
of a computer for calculation.

Simulation Used to denote both the modeling of
a physical system by a computer and the
modeling of the operation of a computer by a
mechanical system; the difference will be clear
from the context.

Definition of the Subject and Its
Importance

Mechanical devices for computation appear to be
largely displaced by the widespread use of
microprocessor-based computers that are pervad-
ing almost all aspects of our lives. Nevertheless,
mechanical devices for computation are of interest
for at least three reasons:

(a) Historical: The use of mechanical devices
for computation is of central importance in
the historical study of technologies, with
a history dating to thousands of years and
with surprising applications even in rela-
tively recent times.

(b) Technical and practical: The use of mechanical
devices for computation persists and has not yet
been completely displaced by widespread use
of microprocessor-based computers. Mechani-
cal computers have found applications in vari-
ous emerging technologies at the microscale
that combine mechanical functions with com-
putational and control functions not feasible by
purely electronic processing. Mechanical com-
puters also have been demonstrated at the
molecular scale and may also provide unique
capabilities at that scale. The physical designs
for these modern micro- and molecular-scale

# Springer Science+Business Media, LLC, part of Springer Nature 2018
A. Adamatzky (ed.), Unconventional Computing,
https://doi.org/10.1007/978-1-4939-6883-1_325

Originally published in
R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, # Springer Science+Business Media LLC 2017
https://doi.org/10.1007/978-3-642-27737-5_325-4

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-6883-1_325&domain=pdf
https://doi.org/10.1007/978-1-4939-6883-1_325
https://doi.org/10.1007/978-3-642-27737-5_325-4


mechanical computers may be based on the
prior designs of the large-scalemechanical com-
puters constructed in the past.

(c) Impact of physical assumptions on complexity
of motion planning, design, and simulation:
The study of computation done by mechanical
devices is also of central importance in provid-
ing lower bounds on the computational
resources such as time and/or space required
to simulate a mechanical system observing
given physical laws. In particular, the problem
of simulating the mechanical system can be
shown to be computationally hard if a hard
computational problem can be simulated by
the mechanical system. A similar approach
can be used to provide lower bounds on the
computational resources required to solve var-
ious motion-planning tasks that arise in the
field of robotics. Typically, a robotic motion-
planning task is specified by a geometric
description of the robot (or collection of robots)
to be moved, its initial and final positions, the
obstacles it is to avoid, as well as a model for
the type of feasible motion and physical laws
for the movement. The problem of planning
such as robotic motion-planning task can be
shown to be computationally hard if a hard
computational problem can be simulated by
the robotic motion-planning task.

Introduction to Computational
Complexity

Abstract Computing Machine Models
To gage the computational power of a family of
mechanical computers, we will use a widely
known abstract computational model known as
the Turing machine, defined in this section.

The Turing machine. The Turing machine
model formulated by Alan Turing (1937) was the
first complete mathematical model of an abstract
computing machine that possessed universal com-
puting power. The machine model has (i) a finite-
state transition control for logical control of the
machine processing, (ii) a tape with a sequence of
storage cells containing symbolic values, and (iii) a

tape scanner for reading and writing values to and
from the tape cells, which could be made to move
(left and right) along the tape cells.

A machine model is abstract if the description
of the machine transition mechanism or memory
mechanism does not provide specification of the
mechanical apparatus used to implement them in
practice. Since Turing’s description did not
include any specification of the mechanical mech-
anism for executing the finite-state transitions, it
cannot be viewed as a concrete mechanical com-
puting machine but instead as an abstract
machine. Still it is a valuable computational
model, due to its simplicity and very widespread
use in computational theory.

A universal Turing machine simulates any other
Turingmachine; it takes its input a pair consisting of
a string providing a symbolic description of a Turing
machine M and the input string x and simulates
M on input x. Because of its simplicity and ele-
gance, the Turing machine has come to be the
standard computing model used for most theoretical
works in computer science. Informally, the Church-
Turing hypothesis states that a Turing machine
model can simulate a computation by any “reason-
able” computational model (we will discuss some
other reasonable computational models below).

Computational problems. A computational prob-
lem is given an input string specified by a string
over a finite alphabet; determine the Boolean
answer: 1 if the answer is yes and otherwise
0. For simplicity, we generally will restrict the
input alphabet to be the binary alphabet {0,1}.
The input size of a computational problem is the
number of input symbols, which is the number of
bits of the binary specification of the input. (Note:
It is more common to make these definitions in
terms of language acceptance. A language is a set
of strings over a given finite alphabet of symbols.
A computational problem can be identified with
the language consisting of all strings over the
input alphabet where the answer is 1. For sim-
plicity, we defined each complexity class as the
corresponding class of problems.)

Recursively computable problems and
undecidable problems. There is a large class

36 Mechanical Computing: The Computational Complexity of Physical Devices



of problems, known as recursively computable
problems, that Turing machines compute in
finite computations, that is, always halting in
finite time with the answer. There are certain
problems that are not recursively computable;
these are called undecidable problems. The halt-
ing problem is given a Turing machine descrip-
tion and an input, output 1 if the Turingmachine
ever halts and else output 0. Turing proved the
halting problem is undecidable. His proof used a
method known as a diagonalization method; it
considered an enumeration of all Turing
machines and inputs and showed that a contra-
diction occurs when a universal Turing machine
attempts to solve the halting problem for each
Turing machine and each possible input.

Computational complexity classes. Computa-
tional complexity (see Lewis and Papadimitriou
1997) is the amount of computational resources
required to solve a given computational prob-
lem. A complexity class is a family of problems,
generally defined in terms of limitations on the
resources of the computational model. The
complexity classes of interest here will be asso-
ciated with restrictions on the time (number of
steps until the machine halts) and/or space (the
number of tape cells used in the computation) of
Turing machines. There are a number of notable
complexity classes:
P is the complexity class associated with effi-

cient computations and is formally defined
to be the set of problems solved by Turing
machine computations running in time
polynomial in the input size (typically, this
is the number of bits of the binary specifi-
cation of the input).

NP is the complexity class associated with com-
binatorial optimization problems which if
solved can be easily determined to have cor-
rect solutions and is formally defined to be the
set of problems solved by Turing machine
computations using nondeterministic choice
running in polynomial time.

PSPACE is the complexity class that is defined
to be the set of problems solved by Turing
machines running in space polynomial in
the input size.

EXPTIME is the complexity class that is
defined to be the set of problems solved by
Turing machine computations running in
time exponential in the input size.

NP and PSPACE are widely considered to
have instances that are not solvable in P,
and it has been proved that EXPTIME
has problems that are not in P.

Polynomial time reductions. A polynomial time
reduction from a problem Q0 to a problem Q is
a polynomial time Turing machine computa-
tion that transforms any instance of the prob-
lem Q0 into an instance of the problem
Q which has an answer yes if and only if the
problem Q0 has an answer yes. Informally, this
implies that problem Q can be used to effi-
ciently solve the problem Q0. A problem Q is
hard for a family F of problems if, for every
problem Q0 in F, there is a polynomial time
reduction from Q0 to Q. Informally, this
implies that problem Q can be used to effi-
ciently solve any problem in F. A problemQ is
complete for a family F of problems if Q is in
C and also hard for F.

Hardness proofs for mechanical problems. We
will later consider various mechanical
problems and characterize their computation
power:
Undecidable mechanical problems: typically

this was proven by a computable reduction
from the halting problem for universal
Turing machine problems to an instance of
the mechanical problem; this is equivalent
to showing that the mechanical problem can
be viewed as a computational machine that
can simulate a universal Turing machine
computation.

Mechanical problems that are hard for NP,
PSPACE, or EXPTIME: typically this
was proven by a polynomial time reduction
from the problems in the appropriate com-
plexity class to an instance of the mechani-
cal problem; again, this is equivalent to
showing that the mechanical problem can
be viewed as a computational machine that
can simulate a Turing machine computation
in the appropriate complexity class.
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The simulation proofs in either case often pro-
vide insight into the intrinsic computational power
of themechanical problem ormechanical machine.

Other Abstract Computing Machine Models
There are a number of abstract computing models
discussed in this chapter that are equivalent or
nearly equivalent to conventional deterministic
Turing machines:

Reversible Turing machines. A computing
device is (logically) reversible if each transi-
tion of its computation can be executed both in
forward direction and in reverse direction,
without loss of information. Landauer (1961)
showed that irreversible computations must
generate heat in the computing process and
that reversible computations have the property
that, if executed slowly enough, can (in the
limit) consume no energy in an adiabatic com-
putation. A reversible Turing machine model
allows the scan head to observe three consec-
utive tape symbols and to execute transitions
both in forward and in reverse direction. Ben-
nett (1973) showed that any computing
machine (e.g., an abstract machine such as a
Turing machine) can be transformed to do only
reversible computations, which implied that
reversible computing devices are capable of
universal computation. Bennett’s reversibility
construction required extra space to store infor-
mation to insure reversibility, but this extra
space can be reduced by increasing the time.
Vitanyi (Li and Vitanyi 1996) gives trade-offs
between time and space in the resulting revers-
ible machine. Lewis and Papadimitriou
(Turing 1937) showed that reversible Turing
machines are equivalent in computational
power to conventional Turing machines when
the computations are bounded by polynomial
time, and Crescenzi and Papadimitriou (1995)
proved a similar result when the computations
are bounded by polynomial space. This implies
that the definitions of the complexity classes
P and PSPACE do not depend on the Turing
machines being reversible or not. Reversible
Turing machines are used in many of the

computational complexity proofs to be men-
tioned involving simulations by mechanical
computing machines.

Cellular automata. These are sets of finite-state
machines that are typically connected together by
a grid network. There are known efficient simu-
lations of Turing machine by cellular automata
(e.g., see Wolfram (1984) for some known uni-
versal simulations). A number of the particle-
based mechanical machines to be described are
known to simulate cellular automata.

Randomized Turing machines. The machine can
make random choices in its computation. While
the use of randomized choice can be very useful
in many efficient algorithms, there is evidence
that randomization only provides limited addi-
tional computational power above conventional
deterministic Turing machines. (In particular,
there are a variety of pseudorandom number
generation methods proposed for producing
long pseudorandom sequences from short truly
random seeds, which are widely conjectured to
be indistinguishable from truly random
sequences by polynomial time Turning
machines.) A number of the mechanical
machines to be described using Brownian
motion have natural sources of random numbers.

There are also a number of abstract computing
machine models that appear to be more powerful
than conventional deterministic Turing machines:

Real-valued Turing machines. In these
machines, due to Blum et al. (1996), each
storage cell or register can store any real
value (which may be transcendental). Opera-
tions are extended to allow infinite precision
arithmetic operations on real numbers. To our
knowledge, none of the analog computers that
we will describe in this chapter have this
power.

Quantum computers. A quantum superposition
is a linear superposition of basis states; it is
defined by a vector of complex amplitudes
whose absolute magnitudes sum to 1. In a
quantum computer, the quantum superposition
of basis states is transformed in each step by a
unitary transformation (this is a linear mapping
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that is reversible and always preserves the
value of the sum of the absolute magnitudes
of its inputs). The outputs of a quantum com-
putation are read by observations that project
the quantum superposition to classical
values; a given state is chosen with probabil-
ity defined by the magnitude of the amplitude
of that state in the quantum superposition.
Feynman (1982) and Benioff (1982) were the
first to suggest the use of quantum mechanical
principles for doing computation, and Deutsch
(1985) was the first to formulate an abstract
model for quantum computing and showed it
was universal. Since then, there is a large body
of work in quantum computing (see Gruska
1999; Nielsen and Chuang 2000) and quantum
information theory (see Jaeger 2006; Reif
2009a). Some of the particle-based methods
for mechanical computing described below
make use of quantum phenomena but generally
are not considered to have the full power of
quantum computers.

The Computational Complexity of
Motion Planning and Simulation of
Mechanical Devices

Complexity of Motion Planning for
Mechanical Devices with Articulated Joints
The first known computational complexity result
involving mechanical motion or robotic motion
planning was in 1979 by Reif (1979). He con-
siders a class of mechanical systems consisting
of a finite set of connected polygons with articu-
lated joints, which are required to be moved
between two configurations in three-dimensional
space avoiding a finite set of fixed polygonal obsta-
cles. To specify the movement problem (as well as
the other movement problems described below
unless otherwise stated), the object to be moved,
as well as its initial and final positions, and the
obstacles are all defined by linear inequalities with
rational coefficients with a finite number of bits.
He showed that this class of motion-planning prob-
lems is hard for PSPACE. Since it is widely
conjectured that PSPACE contains problems that
are not solvable in polynomial time, this result

provided the first evidence that these robotic
motion-planning problems are not solvable in
time polynomial in n if the number of degrees of
freedom grows with n. His proof involved simu-
lating a reversible Turing machine with n tape cells
by a mechanical device with n-articulated polygo-
nal arms that had to bemaneuvered through a set of
fixed polygonal obstacles similar to the channels in
Swiss cheese. These obstacles were devised to
force the mechanical device to simulate transitions
of the reversible Turing machine to be simulated,
where the positions of the arms encoded the tape
cell contents, and tape read/write operations were
simulated by channels of the obstacles which
forced the arms to be reconfigured appropriately.
This class of movement problems can be solved by
reduction to the problem of finding a path in an O
(n)-dimensional space avoiding a fixed set of poly-
nomial obstacle surfaces, which can be solved by a
PSPACE algorithm due to Canny (1988). Hence,
this class of movement problems is PSPACE com-
plete. (In the case the object to be moved consists
of only one rigid polygon, the problem is known as
the piano mover’s problem and has a polynomial
time solution by Schwartz and Sharir (1983).)

Other PSPACE Completeness Results for
Mechanical Devices

There were many subsequent PSPACE complete-
ness results for mechanical devices (two of which
we mention below), which generally involved
multiple degrees of freedom:

The warehouseman’s problem. Schwartz and
Sharir (Hopcroft et al. 1984) showed in 1984
that moving a set of n disconnected polygons
in two dimensions from an initial position to a
final position among finite set of fixed polygo-
nal obstacles PSPACE hard.

There are two classes of mechanical dynamic
systems, the ballistic machines and the Browning
machines described below that can be shown to
provide simulations of polynomial space Turing
machine computations.
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Ballistic Collision-Based Computing
Machines and PSPACE

A ballistic computer (see Bennett 1982, 2003) is a
conservative dynamical system that follows a
mechanical trajectory isomorphic to the desired
computation. It has the following properties:

Trajectories of distinct ballistic computers cannot
be merged.

All computational operations must be reversible.
Computations, when executed at constant veloc-

ity, require no consumption of energy.
Computations must be executed without error and

need to be isolated from external noise and heat
sources.

Collision-based computing (Adamatzky
2001) is computation by a set of particles,
where each particle holds a finite state value,
and state transformations are executed at the
time of collisions between particles. Since colli-
sions between distinct pairs of particles can be
simultaneous, the model allows for parallel com-
putation. In some cases the particles can be
configured to execute cellular automata compu-
tations (Squier and Steiglitz 1994). Most pro-
posed methods for collision-based computing
are ballistic computers as defined above. Exam-
ples of concrete physical systems for collision-
based computing are:

The billiard ball computers. Fredkin and Toffoli
(1982) considered a mechanical computing
model, the billiard ball computer, consisting
spherical billiard balls with polygonal obsta-
cles, where the billiard balls were assumed to
have perfect elastic collisions with no friction.
They showed in 1982 that a billiard ball com-
puter, with an unbounded number of billiard
balls, could simulate a reversible computing
machine model that used reversible Boolean
logical gates known as Toffoli gates. When
restricted to finite set of n spherical billiard
balls, their construction provides a simulation
of a polynomial space reversible Turing
machine.

Particle-like waves in excitable medium. Cer-
tain classes of excitable medium have discrete
models that can exhibit particle-like waves
that propagate through the media (Adamatzky
1996), and using this phenomenon,
Adamatzky (1998a) gave a simulation of a
universal Turing machine that, if restricted to
n particle waves, provided a simulation of a
polynomial space Turing machine.

Soliton computers. A soliton is a wave packet
that maintains a self-reinforcing shape as it
travels at constant speed through a nonlinear
dispersive media. A soliton computer
(Jakubowski et al. 1998, 2001) makes use of
optical solitons to hold state, and state trans-
formations are made by colliding solitons.

Brownian Machines and PSPACE

In a mechanical system exhibiting fully Brownian
motion, the parts move freely and independently, up
to the constraints that either link the parts together or
force the parts to exert on each other. In a fully
Brownian motion, the movement is entirely due to
heat, and there is no other source of energy driving
the movement of the system. An example of
mechanical systems with fully Brownian motion is
a set of particles exhibiting Browning motion with
electrostatic interaction. The rate of movement of
mechanical system with fully Brownian motion is
determined entirely by the drift rate in the random
walk of their configurations.

Other mechanical systems, known as driven
Brownian motion systems, exhibit movement
only partly due to heat; in addition, there is a
source of energy driving the movement of the
system. Examples of driven Brownian motion
systems are:

Feynman’s ratchet and pawl (Feynman 1963),
which is a mechanical ratchet system that has
a driving force but that can operate reversibly

Polymerase enzyme, which uses ATP as fuel to
drive their average movement forward but also
can operate reversibly
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There is no energy consumed by fully Brownian
motion devices, whereas driven Brownian motion
devices require power that grows as a quadratic
function of the drive rate in which operations are
executed (see Bennett 2003).

Bennett (1982) provides two examples of
Brownian computing machines:

An enzymatic machine. This is a hypothetical
biochemical device that simulates a Turing
machine, using polymers to store symbolic
values in a manner similar to Turing machine
tapes, and uses hypothetical enzymatic reac-
tions to execute state transitions and read/
write operations into the polymer memory.
Shapiro (1999) also describes a mechanical
Turing machine whose transitions are executed
by hypothetical enzymatic reactions.

A clockwork computer. This is a mechanism with
linked articulated joints, with a Swiss-cheese-
like set of obstacles, which force the device to
simulate a Turing machine. In the case where
the mechanism of Bennett’s clockwork com-
puter is restricted to have a linear number of
parts, it can be used to provide a simulation of
PSPACE similar to that of Reif (1979).

Hardness Results for Mechanical Devices
with a Constant Number of Degrees of
Freedom

There were also additional computation complex-
ity hardness results for mechanical devices, which
only involved a constant number of degrees of
freedom. These results exploited special proper-
ties of the mechanical systems to do the
simulation:

Motion planning with moving obstacles. Reif
and Sharir (1985) considered the problem of
planning the motion of a rigid object (the
robot) between two locations, avoiding a set
of obstacles, some of which are rotating. They
showed this problem is PSPACE hard. This
result was perhaps surprising, since the number
of degrees of freedom of movement of the

object to be moved was constant. However,
the simulation used the rotational movement
of obstacles to force the robot to be moved only
to a position that encoded all the tape cells of
M. The simulation of a Turing machine M was
made by forcing the object between such loca-
tions (which encoded the entire n tape cell
contents of M) at particular times and further
forced that object to move between these loca-
tions over time in a way that simulated state
transitions of M.

NP Hardness Results for Path Problems
in Two and three Dimensions

Shortest path problems in fixed dimensions
involve only a constant number of degrees of
freedom. Nevertheless, there are a number of NP
hardness results for such problems. These results
also led to proofs that certain physical simulations
(in particular, simulation of multi-body molecular
and celestial simulations) are NP hard and there-
fore not likely efficiently computable with high
precision:

Finding shortest paths in three dimensions.
Consider the problem of finding the shortest
path of a point in three dimensions (where
distance is measured in the Euclidean metric)
avoiding fixed polyhedral obstacles whose
coordinates are described by rational numbers
with a finite number of bits. This shortest path
problem can be solved in PSPACE (Canny
1988), but the precise complexity of the prob-
lem is an open problem. Canny and Reif (1987)
were the first to provide a hardness complexity
result for this problem; they showed the prob-
lem is NP hard. Their proof used novel tech-
niques called free path encoding that used 2n

homotopy equivalence classes of shortest
paths. Using these techniques, they cons-
tructed exponentially many shortest path clas-
ses (with distinct homotopy) in single-source
multiple-destination problems involving O
(n) polygonal obstacles. They used each of
these paths to encode a possible configuration
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of the nondeterministic Turing machine with n
binary storage cells. They also provided a tech-
nique for simulating each step of the Turing
machine by the use of polygonal obstacles
whose edges forced a permutation of these
paths that encoded the modified configuration
of the Turing machine. This encoding allowed
them to prove that the single-source single-
destination problem in three dimensions is NP
hard. Similar free path encoding techniques
were used for a number of other complexity
hardness results for mechanical simulations
described below.

Kinodynamic planning. Kinodynamic planning
is the task of motion planning while subject to
simultaneous kinematic and dynamics con-
straints. The algorithms for various classed of
kinodynamic planning problems were first
developed in (Canny et al. 1988). Canny and
Reif (1987) also used free path encoding tech-
niques to show that two-dimensional
kinodynamic motion planning with bounded
velocity is NP hard.

Shortest curvature-constrained path planning
in two dimensions. We now consider
curvature-constrained shortest path problems,
which involve finding the shortest path by a
point among polygonal obstacles, where there
is an upper bound on the path curvature.
A class of curvature-constrained shortest path
problems in two dimensions was shown to be
NP hard by Reif and Wang (1998), by devising
a set of obstacles that forced the shortest
curvature-constrained path to simulate a given
nondeterministic Turing machine.

PSPACE Hard Physical Simulation Problems
Ray tracing with a rational placement and
geometry. Ray tracing is given an optical system,
and the position and direction of an initial light ray
determine if the light ray reaches some given final
position. This problem of determining the path of
light ray through an optical system was first for-
mulated by Newton in his book on optics. Ray
tracing has been used for designing and analyzing
optical systems. It is also used extensively in com-
puter graphics to render scenes with complex
curved objects under global illumination. Reif

et al. (1990) first showed in 1990 the problem of
ray tracing in various three-dimensional optical
systems, where the optical devices either consist
of reflective objects defined by quadratic equations
or refractive objects defined by linear equations,
but in either case the coefficients are restricted to
be rational. They showed these ray tracing prob-
lems are PSPACE hard. Their proof used free
path encoding techniques for simulating a non-
deterministic linear space Turing machine, where
the position of the ray as it enters a reflective or
refractive optical object (such as a mirror or prism
face) encodes the entire memory of the Turing
machine to be simulated, and further steps of the
Turing machine are simulated by optically induc-
ing appropriate modifications in the position of the
ray as it enters other reflective or refractive optical
objects. This result implies that the apparently sim-
ple task of highly precise ray tracing through com-
plex optical systems is not likely to be efficiently
executed by a polynomial time computer. These
results for ray tracing are another example of the
use of a physical system to do powerful computa-
tions. A number of subsequent papers showed the
NP hardness (recall NP is a subset of PSPACE, so
NP hardness is a weaker type of hardness result
PSPACE hardness) of various optical ray prob-
lems, such as the problem of determining if a
light ray can reach a given position within a given
time duration (Haist and Osten 2007; Oltean and
Muntean 2008, 2009; Oltean 2008; Muntean and
Oltean 2009), optical masks (Dolev and Fitoussi
2010), and ray tracing with multiple optical fre-
quencies (Goliaei and Jalili 2009, 2012) (see
Woods and Naughton 2009 for a survey of these
and related results in optical computing). A further
PSPACE hardness result for an optics problem is
given in a recent paper (Goliaei and Foroughmand-
Araabi 2013) concerning ray tracing with multiple
optical frequencies, with an additional concentra-
tion operation.

Molecular and gravitational mechanical
systems. The work of Tate and Reif (1993) on
the complexity of n-body simulation provides an
interesting example of the use of natural physical
systems to do computation. They showed that the
problem of n-body simulation is PSPACE hard and
therefore not likely efficiently computable with
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high precision. In particular, they consideredmulti-
body systems in three dimensions with n particles
and inverse polynomial force laws between each
pair of particles (e.g., molecular systems with
Columbic force laws or celestial simulations with
gravitational force laws). It is quite surprising that
such systems can be configured to do computation.
Their hardness proof made use of free path
encoding techniques similar to their proof (Reif
et al. 1990) of the PSPACE-hardness of ray tracing.
A single particle, which we will call the memory-
encoding particle, is distinguished. The position of
a memory-encoding particle as it crosses a plane
encodes the entire memory of the given Turing
machine to be simulated, and further steps of the
Turing machine are simulated by inducing modifi-
cations in the trajectory of the memory-encoding
particle. The modifications in the trajectory of the
memory-encoding particle are made by use of
other particles that have trajectories that induce
force fields that essentially act like force mirrors,
causing reflection-like changes in the trajectory of
the memory-encoding particle. Hence, highly pre-
cise n-bodymolecular simulation is not likely to be
efficiently executed by a polynomial time
computer.

A Provably Intractable Mechanical Simulation
Problem: Compliant Motion Planning with
Uncertainty in Control
Next, we consider compliant motion planning
with uncertainty in control. Specifically, we con-
sider a point in three dimensions which is
commanded to move in a straight line but whose
actual motion may differ from the commanded
motion, possibly involving sliding against obsta-
cles. Given that the point initially lies in some start
region, the problem is to find a sequence of
commanded velocities that is guaranteed to
move the point to the goal. This problem was
shown by Canny and Reif (1987) to be non-
deterministic EXPTIME hard, making it the first
provably intractable problem in robotics. Their
proof used free path encoding techniques that
exploited the uncertainty of position to encode
exponential number of memory bits in a Turing
machine simulation.

Undecidable Mechanical Simulation Problems
Motion planning with friction. Consider a class
of mechanical systems whose parts consist of a
finite number of rigid objects defined by linear or
quadratic surface patches connected by frictional
contact linkages between the surfaces. (Note: This
class of mechanisms is similar to the analytical
engine developed by Babbage as described in the
next sections, except that there are smooth fric-
tional surfaces rather than toothed gears.) Reif and
Sun (1998) proved that an arbitrary Turing
machine could be simulated by a (universal) fric-
tional mechanical system in this class consisting
of a finite number of parts. The entire memory of a
universal Turing machine was encoded in the
rotational position of a rod. In each step, the
mechanism used a construct similar to Babbage’s
machine to execute a state transition. The key idea
in their construction is to utilize frictional
clamping to allow for setting arbitrary high gear
transmission. This allowed the mechanism to exe-
cute state transitions for arbitrary number of steps.
Simulation of a universal Turing machine implied
that the movement problem is undecidable when
there are frictional linkages. (A problem is
undecidable if there is no Turing machine that
solves the problem for all inputs in finite time.)
It also implied that a mechanical computer could
be constructed with only a constant number of
parts that has the power of an unconstrained
Turing machine.

Ray tracing with nonrational positioning.
Consider again the problem of ray tracing in a
three-dimensional optical systems, where the
optical devices again may be either consist of
reflective objects defined by quadratic equations
or refractive objects defined by linear equations.
Reif et al. (1990) also proved that in the case
where the coefficients of the defining equations
are not restricted to be rational and include at least
one irrational coefficient, then the resulting ray
tracing problem could simulate a universal Turing
machine, and so is undecidable. This ray tracing
problem for reflective objects is equivalent to the
problem of tracing the trajectory of a single parti-
cle bouncing between quadratic surfaces, which is
also undecidable by this same result of Reif et al.
(1990). An independent result of Moore (1990)
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also showed the undecidability of the problem of
tracing the trajectory of a single particle bouncing
between quadratic surfaces.

Dynamics and nonlinear mappings. Moore
(Moore and Shifts 1991), Ditto (Sinha and Ditto
1999), and Munakata et al. (2002) have also given
universal Turing machine simulations of various
dynamical systems with nonlinear mappings.

Concrete Mechanical Computing
Devices

Mechanical computers have a very extensive his-
tory; some surveys are given by Knott (1915),
Hartree (1950), Engineering Research Associates
(1950), Chase (1980), Martin (1992), and Davis
(2000). Norman (2002) gave an overview of the
literature of mechanical calculators and other histor-
ical computers, summarizing the contributions of
notable manuscripts and publications on this topic.

Mechanical Devices for Storage and
Sums of Numbers

Mechanical methods, such as notches on stones
and bones and knots and piles of pebbles, have
been used since the Neolithic period for storing
and summing integer values. One example of such
a device, the abacus, which may have been devel-
oped and invented in Babylonia approximately
5000 years ago, makes use of beads sliding on
cylindrical rods to facilitate addition and subtrac-
tion calculations.

Analog Mechanical Computing Devices

Computing devices will be considered here to be
analog (as opposed to digital) if they do not pro-
vide a method for restoring calculated values to
discrete values, whereas digital devices provide
restoration of calculated values to discrete values.
(Note that both analog and digital computers use
some kind of physical quantity to represent values
that are stored and computed, so the use of phys-
ical encoding of computational values is not

necessarily the distinguishing characteristic of
analog computing.) Descriptions of early analog
computers are given by Horsburgh (1914), Turck
(1921), Svoboda (1948), Hartree (1950), Engi-
neering Research Associates (1950), and Soroka
(1954). There are a wide variety of mechanical
devices used for analog computing:

Mechanical devices for astronomical and celes-
tial calculation. While we have no sufficient
space in this article to fully discuss this rich
history, we note that various mechanisms for
predicting lunar and solar eclipses using opti-
cal illumination of configurations of stones and
monoliths (e.g., Stonehenge) appear to date to
the Neolithic period. The Hellenistic civiliza-
tion in the classical period of ancient history
seems to develop a number of analog calculat-
ing devices for astronomy calculations.
A planisphere, which appears to have been
used in the Tetrabiblos by Ptolemy in the sec-
ond century, is a simple analog calculator for
determining for any given date and time the
visible portion of a star chart and consists of
two disks rotating on the same pivot. Astro-
labes are a family of analog calculators used
for solving problems in spherical astronomy,
often consisting of a combination of a plani-
sphere and a dioptra (a sighting tube). An early
form of an astrolabe is attributed to Hipparchus
in the mid-second century. Other more com-
plex mechanical mechanisms for predicting
lunar and solar eclipses seem to have been
developed in Hellenistic period. The most
impressive and sophisticated known example
of an ancient gear-based mechanical device
from the Hellenistic period is the Antikythera
mechanism, and recent research (Freeth et al.
2006) provides evidence it may have used to
predict celestial events such as lunar and
solar eclipses by the analog calculation of
arithmetic-progression cycles. Like many
other intellectual heritages, some elements of
the design of such sophisticated gear-based
mechanical devices may have been preserved
by the Arabs at the end of that Hellenistic
period and then transmitted to the Europeans
in the middle ages.
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Planimeters. There is a considerable history of
mechanical devices that integrate curves.
A planimeter is a mechanical device that inte-
grates the area of the region enclosed by a two-
dimensional closed curve, where the curve is
presented as a function of the angle from some
fixed interior point within the region. One of
the first known planimeters was developed by
J.A. Hermann in 1814 and improved (as the
polar planimeter) by J.A. Hermann in 1856.
This led to a wide variety of mechanical inte-
grators known as wheel-and-disk integrators,
whose input is the angular rotation of a rotating
disk and whose output, provided by a tracking
wheel, is the integral of a given function of that
angle of rotation. More general mechanical
integrators known as ball-and-disk integrators,
whose input provided 2 degrees of freedom
(the phase and amplitude of a complex func-
tion), were developed by James Thomson in
1886. There are also devices, such as the
intergraph of Abdank Abakanowicz
(1878) and C.V. Boys (1882), which integrate
a one-variable real function of x presented as a
curve y= f(x) on the Cartesian plane. Mechan-
ical integrators were later widely used in WWI
and WWII military analog computers for solu-
tion of ballistics equations, artillery calcula-
tions, and target tracking. Various other
integrators are described in Morin (1913).

Harmonic analyzers. A harmonic analyzer is a
mechanical device that calculates the coeffi-
cients of the Fourier transform of a complex
function of time such as a sound wave. Early
harmonic analyzers were developed by Thom-
son (1878) and Henrici (1894) using multiple
pulleys and spheres, known as ball-and-disk
integrators.

Harmonic synthesizers. A harmonic synthesizer
is a mechanical device that interpolates a func-
tion given the Fourier coefficients. Thomson
(then known as Lord Kelvin) in 1886 devel-
oped (Kelvin 1878) the first known harmonic
analyzer that used an array of James
Thomson’s (his brother) ball-and-disk integra-
tors. Kelvin’s harmonic synthesizer made use
of these Fourier coefficients to reverse this
process and interpolate function values, by

using a wire wrapped over the wheels of the
array to form a weighted sum of their angular
rotations. Kelvin demonstrated that the use of
these analog devices is to predict the tide
heights of a port: first, his harmonic analyzer
calculated the amplitude and phase of the Fou-
rier harmonics of solar and lunar tidal move-
ments, and then his harmonic synthesizer
formed their weighted sum, to predict the tide
heights over time. Many other harmonic ana-
lyzers were later developed, including one by
Michelson and Stratton (1898) that performed
Fourier analysis, using an array of springs.
Miller (1916) gives a survey of these early
harmonic analyzers. Fisher (1911) made
improvements to the tide predictor, and later
Doodson and Légé increase the scale of this
design to a 42-wheel version that was used up
to the early 1960s.

Analog equation solvers. There are various
mechanical devices for calculating the solution
of sets of equations. Kelvin also developed one
of the first known mechanical mechanisms for
equation solving, involving the motion of pul-
leys and tilting plate that solved sets of simul-
taneous linear equations specified by the
physical parameters of the ropes and plates.
John Wilbur in the 1930s increased the scale
of Kelvin’s design to solve nine simultaneous
linear algebraic equations. Leonardo Torres
Quevedo constructed various rotational
mechanical devices, for determining real and
complex roots of a polynomial. Svoboda
(1948) describes the state of art in the 1940s
of mechanical analog computing devices using
linkages.

Differential analyzers. A differential analyzer is
a mechanical analog device using linkages for
solving ordinary differential equations.
Vannevar Bush (1931) developed in 1931 the
first differential analyzer at MIT that used a
torque amplifier to link multiple mechanical
integrators. Although it was considered a
general-purpose mechanical analog computer,
this device required a physical reconfiguration
of the mechanical connections to specify a
given mechanical problem to be solved. In
subsequent differential analyzers, the

Mechanical Computing: The Computational Complexity of Physical Devices 45



reconfiguration of the mechanical connections
was made automatic by resetting electronic
relay connections. In addition to the military
applications already mentioned above, analog
mechanical computers incorporating differen-
tial analyzers have been widely used for flight
simulations and for industrial control systems.

Mechanical simulations of Physical Pro-
cesses: Crystallization and Packing. There are
a variety of macroscopic devices used for simula-
tions of physical processes, which can be viewed
as analog devices. For example, a number of
approaches have been used for mechanical simu-
lations of crystallization and packing:

Simulation using solid macroscopic ellipsoid bod-
ies. Simulations of kinetic crystallization pro-
cesses have been made by collections of
macroscopic solid ellipsoidal objects – typically
of diameter of a few millimeters – which model
the molecules comprising the crystal. In these
physical simulations, thermal energy is modeled
by introducing vibrations; low level of vibration
is used tomodel freezing and increasing the level
of vibrationsmodelsmelting. In simple cases, the
molecule of interest is a sphere, and ball bearings
or similar objects are used for the molecular
simulation. For example, to simulate the dense
random packing of hard spheres within a crystal-
line solid, Bernal (1964) and Finney (1970) used
up to 4000 ball bearings on a vibrating table. In
addition, to model more general ellipsoidal mol-
ecules, orzo pasta grains as well as M&M
candies (Jerry Gollub at Princeton University)
have been used. Also, Cheerios have been used
to simulate the liquid state packing of benzene
molecules. To model more complex systems,
mixtures of balls of different sizes and/or com-
position have been used; for example, a model
ionic crystal formation has been made by using a
mixture of balls composed of different materials
that acquired opposing electrostatic charges.

Simulations using bubble rafts (Bragg and Nye
1947; Bragg and Lomer 1948). These are the
structures that assemble among equal-sized
bubbles floating on water. They typically
form two-dimensional hexagonal arrays and

can be used for modeling the formation of
close-packed crystals. Defects and dislocations
can also be modeled (Corcoran et al. 1997); for
example, by deliberately introducing defects in
the bubble rats, they have been used to simu-
late crystal dislocations, vacancies, and grain
boundaries. Also, impurities in crystals (both
interstitial and substitutional) have been simu-
lated by introducing bubbles of other sizes.

Reaction-Diffusion Chemical Computers.
Adamatzky (Adamatzky et al. 2005; Adamatzky
1998b) described a class of analog computers
where there is a chemical medium which has mul-
tiple chemical species, where the concentrations of
these chemical species vary spatially and which
diffuse and react in parallel. The memory values
(as well as inputs and outputs) of the computer are
encoded by the concentrations of these chemical
species at a number of distinct locations (also
known as micro-volumes). The computational oper-
ations are executed by chemical reactions whose
reagents are these chemical species. Example com-
putations (Adamatzky et al. 2005; Adamatzky
1998b) include (i) Voronoi diagram, which deter-
mines the boundaries of the regions closest to a set
of points on the plane, (ii) skeleton of planar shape,
and (iii) a wide variety of two-dimensional patterns
periodic and aperiodic in time and space.

Digital Mechanical Devices for
Arithmetic Operations

Recall that we have distinguished digital mechan-
ical devices from the analog mechanical devices
described above by their use of mechanical
mechanisms for insuring the values stored and
computed are discrete. Such discretization mech-
anisms include geometry and structure (e.g., the
notches of Napier’s bones described below) or
cogs and spokes of wheeled calculators. Surveys
of the history of some of these digital mechanical
calculators are given by Knott (1915), Turck
(1921), Hartree (1950), Engineering Research
Associates (1950), Chase (1980), Martin (1992),
Davis (2000), and Norman (2002):
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Leonardo da Vinci’s mechanical device and
mechanical counting devices. This intriguing
device, which involved a sequence of
interacting wheels positioned on a rod, which
appear to provide a mechanism for digital carry
operations, was illustrated in 1493 in Leonardo
da Vinci’s Codex Madrid (1493). A working
model of its possible mechanics was
constructed in 1968 by Joseph Mirabella. Its
function and purpose is not decisively known,
but it may have been intended for counting
rotations (e.g., for measuring the distance tra-
versed by a cart). There are a variety of appar-
ently similar mechanical devices used to
measuring distances traversed by vehicles.

Napier’s bones. John Napier (1614) developed in
1614 a mechanical device known as Napier’s
bones that allowed multiplication and division
(as well as square and cube roots) to be done by
addition and multiplication operations. It con-
sists of rectilinear rods, which provided a
mechanical transformation to and from loga-
rithmic values. Wilhelm Schickard developed
in 1623 a six-digit mechanical calculator that
combined the use of Napier’s bones using col-
umns of sliding rods, with the use of wheels
used to sum up the partial products for
multiplication.

Slide rules. Edmund Gunter devised in 1620 a
method for calculation that used a single log
scale with dividers along a linear scale; this
anticipated key elements of the first slide rule
described by William Oughtred (1632) in
1632. A very large variety of slide machines
were later constructed.

Pascaline: Pascal’s wheeled calculator. Blaise
Pascal (1645) developed in 1642 a calculator
known as the Pascaline that could calculate all
four arithmetic operations (addition, subtrac-
tion, multiplication, and division) on up to
eight digits. A wide variety of mechanical
devices were then developed that used revolv-
ing drums or wheels (cogwheels or pinwheels)
to do various arithmetical calculations.

Stepped drum calculators. Gottfried Wilhelm
von Leibniz developed in 1671 an improved
calculator known as the stepped reckoner,
which used a cylinder known as a stepped

drum with nine teeth of different lengths that
increase in equal amounts around the drum.
The stepped drum mechanism allowed the
use of moving slide for specifying a number
to be inputted to the machine and made use of
the revolving drums to do the arithmetic calcu-
lations. Charles Xavier Thomas de Colbrar
developed in 1820 a widely used arithmetic
mechanical calculator based on the stepped
drum known as the arithmometer. Other
stepped drum calculating devices included
Otto Shweiger’s millionaire calculator
(1893) and Curt Herzstark’s curta (early
1940s).

Pinwheel calculators. Another class of calcula-
tors, independently invented by Frank
S. Baldwin and W. T. Odhner in the 1870s, is
known as pinwheel calculators; they used a
pinwheel for specifying a number input to the
machine and use revolving wheels to do the
arithmetic calculations. Pinwheel calculators
were widely used up to the 1950s, for example,
in William S. Burroughs’s calculator/printer
and the German Brunsviga.

Digital Mechanical Devices for
Mathematical Tables and Functions

Babbage’s difference engine. Charles Babbage
(1822, 1825) in 1820 invented a mechanical
device known as the difference engine for calcu-
lation of tables of an analytical function (such as
the logarithm) that summed the change in values
of the function when a small difference is made in
the argument. That difference calculation required
for each table entry involved a small number of
simple arithmetic computations. The device made
use of columns of cogwheels to store digits of
numerical values. Babbage planned to store
1000 variables, each with 50 digits, where each
digit was stored by a unique cogwheel. It used
cogwheels in registers for the required arithmeti-
cal calculations and also made use of a rod-based
control mechanism specialized for control of these
arithmetic calculations. The design and operation
of the mechanisms of the device were described
by a symbolic scheme developed by Babbage
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(1826). He also conceived of a printing mecha-
nism for the device. In 1801, Joseph-Marie Jac-
quard invented an automatic loom that made use
of punched cards for the specification of fabric
patterns woven by his loom, and Charles Babbage
proposed the use of similar punched cards for
providing inputs to his machines. He demon-
strated over a number of years certain key portions
of the mechanics of the device but never com-
pleted a complete function device.

Other difference engines. In 1832 Ludgate
(1909) independently designed, but did not con-
struct, a mechanical computing machine similar
but smaller in scale to Babbage’s analytical
engine. In 1853 Pehr and Edvard Scheutz
(Lindgren 1990) constructed in Sweden a cog-
wheel mechanical calculating device (similar to
the difference engine originally conceived by
Babbage) known as the tabulating machine for
computing and printing out tables of mathemati-
cal functions. This (and a later construction of
Babbage’s difference engine by Doron Swade
(1991) of the London Science Museum) demon-
strated the feasibility of Babbage’s difference
engine.

Babbage’s analytical engine. Babbage further
conceived (but did not attempt to construct) a
mechanical computer known as the analytical
engine to solve more general mathematical prob-
lems. Lovelace’s extended description of
Babbage’s analytical engine (Lovelace 1843)
(translation of “Sketch of the Analytical Engine”
by L. F. Menabrea) describes, in addition to arith-
metic operations, also mechanisms for looping
and memory addressing. However, the existing
descriptions of Babbage’s analytical engine lack
the ability to execute a full repertory of logical
and/or finite state transition operations required
for general computation. Babbage’s background
was very strong in analytic mathematics, but he
(and the architects of similar cogwheel-based
mechanical computing devices at that date)
seemed to have lacked knowledge of sequential
logic and its Boolean logical basis, required for
controlling the sequence of complex computa-
tions. This (and his propensity for changing
designs prior to the completion of the machine
construction) might have been the real reason for

the lack of complete development of a universal
mechanical digital computing device in the early
1800s.

Subsequent electromechanical digital com-
puting devices with cogwheels. Other electrome-
chanical computing digital devices (see
Engineering Research Associates Staff 1950)
developed in the late 1940s and 1950s that contain
cogwheels included Howard Aiken’s Mark
1 (Cohen andWelch 1999) constructed at Harvard
University and Konrad Zuse’s Z series computer
constructed in Germany.

Mechanical Devices for Timing,
Sequencing, and Logical Control

Wewill use the termmechanical automata here to
denote mechanical devices that exhibit autono-
mous control of their movements. These can
require sophisticated mechanical mechanisms for
timing, sequencing, and logical control:

Mechanisms used for timing control. Mechani-
cal clocks and other mechanical devices for
measuring time have a very long history and
include a very wide variety of designs, includ-
ing the flow of liquids (e.g., water clocks) or
sands (e.g., sand clocks), and more conven-
tional pendulum-and-gear-based clock mecha-
nisms. Awide variety of mechanical automata
and other control devices make use of mechan-
ical timing mechanisms to control the order
and duration of events automatically executed
(e.g., mechanical slot machines dating up to the
1970s made use of such mechanical clock
mechanisms to control the sequence of opera-
tions used for payout of winnings). As a con-
sequence, there is an interwoven history in the
development of mechanical devices for mea-
suring time and the development of devices for
the control of mechanical automata.

Logical control of computations. A critical step
in the history of computing machines was the
development in the middle 1800s of Boolean
logic by George Boole (1847, 1854). Boole’s
innovation was to assign values to logical
propositions: 1 for true propositions and 0 for
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false propositions. He introduced the use of
Boolean variables which are assigned to these
values, as well as the use of Boolean connec-
tives (and and or), for expressing symbolic
Boolean logic formulas. Boole’s symbolic
logic is the basis for the logical control used
in modern computers. Shannon (1938) was the
first to make use of Boole’s symbolic logic to
analyze relay circuits (these relays were used to
control an analog computer, namely, MIts Dif-
ferential Equalizer).

The Jevons’ logic piano: a mechanical logical
inference machine. In 1870 William Stanley
Jevons (who also significantly contributed to
the development of symbolic logic)
constructed a mechanical device (Jevons
1870, 1873) for the inference of logical prop-
osition that used a piano keyboard for inputs.
This mechanical inference machine is less
widely known than it should be, since it may
have had impact in the subsequent develop-
ment of logical control mechanisms for
machines.

Mechanical logical devices used to play games.
Mechanical computing devices have also been
constructed for executing the logical opera-
tions for playing games. For example, in
1975, a group of MIT undergraduates includ-
ing Danny Hillis and Brian Silverman
constructed a computing machine made of Tin-
kertoys that plays a perfect game of tic-tac-toe.

Mechanical Devices Used in
Cryptography

Mechanical cipher devices using cogwheels.
Mechanical computing devices that used cog-
wheels were also developed for a wide variety of
other purposes beyond merely arithmetic. Awide
variety of mechanical computing devices were
developed for the encryption and decryption of
secret messages. Some of these (most notably the
family of German electromechanical cipher
devices known as Enigma Machines (Hamer
et al. 1998) developed in the early 1920s for
commercial use and refined in the late 1920s and
1930s for military use) made use of sets of

cogwheels to permute the symbols of text mes-
sage streams. Similar (but somewhat more
advanced) electromechanical cipher devices
were used by the USSR up to the 1970s.

Electromechanical computing devices used
in breaking ciphers. In 1934 Marian Rejewski
and a team including Alan Turing constructed an
electrical/mechanical computing device known as
the bomb, which had an architecture similar to the
abstract Turing machine described below and
which was used to decrypt ciphers made by the
German Enigma cipher device mentioned above.

Mechanical and Electrooptical Devices
for Integer Factorization

Lehmer’s number sieve computer. In 1926 Der-
rick Lehmer (1928) constructed a mechanical
device called the number sieve computer for var-
ious mathematical problems in number theory
including factorization of small integers and solu-
tion of Diophantine equations. The device made
use of multiple bicycle chains that rotated at dis-
tinct periods to discover solutions (such as integer
factors) to these number theoretic problems.

Shamir’s TWINKLE. Adi Shamir (n.d.,
1999; Lenstra and Shamir 2000) proposed a
design for an optical/electric device known as
TWINKLE for factoring integers, with the goal
of breaking the RSA public-key cryptosystem.
This was unique among mechanical computing
devices in that it used time durations between
optical pulses to encode possible solution values.
In particular, LEDs were made to flash at certain
intervals of time (where each LED is assigned a
distinct period and delay) at a very high clock rate
so as to execute a sieve-based integer factoring
algorithm.

Mechanical Computation at the Microscale:
MEMS Computing Devices. Mechanical
computers can have advantages over electronic
computation at certain scales; they are already
having widespread use at the microscale.
Microelectromechanical systems (MEMSs) are
manufactured by lithographic etching methods
similar in nature to the processes microelectronics
are manufactured and have a similar microscale.
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A wide variety of MEMS devices (Madou 2002)
have been constructed for sensors and actuators,
including accelerometers used in automobile safety
devices and disk readers, and many of theseMEMS
devices execute mechanical computation to do their
task. Perhaps the MEMS device most similar in
architecture to the mechanical calculators described
above is the recodable locking device (Plummer
et al. 1999) constructed in 1998 at Sandia Labs,
which made use of microscopic gears that acted as
a mechanical lock and which was intended for
mechanically locking strategic weapons.

Future Directions

Mechanical Self-Assembly Processes
Most of the mechanical devices discussed in this
chapter have been assumed to be constructed top-
down; that is, they are designed and then assembled
by other mechanisms generally of large scale.
However, a future direction to consider is bottom-
up processes for assembly and control of devices.
Self-assembly is a basic bottom-up process found
in many natural processes and in particular in all
living systems:

Domino tiling problems. The theoretical basis for
self-assembly has its roots in domino tiling prob-
lems (also known as Wang tilings) as defined by
Wang (1963) (also see the comprehensive text of
Grunbaum et al. (1987)). The input is a finite set
of unit size square tiles, each of whose sides is
labeled with symbols over a finite alphabet.
Additional restrictions may include the initial
placement of a subset of these tiles and the
dimensions of the region where tiles must be
placed. Assuming an arbitrarily large supply of
each tile, the problem is to place the tiles, without
rotation (a criterion that cannot apply to physical
tiles), to completely fill the given region so that
each pair of abutting tiles has identical symbols
on their contacting sides.

Turing-universal and NP complete self-assem-
blies. Domino tiling problems over an infinite
domain with only a constant number of tiles
were first proved by Berger (1966) to be
undecidable. Lewis and Papadimitriou (1981)

showed the problem of tiling a given finite
region is NP complete.

Theoretical models of tiling self-Assembly pro-
cesses. Domino tiling problems do not pre-
sume or require a specific process for tiling.
Winfree (Winfree et al. 1996) proposed kinetic
models for self-assembly processes. The sides
of the tiles are assumed to have some method-
ology for selective affinity, which we call pads.
Pads function as programmable binding
domains, which hold together the tiles. Each
pair of pads has specified binding strengths (a
real number on the range [0,1] where 0 denotes
no binding and 1 denotes perfect binding). The
self-assembly process is initiated by a single-
ton tile (the seed tile) and proceeds by tiles
binding together at their pads to form aggre-
gates known as tiling assemblies. The prefer-
ential matching of tile pads facilitates the
further assembly into tiling assemblies.

Pad binding mechanisms. These provide a
mechanism for the preferential matching of
tile sides can be provided by various methods:
Magnetic attraction, e.g., pads with magnetic

orientations (these can be constructed by
curing ferrite materials (e.g., PDMS poly-
mer/ferrite composites) in the presence of
strong magnet fields) and also pads with
patterned strips of magnetic orientations

Capillary force, using hydrophobic/hydro-
philic (capillary) effects at surface bound-
aries that generate lateral forces

Shape matching (also known as shape comple-
mentarity or conformational affinity), using
the shape of the tile sides to hold them
together

Also see the sections below discussion of the
used of molecular affinity for pad binding.

Materials for tiles. There are a variety of distinct
materials for tiles, at a variety of scales:
Whitesides (see Xia and Whitesides (1998)
and http://www-chem.harvard.edu/GeorgeWh
itesides.html) has developed and tested multi-
ple technologies for mesoscale self-assembly,
using capillary forces, shape complementarity,
and magnetic forces. Rothemund (Rothemund
2000) experimentally demonstrated some of
the most complex known mesoscale tiling
self-assemblies using polymer tiles on fluid
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boundaries with pads that use hydrophobic/
hydrophilic forces. A material science group
at the University of Wisconsin (http://mrsec.
wisc.edu/edetc/selfassembly) has also tested
mesoscale self-assembly using magnetic tiles.

Mesoscale tile assemblies. Mesoscale tiling
assemblies have tiles of size a few millimeters
up to a few centimeters. They have been exper-
imentally demonstrated by a number of
methods, such as placement of tiles on a liquid
surface interface (e.g., at the interface between
two liquids of distinct density or on the surface
of an air/liquid interface) and use of mechani-
cal agitation with shakers to provide a heat
source for the assembly kinetics (i.e., a temper-
ature setting is made by fixing the rate and
intensity of shaker agitation).

Applications of mesoscale assemblies. There are
a number of applications, including:
Simulation of the thermodynamics and kinetics

of molecular-scale self-assemblies
For placement of a variety of microelectronics

and MEMS parts

Computation at the Molecular Scale: DNA
Computing Devices. Due to the difficulty of
constructing electrical circuits at the molecular
scale, alternative methods for computation, and
in particular mechanical methods, may provide
unique opportunities for computing at the molec-
ular scale. In particular the bottom-up self-
assembly processes described above have unique
applications at the molecular scale:

Self-assembled DNA nanostructures.
Molecular-scale structures known as DNA
nanostructures (see surveys by Seeman 2004;
Reif et al. (Reif and LaBean 2009)) can bemade
to self-assemble from individual synthetic
strands of DNA. When added to a test tube
with the appropriate buffer solution and the
test tube is cooled, the strands self-assemble
into DNA nanostructures. This self-assembly
of DNA nanostructures can be viewed as a
mechanical process and in fact can be used to
do computation. The first known example of a
computation by using DNA was by Adleman
(1994, 1998) in 1994; he used the self-assembly

of DNA strands to solve a small instance of a
combinatorial optimization problem known as
the Hamiltonian path problem.

DNA tiling assemblies. The Wang tiling (1963)
paradigm for self-assembly was the basis for
scalable and programmable approach proposed
by Winfree et al. (1998) for doing molecular
computation using DNA. First, a number of
distinct DNA nanostructures known as DNA
tiles are self-assembled. End portions of the
tiles, known as pads, are designed to allow the
tiles to bind together a programmable manner
similar to Wang tiling but in this case use the
molecular affinity for pad binding due to hydro-
gen bonding of complementary DNA bases.
This programmable control of the binding
together of DNA tiles provides a capability for
doing computation at the molecular scale. When
the temperature of the test tube containing these
tiles is further lowered, the DNA tiles bind
together to form complex patterned tiling lattices
that correspond to computations.

Assembling patterned DNA tiling assemblies.
Programmed patterning at the molecular scale
can be produced by the use of strands of DNA
that encode the patterns; this was first done by
Yan et al. (2003a) in the form of bar-cord-
striped patterns, and more recently Rothemund
(2006) self-assembled complex 2D molecular
patterns and shapes using a technique known as
DNA origami. Another method for molecular
patterning of DNA tiles is via computation done
during the assembly, as described below.

Computational DNA tiling assemblies. The first
experimental demonstration of computation
via the self-assembly of DNA tiles was in
2000 by Mao et al. (2000, Yan et al. 2003b),
which provided a one-dimensional computa-
tion of a binary-carry computation (known as
prefix sum) associated with binary adders.
Rothemund et al. (2004) in 2004 demonstrated
a two-dimensional computational assemblies
of tiles displaying a pattern known as the
Sierpinski triangle, which is the modulo 2 ver-
sion of Pascal’s triangle.

Other autonomous DNA devices. DNA nano-
structures can also be made to make sequences
of movement, and a demonstration of an auton-
omous moving DNA robotic device that
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moved without outside mediation across DNA
nanostructures was given by Yin et al. (2004).
The design of an autonomous DNA device that
moves under programmed control is described
in (Reif and Sahu 2008). Surveys of DNA
autonomous devices are given in Reif and
LaBean (2007), Chandran et al. (2013), and
Bath and Turberfield (2007).

Analog Computation by Chemical Reactions
Chemical reaction systems have a set of reactants,
whose concentrations evolve by a set of differential
equations determined by chemical reactions.
Magnasco (1997) showed that a chemical reaction
can be designed to simulate any given digital circuit.
Soloveichik et al. (2008) showed that a chemical
reaction can be designed to simulate a universal
Turing machine, and Soloveichik et al. (2010)
showed that this can be done by a class of chemical
reactions involving only DNA hybridization reac-
tions. SenumandRiedel (2011) gave detailed design
rules for chemical reactions that executed various
analog computational operations such as addition,
multipliers, and logarithm calculations.

Analog Computation by Bacterial Genetic
Circuits
Sarpeshkar et al. have developed analog transistor
models for the concentrations of various reactants
within bacterial genetic circuits (Danial et al.
2011) and then used these models to experimen-
tally demonstrate various computations, such as
square root calculation, within living bacteria
cells (Daniel et al. 2013).
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