Check for
Updates

The Design, Implementation and Operation
of an Email Pseudonym Server

David Maziéres and M. Frans Kaashoek
MIT Laboratory for Computer Science
545 Technology Square, Cambridge MA. 02139

Abstract

Attacks on servers that provide anonymity generally fall into
two categories: attempts to expose anonymous users and
attempts to silence them. Much existing work concentrates
on withstanding the former, but the threat of the latter is
equally real. One particularly effective attack against anony-
mous servers is to abuse them and stir up enough trouble
that they must shut down.

This paper describes the design, implementation, and
operation of nym.alias.net, a server providing untraceable
email aliases. We enumerate many kinds of abuse the sys-
tem has weathered during two years of operation, and ex-
plain the measures we enacted in response. From our expe-
riences, we distill several principles by which one can protect
anonymous servers from similar attacks.

1 Introduction

Anonymous on-line speech serves many purposes ranging
from fighting oppressive government censorship to giving
university professors feedback on teaching. Of course, the
availability of anonymous speech also leads to many forms
of abuse, including harassment, mail bombing and even bulk
emailing. Servers providing anonymity are particularly vul-
nerable to flooding and denial-of-service attacks. Concerns
for the privacy of legitimate users make it impractical to
keep usage logs. Even with logs, the very design of an anony-
mous service generally makes it difficult to track down at-
tackers. Worse yet, attempts to block problematic messages
with manually-tuned filters can easily evolve into censor-
ship—people unhappy with anonymous users will purpose-
fully abuse a server if by doing so they can get legitimate
messages filtered. Nonetheless, careful design can make a
large difference in how well an anonymous server resists
abuse.

This paper describes our experience in designing, imple-
menting, and operating nym.alias.net, an email pseudonym
server. Nym.alias.net allows anyone to create an email alias
without revealing his identity. Such an alias, called a nym
(short for pseudonym), appears as an ordinary email address
to the rest of the world.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

5th Conference on Computer & Communications Security

San Francisco CA USA

Copyright ACM 1998 1-58113-007-4/98/11...5.00

Anonymous services get used for more and less popular
reasons. Protecting unpopular speech is one of the funda-
mental purposes of anonymity. However, certain types of
use can either force an anonymous server to shut down or
else destroy its utility to other people. We classify such use
as abuse. Our experience with nym.alias.net shows that con-
trolling abuse is as important as protecting the identities of
anonymous users. Both considerations should play a central
role in the design of an anonymous server. Moreover, since
people invent very creative forms of abuse, one must actually
deploy an anonymous server to measure its viability.

This paper tackles the question of how to build anony-
mous servers that can survive in the real world. Our ideas
apply equally to systems based on more advanced theoreti-
cal work (such as 1, 3, 6, 10, 12]), but such systems would
likely not work with off-the-shelf software. Consequently,
they would draw fewer users and fewer attacks of the kind
we are concerned with studying.

1.1 History and usage

Nym.alias.net began operation in June 1996. To facilitate
use of the system, we soon contributed support for it to
the premail package, which provides encryption for popular
Unix mail readers. Since then, others have built several DOS
and Windows programs for managing nyms. Two other sites
currently run our server software.

The anonymity of our users and the lack of mail logging
make it impossible to know exactly how heavily the system is
used. However, the number of active accounts has remained
between 2,000 and 3,000 over the past 18 months. Statistics
from the back end of our server suggest that the nyms on
the system receive over 1,000 email messages per day. From
the size of a replay cache the system keeps, we estimate that
users send over 500 messages per day from nym addresses.
Finally, Usenet search engines reveal many news postings
from nym.alias.net addresses covering a large number topics.

We sent a survey to users of nym.alias.net asking them
why they use the service. The survey encouraged people to
answer as frankly as possible, and to reply anonymously. We
received over 200 replies listing a wide range of uses. The
reasons can broadly be categorized in order of decreasing
need for privacy:

o In countries with oppressive governments, people use
nyms to make public political statements, to hide the
identities of their correspondents, and to encrypt the
contents private mail (particularly when exchanging
mail with people who don’t use encryption).



http://crossmark.crossref.org/dialog/?doi=10.1145%2F288090.288098&domain=pdf&date_stamp=1998-11-01

¢ In more tolerant political environments, many people
use nyms for purposes that might otherwise lead to
embarrassment, harassment, or even loss of their jobs.
These include discussing alcoholism, depression, and
being a sexual minority, as well as meeting people
through personal ads. A few people said they had used
nyms to blow the whistle on illegal activities. Others
express radical political views through nyms, while still
others use them to fight harmful cults. Finally, a small
minority of respondents admitted to using nyms for
more legally marginal purposes, including discussing
marijuana cultivation, publishing programs to exploit
security holes, virus development, and software piracy.

e In companies that monitor email, some people report
using nym addresses to encrypt all mail they receive
before it enters the company. Nyms also keep the ad-
dresses of correspondents out of system log files. Some
people similarly use nyms because they distrust their
Internet service providers.

e Some people worry that seemingly innocuous Usenet
posts will have unforeseen future ramifications. One
response described a job interview at which the candi-
date’s Usenet posting became a topic of discussion.

¢ Some nym users simply want their statements to be
judged on their own merit. These people fear their
reputations would bias readers for or against any mes-
sages bearing their real addresses.

e Finally, a surprisingly high number of people just use
nym.alias.net for a free email address—either to avoid
Jjunk email by changing addresses frequently, or to keep
a permanent address when switching Internet service
providers. The fact that people use nyms without
needing the privacy speaks well for the reliability of
the system.

Of course, though we asked users to be frank, those who
abuse the service had little incentive to answer our survey.

1.2 Design goals

We designed nym.alias.net with three goals: to build a real
system that would see real use (and abuse) by people outside
of computer science research, to protect the secrecy of users’
identities in the face of compromised servers, and to provide
a robust email service people can rely on.

We achieved the first goal, attracting users, by building
on existing infrastructure. To use nym.alias.net, one only
needs a copy of PGP [15], the most widely used encryption
program. Moreover, nym.alias.net exploits a preexisting
network of anonymous remailers—servers that strip identi-
fying information from mail and forward it, after optionally
decrypting, encrypting, or delaying it. While a clean-slate
pseudonym server design would have permitted greater se-
curity at an equal level of deployment, it would also have
enjoyed considerably less acceptance.

To achieve the second goal, preventing compromised serv-
ers from disclosing users’ identities, nym.alias.net uses the
anonymous remailer network as a miz-net [4]: It forwards
mail received for a nym to its final destination through a
series of independently operated remailers. Only by com-
promising multiple remailers can one uncover the full path
taken by such a message. Thus, even the administrators of
the nym server have no way to expose the identity of some-
one making proper use of the system.

28

The third goal, reliability, we achieve through solid soft-
ware and redundancy. The nym.alias.net software itself is
carefully written and does not lose mail—a claim substan-
tiated by people using the server for permanent email ad-
dresses. Onme of the authors of this paper actually uses a
nym as his primary email address for all correspondence
about the server. Reliability does become more of a chal-
lenge when messages travel through many remailers. How-
ever, as described later in Section 3.3, nym.alias.net can
lessen this problem with redundant messages.

1.3 The rest of this paper

In the rest of this paper, we describe the nym.alias.net pseu-
donym server and few related services the machine provides.
We then discuss several kinds of abuse nym.alias.net has
weathered. In each case, we explain how the machine fared
and what changes, if any, we made in response to the abuse.
Finally, we classify the abuse of anonymous services into
three general categories, and suggest principles by which
one can develop solutions.

2 Related work

Our work on nym.alias.net was largely motivated by the
problems of previous unpublished anonymous mail systems.
A good summary of past and present systems (including
nym.alias.net) can be found in [8].

The first email pseudonym system open to the public was
anon.penet.fi. Penet kept a database linking real and pseu-
donymous email addresses. It replaced a user’s real email
address with her pseudonym in outgoing mail, and routed
incoming mail received for a pseudonym back to the appro-
priate address.

Unfortunately, penet did not use encryption—all mes-
sages went over the network in cleartext and were vulnera-
ble to eavesdropping. Moreover, by design, the operator of
the service knew the identities of all users. Only one ma-
chine needed to be compromised to violate the privacy of
every user on the system. Penet also severely restricted the
size and number of messages any given user could send, and
imposed a delay of several days on any pseudonymous com-
munication. These properties protected the system from
abuse at the cost of usefulness. Finally, penet automatically
provided double-blind communication. This could poten-
tially cause users to send pseudonymous email unknowingly
(particularly to pseudonymous mailing list subscribers), and
thus to reveal their identities through the context of a mes-
sage not intended to be pseudonymous.

Penet shut down most of its operation when the operator
faced the risk of having to turn the user database over to
authorities. It later shut down completely when it became
overloaded with unsolicited commercial mail.

Type-1 anonymous remailers, also called cypherpunk re-
mailers, were developed to address many shortcomings of
the penet system. Type-1 remailers have public keys with
which incoming messages can be encrypted. A message can
be sent through a chain of type-1 remailers, having been suc-
cessively encrypted for each one. Each remailer in a chain
knows only the identity of the previous remailer and the
next. Type-1 remailers alone serve mostly for anonymous,
rather than pseudonymous mail. However, they do allow
messages to be sent to unknown destinations. As described
later, nym.alias.net exploits this property to provide email
addresses to users whose identities it does not know.




The alpha.c2.org pseudonym server provided untraceable
pseudonyms through type-1 remailers, and was part of the
inspiration for nym.alias.net. However, alpha was vulner-
able to replay attacks, did not use public keys to identify
pseudonyms, did not provide forward secrecy of messages
received for pseudonyms, could not tolerate an unreliable
type-1 remailer network, developed serious reliability prob-
lems of its own under high load, and finally was shut down
for using too much CPU time.

Type-2 or mixmaster remailers [5] offer several improve-
ments in security over type-1 remailers. These improve-
ments in general make hop-by-hop traffic analysis consider-
ably harder. They include fixed size messages, replay detec-
tion, and better reordering of messages at remailers. Type-2
remailers do not, however, allow replies to unknown desti-
nations, and thus cannot be used to provide pseudonyms.

Experimental versions of the type-2 remailer have in-
corporated hash cash [2], a scheme that deals with service
abuse; it allows providers of unmetered Internet services to
charge for usage in burnt CPU time. Hash cash requires
users of a service to find partial hash collisions under a
cryptographic hash function—an expensive operation that
can be efficiently verified. Hash cash has the potential to
limit certain kinds abuse to free anonymous servers.

Babel [9], an anonymous remailer developed at IBM Zu-
rich Research Laboratory, incorporates a number of features
to foil traffic analysis. Unlike nym.alias.net, Babel provides
a distributed architecture with no central server maintain-
ing nyms; instead, each email message includes specially en-
coded instructions for how to respond through the remailer
network. The disadvantage of this approach is that a person
who receives such email must to understand how to use en-
cryption software. Nym.alias.net has no such requirement.
Accounts at our server behave like regular email accounts.
Users responding to email from a nym account can do so
using a standard mail reader. Our survey shows that many
users consider this an important feature.

Recently, some systems have provided anonymity in ar-
eas other than email, including interactive network connec-
tions [14] and web browsing {13]. Anonymous web browsing
should allow pseudonymous email though web-based email
providers. We don’t know how many people are using it for
that purpose, or what kind of abuse, if any, these systems
have suffered from.

An interesting question is whether users have the right
to anonymity. The question is complex and its answer is
likely to vary from country to country. In the Unites States,
there is no law making services such as nym.alias.net illegal.
In fact, there have been a number of court cases that link
anonymous speech directly to freedom of speech, in partic-
ular for political anonymous speech. However, whether the
U.S. constitution directly protects anonymous communica-
tion is an open legal question. This paper does not address
this question; we point the reader to Froomkin [7] on the
legal issues of anonymous on-line speech.

3 Pseudonym server

This section describes the workings of the pseudonym server.
The nym.alias.net help file [11] gives more complete details
of the system’s operation, including down-to-the-byte de-
scriptions of message formats. For those wanting even more
detail, we have always made the system’s source code freely
available for use and inspection.

Nym.alias.net uses a type-1 remailer network similar to
Chaum’s miz-nets [4]. A miz is a computer that forwards

29

batches of messages, using encryption to conceal the rela-
tionship between incoming and outgoing ones. Mixes can
be cascaded so that multiple mixes must be compromised
to expose the path of a message. While type-1 remailers do
not offer the full security of mixes, they do permit the nym
server to send mail to users without knowing their real email
addresses.

3.1 Nymserv

The pseudonym server consists principally of the program
nymserv, which is invoked by the system mail software (e.g.,
sendmail or gmail) whenever it must deliver mail to an ad-
dress at nym.alias.net. Nymserv, in turn, remails messages
addressed to nyms in such a way that they will eventu-
ally reach the owners of those nyms. A few reserved ad-
dresses cause special processing of incoming mail. For in-
stance, to send email from a pseudonymous address, one
sends it through send@nym.alias.net. Requests to create
and delete nyms go to config@nym.alias.net. Of course,
any mail sent to an unused address at nym.alias.net will
bounce as usual.

Nymserv keeps three pieces of information on file for ev-
ery nym: a public key, a reply block, and some configuration
data. The public key authenticates messages from the owner
of the nym. All mail sent from a nym address must be signed
by that nym’s private key, as must requests to delete a nym
or modify its configuration settings. By default, nymserv
also encrypts any mail sent to a nym with that nym’s public
key. This ensures the forward secrecy of remailed messages;
someone who compromises the server and learns that a nym
forwards mail to a news group still cannot recover the con-
tents of previously received messages.

The reply block contains instructions for getting mail
from the nym server to the owner of a nym. These instruc-
tions are successively encrypted for a series of type-1 remail-
ers in such a way that each remailer can only see the identity
of the next hop. The innermost encrypted instructions, vis-
ible only to the last remailer, contain the final destination
of mail sent to a nym.

‘While people generally choose their real email addresses
as a final destination, they can alternatively use broadcast
messages pools such as the Usenet group alt.anonymous.
messages. Sending mail to a newsgroup that propagates
to so many machines makes it virtually impossible to track
a user down from a reply block alone (though most news
servers keep logs that will permit one confirm a guess about
the identity of a nym).

Thus, one need never communicate directly with nym.a-
lias.net to use a pseudonym. Digital signatures prove the au-
thenticity of messages to the server, allowing them to come
from anywhere. In particular, requests to create nyms and
send mail from them usually arrive through a chain of anony-
mous remailers. Likewise, mail sent sent from the server to
a user leaves through a chain of anonymous remailers. The
nym server administrators have no easy way to find the real
identity of someone using the service in this way.

3.2 Reply block details

Reply-blocks use type-1 remailers to conceal the destination
of mail messages. A type-1 remailer message begins with a
preamble specifying the email address of a next hop. This
preamble can also contain a delay time, a symmetric en-
cryption key, and mail headers like Subject and Newsgroups
to paste into the remailed message. Type-1 remailers strip




.-

identifying headers from any mail they receive. Then, de-
pending on the preamble, they can conventionally encrypt
everything after a marker line, paste mail headers, and de-
lay messages. Finally, they forward messages onto their next
hops. Every type-1 remailer has a public key. The begin-
ning of a type-1 remailer message or the entire message may
be encrypted with the remailer’s public key. This allows the
nym server to construct valid type-1 messages by prepend-
ing an encrypted reply block to a mail message received for
a nym. Symmetric encryption below the reply block makes
it difficult for eavesdroppers to correlate incoming and out-
going messages at a remailer. PGP is used for both the
public-key and symmetric key encryption.

Figure la shows the process of creating a reply block
with two hops. The user encrypts her real email address,
usr@a.com, and a symmetric key, “keyl,” with the public
key of remailer rem@b.edu. She then prepends the address
of that remailer and another key, “key2,” to the resulting
cyphertext and encrypts that with the public key of a second
remailer, rem@isp.nl. Finally, she prepends rem@isp.nl
and a third key, “key3,” to the second cyphertext. In all
cases she has specified a random delay of up to one hour.

Figure 1b shows the encryptions undergone by a message
delivered to a nym with this reply block. Nymserv always
starts by adding some explicit context to any message it re-
ceives, including the name of the pseudonym receiving the
message (not necessarily obvious from the message itself),
the date, a unique identifier, and 2 disclaimer. It then dig-
itally signs the message with its own private key and en-
crypts the message with the nym’s public key. It prepends
the reply block to the resulting cyphertext, and feeds the
result to a type-1 remailer running on the local machine.
That remailer then super-encrypts the message with “key3,”
randomly delays it for up to an hour, and forwards it to
rem@isp.nl. rem@isp.nl in turn super-encrypts the mes-
sage with “key2,” delays it, and forwards it to rem@b.edu,
which likewise super-encrypts the message using “keyl” and
sends it on to the user.

Figure 1c shows the actual data sent across the network
when a nym with this reply block receives mail. One can
immediately see that the security of the system is far from
optimal: Identical reply block cyphertexts travel across the
network each time a particular nym receives mail. Mes-
sages crossing the network have non-constant size. Noth-
ing prevents message replays or reuse of inner reply block
cyphertexts; an attacker can grab a reply block cyphertext
off the network and reuse it to send either a huge message or
a large number of small messages—facilitating hop-by-hop
traffic analysis in either case. This was the price we paid to
attract real users.

Nonetheless, the secrecy of nyms doesn’t entirely depend
on type-1 remailers. One can still achieve strong privacy
through broadcast message pools. Thus, nym.alias.net does
permit virtually untraceable nyms, albeit inefficiently and
inconveniently. More importantly, most attacks on reply
blocks, though theoretically possible, are beyond the means
of the nym server operators. Even in cases where we might
actually have wanted to trace a nym—for instance when
a very distressed sounding teen-ager discussed suicide in a
newsgroup—revealing the person’s identity was never an op-
tion. Thus the weaknesses of type-1 remailers have probably
had little effect on our experience of running the server.

30

3.3 Reliability, replay and redundancy

Nym.alias.net’s pseudonym server does not lose mail'. The
machine has a good network connection and high uptime,
and the nymserv software has proven robust. The same
cannot, unfortunately, be said of all anonymous remailers.
Remailers come and go, ofter with little warning. A large
number of independently run remailers give users more op-
tions for remailer chains, but not everyone willing to run a
remailer can do so reliably. ISPs sometimes shut down cus-
tomers’ remailers when controversial usage surfaces or traffic
levels get too high. “Disposable remailers” running on free
email services like juno.com periodically exceed their mail
quotas. Disks fail in cases where operators avoided backing
up private keys. Machines crash when remailer operators
have gone on vacation and no one else has access to the
machine. In short, what’s good for security may hurt re-
liability. Pseudonym servers should therefore tolerate an
unreliable remailer network.

Two types of mail risk getting lost in the remailer net-
work: messages from users to the nym server, and those from
the nym server to users. Redundancy can address both risks.
Nymserv keeps a replay cache to thwart certain attacks, but
this cache additionally allows users to send duplicate copies
of any message to the nym server. Nymserv also permits
pseudonyms to have multiple reply blocks, which lets users
receive several copies of mail to their nyms through distinct
chains of remailers.

Attackers may try to replay old configuration messages
or cause duplicate copies of outgoing mail. Nymserv con-
sequently keeps a replay cache of all such messages (i.e.
anything sent to config@nym.alias.net or send@nym.ali-
as.net). Both types of message carry PGP signatures. Nym-
serv caches the MD5 hash of these signatures to detect re-
play. It will process the same message twice only if the
user has signed it twice. Fortunately, the replay cache need
not grow without bounds. PGP embeds a date and time
in every signature. Nymserv discards incoming messages
with signatures older than a week and those dated too far
in the future. It can therefore delete any MD5 hashes cor-
responding to signatures more than a week old. Note that
configuration requests and and outgoing mail, while both
signed by the user, have distinct message formats nymserv
cannot confuse. A “config” or “send” request delivered to
the wrong address does not affect the replay cache.

As mentioned above, nyms can have multiple reply blocks.
To increase reliability, more than one reply block can deliver
mail to the nym’s owner. Since nymserv adds 2 unique iden-
tifier to each message it remails, client software can easily
discard the duplicate messages generated by such a scheme.
Of course, not all reply blocks have to go to the nym’s owner.
Some may simply discard mail after passing it through a
chain of remailers. Such “fake” reply blocks can increase
the average number of remailers an attacker must compro-
mise without incurring the reliability penalty of lengthening
the real reply block.

We must mention a single, painful, and glaring exception to this
statement. An Internic billing error for alias.net led to the disap-
pearance of the entire domain for a period of several weeks. The
authors have no affiliation with alias.net beyond having use of the
nym.alias.net host name, and consequently could do nothing to has-
ten resolution of the problem. We nonetheless continue to believe
that nym servers should in principle be highly reliable.

Ll AR KT G IR B T



Anon-To: usr@a.com

Latent-Time: +1:00x Anon-To: rem@b.edu
Encrypt-Key: keyl Latent-Time: +1:00r
Encrypt-Key: key2
Yy Anon-To: rem@isp.nl
@GP encrypt for rem@b.ed@—» replyblock-1 Latent-Time: +1:00x|

Encrypt-Key: key3

Y
(PGP encrypt for rem @isp.nl)——

a. Steps performed by a user to construct a reply block with two hops

replyblock-2

Pseudonym Server: rem@isp.nl: rem@b.edu:
Message cyphertext-A cyphertext-B
Y Y Y
sign, encrypt w. PGP encrypt w. PGP encrypt w.
: . o .
nym public key symmetric key! symmetric keyl
Y Y Y
PGP encrvot w. )
PGP encrypt w. cyphertext-B eyphertext-C
symmetric key3
- - J
Y
cypheriext-A

b. Encryptions performed on messages at each remailer

Pseudonym Server rem@isp.nl rem@b.edu usr@a.com
replyblock-2 J L replyblock-1 J L cyphertext-C
cyphertexi-A cyphertext-B

c. The actual data that traverses the network

Figure 1: Forwarding messages to anonymous users

31

LR TR S



=

3.4 Miscellaneous features

Users may abandon nyms without deleting them, or even
lose nym private keys. In such cases the nyms may nonethe-
less continue to receive mail. Indeed, they will likely do so
given the pervasiveness of unsolicited commercial mail. To
detect abandoned accounts, then, nymserv keeps track of
the date on which it last verified a valid PGP signature by
each nym’s private key. We consider an account idle if we
see no evidence of the existence of its private key for 90 days.
Idle accounts receive a warning message every 10 days for
30 days, after which the software deletes them.

Finally, nymserv also functions as a finger daemon. Nym
owners can optionally publish their nym PGP keys in their
finger information.

3.5 Related servers

While nymserv provides the core functionality of nym.ali-
as.net, several related servers on the machine deserve men-
tion. A type-1 remailer, remail, functions as the back end
to nymserv and the first hop in every reply chain. A mail-
to-news gateway, mailZnews, allows posting to news groups
from nyms and anonymous remailers (though it has plenty
of non-anonymous users, too). smipd, a custom-built mail
server, handles connections from remote mail clients and
helps control abuse. Finally, nym.alias.net runs an ordi-
nary type-2 remailer. This remailer processes over 500 mes-
sages a day and can be used as a final hop for mail sent to
configlnym.alias.net and sendOnym.alias.net.

4 Attacks and Abuse

Attacks on anonymous servers generally fall into two cate-
gories: attempts to expose anonymous users and attempts
to silence them. Most existing work on such systems con-
centrates on withstanding the former—the more important
of the two to resist. In practice, however, the threat of the
latter is equally real. Users of an anonymous service often
express unpopular opinions, which incite efforts to silence
them or even shut down the service. One of the most effec-
tive means of closing an anonymous service is to abuse it.
If, by abusing the service, one can stir up sufficient trouble,
people will eventually no longer tolerate its existence.

This section discusses many forms of abuse we have an-
ticipated and encountered while running nym.alias.net, and
gives solutions we have implemented or envisaged to counter
the abuse. In designing solutions, our goal was to avoid
blocking problematic messages with manually-tuned filters.
Such filters would constitute censorship, make us liable for
messages we did not block, and even provide incentive for
abuse. Other remailers’ experience has shown that people
unhappy with anonymous users will purposefully abuse a
server if by doing so they can stop legitimate messages.

4.1 Harassment

Virtually every anonymous remailer periodically gets used
to send offensive or harassing email to someone who does not
want to receive it. The sender of such messages can never be
tracked down, but the recipient of the mail can be blocked
from receiving any further anonymous correspondence. Such
blocking is known as destination-blocking.

Rather than manually process requests to be blocked, we
implemented a destination-blocking scheme for our type-2
remailer that requires no intervention on our part. When

32

a user xQy.com sends mail to dstblk-request@nym.ali-
as.net, the system first sends mail to a few addresses like
owner-xQy.com to try to reach the list administrator in case
xQy.comis a mailing list. Each message is sent from a unique
address containing random data. If someone replies to any
of the mail messages, x@y.com gets blocked. Otherwise, if
all the messages bounce, another message is sent to xQy. com
asking the user to confirm the block request. This lets users
block their own addresses, but requires the consent of mail-
ing list administrators to block mailing lists from receiving
anonymous mail.

Surprisingly, despite being prepared to apply this block-
ing system to nymserv, it has never proven necessary. In
two years of operating the pseudonym server, we have not
destination-blocked a single person. Most content-based
complaints we receive about nym addresses concern postings
to public forums such as Usenet news groups. People some-
times ask us to terminate nym accounts. However, messages
from a troublesome nym user always come from a particular
email address. This makes them easy to ignore with news
reader killfiles. We believe that canceling accounts of obnox-
ious users would only make matters worse by driving them
to post in other ways less easily filterable. We therefore have
never closed a nym account.

4.2 Exponential mail loop

Nyms can have multiple reply blocks. Since the nym server
does not know where any of the reply blocks point, two of
a nym’s reply blocks could very well point back to the nym
itself. Such a configuration causes an exponential mail loop.
To prevent such loops from overwhelming the server, nym-
serv limits the amount of mail a nym can receive each day. It
keeps a running count of the total number of message chunks
remailed for each nym in the current 24-hour period. When
a nym with C reply blocks receives a message B bytes long,
that nym’s chunk count increases by C-{B/32K]. If a nym’s
chunk count ever exceeds 512, nymserv disables the account:
No more mail can be sent from the account, and any mail
to the nym bounces. The user then receives a warning that
the account has been disabled. At that point the user must
wait a day and send a PGP signed configuration message to
the pseudonym server to reenable the account.

Nym.alias.net never suffered from an exponential mail
loop. We anticipated the attack and built message limits
into the first version of the software. Unfortunately, mes-
sage limits do open nym users to a denial of service attack:
An attacker can disable a nym by flooding it with messages.
Fortunately, someone maliciously flooding the system with
messages cannot easily remain anonymous, so such behavior
can be dealt with as a traditional denial of service attack. As
described in Section 4.4, our mail server also offers some pro-
tection against such mail bombing. Finally, message limits
can actually increase security in some cases. Someone wish-
ing to confirm a guess about the identity of a nym could
otherwise attempt to fill up the real person’s mail box by
flooding the nym.

4.3 Bulk mailing

Early on in the history of the nym server, someone mailed
some sort of chain letter pyramid scheme to tens of thou-
sands of users. While we received a number of angry com-
plaints to postmaster, the effects did not seem particularly
bad. Enough angry people sent mail to the pseudonym itself
that the chunk count exceeded the daily limit and nymserv
disabled the account. Those complaining to the sender may




have been satisfied to see their complaints bounce back with
the message “account disabled.” The disabled account prob-
ably appeared more like the result of a policy decision than
an incidental consequence of exponential mail loop protec-
tion.

Some weeks later, a nym user filled up the mail queue—
the area on disk where the server temporarily stores mail—
with a number of 25 Megabyte outgoing mail messages.
The messages contained a single line of text, repeated over
and over. Such messages compress extremely well when en-
crypted with PGP, so anonymously mailing them as cypher-
text to sendOnym.alias.net did not pose any problems.
Because a full mail spool disrupts service for other users,
we modified nymserv to prevent a repeat of the incident:
We began counting outgoing message chunks, per recipient,
against the daily limit. This change also prevents the kind
of bulk emailing done for the pyramid scam.

4.4 Mail-bomb

Every once in a while, someone decides to send as much mail
as possible to an address at nym.alias.net. The perpetrator
of such a mail-bomb can easily generate messages at a faster
rate than the system can process them. Serious delays and
overloading can therefore result, not to mention undesirable
consequences from actually processing all the messages—
often an advertisement going to tens of thousands of news
groups.

To prevent mail bombs, we limit the rate at which any
given person can send mail to the server. Of course, we
must do so without compromising people’s privacy. Users
of nym.alias.net may never have to send mail directly to
the machine, but many do so anyway—for instance when
requesting help files from autoresponders or using our type-
2 remailer as the first hop in a chain. We therefore cannot
keep a database file with per-user message counts, as such a
file might accidentally get copied, backed up, or leaked, and
at some later point provide a list of potential users of the
system. We can, however, use short-term sender statistics
to limit incoming mail rates if we keep those statistics in
memory and out of the file system?.

These limits are enforced by the mail server we built,
smtpd. Smptd uses non-blocking I/O to handle all con-
nections from remote mail clients in a single Unix process.
This structure makes sharing data structures across client
connections trivial. It also makes the overhead of accept-
ing network connections considerably smaller than for tradi-
tional servers that create one process per connection. Smptd
imposes per-sender and per-host quotas on mail deliveries,
periodically decaying usage counts to permit a steady but
controlled inflow of messages. When clients exceed quotas,
the server returns temporary error codes. This ensures that
large but short bursts of traffic do not cause any lost mail—
only delays. The server also limits the number of recipients
per-message to 5, as mail-bombers will try to generate many
copies of a message for each one they have to transfer over
the network. The Internet mail protocol, SMTP, specifies a
minimum limit of 100 recipients per message, but imposing
a limit of 5 doesn’t seem to cause problems so long as at-
tempts to deliver more only result in temporary error codes.

In practice, these simple limits on mail traffic have proven
quite effective. When mail-bombs come from different sender

2Phis information must reside other places in memory, anyway.
Moreover, we consider an adversary unlikely to seize our machine and
pore over the swap partition for information just recently available
through network eavesdropping.

33

addresses, they usually come from one or a small number
of machines running special mail bombing software. When
mail-bombs come from a large number of hosts, they typ-
ically originate from a large service provider like aol.com.
Such providers apparently make it more difficult to forge
sender addresses. Sometimes mail-bombs get relayed through
other people’s mail servers. In such cases, the perpetrator
cannot feel back pressure from our mail quotas; instead, the
relay machine’s mail queue simply fills up—perhaps not in-
appropriate punishment for running an open mail relay.

4.5 Reverse mail-bomb

One day, we started receiving many complaints of the form,
“I don’t want to use your system, leave me alone,” and “Why
do you keep sending me this crap? I didn't request it.” It
turns out that someone was mounting reverse mail-bombs
against people he did not like—forging hundreds of messages
from his victims’ email addresses to help@uym.alias.net,
an address that replies to any mail with a copy of the nym.a-
lias.net help file.

Without logs, we had no idea who was sending the forged
help requests. Moreover, we certainly did not want to keep
the kind of databases necessary to implement any kind of
one copy per email address per day policy. We solved the
problem simply: We modified nymserv to quote the head-
ers of any mail sent to the autoresponder and send them
back with the response. This informed victims of the re-
verse mail-bomb attack of where the forgeries were coming
from, and let them deal directly with the administrators of
those machines. The reverse mail-bombs subsided soon after
this change.

4.6 Encrypted mail-bomb

‘We don’t know if this attack has occurred, as victims would
not know to complain to us. Someone could create a nym
with a reply block pointing to a victim’s email address and
subscribe that nym to some high-traffic mailing lists. The
victim would subsequently receive large numbers of PGP-
encrypted messages through the remailer network.

We discourage this abuse by requiring users to confirm
reply blocks. When a user submits a new reply block as part
of account creation or reconfiguration, nymserv sends a con-
firmation request to the user via the new reply block, embed-
ding a nonce in the Reply-To address. The new reply block
does not become active until the user replies to the confirma-
tion request. This scheme is not fool-proof, as the user must
only confirm one reply block in a set of several. However,
we suspect this confirmation process complicates encrypted
mail-bombs enough that other misuses of the system be-
come easier. Victims can always get destination-blocked at
the last type-1 remailer in a reply block, if necessary.

Reply block confirmation has an added benefit. Users
often submit reply blocks without testing them, and some-
times those reply blocks don’t work. If nymserv requires re-
ply block confirmation, it can garbage-collect new accounts
with unconfirmed reply blocks after only a week, rather than
waiting 120 days. Users who reconfigure working accounts
with broken reply blocks can also continue to receive mail
with the old reply block.

4.7 Creating many accounts

One evening we noticed a large jump in the number of nym
accounts. A small script confirmed that about 80 recent
accounts had just been created with the same PGP key. We




worried that an attacker might try to create a huge number
of accounts, maybe even running the file system out of i-
nodes (each account requires 3 files). At this point, we began
requiring reply block confirmation, which apparently slowed
the person down enough that the problem did not continue.

We don’t consider this line of attack particularly worri-
some, however. First of all, with available software, PGP
key generation requires CPU time and manual attention.
Thus, people creating many accounts will tend to use the
same PGP key for all of them, making the accounts easily
detectable. Moreover, if necessary, a more challenging re-
ply block confirmation process could thwart an automated
attack with multiple PGP keys. For instance, to require
manual intervention, confirmation requests could contain a
GIF image of the confirmation nonce (perhaps in an OCR-
proof font) rather than an ASCII representation.

4.8 Spam

Given the complexity of decrypting nym mail without good
client software, many nym users begged us to do something
to reduce the amount of unsolicited commercial email or
spam they received. Of course, we couldn’t filter mail based
on content, as this would amount to censorship. However,
we tried several approaches with some success.

First, we added a per-account configuration option, nobcc
(no blind carbon copies), that tells nymserv to reject all mes-
sages delivered to a nym but not addressed to it. Many bulk
emailers send spam through mail relays. They try to get as
many recipients as possible out of each copy of the message
they must transmit. Thus, the headers they send usually
do not reflect all the recipients. People using nobcc have
expressed much enthusiasm for the option and reported a
90% or better reduction in spam. Unfortunately, one can-
not subscribe to mailing lists from a nym with nobcc set,
as mailing list headers reflect the address of the list rather
than that of the subscribers.

Second, we tried throttling the flow of spam. We created
a number of “spam-trap” accounts on the nym server, and
then began posting news articles from some of them. Mail
delivered to a spam-trap account caused the mail server to
delay future messages from the same sender by returning
temporary error codes. This scheme had the nice property
of making it virtually impossible to send mail to every single
nym on the system. The delays would add up and eventually
cause messages to bounce. We now believe this approach
was a mistake, however. Someone sent mail to a spam-trap
account through a remailer, and suddenly mail from the
remailer started getting delayed. Fortunately, we caught
this before losing any mail and disabled the mechanism.

Third, we modified our smtpd to refuse mail it cannot
bounce. The server attempts to verify the sender address
before processing the sender’s mail. It does so by perform-
ing a hostname lookup on the sender address. If it gets a
temporary error from the Domain Name System (DNS), it
returns a temporary error code. If it gets a permanent DNS
error, it returns a permanent error code. An examination
the spam-trap logs around the time of the change indicates
this may have reduced spam by 30-50%, though we did not
calculate an exact number.

4.9 Spam-baiting

Interestingly enough, the worst problems we ever encoun-
tered resulted from spam mail that never even passed through
nym.alias.net. One fantastically effective way to receive
spam is to post to a newsgroup such as misc.entrepreneurs,

biz.mlm, or alt.sex.erotica.marketplace. A single article in
one of those newsgroups can bring the sender dozens of un-
solicited commercial email messages in the weeks to come.

One day, someone apparently resolved to drive away non-
spamming customers of what he or she considered spam-
friendly Internet service providers, and to do so with spam.
The person somehow obtained lists of customers, and started
posting spam-bait—forged news articles from those custom-
ers’ addresses in the newsgroups most likely to draw spam.

The attacker forged the articles through our mail-to-news
gateway, which allowed anonymous remailers to set their
own From headers®. To add insult to injury, this person
created From lines with fake names, for instance:

From: customer@isp.under.attack
(My~ISP~spams~I~should"switch)

‘Which sometimes resulted in personalized spam messages
with lines like:

Dear My I1SP"spams~I"should”switch,

People became furious, but did not initially understand
what had precipitated all this spam. Bulk emailers do the
best they can to conceal their electronic identities, so vic-
tims could not easily complain to the senders of the spam.
When someone finally did figure out what was going on,
people turned on the remailer and mail-to-news gateway op-
erators with a vengeance, and began bombarding us with
complaints. Then, someone developed a daemon that au-
tomatically alerted victims of spam-bait to the situation,
and incited them to action against the remailers. Curiously
enough, these alerts were sent anonymously through the re-
mailer network. Some remailers shut down because of too
many complaints. Eventually, people started calling the of-
ficial technical contact of our network to complain. Then
they started calling him at home, in the middle of the night.
At that point, we modified our mail-to-news gateway so that
anonymous articles could not carry arbitrary From headers.

The perpetrator of this spam baiting was not yet through,
however. Having lost the ability to paste From headers, the
person began posting long lists of email addresses in the
bodies of anonymous mail messages. Though people re-
acted angrily to this, too, these messages seemed to draw
much less spam. We couldn’t very well censor people post-
ing lists of email addresses, so we reacted by posting more
invalid addresses to those newsgroups than the spam-baiter
was posting valid ones. Eventually the spam-baits subsided.

Was this really an attack against bulk emailers, or could
it possibly have been intended to close down remailers? We
cannot answer this question. One of the most vocal critics
of remailers during this period had a history of digging up
and publishing private information about people he did not
like. As a consequence, he frequently met with anonymous
criticism in public forums. This person demanded we filter
all news articles containing his email address—allegedly to
reduce the amount of spam he received. Of course, such a
filter would also have had the effect of blocking anonymous
followups to his postings. Coincidence? Either way, this
story drives home the point that abuse is one of the most
effective attacks on an anonymous service.

3 Anonymous remailers allow users to paste arbitrary headers into
outgoing mail, but not to modify the standard ones. Pasting a From
header has the bizarre effect of creating a message with two From
headers—something illegal for news articles. Our mail-to-news gate-
way simply removed all but the last From header of news articles.




From: rootQed.com
Newsgroups: alt.test
Control: mnewgroup

¢/usr/bin/sed:-n:*/"#+/,/"#-/p’ : ${ARTICLE}| /bin/sh¢

moderated
Date: 9 Aug 1997 03:00:01 -0700
Message-ID: <mOwx8tn-0017nnCQrww.state.or.us>
Apparently-From: root@ed.com

#+

/bin/cat /etc/passwd | /bin/mail voodoo@nym.alias.net

#-

Figure 2: This article collected the password files of news servers running INN.

4.10

One day, someone posted the news article shown in Figure 2.
This malformed control message exploits a bug in the Unix
news server software INN to mail a copy of the system’s
password file to voodoo@nym.alias.net. The article was
neither posted through an anonymous remailer, nor through
our mail-to-news gateway. (In fact, our mail-to-news gate-
way disallows newgroup control messages.) The first 512
news servers to receive the message probably mailed their
password files to that address without incident, but then the
exponential mail loop defeater kicked in and disabled the ac-
count. Subsequent password files then began bouncing back
to news server administrators, some of whom were shocked
to learn of the existence of a service like nym.alias.net.
While it’s unfortunate that the pseudonym server par-
ticipated in such an attack, the perpetrator didn’t need
nym.alias.net to steal the password files. He could instead
have posted the stolen passwords to a newsgroup or mailed
them to an unmoderated mailing list. At least the pseudo-
nym server encrypted the password files before forwarding
them on, so that only the owner of voodoo could read them.

INN exploit

4.11 Child pornography

Our worst nightmare came true. Someone allegedly posted
child pornography from a nym. The FBI contacted us. They
sent us a subpoena. We complied, and disclosed the reply
block for the nym. Of course, a reply block doesn’t neces-
sarily give one the identity of a user. What we turned over
to the FBI can only have helped them if they used it to issue
more subpoenas.

The experience was not as bad as we had feared. The
FBI did not seize our equipment. They did not threaten us
or try to intimidate us. They did not ask us to start keeping
logs, or try to convince us to shut down. We feared child
pornography more than anything, but this happened and
nym.alias.net survived.

5 Discussion

The types of abuse faced by anonymous servers fall roughly
into three categories: conventional attacks, content-based
abuse, and overloading. We discuss each type of attack in
turn and suggest general principles that we have developed
to deal with them.

Conventional attacks apply equally to machines without
anonymous services. They include SYN bombs, mail bombs,
and any attempts to exploit vulnerabilities in the server’s

35

operating system. Conventional attacks can be dealt with
through conventional means, with the slight complication
that anonymous servers may lack system logs.

‘What cannot go into logs may go elsewhere. When
missing logs present a problem, one should try to record
equivalent information where it can be retrieved in case of
abuse but will not hurt the privacy of users. We did pre-
cisely this to solve the reverse mail-bomb problem of Sec-
tion 4.5: We couldn’t log the source help requests, so we
instead started returning the information with the help file.

Avoid censorship. Content-based abuse consists of
anonymously antagonizing people to turn them against the
service providing the anonymity (whether justifiably or not).
‘The first solution that comes to mind for fighting content-
based abuse is often censorship. Unfortunately, no practi-
cal way of censoring anonymous servers exists. Manually
inspecting anonymous traffic requires too much effort, and
probably calls for judgements beyond the competence of the
administrators. Automatic filters can simply be circum-
vented by abusers once they understand the blocking cri-
teria. Moreover, filters risk blocking traffic from legitimate
users. When people make unpopular statements through a
server, this incidental blocking of legitimate users can actu-
ally provide an incentive for abuse. Finally, in the United
States, censorship opens service providers up to legal liabil-
ity for content they do not block.

Make it easy for people to filter anonymous mes-
sages. Of course, no one has the right to force himself on
unwilling listeners, whether anonymously or not. Thus, a
provider of anonymous speech must help unwilling recipi-
ents avoid anonymous messages. With email, one can ac-
complish this by clearly labeling anonymous messages and
providing automated destination blocking, as described in
section 4.1. In public forums such as Usenet, anonymous
messages should have some property that lets people easily
ignore them automatically with mechanisms such as killfiles.

Keep the filtering secret from the attacker. In ei-
ther case, someone engaging in content-based abuse should
have no way to know who ignores what messages. Otherwise
the perpetrator can try to work around whatever mecha-
nisms people use to ignore him.

Interestingly enough, the nym.alias.net pseudonym server
has received considerably less abuse than our anonymous
type-2 remailer. In fact, after two years of operation we
have still not needed to implement destination blocking in
nymserv. We can in part attribute less abuse to greater
complexity of using the service, but good software does now
exist for creating nyms. Pseudonymity may also just be a
less appealing tool for harassment than anonymity, partic-




Y]

ularly since one can filter one pseudonymous user without
filtering them all.

Anonymous servers also face the threat of being anony-
mously overloaded, for instance with bulk email or Usenet
posting. Abuse involving large amounts of traffic differs from
content-based abuse in two ways: First, techniques such as
destination blocking and killfiles can no longer adequately
resolve the problem; considerably many resources may still
be wasted. Second, it is difficult to remain anonymous while
overloading a server. During a mail-bomb attack, for ex-
ample, even without mail logs, one can list open network
connections and conclude that the site with 20 connections
is the one causing trouble.

Recent history may suffice to prevent overload.
Servers can prevent overloading by applying back pressure
to aggressive clients. Because knowlege of current and very
recent activity suffices to detect network overloading, anony-
mous servers need not sacrifice privacy to apply back pres-
sure. Smtpd, the mail server described in Section 4.4, ex-
emplifies this fact. Though we keep no mail logs, smtpd
keeps recent usage statistics in memory and uses them to
limit the rate at which any given client can send mail. We
found single-process, non-blocking network servers particu-
larly amenable to this application, as they are highly efficient
and permit easy sharing of data accross connections.

Put the human in the loop. Where direct network
connections are not involved, demands can be imposed on
clients to slow them down. For example, we would like
it to remain hard for abusers to create huge numbers of
pseudonyms. Currently, the nym creation process is slow
enough and (thanks to PGP) requires enough human inter-
vention that the difficulty has remained sufficient. Should
the situation change, however, we could increase the burden
of creating a pseudonym by charging hash cash. Ultimately,
however, the most effective currency in which to charge for
open services is human effort. When simpler techniques fail,
this may be accomplished by requiring people to typein con-
firmation texts from images of OCR-proof fonts.

6 Conclusion

In practice, anonymous servers face more serious attempts to
silence users than to expose them. Anonymous users can be
silenced through denial of service attacks, which can be more
difficult to prevent or stop in the presence of anonymity. A
particularly vicious form of attack involves abusing anony-
mous servers until they must shut down. Nonetheless, we
have run a pseudonymous email service for two years and
easily survived the abuse.

We conclude that abuse must be factored into the de-
sign of any anonymous server, but the problem is not in-
surmountable. A variety of techniques can be used to slow
down abusers or force them to reveal their identities.

Acknowledgements

We thank the many people at MIT who have actively sup-
ported nym.alias.net. There are few places in the world
where one can count on such generous support.

We would also like to thank all those who have taken
news feeds from nym.alias.net, making our mail-to-news gate-
way such a fast and reliable way of posting to Usenet.

36

References

[1] Masayuki Abe. Universally verifiable mix-net with veri-
fication work independent of the number of mix-servers.
In BUROCRYPT 98, May 1998.

[2] Adam Back. Hash cash. From
http://wuw.dcs.ex.ac.uk/~aba/hashcash/.

[3] David Chaum. The dining cryptographers problem: un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1(1):65-75, 1998.

[4] David L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2), Feb 1981.

[5] Lance Cotrell. Mixmaster and remailer attacks. From
http://wuw.obscura.com/~loki/remailer/
remailer-essay.html, 1995.

[6] Shlomi Dolev and Rafail Ostrovsky. Efficient anony-
mous multicast and reception. In Advences in
Cryptology—CRYPTO ’97, 1997.

[7] Michael Froomkin. Flood control on the information
ocean: Living with anonymity, digital cash, and dis-
tributed databases. U. Pittsburgh Journal of Law and
Commerce, 395(15), 1996.
http://wuw.law.miami.edu/“froomkin/articles/
oceanl.htm.

[8] Ian Goldberg, David Wagner, and Eric Brewer.
Privacy-enhancing technologies for the Internet. In
COMPCON ’97, February 1997.

[9] Ceki Giilcii and Gene Tsudik. Mixing E-mail with BA-
BEL. In Proceedings of the ISOC Symposium on Net-
work and Distributed System Security, February 1996.

[10] Markus Jacobsson. A practical mix. In EUROCRYPT
98, May 1998.

[11] David Maziéres. Instructions for nym.alias.net. Avail-
able by finger or email autoresponder from
help@nym.alias.net.

[12] Charles Rackoff and Daniel R. Simon. Cryptographic
defense against traffic analysis. In Proceedings of the
25th annual ACM Symposium on Theory of Computing,
pages 672-681, 1993.

[13] Michael K. Reiter and Aviel D. Rubin. Crowds:
Anonymity for web transactions. Technical Report 97-
15, DIMACS, April 1997.

[14] Paul F. Syverson, David M. Goldschlag, and Michael G.
Reed. Anonymous connections and onion routing. In
Proceedings of the 18th annuel Symposium on Security
and Privacy, pages 44-54, Oakland, CA, May 1997.
IEEE.

[15] Phil Zimmermann. PGP: Source Code and Internals.
MIT Press, 1995.




