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ABSTRACT

A verifiable timed signature (VTS) scheme allows one to time-lock

a signature on a known message for a given amount of time T

such that after performing a sequential computation for time T

anyone can extract the signature from the time-lock. Verifiability

ensures that anyone can publicly check if a time-lock contains a

valid signature on the message without solving it first, and that the

signature can be obtained by solving the same for time T.

This work formalizes VTS, presents efficient constructions com-

patible with BLS, Schnorr, and ECDSA signatures, and experimen-

tally demonstrates that these constructions can be employed in

practice. On a technical level, we design an efficient cut-and-choose

protocol based on the homomorphic time-lock puzzles to prove the

validity of a signature encapsulated in a time-lock puzzle. We also

present a new efficient range proof protocol that significantly im-

proves upon existing proposals in terms of the proof size, and is

also of independent interest.

While VTS is a versatile tool with numerous existing applica-

tions, we demonstrate VTS’s applicability to resolve three novel

challenging issues in the space of cryptocurrencies. Specifically,

we show how VTS is the cryptographic cornerstone to construct:

(i) Payment channel networks with improved on-chain unlinkabil-

ity of users involved in a transaction, (ii) multi-party signing of

transactions for cryptocurrencies without any on-chain notion of

time and (iii) cryptocurrency-enabled fair multi-party computation

protocol.
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1 INTRODUCTION

Timed cryptography studies a general class of primitives that allows

a sender to send information to the future. After a pre-determined

amount of time, anyone (possibly at the end of a sequential compu-

tation) can learn the enclosed secret. Time-Lock puzzles [11, 41, 46],

Timed Commitment [15], and Timed release of Signatures [24]

are prominent primitives in this class with wide-ranging applica-

tions [4, 15, 30, 34].

For many applications, it is important that the receiver is con-

vinced that themessage of the sender is well-formed (e.g., it contains

a valid signature on a certain message) before committing a large

amount of time and resources to solve the corresponding puzzle.

Therefore, it is natural to augment the above mentioned primitives

with the notion of verifiability. In this work we formally introduce

the notion of Verifiable Timed Signature Scheme (VTS), where a

sender commits to a signature 𝜎 on a known message in a verifi-

able and extractable way1. Verifiability refers to the property that

one can publicly check that a valid signature is contained in the

commitment, whereas extractability guarantees that the signature

𝜎 can be recovered from the commitment in time T.

1.1 Applications of VTS

Although the utility of VTS in classical applications such as fair

contract signing is already well known [15, 24], we observe that it

can further solve challenging privacy and compatibility problems

in the cryptocurrency (or blockchain) space. Concretely, we discuss

three new applications of VTS.

Applications I: Privacy-Preserving Payment Channels Net-

works. Bitcoin [43] and most permissionless blockchains are in-

herently limited in transaction throughput and typically have large

fees associated with each payment. Payment channels [2, 45] have

1In [15], the notion of verifiability for the timed signature is implicitly assumed to exist.
We explicitly formalize it and propose efficient protocols for real world applications.
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Figure 1: A multi-hop transaction over a payment channel

network. Dotted lines with two arrowheads indicate pay-

ment channels between successive users. In this example,

the Sender pays 90 coins to the Receiver through five inter-

mediate users, each collecting a fee of one coin. Each pay-

ment hop is associated with a decreasing expiry time (T+𝑐Δ,

for 𝑐 ∈ {0, . . . , 5}).

emerged as a prominent scalability solution to mitigate these is-

sues by allowing a pair of users to perform multiple payments

without committing every intermediate payment to the blockchain.

Abstractly, a payment channel consists of three phases: (i) Two

users Alice and Bob open a payment channel by adding a single

transaction to the blockchain. Intuitively, this transaction promises

that Alice may pay up to a certain amount of coins to Bob, which

he must claim before a certain time𝑇 ; (ii) Within this time window,

Alice and Bob may send coins from the joint address to either of

them by sending a corresponding transaction to the other user; (iii)

The channel is considered closed when the latest of the payment

transactions is posted on the chain, thus spending coins from the

joint address.

An extension of payment channels is payment channel networks

(PCN) [45]. As shown in Figure 1, in a PCN, users can perform

multi-hop payments, i.e. coins can be transferred to other users in

the network without having a common payment channel, routing

the payment through a set of intermediate users. For Bitcoin, the

atomicity of these payments is ensured using multi-hop locks (in

particular, Hash Time Lock Contracts or HTLCs) which guarantee

the transfer of 𝑣 coins if a certain condition is satisfied (e.g., for

HTLC, the knowledge of a pre-image 𝑥 such that 𝐻 (𝑥) = 𝑦, where

𝐻 is a cryptographic hash function) before time T. PCNs are not

only well-studied in the academia [6, 19, 20, 39, 40, 49], but also in

industry and the Lightning Network (LN) [3, 45] has emerged as

the most prominent example.

PCNs are found to be no better than Bitcoin in terms of transac-

tion privacy. By using anonymous multi-hop locks (AMHL) [39, 40],

one can make HTLCs unlinkable from the perspective of an on-

chain observer, however these proposals do not achieve strong

unlinkability of hops as the time-lock information T is still present

in the contract: To avoid race conditions to redeem the coins, the

time-lock for the 𝑖-th hop is Δ larger than the time-lock for hop 𝑖 +1

(see Figure 1). An attacker observing the on-chain contracts can

correlate this time-lock information and detect if certain payments

belong to the same multi-hop payment path.

We observe that VTS can solve this privacy issue, by completely

removing the time-lock information from the payment transactions.

At the time of opening a channel between Alice and Bob, Bob signs

an additional łstealž transaction for 𝑣 coins (as in the HTLC) for Al-

ice using a VTS (with time parameter T𝐴). Alice is then guaranteed

that she can redeem these coins after time T𝐴 , by forcing the open-

ing of the VTS: If Bob tried to transfer the coins to his address after

time T𝐴 , then Alice would immediately steal them, using the łstealž

transaction also signed by Bob. To avoid race conditions, we intro-

duce an artificial delay 𝛿 to the payment to Bob. It is important to

observe that 𝛿 is fixed and in particular is identical for all payment

channels. This time delay gives Alice a sufficient window to post

the steal transaction with Bob’s signature from the VTS (in case of

Bitcoin with a relative time-lock using checkSequenceVerify OP

CODE.

For PCNs, apart from Alice, Bob obtains a steal transaction and

a VTS (with timing hardness T𝐵 ) from Carol, who in turns is sent a

steal transaction and a VTS (with timing hardness T𝐶 ) from Dave.

The timing hardnesses of these VTS’s are structured similarly to the

time-locks for HTLC, i.e. T𝐴 > T𝐵 > T𝐶 . The important difference

is that, even though the time-locks still have the correlation, they

are never posted on-chain.

Application II: Multisig Transactions. Computations involving

multiple parties in blockchains often rely on transactions with

multisig scripts, i.e. conditions that require multiple signatures in

order to authenticate transactions. Bitcoin offers 𝑡-out of-𝑛 multisig

scripts that accepts signed transactions from any 𝑡-sized subsets of

the𝑛 users. These have wide ranging applications including [12, 42].

This has motivated a large body of literature on improving security

and efficiency of multisig protocols [8, 12, 18, 42] and more efficient

constructions of threshold signature schemes [26, 35, 36, 52, 53].

All of these works however (implicitly) assume an expiration time

T for the multisig scripts. This is used to ensure that, even if a large

threshold of participants go offline, the coins of the few remaining

users are not locked indefinitely. Therefore the scope of multisig-

based protocol is limited to those cryptocurrencies that support

on-chain notion of time. Those blockchains that do not offer the

time-lock functionality are therefore not compatible with these

protocols.

We propose to use VTS to bypass this problem. Prior to transfer-

ring the funds to the multisig address, all users agree on a default

redeem transaction. The redeem transaction transfers the coins

from the multisig address back to the respective users. It is signed

using a VTS with time parameter T. Once the funds are transferred

to the multisig address, users can jointly spend coins by negoti-

ating new refund transactions for which a VTS is given, using a

progressively smaller time parameter. If at any point in time, less

then 𝑡 signatures are exchanged by the users, the VTSs exchanged

in the previous round make sure that the funds will be redistributed

consistently across all participants. Eventually all parties are going

to redeem the coins agreed on the previous łstablež state. As an

interesting byproduct of our solution, multisig transactions are also

indistinguishable from any other kind of transaction, to the eyes of

an external observer. This is because the expiration time is never

uploaded on-chain.

Application III: Fair Multi-party Computation. In the multi-

party computation (MPC) settings, a computation is fair if either

all parties involved receive the output or none of them does. Re-

cent efforts [10, 31, 32] have proposed leveraging blockchains as a

solution to achieve fairness. The general idea is to incentivize users

to complete the protocol execution by enforcing some financial

penalty in case they fail to do so. More concretely, the participants
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lock a certain amount of coins in addresses addr𝑖 from which funds

can be spent if user 𝑈𝑖 reveals a witness to some condition before

time T. Alternatively, if all participants sign the transaction, these

coins can be spent and redistributed among the other users after

time T. Intuitively, an adversary loses coins if he does not reveal

the witness, which in turn is crucial to learn the output of the com-

putation. As a compensation, the coins of the adversary are given

to the honest users involved in the computation, which incentivizes

publishing of such witness, thus ensuring that other users also learn

the output of the computation.

This alternate way of spending is negotiated in a payout phase

in the form of payout transactions, where all users generate signa-

tures and exchange them with each other. However, these payout

transactions are time-locked on chain and are only valid after time

T. This ensures that other users cannot take the coins and distribute

among themselves before the termination of the protocol.

One of the major shortcomings of this proposal (along with

similar privacy issues as described above) is that this solution is

incompatible with blockchains that do not offer the time-lock func-

tionality, such as Zcash [9] and Monero [33]. VTS2 can be used to

solve such a limitation as follows: All participants sign their payout

transaction using a VTS, instead of sending signatures in plain. The

privacy of VTS ensures that no party learns the signatures on the

payout transaction before time T.

1.2 Our Contributions

In summary, in this work we define the notion of verifiable timed

signatures, propose a number of efficient constructions, and rigor-

ously design and analyze the various applications discussed above.

More concretely, our contributions are as follows.

Definitions. We formalize the notion of Verifiable Timed Signa-

tures (VTS) (Section 3.2) where the committer creates a commitment

to a signature that can be solved and opened after time T, along

with a proof that certifies that the embedded signature is a valid

signature on a message with respect to the correct public key. Any-

one can verify this proof and be convinced of the validity of the

commitment. In terms of security we require that the commitment

and the proof reveal no information about the embedded signature

to any PRAM adversary whose running time is bounded by T (pri-

vacy) and that an adversary should not be able to output a valid

proof to a commitment that does not embed a valid signature on a

message with respect to a public key (soundness).

Efficient Constructions. We offer three efficient constructions

for VTS (Section 4): VT-BLS, VT-Schnorr and VT-ECDSA where

the signatures being committed to are BLS, Schnorr and ECDSA

signatures, respectively. Our constructions do not require any mod-

ification to these signature schemes. Our constructions exploit the

group structure of these signature schemes and combine threshold

secret-sharing with a cut-and-choose type of argument to achieve

practical performance. We also leverage the recently introduced

linearly homomorphic time-lock puzzles [41] to reduce the number

of puzzles to solve to one (Section 4.4) puzzle. Apart from improving

efficiency by decreasing the computational resources needed, this

2In this work we actually solve the problem using a slightly relaxed variant of VTS,
i.e. Verifiable Timed Discrete Logarithm where, instead of the signature, the signing
key of signature scheme is committed to. This makes it compatible with Zcash and
Monero.

improves security in applications where users may possess different

amounts of parallel processors: A user with 𝑛 processors has no

advantage over a user with one processor as they both need to

solve only a single puzzle for time T. We also present a concretely

efficient construction of Verifiable Timed Commitments (VTC) (Ap-

pendix D), where the signing key is committed instead. Our VTC

scheme is applicable to any signature scheme where the secret key

is the discrete logarithm of the public key.

Range Proofs. Along the way, we present efficient range proofs

(Section 4.5) for proving that the solution of a time-lock puzzle

lies within some interval. In contrast with prior works, the proto-

col batch-proves well-formedness of ℓ time-lock puzzles and the

proof size is independent of ℓ . The protocol is generically applica-

ble to all time-lock puzzles/ciphertexts that possess plaintext- and

randomness-homomorphism. Such a protocol might be of indepen-

dent interest.

New Applications. Apart from classical applications such as fair

contract signing [15], we identify several applications (as discussed

above, and in the full version [50] in formal detail) for VTS where

our constructions can be readily used. The primary focus of this

paper is on cryptocurrency-based applications where we wish to

improve privacy and compatibility of existing solutions. Specifically,

(i) we show how to construct privacy-preserving PCNs that prevent

de-anonymizing attacks based on on-chain timing correlations,

(ii) we construct single-hop payment channels without requiring

any time-lock functionality from the underlying blockchain, (iii)

we present solutions (with different efficiency tradeoffs) to realize

blockchain-based fair computation without requiring the time-lock

functionality from the blockchain, and (iv) we propose a new way

to construct multisig contracts from VTS which does not require

any time-lock functionality from the corresponding blockchain.

Implementation. We implement our proposed constructions by

building an LHTLP library, the range proof, and the other crypto-

graphic primitives. We find that all LHTLP operations are efficient.

The homomorphic batching adds a small overhead while outputting

a single puzzle to solve. As the most computationally relevant oper-

ation, we also estimate the cost of commit and verify operations of

our VTS constructions. Results (in an unoptimized implementation)

indicate that for practical purposes with a low powered machine,

setting the statistical security parameter 𝑛 = 40, our VT-ECDSA

verifier takes 9.942s with a soundness error of 7.25 × 10−12.

2 TECHNICAL OVERVIEW

On a high level, our VTS schemes are built by computing a standard

digital signature 𝜎 on a message𝑚 and emcoding it into a time-lock

puzzle. Then a non-interactive zero-knowledge (NIZK) proof is

used to prove that the puzzle contains a valid signature on𝑚. There

are several non-trivial components in our construction, such as en-

coding the signatures inside the puzzles that is compatible with our

efficient instantiation of a non-interactive zero-knowledge proof,

novel use of homomorphic operations on the puzzles to ensure

better security, all while ensuring that our construction can work

with a large class of signature schemes. Throughout the following

overview, we describe the VTS as an interactive protocol between a

committer and a verifier, which can be made non-interactive using

the Fiat-Shamir transformation [22].
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High-Level Overview. To illustrate our approach, let us consider

the BLS signature scheme [14], the other schemes follow a similar

blueprint. Recall that BLS public-secret key pair are of the form

(𝑔𝛼0 , 𝛼) and the signature on a message𝑚 is 𝜎 := 𝐻 (𝑚)𝛼 , where

𝑔0 ∈ G0 is a generator of G0, 𝛼 ∈ Z𝑞 , and 𝐻 : {0, 1}∗ → G1 is

a full domain hash function. The verification algorithm checks if

𝑒 (𝑔0, 𝜎) = 𝑒 (𝑔𝛼0 , 𝐻 (𝑚)). To generate a VTS on a message 𝑚, the

committer secret shares the signature 𝜎 together with the public

using a 𝑡-out-of-𝑛 threshold sharing scheme: The first 𝑡 − 1 shares

are defined as 𝜎𝑖 := 𝐻 (𝑚)𝛼𝑖 for a uniformly sampled 𝛼𝑖 ∈ Z𝑞 .

It is important to observe that such a signature 𝜎𝑖 is a valid BLS

signature on 𝑚 under the public-key pk𝑖 = 𝑔
𝛼𝑖
0 . The rest of the

shares are sampled consistently using Lagrange interpolation in

the exponent, i.e., for 𝑖 ∈ {𝑡, 𝑡 + 1, . . . , 𝑛} we set

𝜎𝑖 =
©­«

𝜎∏
𝑗 ∈[𝑡−1] 𝜎

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

where ℓ𝑖 (·) is the 𝑖-th Lagrange polynomial basis. Note that this is

a valid signature on𝑚 under the corresponding public-key defined

as

pk𝑖 =
©­«

pk∏
𝑗 ∈[𝑡−1] ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

.

This ensures that we can reconstruct (via Lagrange interpolation)

the valid signature 𝜎 from any 𝑡-sized set of shares of the signature.

Analogously, we can reconstruct the public key pk from any set of

shares of size at least 𝑡 .

The committer then computes a time-lock puzzle 𝑍𝑖 with time

parameter T for each share separately. The first message consists of

all puzzles (𝑍1, . . . , 𝑍𝑛) together with all public keys (pk1, . . . , pk𝑛)

as defined above. The verifier then chooses a random set 𝐼 of size

(𝑡 − 1). For the challenge set, the committer opens the time-lock

puzzles {𝑍𝑖 }𝑖∈𝐼 and reveals the underlying message 𝜎𝑖 (together

with the corresponding random coins) that it committed to. The

verifier accepts the commitment as legitimate if all of the following

conditions are satisfied:

(1) All {𝜎𝑖 }𝑖∈𝐼 are consistent with the corresponding public-key

pk, i.e., 𝑒 (𝑔0, 𝜎𝑖 ) = 𝑒 (pk𝑖 , 𝐻 (𝑚)).

(2) All public keys {𝑝𝑘 𝑗 } 𝑗∉𝐼 reconstruct to the public key of the

scheme, i.e.,
∏

𝑖∈𝐼 pk
ℓ𝑖 (0)
𝑖 · pk

ℓ𝑗 (0)
𝑗 = pk.

Taken together, these conditions ensure that, as long as at least one

of the partial signatures in the unopened puzzles is consistent with

respect to the corresponding partial public-key, then we can use it

to reconstruct 𝜎 . This means that a malicious prover would need to

guess the set 𝐼 ahead of time to pass the above checks without ac-

tually committing a valid signature 𝜎 . Setting 𝑡 and 𝑛 appropriately

we can guarantee that this happens only with negligible probability.

We exploit similar structural features in the case of Schnorr and

ECDSA signatures. In case of Schnorr we additionally secret share

the randomness used in signing and in ECDSA we do not secret

share the public key but only the randomness and the signature.

Reducing the Work of the Verifier. As described above, our

protocol requires the verifier to solve 𝑛̃ = (𝑛−𝑡 +1) puzzles to force

the opening of a VTS. Ideally, we would like to reduce his workload

to the minimal one of solving a single puzzle. If this was not the case,

some applications may have users with 𝑛̃ processors who can solve

𝑛̃ puzzles in parallel and spending time T in total. While other users

with less number of processors will have to solve the puzzles one

by one thereby spending more time than T. This could drastically

affect security in the case of PCN for instance, where a honest user

with less number of processors may be still solving the VTS while

his steal transactions becomes invalid on the chain. Our observation

is that if the time-lock puzzle has some homomorphic properties,

then this can indeed be achieved. Specifically, if we instantiate the

time-lock puzzle with a recently introduced linearly homomorphic

construction [41], then we can use standard packing techniques

to compress 𝑛̃ puzzles into a single one Section 4.4. Concretely,

the verifier, on input (𝑍1, . . . , 𝑍𝑛̃) homomorphically evaluates the

linear function

𝑓 (𝑥1, . . . , 𝑥𝑛̃) =

𝑛̃∑
𝑖=1

2(𝑖−1) ·𝜆 · 𝑥𝑖

to obtain a single puzzle 𝑍 , which he can solve in time T. Ob-

serve that, once the puzzle is solved, all signatures can be decoded

from the bit-representations of the resulting message. However this

transformation comes with two caveats:

(1) The message space of the homomorphic time-lock puzzle must

be large enough to accommodate for all 𝑛̃ signatures.

(2) The signatures 𝜎𝑖 encoded in the the input puzzles must not

exceed the maximum size of a signature (say 𝜆 bits).

Condition (1) can be satisfied instantiating the linearly homomor-

phic time-lock puzzles with a large enough message space. On the

other hand, condition (2) is enforced by including a range NIZK,

which certifies that the message of each time-lock puzzles falls into

the range [0, 2𝜆].

Efficient Range Proofs. What is left to be discussed is how to

implement the range NIZK for homomorphic time-lock puzzle. In

the following we outline a protocol that allows us to prove the well-

formedness of ℓ puzzles with proof size logarithmic in ℓ . The proof

is generically applicable to any homomorphic time-lock puzzle (or

even encryption scheme) that is linearly homomorphic over both

the plaintext space and the randomness space, i.e.

PGen(T,𝑚; 𝑟 ) · PGen(T,𝑚′; 𝑟 ′) = PGen(T,𝑚 +𝑚′; 𝑟 + 𝑟 ′).

Our proof system uses similar ideas as the range proof system

of [37], but we are able to batch range proofs for a large number

ℓ of homomorphic time-lock puzzles in a proof which has size

independent of ℓ .

For the sake of this overview, let us assume that we want to make

sure that plaintexts lie in an interval [−𝐿, 𝐿]. However, to prove

correctness and zero-knowledge we will need to require that honest

plaintexts actually lie in a much smaller range [−𝐵, 𝐵], where 𝐵/𝐿

is negligible. This will introduce a slack in the size of the time-lock

puzzles, which for practical purposes is roughly 50 bits.

We describe the protocol in its interactive form, although the

actual instantiation is going to be made non-interactive via the

standard Fiat-Shamir transformation. The prover is given ℓ puzzles

(𝑍1, . . . , 𝑍ℓ ) together with each corresponding plaintext 𝑥𝑖 and

randomness 𝑟𝑖 . The prover samples a drowning term 𝑦 uniformly

from the interval [−𝐿/4, 𝐿/4], then computes time-lock puzzles

𝐷 = PGen(T, 𝑦; 𝑟 ′) for some randomness 𝑟 ′. The verifier is given
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all puzzles (including the one that contains the drowning term) and

returns a random subset 𝐼 of these puzzles. The prover computes

the homomorphic sum of the selected puzzles

𝑍 =

∏
𝑖∈𝐼

𝑍𝑖 · 𝐷 =

∏
𝑖∈𝐼

PGen(T, 𝑥𝑖 ; 𝑟𝑖 ) · PGen(T, 𝑦; 𝑟
′).

By the plaintext and randomness homomorphism, this is equal to

𝑍 = PGen

(
T,

∑
𝑖∈𝐼

𝑥𝑖 + 𝑦;
∑
𝑖∈𝐼

𝑟𝑖 + 𝑟
′

)
.

The prover computes the opening for𝑍 , i.e.
∑
𝑖∈𝐼 𝑥𝑖 +𝑦 and

∑
𝑖∈𝐼 𝑟𝑖 +

𝑟 ′, and sends them to the verifier. The verifier accepts if (i) 𝑍 is cor-

rectly computed (which he can check since he is given the random

coins) and if (ii) the plaintext
∑
𝑖∈𝐼 𝑥𝑖 + 𝑦 lies within the interval

[−𝐿/2, 𝐿/2]. Given that 𝐵 is sufficiently smaller than 𝐿, specifically

𝐵 ≤ 𝐿/(4ℓ) the protocol is correct. We can further show that, if

any of the input plaintexts is outside the range [−𝐿, 𝐿], then the

above check fails with constant probability. Negligible soundness is

then achieved by repeating the above procedure 𝑘 times in parallel.

For zero-knowledge it suffices to observe that the random term

𝑚̃ statistically hides any information about
∑
𝑖∈𝐼 𝑥𝑖 by a standard

drowning argument, given that 𝐵/𝐿 is negligible.

2.1 Related Work

Notice that VTS can also be seen as a łtimedž variant of verifiably en-

crypted signatures [13, 27], with the difference that no trusted party

is needed to recover the signature. Boneh and Naor [15] give an

interactive protocol to prove that a time-lock puzzle is well-formed.

The verifier is convinced that the sequential squaring is correctly

performed. They identify several applications of time-lock puzzles.

Garay and Jakobsson [24] and later Garay and Pomerance [25]

proposed constructions where they construct special-purpose zero-

knowledge proofs to convince a verifier that the time-lock puzzle

indeed has a valid signature embedded. However their construction

requires both the prover and the verifier to locally store a list of

group elements as a łtime-linež whose length is equal to the number

of timed checkpoints. For instance, the time-line consists of T group

elements if the largest timing hardness is 2T. And in a multi-user

system, a single user may have to store several time-lines of several

other users with whom he has interaction. If they run a one-time

setup for the whole system, it needs to be accompanied by a proof

of well-formedness of the time-line. To the best of our knowledge,

these protocols have never been implemented and in contrast, with

our construction, the setup consist of an RSA modulus 𝑁 and can

be shared across all users in the system or sampled by the signer,

depending on the application.

Banasik, Dziembowski and Malinowski [7] propose a cut and

choose technique to prove that a time-lock puzzle has a valid signing

key embedded. The prover sends 𝑎 puzzles with signing keys for 𝑎

public keys and the verifier asks to open 𝑎 − 𝑏 of them. The verifier

checks if the opened puzzles are well-formed and solves the rest

of the puzzles. The verifier can finally post a transaction spending

from a ’𝑏-out of-2𝑏 − 1’ multisig script where 𝑏 − 1 of the keys

are verifier’s keys. For a 2−48 security they require 𝑏 = 8 which

means the spending transaction consists of 8 signatures and 15

public keys. Our VTS and VTC constructions would only require

the solver to solve a single puzzle after homomorphic evaluation

and post a transaction with single signature for a corresponding

public key. As stated before, given that they require 𝑏 puzzles to

be solved, this could lead problems in applications such as PCN

if users have different parallel processing power. Moreover, since

signing keys are embedded, parties in their protocol can learn the

signing keys of other parties after a given time, contrary to our

VTS where parties only learn signatures. There may be scenarios

where parties may not wish to share their signing keys: Learning a

single signing key could compromise security of the entire wallet

of the party [1] (especially in cases of hierarchical wallets).

3 PRELIMINARIES

We denote by 𝜆 ∈ N the security parameter and by 𝑥 ← A(in)

the output of the algorithm A on input in. We denote by A(in; 𝑟 )

if algorithm A is randomized with 𝑟 ← {0, 1}∗ as its randomness.

We omit this randomness where it is obvious and only mention it

explicitly when required. We denote the set {1, . . . , 𝑛} by [𝑛].

3.1 Cryptographic Building Blocks

We recall the cryptographic primitives used in our protocol and

refer to Appendix A for formal definitions and security.

Digital Signatures. A digital signature scheme consists of the

following triple of efficient algorithms: A key generation algo-

rithm KGen(1𝜆) that takes as input the security parameter 1𝜆 and

outputs the public/secret key pair (pk, sk). The signing algorithm

Sign(sk,𝑚) inputs a secret key and a message𝑚 ∈ {0, 1}∗ and out-

puts a signature 𝜎 . The verification algorithm Vf (pk,𝑚, 𝜎) outputs

1 if 𝜎 is a valid signature on𝑚 under the public key pk, and out-

puts 0 otherwise. We require standard notions of correctness and

unforgeability for the signature scheme [29].

Time-Lock Puzzles. A time-lock puzzle (PGen, PSolve) allows

one to conceal a value for a certain amount of time [46]. Intu-

itively, time-lock puzzles guarantee that a puzzle can be solved

in polynomial time, but strictly higher than T ∈ N. The only ef-

ficient candidate construction of time-lock puzzles was given by

Rivest, Shamir, and Wagner and is based on the sequential squar-

ing assumption [46]. The puzzle generation PGen is a probabilistic

algorithm that takes as input a hardness-parameter T, a solution

𝑠 ∈ {0, 1}∗ and some random coins 𝑟 , and outputs a puzzle 𝑍 . The

solving algorithm PSolve takes as input a puzzle 𝑍 and outputs

a solution 𝑠 . In this context, we refer to Parallel Random Access

Machines (PRAM): which is a model considered for most of the

parallel algorithms. Multiple processors are attached to a single

block of memory and 𝑛 number of processors can perform indepen-

dent operations on 𝑛 number of data in a particular unit of time.

The security requirement is that for every PRAM adversary A of

running time ≤ T
𝜀 (𝜆), and every pair of solutions (𝑠0, 𝑠1) ∈ {0, 1}

2,

it cannot distinguish a puzzle 𝑍 that is generated with solution 𝑠0
from a puzzle generated with solution 𝑠1 where the timing hardness

of the puzzle is T except with negligible probability.

Homomorphic Time-Lock Puzzles. Homomorphic Time-Lock

Puzzles (HTLPs) were proposed by Malavolta and Thyagarajan [41].

An HTLP is a tuple of four algorithms (HTLP.PSetup,HTLP.PGen,

HTLP.PSolve,HTLP.PEval) that lets one perform homomorphic op-

erations over different time-lock puzzles. Apart from the two al-

gorithms for a time-lock puzzle, HTLPs additionally have a setup
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algorithm PSetup and a homomorphic evaluation algorithm PEval:

PSetup takes as input a security parameter 1𝜆 and a time hardness

parameter T, and outputs public parameters 𝑝𝑝 , and PEval takes as

input a circuit𝐶 : {0, 1}𝑛 → {0, 1}, public parameters 𝑝𝑝 and a set of

𝑛 puzzles 𝑍1, . . . , 𝑍𝑛 and outputs a puzzle 𝑍 ′. The puzzle generation

and solving algorithms also take the public parameters 𝑝𝑝 as input.

The homomorphism property for computing a circuit 𝐶 states that

Pr
[
HTLP.PSolve(𝑝𝑝, 𝑍 ′) ≠ 𝐶 (𝑠1, . . . , 𝑠𝑛)

]
≤ 𝜇 (𝜆), where 𝑍 ′ ←

HTLP.PEval(𝐶, 𝑝𝑝, 𝑍1, . . . , 𝑍𝑛) and 𝑍𝑖 ← HTLP.PGen(𝑝𝑝, 𝑠𝑖 ) for

(𝑠1, . . . , 𝑠𝑛) ∈ {0, 1}
𝑛 .

In their work, they show an efficient construction that is linearly

homomorphic over the ring Z𝑁 𝑠 , where 𝑁 is an RSA modulus and

𝑠 is an arbitrary constant. The scheme is perfectly correct and it

satisfies the notion of randomness homomorphism, which is needed

for our purposes.

Non-Interactive Zero-Knowledge. Let 𝑅 : {0, 1}∗ × {0, 1}∗ →

{0, 1} be a n NP-witness-relation with corresponding NP-language

L := {𝑥 : ∃𝑤 s.t. 𝑅(𝑥,𝑤) = 1}. A non-interactive zero-knowledge

proof (NIZK) [17] system for 𝑅 is initialized with a setup algo-

rithm ZKsetup(1𝜆) that, on input the security parameter, outputs

a common reference string crs. A prover can show the validity

of a statement 𝑥 with a witness𝑤 by invoking ZKprove(crs, 𝑥,𝑤),

which outputs a proof 𝜋 . The proof 𝜋 can be efficiently checked by

the verification algorithm ZKverify(crs, 𝑥, 𝜋). We require a NIZK

system to be (1) zero-knowledge, where the verifier does not learn

more than the validity of the statement 𝑥 , and (2) simulation sound,

where it is hard for any prover to convince a verifier of an invalid

statement (chosen by the prover) even after having access to poly-

nomially many simulated proofs for statements of his choosing.

Threshold Secret Sharing. Secret sharing is a method of creating

shares of a given secret and later reconstructing the secret itself

only if given a threshold number of shares. Shamir [48] proposed

a threshold secret sharing scheme where the SS.share algorithm

takes a secret 𝑠 ∈ Z𝑞 and generates shares (𝑠1, . . . , 𝑠𝑛) each belong-

ing to Z𝑞 . The SS.reconstruct algorithm takes as input at least 𝑡

shares and outputs a secret 𝑠 . The security of the secret sharing

scheme demands that knowing only a set of shares smaller than

the threshold size does not help in learning any information about

the choice of the secret 𝑠 .

3.2 Verifiable Timed Signatures

A timed signature [15] is a scheme when a committer commits to a

signature on a message and shares it with some user. After some

time T has passed, the committer reveals the committed signature

to the user. If he fails to reveal the signature, then the user is guaran-

teed to forcibly retrieve the signature from the timed commitment

given initially. We explicitly state the notion of verifiability for

a timed signature, and therefore refer to it as a Verifiable Timed

Signature (VTS), which lets the user verify if the signature 𝜎 com-

mitted to in 𝐶 can be obtained by ForceOp in time T and is indeed

a valid signature on the message𝑚, that is, if Vf (pk,𝑚, 𝜎) = 1 in

a non-interactive manner. This verifiability ensures that the user

is guaranteed to obtain a valid signature from the commitment 𝐶

which he can retrieve using ForceOp. For the sake of clarity, we let

Commit additionally output a proof 𝜋 for the embedded signature

to be a valid signature on the message𝑚 with respect to pk and we

have a Vrfy algorithm that is defined below.

Definition 1 (Verifiable Timed Signatures). A VTS for a

signature scheme Π = (KGen, Sign,Vf) is a tuple of four algorithms

(Commit,Vrfy,Open, ForceOp) where:

• (𝐶, 𝜋) ← Commit(𝜎,T): the commit algorithm (randomized)

takes as input a signature 𝜎 (generated using Π.Sign(sk,𝑚))

and a hiding time T and outputs a commitment 𝐶 and a proof

𝜋 .

• 0/1← Vrfy(pk,𝑚,𝐶, 𝜋): the verify algorithm takes as input a

public key pk, a message𝑚, a commitment𝐶 of hardness T and

a proof 𝜋 and accepts the proof by outputting 1 if and only if,

the value 𝜎 embedded in 𝑐 is a valid signature on the message

𝑚 with respect to the public key pk (i.e., Π.Vf (pk,𝑚, 𝜎) = 1).

Otherwise it outputs 0.

• (𝜎, 𝑟 ) ← Open(𝐶): the open phase where the committer takes

as input a commitment𝐶 and outputs the committed signature

𝜎 and the randomness 𝑟 used in generating 𝐶 .

• 𝜎 ← ForceOp(𝐶): the force open algorithm takes as input the

commitment 𝐶 and outputs a signature 𝜎 .

The security requirements for a VTS are that (soundness) the

user is convinced that, given𝐶 , the ForceOp algorithm will produce

the committed signature 𝜎 in time T and that (privacy) all PRAM

algorithmswhose running time is at most 𝑡 (where 𝑡 < T) succeed in

extracting 𝜎 from the commitment𝐶 and 𝜋 with at most negligible

probability. We formalize the definition of soundness below.

Definition 2 (Soundness). A VTS scheme VTS = (Commit,

Vrfy,Open, ForceOp) for a signature scheme Π = (KGen, Sign,Vf)

is sound if there is a negligible function negl such that for all proba-

bilistic polynomial time adversaries A and all 𝜆 ∈ N, we have:

Pr


𝑏1 = 1 ∧ 𝑏2 = 0 :

(pk,𝑚,𝐶, 𝜋,T) ← A(1𝜆)

(𝜎, 𝑟 ) ← ForceOp(𝐶)

𝑏1 := Vrfy(pk,𝑚,𝐶, 𝜋)

𝑏2 := Π.Vf (pk,𝑚, 𝜎)


≤ negl(𝜆) .

We say that a VTS is simulation-sound if it is sound evenwhen the

prover has access to simulated proofs for (possibly false) statements

of his choice; i.e., the prover must not be able to compute a valid

proof for a fresh false statement of his choice. In the following

definition we present the definition of privacy.

Definition 3 (Privacy). A VTS scheme VTS = (Commit,Vrfy,

Open, ForceOp) for a signature scheme Π = (KGen, Sign,Vf) is pri-

vate if there exists a PPT simulator S, a negligible function negl,

and a polynomial T̃ such that for all polynomials T > T̃, all PRAM

algorithms A whose running time is at most 𝑡 < T, all messages

𝑚 ∈ {0, 1}∗, and all 𝜆 ∈ N it holds that

����������
Pr


A(pk,𝑚,𝐶, 𝜋) = 1 :

(pk, sk) ← Π.KGen(1𝜆)

𝜎 ← Π.Sign(sk,𝑚)

(𝐶, 𝜋) ← Commit(𝜎,T)


− Pr

[
A(pk,𝑚,𝐶, 𝜋) = 1 :

(pk, sk) ← Π.KGen(1𝜆)

(𝐶, 𝜋,𝑚) ← S(pk,T)

]

����������
≤ negl(𝜆) .
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Setup: On input 1𝜆 the setup algorithm does the following.

ś Run ZKsetup(1𝜆) to generate crsrange

ś Generate the public parameters 𝑝𝑝 ← LHTLP.PSetup(1𝜆,T)

ś Output crs := (crsrange, 𝑝𝑝)

Commit and Prove: On input (crs,wit) the Commit algorithm

does the following.

ś Parse wit := 𝜎 , crs := (crsrange, 𝑝𝑝), pk as the BLS public key,

and𝑚 as the message to be signed

ś For all 𝑖 ∈ [𝑡 − 1] sample a uniform 𝛼𝑖 ← Z𝑞 and set

𝜎𝑖 = 𝐻 (𝑚)𝛼𝑖 ℎ𝑖 := 𝑔
𝛼𝑖
0

ś For all 𝑖 ∈ {𝑡, . . . , 𝑛} compute

𝜎𝑖 =
©­«

𝜎∏
𝑗 ∈[𝑡−1] 𝜎

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

, ℎ𝑖 =
©­«

pk∏
𝑗 ∈[𝑡−1] ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

where ℓ𝑖 (·) is the 𝑖-th Lagrange polynomial basis.

ś For 𝑖 ∈ [𝑛], generate puzzles with corresponding range proofs

as shown below

𝑟𝑖 ← {0, 1}
𝜆, 𝑍𝑖 ← LHTLP.PGen(𝑝𝑝, 𝜎𝑖 ; 𝑟𝑖 )

𝜋range,𝑖 ← ZKprove(crsrange, (𝑍𝑖 , 0, 2
𝜆,T), (𝜎𝑖 , 𝑟𝑖 ))

ś Compute 𝐼 ← 𝐻 ′
(
pk, (ℎ1, 𝑍1, 𝜋range,1), . . . , (ℎ𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
ś Output 𝐶 := (𝑍1, . . . , 𝑍𝑛,T) and

𝜋 := ({ℎ𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝜎𝑖 , 𝑟𝑖 }𝑖∈𝐼 )

Verification: On input (crs, pk,𝑚,𝐶, 𝜋) the Vrfy algorithm does

the following.

ś Parse 𝐶 := (𝑍1, . . . , 𝑍𝑛,T), 𝜋 := ({ℎ𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝜎𝑖 , 𝑟𝑖 }𝑖∈𝐼 )

and crs := (crsrange, 𝑝𝑝)

ś If any of the following conditions is satisfied output 0, else

return 1:

(1) There exists some 𝑗 ∉ 𝐼 such that
∏

𝑖∈𝐼 ℎ
ℓ𝑖 (0)
𝑖 · ℎ

ℓ𝑗 (0)
𝑗 ≠ pk

(2) There exists some 𝑖 ∈ [𝑛] such that

ZKverify(crsrange, (𝑍𝑖 , 0, 2
𝜆,T), 𝜋range,𝑖 ) ≠ 1

(3) There exists some 𝑖 ∈ 𝐼 such that

𝑍𝑖 ≠ LHTLP.PGen(𝑝𝑝, 𝜎𝑖 ; 𝑟𝑖 ) or 𝑒 (𝑔0, 𝜎𝑖 ) ≠ 𝑒 (ℎ𝑖 , 𝐻 (𝑚))

(4) 𝐼 ≠ 𝐻 ′
(
pk, (ℎ1, 𝑍1, 𝜋range,1), . . . , (ℎ𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
Open: The Open algorithm outputs (𝜎, {𝑟𝑖 }𝑖∈[𝑛] ).

Force Open: The ForceOp algorithm take as input

𝐶 := (𝑍1, . . . , 𝑍𝑛,T) and works as follows:

ś Runs 𝜎𝑖 ← LHTLP.PSolve(𝑝𝑝, 𝑍𝑖 ) for 𝑖 ∈ [𝑛] to obtain all

signatures. Notice that since 𝑡 − 1 puzzles are already opened by

the committer, this only means that ForceOp has to solve only

(𝑛 − 𝑡 + 1) puzzles.

ś Output 𝜎 :=
∏

𝑗 ∈[𝑡 ] (𝜎 𝑗 )
ℓ𝑗 (0) where wlog., the first 𝑡 signatures

are valid shares.

Figure 2: VT-BLS Signatures

4 EFFICIENT VTS CONSTRUCTIONS

In the following sections we construct VTS for BLS, Schnorr and

ECDSA signatures. The key ingredients for constructing VTS are

time-lock puzzles, specifically we consider the Linearly-HTLP [41]

(LHTLP.PSetup, LHTLP.PGen, LHTLP.PSolve, LHTLP.PEval) and

public coin interactive zero-knowledge proofs for the language L

described as follows.

L :=

{
stmt = (pk,𝑚, 𝑍,T) : ∃wit = (𝜎, 𝑟 ) s.t.

(Vf (pk,𝑚, 𝜎) = 1) ∧ (𝑍 ← LHTLP.PGen(T, 𝜎 ; 𝑟 ))

}
The Commit algorithm embeds the signatures inside time-lock puz-

zles and uses the zero-knowledge proof system for L to prove the

validity of the time-locked signature. In practice all of the schemes

will be made non-interactive using the Fiat-Shamir transforma-

tion [22]. We additionally make use of a zero-knowledge proof

system (ZKsetup,ZKprove,ZKverify) for the language Lrange as

defined below. Intuitively, the language consists of all puzzles whose

solution lies in some range [𝑎, 𝑏]. We give an efficient instantiation

of this proof system in Section 4.5.

Lrange :=

{
stmt = (𝑍, 𝑎, 𝑏,T) : ∃wit = (𝜎, 𝑟 ) s.t.

(𝑍 ← LHTLP.PGen(T, 𝜎 ; 𝑟 )) ∧ (𝜎 ∈ [𝑎, 𝑏])

}
In all protocols described in Figures 2 to 4 we let 𝑛 be a statisti-

cal security parameter and set 𝑡 := 𝑛/2 + 1. We let |𝜎 | = 𝜆 is the

max number of bits of the signature 𝜎 . Define a hash function

𝐻 ′ : {0, 1}∗ → 𝐼 ⊂ [𝑛] with |𝐼 | = 𝑡 − 1 modeled as a random oracle.

Throughout the following description, we make the simplifying as-

sumption that the ForceOp algorithm solves 𝑛̃ = (𝑛 − 𝑡 + 1) puzzles

in parallel. In Section 4.4 we show how to reduce the number of puz-

zles to solve to a single puzzle exploiting the (linear) homomorphic

evaluation algorithm of time-lock puzzles.

4.1 Verifiable Timed BLS Signatures (VT-BLS)

Let (G0,G1,G𝑡 ) be a bilinear group of prime order 𝑞, where 𝑞 is

a 𝜆 bit prime. Let 𝑒 be an efficiently computable bilinear pairing

𝑒 : G0 × G1 → G𝑇 , where 𝑔0 and 𝑔1 are generators of G0 and G1
respectively. Let 𝐻 be a hash function𝐻 : {0, 1}∗ → G1 modeled as

a random oracle. We briefly recall here the BLS construction [14]

and our VT-BLS protocol is described in Figure 2.

• (pk, sk) ← KGen(1𝜆): Choose 𝛼 ← Z𝑞 , set ℎ ← 𝑔𝛼0 ∈ G0 and

output pk := ℎ and sk := 𝛼 .

• 𝜎 ← Sign(sk,𝑚): Output 𝜎 := 𝐻 (𝑚)sk ∈ G1.

• 0/1← Vf (pk,𝑚, 𝜎): If 𝑒 (𝑔0, 𝜎) = 𝑒 (pk, 𝐻 (𝑚)), then output 1 and

otherwise output 0.

The following theorems show that our construction from Figure 2

satisfies privacy and soundness. The formal proofs are deferred

to Appendix B.1.

Theorem 1 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a

NIZK for Lrange and let LHTLP. be a secure time-lock puzzle. Then

the protocol as described in Figure 2 satisfies privacy as in Definition 3

in the random oracle model.

Theorem 2 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be

a NIZK for Lrange and let LHTLP. be a time-lock puzzle with per-

fect correctness. Then the protocol as described in Figure 2 satisfies

soundness as in Definition 2 in the random oracle model.

4.2 Verifiable Timed Schnorr Signatures
(VT-Schnorr)

The Schnorr signature scheme [47] is defined over a cyclic group

G of prime order 𝑞 with generator 𝑔, and use a hash function 𝐻

modeled as a random oracle. We briefly recall the construction here

and VT-Schnorr protocol is given in Figure 3.
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• (pk, sk) ← KGen(1𝜆): Choose 𝑥 ← Z𝑞 and set sk := 𝑥 and

pk := 𝑔𝑥 .

• 𝜎 ← Sign(sk,𝑚; 𝑟 ): Sample a randomness 𝑟 ← Z𝑞 to compute

𝑅 := 𝑔𝑟 , 𝑐 := 𝐻 (𝑔𝑥 , 𝑅,𝑚), 𝑠 := 𝑟 + 𝑐𝑥 and output 𝜎 := (𝑅, 𝑠).

• 0/1 ← Vf (pk,𝑚, 𝜎): Parse 𝜎 := (𝑅, 𝑠) and then compute 𝑐 :=

𝐻 (pk, 𝑅,𝑚) and if 𝑔𝑠 = 𝑅 · pk𝑐 output 1, otherwise output 0.

In the following theorems we show that our construction of VT-

Schnorr from Figure 3 satisfies privacy and soundness. The formal

proofs are deferred to Appendix B.2.

Theorem 3 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a

NIZK for Lrange and let LHTLP. be a secure time-lock puzzle. Then

the protocol as described in Figure 3 satisfies privacy as in Definition 3

in the random oracle model.

Theorem 4 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be

a NIZK for Lrange and let LHTLP. be a time-lock puzzle with per-

fect correctness. Then the protocol as described in Figure 3 satisfies

soundness as in Definition 2 in the random oracle model.

4.3 Verifiable Timed ECDSA Signatures
(VT-ECDSA)

The ECDSA signature scheme [28] is defined over an elliptic curve

group G of prime order 𝑞 with base point (generator) 𝑔. The con-

struction assumes the existence of a hash function𝐻 : {0, 1}∗ → Z𝑞
and is given in the following. Our VT-ECDSA protocol is given in

Figure 4.

• (pk, sk) ← KGen(1𝜆): Choose 𝑥 ← Z𝑞 and set sk := 𝑥 and

pk := 𝑔𝑥 .

• 𝜎 ← Sign(sk,𝑚; 𝑟 ): Sample an integer 𝑘 ← Z𝑞 and compute

𝑐 ← 𝐻 (𝑚). Let (𝑟𝑥 , 𝑟𝑦) := 𝑅 = 𝑔𝑘 , then set 𝑟 := 𝑟𝑥 mod 𝑞 and

𝑠 := (𝑐 + 𝑟𝑥)/𝑘 mod 𝑞. Output 𝜎 := (𝑟, 𝑠).

• 0/1 ← Vf (pk,𝑚, 𝜎): Parse 𝜎 := (𝑟, 𝑠) and compute 𝑐 := 𝐻 (𝑚)

and return 1 if and only if (𝑥,𝑦) = (𝑔𝑐 · ℎ𝑟 )𝑠
−1

and 𝑥 = 𝑟 mod 𝑞.

Otherwise output 0.

Notice that ECDSA signature has a non-linear verification un-

like in Schnorr. Consequently, notice that unlike VT-BLS and VT-

Schnorr, the public key is not secret shared in VT-ECDSA.

The theorems below are for privacy and soundness of our VT-

ECDSA protocol. The formal proofs are deferred to Appendix B.3.

Theorem 5 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a

NIZK for Lrange and let LHTLP. be a secure time-lock puzzle. Then

the protocol as described in Figure 4 satisfies privacy as in Definition 3

in the random oracle model.

Theorem 6 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be

a NIZK for Lrange and let LHTLP. be a time-lock puzzle with per-

fect correctness. Then the protocol as described in Figure 4 satisfies

soundness as in Definition 2 in the random oracle model.

4.4 Batching Puzzle Solving

As described above, our protocols require the verifier to solve 𝑛̃ =

(𝑛 − 𝑡 + 1) puzzles in the forced opening phase. In the following we

show how to leverage the homomorphic properties of the time-lock

puzzles to ensure that the computation is reduced to the solution

of a single puzzle, regardless of the parameters 𝑛 and 𝑡 . This is

Setup: Same as Figure 2.

Commit and Prove: On input (crs,wit) the Commit algorithm

does the following.

ś Parse wit := 𝜎 = (𝑅, 𝑠), crs := (crsrange, 𝑝𝑝), pk as the Schnorr

public key, and𝑚 as the message to be signed

ś For all 𝑖 ∈ [𝑡 − 1] sample a uniform pair (𝑥𝑖 , 𝑘𝑖 ) ← Z𝑞 and set

ℎ𝑖 := 𝑔𝑥𝑖 , 𝑅𝑖 := 𝑔𝑘𝑖 , and 𝑠𝑖 := 𝑘𝑖 + 𝑐𝑥𝑖 where 𝑐 = 𝐻 (pk, 𝑅,𝑚)

ś For all 𝑖 ∈ {𝑡, . . . , 𝑛} compute

𝑠𝑖 =
©­«
𝑠 −

∑
𝑗 ∈[𝑡−1]

𝑠 𝑗 · ℓ𝑗 (0)
ª®¬
· ℓ𝑖 (0)

−1, ℎ𝑖 =
©­«

pk∏
𝑗 ∈[𝑡−1] ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

𝑅𝑖 =
©­«

𝑅∏
𝑗 ∈[𝑡−1] 𝑅

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

where ℓ𝑖 (·) is the 𝑖-th Lagrange polynomial basis

ś For 𝑖 ∈ [𝑛], generate puzzles with corresponding range proofs

as shown below (|𝜎 | = 𝜆 is the max number of bits of 𝜎)

𝑟𝑖 ← {0, 1}
𝜆, 𝑍𝑖 ← LHTLP.PGen(𝑝𝑝, 𝑠𝑖 ; 𝑟𝑖 )

𝜋range,𝑖 ← ZKprove(crsrange, (𝑍𝑖 , 0, 2
𝜆,T), (𝑠𝑖 , 𝑟𝑖 ))

ś Compute

𝐼 ← 𝐻 ′
(
pk, 𝑅, (ℎ1, 𝑅1, 𝑍1, 𝜋range,1), . . . , (ℎ𝑛, 𝑅𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
ś Output 𝐶 := (𝑅, 𝑍1, . . . , 𝑍𝑛,T) and

𝜋 := ({ℎ𝑖 , 𝑅𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝑠𝑖 , 𝑟𝑖 }𝑖∈𝐼 )

Verification: On input (crs, pk,𝑚,𝐶, 𝜋) the Vrfy algorithm does

the following.

ś Parse 𝐶 := (𝑅, 𝑍1, . . . , 𝑍𝑛,T),

𝜋 := ({ℎ𝑖 , 𝑅𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝑠𝑖 , 𝑟𝑖 }𝑖∈𝐼 ), and

crs := (crsrange, 𝑝𝑝)

ś If any of the following conditions is satisfied output 0, else

return 1:

(1) There exists some 𝑗 ∉ 𝐼 such that
∏

𝑖∈𝐼 ℎ
ℓ𝑖 (0)
𝑖 · ℎ

ℓ𝑗 (0)
𝑗 ≠ pk or∏

𝑖∈𝐼 𝑅
ℓ𝑖 (0)
𝑖 · 𝑅

ℓ𝑗 (0)
𝑗 ≠ 𝑅

(2) There exists some 𝑖 ∈ [𝑛] such that

ZKverify(crsrange, (𝑍𝑖 , 0, 2
𝜆,T), 𝜋range,𝑖 ) ≠ 1

(3) There exists some 𝑖 ∈ 𝐼 such that

𝑍𝑖 ≠ LHTLP.PGen(𝑝𝑝, 𝑠𝑖 ; 𝑟𝑖 ) or 𝑔
𝑠𝑖 ≠ 𝑅𝑖 · ℎ

𝑐
𝑖

(4) 𝐼 ≠ 𝐻 ′
(
pk, 𝑅, (ℎ1, 𝑅1, 𝑍1, 𝜋range,1), . . . , (ℎ𝑛, 𝑅𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
Open: The Open algorithm outputs ((𝑅, 𝑠), {𝑟𝑖 }𝑖∈[𝑛] ).

Force Open: The ForceOp algorithm take as input

𝐶 := (𝑅, 𝑍1, . . . , 𝑍𝑛,T) and works as follows:

ś Runs 𝑠𝑖 ← LHTLP.PSolve(𝑝𝑝, 𝑍𝑖 ) for 𝑖 ∈ [𝑛] to obtain all

signatures. ForceOp has to solve only (𝑛 − 𝑡 + 1) puzzles, as 𝑡 − 1

puzzles are already opened.

ś Output (𝑅, 𝑠 :=
∏

𝑗 ∈[𝑡 ] (𝑠 𝑗 )
ℓ𝑗 (0) ) where wlog., the first 𝑡 are

valid shares.

Figure 3: VT-Schnorr Signatures

crucial for our real world applications as without HTLP, users with

different degrees of parallelisms can solve 𝑛̃ puzzles in different

times: A user with several computers can solve 𝑛̃ puzzles in parallel

Session 6A: Signatures CCS '20, November 9–13, 2020, Virtual Event, USA

1740



Setup: Same as Figure 2.

Commit and Prove: On input (crs,wit) the Commit algorithm

does the following.

ś Parse wit := 𝜎 = (𝑟, 𝑠), crs := (crsrange, 𝑝𝑝), pk as the ECDSA

public key, and𝑚 as the message to be signed

ś Define 𝑅 := (𝑥,𝑦) = (𝑔𝑐 ·ℎ𝑟 )𝑠
−1

and 𝐵 = 𝑔𝑐 ·ℎ𝑟 , where 𝑐 = 𝐻 (𝑚)

ś For all 𝑖 ∈ [𝑡 − 1] sample a uniform pair 𝑠𝑖 ← Z𝑞 and set

𝑅𝑖 := 𝐵𝑠𝑖

ś For all 𝑖 ∈ {𝑡, . . . , 𝑛} compute

𝑠𝑖 =
©­«
𝑠−1 −

∑
𝑗 ∈[𝑡−1]

𝑠 𝑗 · ℓ𝑗 (0)
ª®¬
· ℓ𝑖 (0)

−1, and

𝑅𝑖 =
©­«

𝑅∏
𝑗 ∈[𝑡−1] 𝑅

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

where ℓ𝑖 (·) is the 𝑖-th Lagrange polynomial basis

ś For 𝑖 ∈ [𝑛], generate puzzles with corresponding range proofs

as shown below (|𝜎 | = 𝜆 is the max number of bits of 𝜎)

𝑟𝑖 ← {0, 1}
𝜆, 𝑍𝑖 ← LHTLP.PGen(𝑝𝑝, 𝑠𝑖 ; 𝑟𝑖 )

𝜋range,𝑖 ← ZKprove(crsrange, (𝑍𝑖 , 0, 2
𝜆,T), (𝑠𝑖 , 𝑟𝑖 ))

ś Compute

𝐼 ← 𝐻 ′
(
pk, 𝑟 , 𝑅, (𝑅1, 𝑍1, 𝜋range,1), . . . , (𝑅𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
ś Output 𝐶 := (𝑟, 𝑅, 𝑍1, . . . , 𝑍𝑛,T) and

𝜋 := ({𝑅𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝑠𝑖 , 𝑟𝑖 }𝑖∈𝐼 )

Verification: On input (crs, pk,𝑚,𝐶, 𝜋) the Vrfy algorithm does

the following.

ś Parse 𝐶 := (𝑟, 𝑅, 𝑍1, . . . , 𝑍𝑛,T),

𝜋 := ({𝑅𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝑠𝑖 , 𝑟𝑖 }𝑖∈𝐼 ), and crs := (crsrange, 𝑝𝑝)

ś If any of the following conditions is satisfied output 0, else

return 1:

(1) It holds that 𝑥 ≠ 𝑟 mod 𝑞 where (𝑥,𝑦) := 𝑅

(2) There exists some 𝑗 ∉ 𝐼 such that
∏

𝑖∈𝐼 𝑅
ℓ𝑖 (0)
𝑖 · 𝑅

ℓ𝑗 (0)
𝑗 ≠ 𝑅

(3) There exists some 𝑖 ∈ [𝑛] such that

ZKverify(crsrange, (𝑍𝑖 , 0, 2
𝜆,T), 𝜋range,𝑖 ) ≠ 1

(4) There exists some 𝑖 ∈ 𝐼 such that

𝑍𝑖 ≠ LHTLP.PGen(𝑝𝑝, 𝑠𝑖 ; 𝑟𝑖 ) or 𝑅𝑖 ≠ (𝑔
𝑐 · ℎ𝑟 )𝑠𝑖

(5) 𝐼 ≠ 𝐻 ′
(
pk, 𝑟 , 𝑅, (𝑅1, 𝑍1, 𝜋range,1), . . . , (𝑅𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
Open: The Open algorithm outputs ((𝑟, 𝑠), {𝑟𝑖 }𝑖∈[𝑛] ).

Force Open: The ForceOp algorithm take as input

𝐶 := (𝑟, 𝑅, 𝑍1, . . . , 𝑍𝑛,T) and works as follows:

ś Obtain 𝑠𝑖 ← LHTLP.PSolve(𝑝𝑝, 𝑍𝑖 ) for 𝑖 ∈ [𝑛] same as

in Figure 3.

ś Output (𝑟, 𝑠 :=
∏

𝑗 ∈[𝑡 ] (𝑠 𝑗 )
ℓ𝑗 (0) ) where wlog., the first 𝑡 are valid

shares.

Figure 4: VT-ECDSA Signatures

effectively spending time T, and a user with a single computer

solves one puzzle after the other sequentially thus spending 𝑛̃ · T.

The high-level idea of exploiting the homomorphism of LHTLP

is to pack all partial signatures into a single puzzle, provided that

the message space is large enough.

Concretely, the solver, given 𝑛̃ puzzles𝑍1, . . . , 𝑍𝑛̃ encoding 𝜆-bits

signatures, homomorphically evaluates the linear function

𝑓 (𝑥1, . . . , 𝑥𝑛̃) =

𝑛̃∑
𝑖=1

2(𝑖−1) ·𝜆 · 𝑥𝑖

to obtain the puzzle 𝑍 , which can be solved in time T. Observe that,

once the puzzle is solved, all signatures can be decoded from the

bit-representations of the resulting plaintext. Note that in order for

this transformation to work we need two conditions to be satisfied:

(1) The signatures 𝜎𝑖 encoded in the the input puzzles must not

exceed the maximum size of a signature (which we fix to 𝜆 bits)

(2) The message space of the homomorphic time-lock puzzle must

be large enough to accommodate for all 𝑛̃ signatures.

Condition (1) is enforced by including a range NIZK, which

certifies that the message of each time-lock puzzles falls into the

range [0, 2𝜆]. On the other hand we can satisfy condition (2) by

instantiating the linearly homomorphic time-lock puzzles with

modulus 𝑁 𝑠 , instead of 𝑁 2, for a large enough 𝑠 . This is reminiscent

of the Damgård-Jurik [16] extension of Paillier’s cryptosystem [44]

and was already suggested in [41].

We stress that, even though we can increase the message space

arbitrarily, the squaring operations are still performed modulo 𝑁 ,

which is important to reduce the gap between the honest and the

malicious solver: While squaring is conjectured to be a sequential

operation (in groups of unknown order), the computation of a

single squaring operation can be internally parallelized to boot the

overall efficiency of the algorithm. For this reason it is important

to keep the modulus as small as possible, at least as far as squaring

is concerned. For further details, we refer the reader to [41].

4.5 Range Proof for Homomorphic Time-Lock
Puzzles

In this Section we will provide a protocol which allows a prover

to convince a verifier in zero-knowledge that a list of linearly ho-

momorphic time-lock puzzles are well-formed. This allows us to

homomorphically pack them into a single time-lock puzzle.

Our protocol follows the Fiat-Shamir heuristic and we prove

soundness and zero-knowledge in the random oracle model. For our

construction we require a linearly homomorphic time-lock puzzle

which is also homomorphic in the random coins. The construction

of [41] satisfies this property.

In this Section we will always assume that plaintexts in a ring

Z𝑞 are represented via the central representation in [−𝑞/2, 𝑞/2].

Our protocol ensures that every plaintext is in the interval

[−𝐿, 𝐿], given that 2𝐿 is smaller than the modulus of the plain-

text space. We remark that this protocol can be readily used to

prove that plaintexts are in a non-centered interval [𝑎, 𝑏] via homo-

morphically shifting plaintexts by −(𝑎 +𝑏)/2, mapping the interval

[𝑎, 𝑏] to [−(𝑏 − 𝑎)/2, (𝑏 − 𝑎)/2]. Consequently, for the sake of sim-

plicity we will only discuss the case of centered intervals. In order to

achieve zero-knowledge, we actually need that the plaintexts come

form a smaller interval [−𝐵, 𝐵], where 𝐵 < 𝐿. For our protocols, this

means that we need to use slightly looser intervals when batching

time-lock puzzles, but the efficiency of the schemes is otherwise
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Setup: An RSA modulus 𝑁 , public parameters pp for HTLP,

interval parameters 𝐿 and 𝐵 with 𝐵 < 𝐿. In this protocol we use 𝑘

as a statistical security parameter.

Common input: Time-lock puzzles 𝑍1, . . . , 𝑍ℓ .

Prover: On input wit, where wit := ((𝑥1, 𝑟1), . . . , (𝑥ℓ , 𝑟ℓ )) and

𝑥𝑖 ∈ [−𝐵, 𝐵] such that for all 𝑖 it holds

𝑍𝑖 ← HTLP.PGen(pp, 𝑥𝑖 ; 𝑟𝑖 ), the prover algorithm ZKprove does

the following.

ś Choose 𝑦1, . . . , 𝑦𝑘 ← [−𝐿/4, 𝐿/4] and random coins 𝑟 ′1, . . . , 𝑟
′
𝑘

from their corresponding ring.

ś For 𝑖 = 1, . . . , 𝑘 compute 𝐷𝑖 ← HTLP.PGen(pp, 𝑦𝑖 ; 𝑟
′
𝑖 )

ś Compute (t1, . . . , t𝑘 ) ← 𝐻 (𝑍1, . . . , 𝑍ℓ , 𝐷1, . . . , 𝐷𝑘 ), where the

t𝑖 ∈ {0, 1}
ℓ .

ś For 𝑖 = 1, . . . 𝑘 compute 𝑣𝑖 ← 𝑦𝑖 +
∑ℓ

𝑗=1 𝑡𝑖, 𝑗 · 𝑥 𝑗 and

𝑤𝑖 ← 𝑟 ′𝑖 +
∑ℓ

𝑗=1 𝑡𝑖, 𝑗 · 𝑟 𝑗
ś Set 𝜋 ← (𝐷𝑖 , 𝑣𝑖 ,𝑤𝑖 )𝑖∈[𝑘 ] and output 𝜋

Verifier: On input 𝜋 = (𝐷𝑖 , 𝑣𝑖 ,𝑤𝑖 )𝑖∈[𝑘 ] the do the following.

ś Compute (t1, . . . , t𝑘 ) ← 𝐻 (𝑍1, . . . , 𝑍ℓ , 𝐷1, . . . , 𝐷𝑘 )

ś For 𝑖 = 1, . . . 𝑘 check if 𝑣𝑖 ∈ [−𝐿/2, 𝐿/2], compute

𝐹𝑖 ← 𝐷𝑖 ·
∏ℓ

𝑗=1 𝑍
𝑡𝑖,𝑗
𝑗 and check if 𝐹𝑖 = HTLP.PGen(pp, 𝑣𝑖 ;𝑤𝑖 ).

ś If all checks pass output 1, otherwise 0.

Figure 5: NIZK protocol for well-formedness of a vector of

homomorphic time-lock puzzles

unaffected. Formal analysis of soundness and zero-knowledge of

our protocol is deferred to Appendix C due to space constraints.

Correctness Correctness of the protocol can be established given

that 𝐵 ≤ 𝐿/(4ℓ). Assuming that 𝑥1, . . . , 𝑥ℓ ∈ [−𝐵, 𝐵], it follows that

|𝑦𝑖 +
∑
𝑡𝑖, 𝑗𝑥 𝑗 | ≤ ℓ · 𝐵 +𝐿/4 ≤ 𝐿/2, as 𝐵 ≤ 𝐿/(4ℓ). Consequently the

verifier’s checks will pass.

4.6 On The Setup Assumption

Our VTS protocols require a one-time setup that is computed once

and for all by a trusted party. A careful analysis of the structure of

our protocol reveals that the setup consists of the common reference

string crsrange for the range proof and the public parameters pp of

the homomorphic time-lock puzzles. In our instantiations, crsrange
consists of sampling a random oracle and pp is a (uniformly sam-

pled) RSA integer 𝑁 = 𝑝 · 𝑞, so the problem boils down to securely

sampling 𝑁 , which is then made available to all parties. In general,

this can be resolved by sampling 𝑁 via a multi-party computation

protocol, for which many ad-hoc solutions exist [23].

However, when looking at specific applications of VTS, we do

not always need to resort to the power of multi-party computation.

As an example, for applications where VTS are exchanged only

among pairs of users (such as payment channel networks or claim-

and-refund) it suffices to enforce that the verifier does not learn the

factorization of 𝑁 and therefore we can sample 𝑁 in key generation

algorithm of the signer.

5 PERFORMANCE EVALUATION

In this section we present empirical results for VTS. In this regard,

we first survey AWS machines and benchmark squaring operations

on various machines. Then we implement and evaluate key compo-

nents: the standard signature schemes, BLS, Schnorr and ECDSA,

and Linearly Homomorphic Time-Lock Puzzles on the weakest

AWS machine to justify practicality of the construction. Then we

estimate the cost of the VTS operations: Commit and Vrfy. As part

of these operations, we also implement the range proofs Section 4.5.

Our implementation is in C programming language and does not

use any optimizations (logical and others) or concurrency. Our

numbers are proof-of-concept and can be significantly improved in

production.

We estimate the HTLCs that are posted on the Bitcoin blockchain

as a payment closing step in a PCN heuristically. We estimate the

number of outputs present in the closing transaction to get a real-

world estimate on the number of times the worst-case, i.e. a channel

closes with pending payments.

We also measure the size of transactions (in bytes) for our VTS

based solution for the current implementation in Lightning Net-

work (the PCN in Bitcoin). Our VTS solution does not leak any

information about the time-lock on-chain with a negligible over-

head in terms of on-chain space (steal transaction in the worst

case).

5.1 Setup and Preliminaries

System Specifications. We use the following versions of the soft-

ware and libraries for our experiments: Bitcoin-client bitcoin-cli,

Bitcoin daemon bitcoind (v0.18.0.0-g2472733), Bitcoin blockchain

parser blocksci (master branch with commit hash 49e97ad) and

Lightning client lnd (0.5.1-beta commit=v0.5.1-beta-579-gb7387a)

to analyze the Bitcoin blockchain and the Lightning network. We

employ OpenSSL Library openssl (1.1.1.d-2), GNU Multi-Precision

library gmp (6.1.2-3) and Pairing Based Cryptography Library pbc

(0.5.14-1) to estimate the cryptographic computations. The machine

used for data capture has the following hardware configuration:

CPU (Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz with 20

cores) and RAM (128GB).

Parameters. For all the experiments, unless otherwise specified,

we use RSA 1024-bit modulus, random messages𝑚 with size |𝑚 | =

100 bits and threshold 𝑡 = ⌈𝑛/2⌉.

Squarings in AWS. Given that practical constructions of time-

lock puzzles are based on sequential squaring in an RSA group [46],

we use different AWS machines to perform squarings to capture the

role played by hardware. We use 6 different types of AWS machines

whose configurations are detailed in Table 1.

First we ran the squaring experiment on the various AWS ma-

chines (presented in Table 1). As expected, we observe that the

RAM and number of cores do not help in improving the number of

squarings performed. However, we note that AWS’ compute opti-

mized machines perform better than the regular machines. We also

observe that the SSD equipped machines seem to perform more

squarings than the EBS counterparts.

For the subsequent experiments, we implement using t3a.large,

the weakest (and the cheapest) of the AWS machines in Table 1 to

show the efficiency and practicality of our constructions.

Benchmarks. Since, we use BLS, ECDSA and Schnorr, we first

measure the cost of basic operations for these signature schemes.

For VT-BLS, we use the Type A curves using PBC (pairing based
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Table 1: AWS Machine Types and Squaring Performance

Machine RAM vCPU Disk Special Features Cost($/Hr)
|𝑁 | and Squarings

1024 2048

t2.xlarge 16.0 4 EBS - 0.1856 5.853 × 109 1.881 × 109

t3a.large 8.0 2 EBS - 0.0752 5.685 × 109 1.806 × 109

c5n.large 5.25 2 EBS Compute Optimized 0.108 8.069 × 109 2.600 × 109

d2.xlarge 30.5 4 HDD Storage Optimized 0.69 5.025 × 109 1.525 × 109

m5ad.large 8.0 2 SSD 1 × 75 NVMe 0.103 6.600 × 109 2.097 × 109

r5ad.large 16.0 2 SSD
1 × 75 NVMe and

0.131 6.626 × 109 2.108 × 109
Memory Optimized

Table 2: A summary of costs for KGen, Sign and Vf

Operation Schnorr ECDSA BLS

Keygen 1.69 ms 1.70 ms 0.024 s

Sign 1.63 ms 1.67 ms 0.023 s

Verify 1.55 ms 1.57 ms 0.047 s

cryptography) library [38] for pairing implementation. For VT-

ECDSA, we use the implementation and the secp256k1 curve present

in OpenSSL [21]. For VT-Schnorr, we use the proposed BIP schnorr

standard [51] to instantiate Schnorr in secp256k1 elliptic curves. A

summary of the cost of key generation, signing and verification for

these signature schemes is presented in Table 2.

5.2 Performance Evaluation

Linearly Homomorphic Time-Lock Puzzles. We first imple-

ment a library for LHTLP variant proposed in [41] and use the

library to estimate the cost (time) of various cryptographic op-

erations needed to be performed in LHTLP.PSetup, LHTLP.PGen,

LHTLP.PEval and LHTLP.PSolve.

We ran each phase of LHTLP 10 times and present the average.

We used an RSA modulus of 1024 bits and T = 1.0×106, on average:

• LHTLP.PSetup takes 5.521 s,

• LHTLP.PGen takes 9.93 ms,

• LHTLP.PSolve takes 0.692 s.

• Batching using LHTLP.PEval is very efficient (linear in num-

ber of puzzles merged) and this is presented in Figure 6.

Verifiable Timed Signatures. We estimate the time required to

perform Commit and Prove and Verification algorithms for VT-BLS

(Figure 2), VT-Schnorr (Figure 3) and VT-ECDSA (Figure 4), and

present them in Table 3. We observe that the curves used for BLS

are not optimized and therefore lead to much slower computations.

All three implementations can be significantly improved using

concurrency and other efficient data structures. We also observe

that despite this, the operations are still practical for use in the

real-world.

5.3 VTS and Lightning Network

In order to get an idea for the hiding time parameter T and under-

stand how the Commit transactions are employed in PCNs today,

we study the Bitcoin PCN - the Lightning network.

Bitcoin uses elliptic curve secp256k1 for signature generation.

There is a proposal to use Schnorr signatures [51]. We study the

graph statistics for the Lightning Network (LN) [45] and analyze
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Figure 6: The time to batch puzzles vs the number of puzzles

batched.

Table 3: The cost (time) of commit and prove, and verification

steps for Schnorr, ECDSA and BLS for different values of 𝑛.

Operation
Parameter 𝑛 (Soundness error)

30 (6.44 × 10−9) 40 (7.25 × 10−12)

VT-BLS
Commit 20.44 s 32.19 s

Verify 33.24 s 41.37 s

VT-ECDSA
Commit 7.77 s 10.41 s

Verify 7.53 s 9.94 s

VT-Schnorr
Commit 7.93 s 10.71 s

Verify 7.93 s 10.72 s

the number of outputs from the Bitcoin blockchain for our analysis.

The number of outputs indicate the number of times a channel is

closed before completion of PCN payment.

Lightning Graph Statistics. We scanned their network using the

describegraph command of the lightning client. We consolidated the

information into Table 4. We observe that 80.05% of the payment

channels are disabled, i.e do not allow the channel to be a part of a

PCN for a payment. We also observe that the time lock duration is

85.53 blocks which is equivalent to 14.25 hours giving an estimate

to T.

Estimating Channel Closures. When a channel between Alice

and Bob is closed, there are two primary outputs. The first output
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Table 4: Lightning Graph Data (as of November 23, 2019)

Parameter Value Unit

Nodes 4, 692 -

Channels 30, 665 -

Percentage Disabled 80.05 %

Avg. Channel Capacity 2, 673, 295.67 sat

Avg. Minimum HTLC Amount 1, 237.42 10−3 sat

Avg. Base Fee 1, 008.51 10−3 sat

Avg. Fee Rate 683, 536.66 10−6 sat

Avg. Time Lock Delta 85.53 blocks

is the to_local output which settles the money to the address going

on-chain after a delay using P2WSH. This delay ensures that if

Alice closes the channel using a stale transaction, Bob can use a

revocation key to penalize Alice by stealing the money from the

output. The second output to_remote pays money (using P2WPKH)

directly to the other user in the channel. Other outputs can exist

if Alice and Bob were a part of a payment network, but one of

them decides to close the channel. In this case, there are extra

outputs which contain HTLC -Claim or Refund Scripts or a new

channel creation. Since, we cannot know what these outputs until

the witness is produced on chain, we conservatively estimate them

as HTLC-Claim or Refund outputs.

Therefore estimating the number of closure transactions on the

blockchain whose outputs are more than 2 gives an estimate of how

likely the closure of a channel with an ongoing payment is in the

real-world.

From the main chain, we observe 116, 502 closing transactions

by examining opened outputs with one output matching a to_local

output. These are transactions that are used to close the payment

channel. Among them, 66.84 % (77, 867) of transactions contain

more than one 𝑃2𝑊𝑆𝐻 outputs. We present the number of 𝑃2𝑊𝑆𝐻

outputs in these closing transactions in Table 5.

Table 5: A histogram of the number of outputs in a lightning

closing transaction. There is one standard output called the

to_local which pays self after a delay giving the remote user

time to penalize the party if a stale transaction is published.

Any outputmore than 1, indicates that the userwas involved

as a intermediate in a payment channel but decided to close

the channel.

# of P2WSH Outputs # of Closing Tx

1 (No HTLC output) 38, 635

2 (1 HTLC output) 47, 172

3 − 10 20, 634

11 − 100 9, 245

≥ 100 10

From Table 4, we observe that the average base-fee is 1 satoshi

which equates to 0.000087 USD (as of today) and the average fee-

rate is 683 satoshis which amounts to 0.06 USD. From Table 1, we

observe that a faster machine can perform a lot more (2×) squarings

than the cheaper machines. However, this is not beneficial for the

attacker. Lighting network consists of micro-transactions, whose

cost to exploit outweigh the gain. For privacy-critical applications,

VTS provides an efficient alternative.

6 CONCLUSION AND FUTURE WORK

We theoretically analyze and present secure constructions for Verifi-

able Timed Signatures compatible with standard signatures such as

BLS, Schnorr and ECDSA. Our constructions are efficient in terms

of cost for verifying the timed commitments if they indeed encapsu-

late a valid signature on a message and if it can be obtained after the

given time T. Our constructions are readily usable in several cur-

rent day systems for achieving improved privacy and compatibility

across several settings. We present several cryptocurrency-related

applications for VTS and a variant of VTS where the signing key

is committed instead of the signature. We experimentally evaluate

our approach to show that our constructions are practical. In terms

of future work, the next step is developing VTS-based solutions for

other real world systems that can benefit from the timed nature of

the primitive. Our verifiability techniques leaves open the question

of whether we can improve the efficiency of the verifier and the

size of the proof even further. Developing efficient range proofs

with smaller slack for HTLP is of independent interest.
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A CRYPTOGRAPHIC BUILDING BLOCKS

A.1 Digital Signatures

Definition 4 (Digital Signatures). A (digital) signature scheme

consists of three probabilistic polynomial time algorithms (KGen,

Sign, Vf) such that:
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• (pk, sk) ← KGen(1𝜆): the key generation algorithm takes

as input a security parameter 1𝜆 and outputs a pair of keys

(pk, sk). We assume that pk and sk each has length at least 𝜆,

and that 𝜆 can be determined from pk or sk.

• 𝜎 ← Sign(sk,𝑚): the signing algorithm takes as input a pri-

vate key sk and a message𝑚 from some message space (that

may depend on pk). It outputs a signature 𝜎 .

• 0/1← Vf (pk,𝑚, 𝜎): the deterministic verification algorithm

Vf takes as input a public key pk, a message𝑚, and a signature

𝜎 . It outputs a bit 𝑏, with 𝑏 = 1 meaning valid and 𝑏 = 0

meaning invalid.

It is required that except with negligible probability over (pk, sk)

output by KGen(1𝜆), it holds that Vf (pk,𝑚, Sign(sk,𝑚)) = 1 for

every (legal) message𝑚.

Definition 5. A signature scheme DS = (KGen, Sign,Vf) is ex-

istentially unforgeable under an adaptive chosen-message attack,

or just secure, if for all probabilistic polynomial-time adversaries A,

there is a negligible function negl such that:

Pr
[
ExpEUFCMAA,DS (𝜆) = 1

]
≤ negl

ExpEUFCMAA,DS (𝜆)

𝑄 := ∅

(pk, sk) ← KGen(1𝜆)

(𝑚∗, 𝜎∗) ← ASignO (pk)

𝑏∗ = Vf (pk,𝑚∗, 𝜎∗) ∧ (𝑚∗ ∉ 𝑄)

return 𝑏∗

Oracle SignO(𝑚)

𝜎 ← Sign(sk,𝑚)

𝑄 := 𝑄 ∪ {𝜎 }

return 𝜎

Figure 7: Experiment for unforgeability of the signature

scheme DS

A.2 Time-Lock Puzzles

We recall the definition of standard time-lock puzzles [11]. For con-

ceptual simplicity we consider only schemes with binary solutions.

Definition 6 (Time-Lock Puzzles). A time-lock puzzle is a tuple

of two algorithms (PGen, PSolve) defined as follows.

• 𝑍 ← PGen(T, 𝑠) a probabilistic algorithm that takes as input

a hardness-parameter T and a solution 𝑠 ∈ {0, 1}, and outputs

a puzzle 𝑍 .

• 𝑠 ← PSolve(𝑍 ) a deterministic algorithm that takes as input

a puzzle 𝑍 and outputs a solution 𝑠 .

Definition 7 (Correctness). For all 𝜆 ∈ N, for all polynomials

T in 𝜆, and for all 𝑠 ∈ {0, 1}, it holds that 𝑠 = PSolve(PGen(T, 𝑠)).

Definition 8 (Security). A scheme (PGen, PSolve) is secure

with gap 𝜀 < 1 if there exists a polynomial T̃(·) such that for all

polynomials T(·) ≥ T̃(·) and every polynomial-size adversary A =

{A𝜆}𝜆∈N of depth ≤ T
𝜀 (𝜆), there exists a negligible function 𝜇 (·),

such that for all 𝜆 ∈ N it holds that

Pr
[
𝑏 ← A(𝑍 ) : 𝑍 ← PGen(T(𝜆), 𝑏)

]
≤

1

2
+ 𝜇 (𝜆) .

A.3 Homomorphic Time-Lock Puzzles

Definition 9 (Homomorphic Time-Lock Puzzles [41]). Let

C = {C𝜆}𝜆∈N be a class of circuits and let 𝑆 be a finite domain. A

homomorphic time-lock puzzle (HTLP) with respect to C and with so-

lution space 𝑆 is tuple of four algorithms (HTLP.PSetup,HTLP.PGen,

HTLP.PSolve,HTLP.PEval) defined as follows.

• pp ← HTLP.PSetup(1𝜆,T) a probabilistic algorithm that

takes as input a security parameter 1𝜆 and a time hardness

parameter T, and outputs public parameters pp.

• 𝑍 ← HTLP.PGen(pp, 𝑠) a probabilistic algorithm that takes

as input public parameters pp, and a solution 𝑠 ∈ 𝑆 , and

outputs a puzzle 𝑍 .

• 𝑠 ← HTLP.PSolve(pp, 𝑍 ) a deterministic algorithm that takes

as input public parameters pp and a puzzle 𝑍 and outputs a

solution 𝑠 .

• 𝑍 ′ ← HTLP.PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛) a probabilistic algo-

rithm that takes as input a circuit 𝐶 ∈ C𝜆 , public parameters

pp and a set of 𝑛 puzzles (𝑍1, . . . , 𝑍𝑛) and outputs a puzzle

𝑍 ′.

Security requires that the solution of the puzzles is hidden for all

adversaries that run in (parallel) time less than T. Here we consider

a basic version where the time is counted from the moment the

public parameters are published.

Definition 10 (Security of HTLP). An HTLP scheme consisting

of HTLP.PSetup,HTLP.PGen,HTLP.PSolve,HTLP.PEval, is secure

with gap 𝜀 < 1 if there exists a polynomial T̃(·) such that for all poly-

nomials T(·) ≥ T̃(·) and every polynomial-size adversary (A1,A2)

= {(A1,A2)𝜆}𝜆∈N where the depth ofA2 is bounded from above by

T
𝜀 (𝜆), there exists a negligible function 𝜇 (·), such that for all 𝜆 ∈ N

it holds that

Pr


𝑏 ← A2 (pp, 𝑍, 𝜏) :

(𝜏, 𝑠0, 𝑠1) ← A1 (1
𝜆)

pp← HTLP.PSetup(1𝜆,T(𝜆))

𝑏 ←$ {0, 1}

𝑍 ← HTLP.PGen(pp, 𝑠𝑏 )



≤
1

2
+ 𝜇 (𝜆)

and (𝑠0, 𝑠1) ∈ 𝑆
2.

Definition 11 (Compactness). Let C = {C𝜆}𝜆∈N be a class

of circuits (along with their respective representations). An HTLP

scheme (HTLP.PSetup,HTLP.PGen,HTLP.PSolve,HTLP.PEval) is

compact (for the class C) if for all 𝜆 ∈ N, all polynomials T in 𝜆,

all circuits 𝐶 ∈ C𝜆 and respective inputs (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆𝑛 , all pp

in the support of HTLP.PSetup(1𝜆,T), and all 𝑍𝑖 in the support of

HTLP.PGen(pp, 𝑠𝑖 ), the following two conditions are satisfied:

• There exists a fixed polynomial 𝑝 (·) such that |𝑍 | = 𝑝 (𝜆, |𝐶 (𝑠1,

. . . , 𝑠𝑛) |), where 𝑍 ← HTLP.PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛).

• There exists a fixed polynomial 𝑝 (·) such that the runtime of

HTLP.PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛) is bounded by 𝑝 (𝜆, |𝐶 |).
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B SECURITY ANALYSIS OF VTS
CONSTRUCTIONS

B.1 Proof of Theorem 1 and Theorem 2

Proof. We show that the protocol (Figure 2) is private against

an adversary of depth bounded by T
𝜀 , for some non-negative 𝜀 <

1. We now gradually change the simulation through a series of

hybrids and then we argue about the proximity of neighbouring

experiments.

HybridH0 : This is the original execution.

HybridH1 : This is identical to the previous hybrid except that the

random oracle is simulated by lazy sampling. In addition a random

set 𝐼∗ (where |𝐼∗ | = 𝑡−1) is sampled ahead of time, and the output of

the random oracle on the cut-and-choose instance is programmed

to 𝐼∗. Note that the changes of this hybrid are only syntactical and

therefore the distribution is unchanged.

HybridH2 : In this hybrid we sample a simulated common refer-

ence string crsrange. By the zero-knowledge property of (ZKsetup,

ZKprove,ZKverify) this change is computationally indistinguish-

able.

HybridH3 . . .H3+𝑛 : In the hybridH3+𝑖 , for all 𝑖 ∈ [𝑛], the proof

𝜋range,𝑖 is computed via the simulator provided by the underly-

ing NIZK proof. By the zero-knowledge property of (ZKsetup,

ZKprove,ZKverify), the distance between neighbouring hybrids is

bounded by a negligible function in the security parameter.

HybridH3+𝑛 . . .H3+2𝑛−𝑡+1 : In the 𝑖-th hybridH3+𝑖 , for all 𝑖 ∈ [𝑛−

(𝑡 − 1)], the puzzle corresponding to the 𝑖-th element of the set 𝐼∗ is

computed as LHTLP.PGen(pp, 0𝜆 ; 𝑟𝑖 ), where 𝐼
∗ is the complement

of 𝐼∗. Since the distinguisher is depth-bounded, indistinguishability

follows from an invocation of the security of LHTLP..

HybridH3+2𝑛−𝑡+2 : In this hybrid the prover behaves as follows.

For all 𝑖 ∈ 𝐼∗ it samples a uniform 𝛼𝑖 ← Z𝑞 and sets ℎ𝑖 = 𝑔
𝛼𝑖
0

and computes the puzzle as described in the protocol. On the other

hand, for all 𝑖 ∉ 𝐼∗ it computes ℎ𝑖 as

ℎ𝑖 =
©­«

pk∏
𝑗 ∈𝐼 ∗ ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

.

The rest of the execution is unchanged. Note that for all 𝑖 ∉ 𝐼∗ we

have that ∏
𝑗 ∈𝐼 ∗

ℎ
ℓ𝑗 (0)
𝑗 · ℎ

ℓ𝑖 (0)
𝑖 = pk

as expected. It follows that the changes in this hybrid are only

syntactical and the distribution induced is identical to that of the

previous hybrid.

Simulator S : The simulator is defined to be identical to the last hy-

brid. Note that no information about the witness is used to compute

the proof. This concludes our proof. □

We now show that our protocol (Figure 2) is sound and the proof

of Theorem 2.

Proof. We analyze the protocol in its interactive version and

the soundness of non-interactive protocol follows from the Fiat-

Shamir transformation [22] for constant-round protocols. LetA be

an adversary that efficiently breaks the soundness of the protocol.

In particular this means that the adversary produces a commitment

(𝑍1, . . . , 𝑍𝑛) such that for all 𝑍𝑖 ∉ 𝐼 it holds that LHTLP.PSolve(pp,

𝑍𝑖 ) = 𝜎̃𝑖 such that

𝑒 (𝑔0, 𝜎̃𝑖 ) ≠ 𝑒 (ℎ𝑖 , 𝐻 (𝑚)) .

Assume the contrary, then we could recover a valid signature on𝑚

by interpolating 𝜎̃𝑖 with {𝜎𝑖 }𝑖∈𝐼 , which satisfy the above relation

by definition of the verification algorithm. Further observe that

all puzzles (𝑍1, . . . , 𝑍𝑛) are well-formed, i.e., the solving algorithm

always outputs some well-defined value, except with negligible

probability, by the soundness of the range NIZK.

It follows that, given (𝑍1, . . . , 𝑍𝑛) we can recover some set 𝐼 ′

in polynomial time by solving the puzzles and checking which of

the signatures satisfy the above relation. In order for the verifier

to accept, it must be the case that 𝐼 ′ = 𝐼 which means that the

prover correctly guesses a random 𝑛-bit string uniformly chosen

from the set of strings with exactly 𝑛/2-many 0’s. This happens

with probability exactly
(𝑛/2!)2

𝑛! .

Observe that, in the non-interactive variant of the protocol, the

above argument holds even in the presence of an arbitrary (poly-

nomial) number of simulated proofs, as long as the range NIZK is

simulation-sound. Therefore, if we instantiate the range NIZK with

a simulation-sound scheme, then so is the resulting VTS. □

B.2 Proof of Theorem 3 and Theorem 4

Proof. We show that the protocol (Figure 3) is private against

an adversary of depth bounded by T𝜀 , for some non-negative 𝜀 < 1.

Consider the following sequence of hybrids.

HybridH0 . . .H3+2𝑛−𝑡+1 : Defined as in the proof of Theorem 1.

HybridH3+2𝑛−𝑡+2 : In this hybrid the prover behaves as follows.

For all 𝑖 ∈ 𝐼∗ it samples a uniform (𝑥𝑖 , 𝑘𝑖 ) ← Z𝑞 and sets ℎ𝑖 = 𝑔𝑥𝑖 ,

𝑅𝑖 = 𝑔𝑘𝑖 , and 𝑠𝑖 = 𝑘𝑖 + 𝑐𝑥𝑖 and computes the corresponding puzzle

as described in the protocol. On the other hand, for all 𝑖 ∉ 𝐼∗ it

computes ℎ𝑖 as

ℎ𝑖 =
©­«

pk∏
𝑗 ∈𝐼 ∗ ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

and

𝑅𝑖 =
©­«

𝑅∏
𝑗 ∈𝐼 ∗ 𝑅

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

.

The rest of the execution is unchanged. Note that for all 𝑖 ∉ 𝐼∗ we

have that ∏
𝑗 ∈𝐼 ∗

ℎ
ℓ𝑗 (0)
𝑗 · ℎ

ℓ𝑖 (0)
𝑖 = pk and

∏
𝑗 ∈𝐼 ∗

𝑅
ℓ𝑗 (0)
𝑗 · 𝑅

ℓ𝑖 (0)
𝑖 = 𝑅

as expected. It follows that the changes in this hybrid are only

syntactical and the distribution induced by this hybrid is identical

to that of the previous hybrid.

HybridH3+2𝑛−𝑡+3 : Defined as in the previous hybrid except that

𝑅 is sampled uniformly over G. Note that this does not change the

distribution observed by the distinguisher.

Simulator S : The simulator is defined to be identical to the last hy-

brid. Note that no information about the witness is used to compute

the proof. This concludes our proof. □
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We show that the protocol (Figure 3) satisfies soundness which

is the proof for Theorem 4.

Proof. As for the proof of Theorem 2 we assume that the chal-

lenge set is sampled interactively by the verifier. The soundness

of the non-interactive version follows by a standard argument.

Consider an adversary that can efficiently violate the soundness

of the protocol. This implies that such and adversary produces a

commitment (𝑅, 𝑍1, . . . , 𝑍𝑛) such that for all 𝑍𝑖 ∉ 𝐼 it holds that

LHTLP.PSolve(pp, 𝑍𝑖 ) = 𝑠𝑖 where

𝑔𝑠𝑖 ≠ 𝑅𝑖 · ℎ
𝑐
𝑖 .

Assume the contrary, then we could recover a valid signature

on𝑚 by interpolating 𝑠𝑖 with {𝑠𝑖 }𝑖∈𝐼 , which gives us a valid sig-

nature (𝑅, 𝑠) on 𝑚, by linearity. Further observe that all puzzles

(𝑍1, . . . , 𝑍𝑛) are well-formed, i.e., the solving algorithm always out-

puts some well-defined value, except with negligible probability,

by the soundness of the range NIZK.

It follows that, given (𝑍1, . . . , 𝑍𝑛) we can define some set 𝐼 ′ in

polynomial time by solving the puzzles and checking which of the

resulting 𝑠𝑖 satisfy the above relation. In order for the verifier to

accept, it must be the case that 𝐼 ′ = 𝐼 which means that the prover

correctly guesses a random 𝑛-bit string uniformly chosen from

the set of strings with exactly 𝑛/2-many 0’s. This happens with

probability exactly
(𝑛/2!)2

𝑛! .

As discussed in the proof of Theorem 2, the non-interactive

variant of the protocol can be shown to be simulation sound with

the same argument, assuming a simulation-sound range NIZK. □

B.3 Proof of Theorem 5 and Theorem 6

Proof. We show that the protocol (Figure 4) is private against

an adversary of depth bounded by T𝜀 , for some non-negative 𝜀 < 1.

We do this by defining a series of hybrids.

HybridH0 . . .H3+2𝑛−𝑡+1 : Defined as in the proof of Theorem 1.

HybridH3+2𝑛−𝑡+2 : In this hybrid the prover does the following. For

all 𝑖 ∈ 𝐼∗ it samples a uniform 𝑠𝑖 ← Z𝑞 and sets𝑅𝑖 = 𝐵𝑠𝑖 = (𝑔𝑐 ·ℎ𝑟 )𝑠𝑖

and computes the corresponding puzzle as described in the protocol.

On the other hand, for all 𝑖 ∉ 𝐼∗ it computes 𝑅𝑖 as

𝑅𝑖 =
©­«

𝑅∏
𝑗 ∈𝐼 ∗ 𝑅

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

.

The rest of the execution is unchanged. Note that for all 𝑖 ∉ 𝐼∗ we

have that ∏
𝑗 ∈𝐼 ∗

𝑅
ℓ𝑗 (0)
𝑗 · 𝑅

ℓ𝑖 (0)
𝑖 = 𝑅

as expected. It follows that the changes in this hybrid are only

syntactical and the distribution induced by this hybrid is identical

to that of the previous hybrid.

HybridH3+2𝑛−𝑡+3 : Defined as the previous hybrid except that 𝑅 =

(𝑥,𝑦) is sampled as a uniform point in the curve and 𝑟 is set to 𝑥

mod 𝑞. Again this change is only syntactical since 𝑅 is uniformly

distributed in the previous hybrid.

Simulator S : The simulator is defined to be identical to the last hy-

brid. Note that no information about the witness is used to compute

the proof. This concludes our proof. □

We now give the formal proof of Theorem 6.

Proof. As discussed in the proof of Theorem 2, it suffices to

show that we can correctly reconstruct a valid signature as long as

at least one of the unopened puzzles contains some 𝑠𝑖 such that

𝑅𝑖 = (𝑔
𝑐 · ℎ𝑟 )𝑠𝑖 .

Let 𝐼 be the set of disclosed puzzles, then we have that

𝑅
ℓ𝑖 (0)
𝑖 ·

∏
𝑗 ∈𝐼

𝑅
ℓ𝑗 (0)
𝑗 = (𝑔𝑐 · ℎ𝑟 )𝑠𝑖 ·ℓ𝑖 (0) ·

∏
𝑗 ∈𝐼

(𝑔𝑐 · ℎ𝑟 )𝑠 𝑗 ·ℓ𝑗 (0)

𝑅 = (𝑔𝑐 · ℎ𝑟 )𝑠𝑖 ·ℓ𝑖 (0)+
∑

𝑖∈𝐼 𝑠 𝑗 ·ℓ𝑗 (0)

𝑅 = (𝑔𝑐 · ℎ𝑟 )𝑠

and 𝑥 = 𝑟 mod 𝑞, where 𝑅 := (𝑥,𝑦), by definition of the verifica-

tion equation. It follows that (𝑟, 𝑠) is a valid signature on𝑚. Then

the proof is completed by observing that a prover that commits

invalid 𝑠𝑖 on all unopened puzzles must have guessed the challenge

set 𝐼 ahead of time, which happens only with negligible probability.

We again stress that the non-interactive variant of the proof

can be shown to be simulation-sound with the same argument,

assuming an appropriate instantiation of the range NIZK. □

C PROOF ANALYSIS FOR RANGE PROOFS

Soundness We now establish soundness of our protocol. As usual

for Fiat-Shamir protocols, we will consider soundness of the inter-

active protocol. Thus, fix time-lock puzzles 𝑍1, . . . , 𝑍ℓ . Since the

public parameters pp are chosen honestly, each time-lock puzzle 𝑍 𝑗

has a unique corresponding plaintext 𝑥 𝑗 , i.e. the time-lock puzzles

are perfectly binding commitments.

Now assume that 𝑍1, . . . , 𝑍ℓ is a false statement, i.e. there exists

an index 𝑗∗ such that 𝑥 𝑗∗ ∉ [−𝐿, 𝐿]. We now show that the verifier

rejects the statement, except with negligible probability.

Let t1, . . . , t𝑘 be the verifier’s challenge. We only consider a sin-

gle index 𝑖 and show that the verifier accepts for this index with

probability at most 1/2. It follows by a standard parallel repetition

argument that the verifier accepts with probability at most 2−𝑘 .

Thus fix an index 𝑖 .

Further fix all 𝑡𝑖, 𝑗 for 𝑗 ≠ 𝑗∗ for the moment. We distinguish two

cases.

(1) In this case it holds that 𝑦𝑖 +
∑

𝑗 ∈[𝑘 ], 𝑗≠𝑗∗ 𝑡𝑖, 𝑗𝑥 𝑗 ∉ [−𝐿/2, 𝐿/2].

Since 𝑡𝑖, 𝑗∗ is uniform in {0, 1}, it holds that Pr[𝑡𝑖, 𝑗∗ = 0] = 1
2 .

Thus, it follows that Pr[𝑦𝑖 +
∑

𝑗 ∈[𝑘 ] 𝑡𝑖, 𝑗𝑥 𝑗 ∈ [−𝐿/2, 𝐿/2]] ≤ 1/2.

(2) In this case it holds that 𝑦𝑖 +
∑

𝑗 ∈[𝑘 ], 𝑗≠𝑗∗ 𝑡𝑖, 𝑗𝑥 𝑗 ∈ [−𝐿/2, 𝐿/2].

It follows that 𝑦𝑖 + 𝑥 𝑗∗ +
∑

𝑗 ∈[𝑘 ], 𝑗≠𝑗∗ 𝑡𝑖, 𝑗𝑥 𝑗 ∉ [−𝐿/2, 𝐿/2] as

𝑥 𝑗∗ ∉ [−𝐿, 𝐿]. Consequently, as 𝑡𝑖, 𝑗∗ is uniform on {0, 1}, it

holds that Pr[𝑦𝑖 +
∑

𝑗 ∈[𝑘 ] 𝑡𝑖, 𝑗𝑥 𝑗 ∈ [−𝐿/2, 𝐿/2]] ≤ 1/2

Applying the law of total probability, i.e. marginalizing over all

choices of 𝑡𝑖, 𝑗 for 𝑗 ≠ 𝑗∗, Pr[Verifier accepts for index i] ≤ 1/2. It

follows that Pr[Verifier accepts] ≤ 2−𝑘 .

Zero-Knowledge We now show that the proof-system is zero-

knowledge. We do this by showing that the corresponding interac-

tive proof system is honest-verifier statistical zero-knowledge. We

use the following standard lemma, proven e.g. in [5].
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Lemma 1. Let𝑈 [−𝑟,𝑟 ] be the uniform distribution on the interval

[−𝑟, 𝑟 ] and 𝛽 ∈ Z. Then the statistical distance between 𝑈 [−𝑟,𝑟 ] and

𝑈 [−𝑟,𝑟 ] + 𝛽 is 𝛽/𝑟 .

Our simulator S is now given as follows.

ś Input: Statement pp, 𝑍1, . . . , 𝑍ℓ and challenge t1, . . . , tℓ
ś Choose 𝑣1, . . . , 𝑣𝑘 ← [−𝐿/2, 𝐿/2] and 𝑤̃1, . . . , 𝑤̃𝑘 ← Z𝑁 .

ś For 𝑖 = 1, . . . , 𝑘 compute 𝐺𝑖 ← HTLP.PGen(pp, 𝑣𝑖 ; 𝑤̃𝑖 ).

ś For 𝑖 = 1, . . . , 𝑘 set 𝐷̃𝑖 ← 𝐺𝑖 ·
(∏ℓ

𝑗=1 𝑍
𝑡𝑖,𝑗
𝑗

)−1
.

ś Output 𝜋 ← (𝐷̃𝑖 , 𝑣𝑖 , 𝑤̃𝑖 )𝑖∈[𝑘 ]

First note that the simulatorS is efficient and produces an accept-

ing proof 𝜋 if the statement is valid. We argue that the distributions

produced by the prover and the simulator S are statistically close,

given that 𝐵/𝐿 is negligible. A reasonable practical choice of pa-

rameters may be 𝐵/𝐿 = 2−50, i.e. 𝐵 is 50 bits shorter than 𝐿.

To prove the ZK property, it is sufficient to argue that the (𝐷1, . . . ,

𝐷𝑘 ) produced by the prover and (𝐷̃1, . . . , 𝐷̃𝑘 ) produced by the

simulator are statistically close. Note that the (𝐷1, . . . , 𝐷𝑘 ) are

uniquely specified by ((𝑣1,𝑤1), . . . , (𝑣𝑘 ,𝑤𝑘 )) and the (𝐷̃1, . . . , 𝐷̃𝑘 )

by ((𝑣1, 𝑤̃1), . . . , (𝑣𝑘 , 𝑤̃𝑘 )).

First note that the distributions of the𝑤𝑖 and the 𝑤̃𝑖 are each i.i.d

uniformly random. Define the 𝑦𝑖 to be the plaintexts corresponding

to the time-lock puzzles 𝐷̃𝑖 produced by the simulatorS. It holds for

all 𝑖 ∈ [𝑘] that 𝑦𝑖 = 𝑣𝑖 −
∑ℓ

𝑗=1 𝑡𝑖, 𝑗𝑥 𝑗 , where as above the 𝑥1, . . . , 𝑥ℓ
are the plaintexts corresponding to 𝑍1, . . . , 𝑍ℓ . By Lemma 1 and a

hybrid argument it follows that (𝑦1, . . . , 𝑦𝑘 ) and (𝑦1, . . . , 𝑦𝑘 ) have

statistical distance at most 𝑘 · 𝐵
𝐿/2

= 2𝑘 · 𝐵/𝐿, which is negligible.

This also implies that (𝐷1, . . . , 𝐷𝑘 ) and (𝐷̃1, . . . , 𝐷̃𝑘 ) are statistically

close.

We remark that since our simulator does not use a trapdoor,

one can readily show that our proof-system satisfies simulation-

soundness, as is typical for proof-systems constructed via the Fiat-

Shamir methodology.

D VERIFIABLE TIMED COMMITMENT

Verifiable Timed Commitments for signing keys are similar to VTS

except that now the committer creates a commitment of a discrete

log (signing key) instead of a signature. In the context of a signature

scheme, formally, the Commit algorithm outputs a timed commit-

ment 𝐶 to a signing key corresponding to a public key and a proof

𝜋 for the same. The definitions of privacy and soundness follow

same as VTS.

Theorem 7 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a

NIZK for Lrange and let LHTLP. be a secure time-lock puzzle. Then

the protocol as described in Figure 8 satisfies privacy in the random

oracle model.

Proof. We show that the protocol (Figure 8) is private against

an adversary of depth bounded by T
𝜀 , for some non-negative 𝜀 <

1. We now gradually change the simulation through a series of

hybrids and then we argue about the proximity of neighbouring

experiments.

HybridH0 : This is the original execution.

HybridH1 : This is identical to the previous hybrid except that the

random oracle is simulated by lazy sampling. In addition a random

Setup: Same as Figure 2.

Commit and Prove: On input (crs,wit) the Commit algorithm

does the following.

• Parse wit := sk, crs := (crsrange, pp), pk = ℎ as the public

key

• For all 𝑖 ∈ [𝑡 − 1] sample a uniform 𝑥𝑖 ← Z𝑞 and set

ℎ𝑖 := 𝑔𝑥𝑖

• For all 𝑖 ∈ {𝑡, . . . , 𝑛} compute

𝑥𝑖 =
©­«
sk −

∑
𝑗 ∈[𝑡 ]

𝑥 𝑗 · ℓ𝑗 (0)
ª®¬
·ℓ𝑖 (0)

−1 and ℎ𝑖 =
©­«

pk∏
𝑗 ∈[𝑡 ] ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

where ℓ𝑖 (·) is the 𝑖-th Lagrange polynomial basis.

• For 𝑖 ∈ [𝑛], generate puzzles with corresponding range

proofs as shown below

𝑟𝑖 ← {0, 1}
𝜆, 𝑍𝑖 ← LHTLP.PGen(pp, 𝑥𝑖 ; 𝑟𝑖 )

𝜋range,𝑖 ← ZKprove(crsrange, (𝑍𝑖 , 𝑎, 𝑏,T), (𝑥𝑖 , 𝑟𝑖 ))

• Compute

𝐼 ← 𝐻 ′
(
pk, (ℎ1, 𝑍1, 𝜋range,1), . . . , (ℎ𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
• The Commit algorithm outputs 𝐶 := (𝑍1, . . . , 𝑍𝑛,T) and

𝜋 := ({ℎ𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝜎𝑖 , 𝑟𝑖 }𝑖∈𝐼 )

• Finally output (pk,𝐶, 𝜋)

Verification: On input (crs, pk,𝐶, 𝜋) the Vrfy algorithm does the

following.

• Parse 𝐶 := (𝑍1, . . . , 𝑍𝑛,T),

𝜋 := ({ℎ𝑖 , 𝜋range,𝑖 }𝑖∈[𝑛] , 𝐼 , {𝑥𝑖 , 𝑟𝑖 }𝑖∈𝐼 ) and

crs := (crsrange, pp)

• If any of the following conditions is satisfied output 0, else

return 1:

(1) There exists some 𝑗 ∉ 𝐼 such that
∏

𝑖∈𝐼 ℎ
ℓ𝑖 (0)
𝑖 · ℎ

ℓ𝑗 (0)
𝑗 ≠ pk

(2) There exists some 𝑖 ∈ [𝑛] such that

ZKverify(crsrange, (𝑍𝑖 , 𝑎, 𝑏,T), 𝜋range,𝑖 ) ≠ 1

(3) There exists some 𝑖 ∈ 𝐼 such that

𝑍𝑖 ≠ LHTLP.PGen(pp, 𝑥𝑖 ; 𝑟𝑖 ) or ℎ𝑖 = 𝑔𝑥𝑖

(4) 𝐼 ≠ 𝐻 ′
(
pk, (ℎ1, 𝑍1, 𝜋range,1), . . . , (ℎ𝑛, 𝑍𝑛, 𝜋range,𝑛)

)
Figure 8: Verifiable Timed commitments for signing keys of

the form pk = 𝑔sk, sk ∈ {0, 1}𝜆

set 𝐼∗ (where |𝐼∗ | = 𝑡−1) is sampled ahead of time, and the output of

the random oracle on the cut-and-choose instance is programmed

to 𝐼∗. Note that the changes of this hybrid are only syntactical and

therefore the distribution is unchanged.

HybridH2 : In this hybrid we sample a simulated common refer-

ence string crsrange. By the zero-knowledge property of (ZKsetup,

ZKprove,ZKverify) this change is computationally indistinguish-

able.

HybridH3 . . .H3+𝑛 : In the hybridH3+𝑖 , for all 𝑖 ∈ [𝑛], the proof

𝜋range,𝑖 is computed via the simulator provided by the underly-

ing NIZK proof. By the zero-knowledge property of (ZKsetup,

ZKprove,ZKverify), the distance between neighbouring hybrids is

bounded by a negligible function in the security parameter.

HybridH3+𝑛 . . .H3+2𝑛−𝑡+1 : In the 𝑖-th hybridH3+𝑖 , for all 𝑖 ∈ [𝑛−

(𝑡 − 1)], the puzzle corresponding to the 𝑖-th element of the set 𝐼∗ is
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computed as LHTLP.PGen(pp, 0𝜆 ; 𝑟𝑖 ), where 𝐼
∗ is the complement

of 𝐼∗. Since the distinguisher is depth-bounded, indistinguishability

follows from an invocation of the security of LHTLP..

HybridH3+2𝑛−𝑡+2 : In this hybrid the prover behaves as follows.

For all 𝑖 ∈ 𝐼∗ it samples a uniform 𝑥𝑖 ← Z𝑞 and sets ℎ𝑖 = 𝑔𝑥𝑖 and

computes the puzzle as described in the protocol. On the other

hand, for all 𝑖 ∉ 𝐼∗ it computes ℎ𝑖 as

ℎ𝑖 =
©­«

pk∏
𝑗 ∈𝐼 ∗ ℎ

ℓ𝑗 (0)
𝑗

ª®¬
ℓ𝑖 (0)

−1

.

The rest of the execution is unchanged. Note that for all 𝑖 ∉ 𝐼∗ we

have that ∏
𝑗 ∈𝐼 ∗

ℎ
ℓ𝑗 (0)
𝑗 · ℎ

ℓ𝑖 (0)
𝑖 = pk

as expected. It follows that the changes in this hybrid are only

syntactical and the distribution induced is identical to that of the

previous hybrid.

Simulator S : The simulator is defined to be identical to the last hy-

brid. Note that no information about the witness is used to compute

the proof. This concludes our proof.

□

Theorem 8 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be

a NIZK for Lrange and let LHTLP. be a time-lock puzzle with per-

fect correctness. Then the protocol as described in Figure 8 satisfies

soundness in the random oracle model.

Proof. We analyze the protocol in its interactive version and

the soundness of non-interactive protocol follows from the Fiat-

Shamir transformation [22] for constant-round protocols. LetA be

an adversary that efficiently breaks the soundness of the protocol.

In particular this means that the adversary produces a commitment

(𝑍1, . . . , 𝑍𝑛) and for all 𝑍𝑖 ∉ 𝐼 it holds that LHTLP.PSolve(pp, 𝑍𝑖 ) =

𝑥𝑖 such that

ℎ𝑖 ≠ 𝑔𝑥𝑖 .

Assume the contrary, then we could recover a valid signing key

by interpolating 𝑥𝑖 with {𝑥𝑖 }𝑖∈𝐼 , which satisfy the above relation

of the public key and secret key. Further observe that all puzzles

(𝑍1, . . . , 𝑍𝑛) are well-formed, i.e., the solving algorithm always

outputs some well-defined value, except with negligible probability,

by the soundness of the range NIZK.

It follows that, given (𝑍1, . . . , 𝑍𝑛) we can recover some set 𝐼 ′

in polynomial time by solving the puzzles and checking which of

the signing keys satisfy the above relation. In order for the verifier

to accept, it must be the case that 𝐼 ′ = 𝐼 which means that the

prover correctly guesses a random 𝑛-bit string uniformly chosen

from the set of strings with exactly 𝑛/2-many 0’s. This happens

with probability exactly
(𝑛/2!)2

𝑛! .

□
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