
File Systems Un�t as Distributed Storage Backends:
Lessons from 10 Years of Ceph Evolution

Abutalib Aghayev
Carnegie Mellon University

Sage Weil
Red Hat, Inc.

Michael Kuchnik
Carnegie Mellon University

Mark Nelson
Red Hat, Inc.

Gregory R. Ganger
Carnegie Mellon University

George Amvrosiadis
Carnegie Mellon University

Abstract

For a decade, the Ceph distributed �le system followed the
conventional wisdom of building its storage backend on top
of local �le systems. This is a preferred choice for most dis-
tributed �le systems today because it allows them to bene�t
from the convenience and maturity of battle-tested code.
Ceph’s experience, however, shows that this comes at a high
price. First, developing a zero-overhead transaction mecha-
nism is challenging. Second, metadata performance at the
local level can signi�cantly a�ect performance at the dis-
tributed level. Third, supporting emerging storage hardware
is painstakingly slow.
Ceph addressed these issues with BlueStore, a new back-

end designed to run directly on raw storage devices. In only
two years since its inception, BlueStore outperformed previ-
ous established backends and is adopted by 70% of users in
production. By running in user space and fully controlling
the I/O stack, it has enabled space-e�cient metadata and
data checksums, fast overwrites of erasure-coded data, inline
compression, decreased performance variability, and avoided
a series of performance pitfalls of local �le systems. Finally,
it makes the adoption of backwards-incompatible storage
hardware possible, an important trait in a changing storage
landscape that is learning to embrace hardware diversity.

CCS Concepts • Information systems → Distributed

storage; • Software and its engineering→ File systems

management; Software performance.

Keywords Ceph, object storage, distributed �le system,
storage backend, �le system

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00

h�ps://doi.org/10.1145/3341301.3359656

1 Introduction

Distributed �le systems operate on a cluster of machines,
each assigned one or more roles such as cluster state mon-
itor, metadata server, and storage server. Storage servers,
which form the bulk of the machines in the cluster, receive
I/O requests over the network and serve them from locally
attached storage devices using storage backend software. Sit-
ting in the I/O path, the storage backend plays a key role in
the performance of the overall system.
Traditionally distributed �le systems have used local �le

systems, such as ext4 or XFS, directly or through middleware,
as the storage backend [29, 34, 37, 41, 74, 84, 93, 98, 101, 102].
This approach has delivered reasonable performance, pre-
cluding questions on the suitability of �le systems as a dis-
tributed storage backend. Several reasons have contributed
to the success of �le systems as the storage backend. First,
they allow delegating the hard problems of data persistence
and block allocation to a well-tested and highly performant
code. Second, they o�er a familiar interface (POSIX) and
abstractions (�les, directories). Third, they enable the use of
standard tools (ls, find) to explore disk contents.
Ceph [98] is a widely-used, open-source distributed �le

system that followed this convention for a decade. Hard
lessons that the Ceph team learned using several popular �le
systems led them to question the �tness of �le systems as
storage backends. This is not surprising in hindsight. Stone-
braker, after building the INGRES database for a decade,
noted that “operating systems o�er all things to all people at
much higher overhead” [90]. Similarly, exokernels demon-
strated that customizing abstractions to applications results
in signi�cantly better performance [31, 50]. In addition to
the performance penalty, adopting increasingly diverse stor-
age hardware is becoming a challenge for local �le systems,
which were originally designed for a single storage medium.

The �rst contribution of this experience paper is to outline
the main reasons behind Ceph’s decision to develop BlueStore,
a new storage backend deployed directly on raw storage de-
vices. First, it is hard to implement e�cient transactions on
top of existing �le systems. A signi�cant body of work aims
to introduce transactions into �le systems [39, 63, 65, 72, 77,
80, 87, 106], but none of these approaches have been adopted
due to their high performance overhead, limited function-
ality, interface complexity, or implementation complexity.

353

The experience of the Ceph team shows that the alternative
options, such as leveraging the limited internal transaction
mechanism of �le systems, implementing Write-Ahead Log-
ging in user space, or using a transactional key-value store,
also deliver subpar performance.

Second, the local �le system’s metadata performance can
signi�cantly a�ect the performance of the distributed �le
system as a whole. More speci�cally, a key challenge that
the Ceph team faced was enumerating directories with mil-
lions of entries fast, and the lack of ordering in the returned
result. Both Btrfs and XFS-based backends su�ered from this
problem, and directory splitting operations meant to distrib-
ute the metadata load were found to clash with �le system
policies, crippling overall system performance.
At the same time, the rigidity of mature �le systems pre-

vents them from adopting emerging storage hardware that
abandon the venerable block interface. The history of produc-
tion �le systems shows that on average they take a decade
to mature [30, 56, 103, 104]. Once �le systems mature, their
maintainers tend to be conservative when it comes tomaking
fundamental changes due to the consequences of mistakes.
On the other hand, novel storage hardware aimed for data
centers introduce backward-incompatible interfaces that re-
quire drastic changes. For example, to increase capacity, hard
disk drive (HDD) vendors are moving to Shingled Magnetic
Recording (SMR) technology [38, 62, 82] that works best with
a backward-incompatible zone interface [46]. Similarly, to
eliminate the long I/O tail latency in solid state drives (SSDs)
caused by the Flash Translation Layer (FTL) [35, 54, 108],
vendors are introducing Zoned Namespace (ZNS) SSDs that
eliminate the FTL, again, exposing the zone interface [9, 26].
Cloud storage providers [58, 73, 109] and storage server ven-
dors [17, 57] are already adapting their private software
stacks to use the zoned devices. Distributed �le systems,
however, are stalled by delays in the adoption of zoned de-
vices in local �le systems.

In 2015, the Ceph project started designing and implement-
ing BlueStore, a user space storage backend that stores data
directly on raw storage devices, and metadata in a key-value
store. By taking full control of the I/O path, BlueStore has
been able to e�ciently implement full data checksums, in-
line compression, and fast overwrites of erasure-coded data,
while also improving performance on common customer
workloads. In 2017, after just two years of development, Blue-
Store became the default production storage backend in Ceph.
A 2018 survey among Ceph users shows that 70% use Blue-
Store in production with hundreds of petabytes in deployed
capacity [60]. As a second contribution, this paper introduces
the design of BlueStore, the challenges its design overcomes,

and opportunities for future improvements. Novelties of Blue-
Store include (1) storing low-level �le system metadata, such
as extent bitmaps, in a key-value store, thereby avoiding
on-disk format changes and reducing implementation com-
plexity; (2) optimizing clone operations and minimizing the

overhead of the resulting extent reference-counting through
careful interface design; (3) BlueFS—a user space �le system
that enables RocksDB to run faster on raw storage devices;
and (4) a space allocator with a �xed 35MiB memory usage
per terabyte of disk space.

In addition to the above contributions, we perform several

experiments that evaluate the improvement of design changes

from Ceph’s previous production backend, FileStore, to Blue-
Store. We experimentally measure the performance e�ect of
issues such as the overhead of journaling �le systems, dou-
ble writes to the journal, ine�cient directory splitting, and
update-in-place mechanisms (as opposed to copy-on-write).

2 Background

This section aims to highlight the role of distributed storage
backends and the features that are essential for building an
e�cient distributed �le system (§ 2.1). We provide a brief
overview of Ceph’s architecture (§ 2.2) and the evolution of
Ceph’s storage backend over the last decade (§ 2.3), intro-
ducing terms that will be used throughout the paper.

2.1 Essentials of Distributed Storage Backends

Distributed �le systems aggregate storage space from multi-
ple physical machines into a single uni�ed data store that
o�ers high-bandwidth and parallel I/O, horizontal scalability,
fault tolerance, and strong consistency. While distributed
�le systems may be designed di�erently and use unique
terms to refer to the machines managing data placement
on physical media, the storage backend is usually de�ned
as the software module directly managing the storage de-
vice attached to physical machines. For example, Lustre’s
Object Storage Servers (OSSs) store data on Object Stor-
age Targets [102] (OSTs), GlusterFS’s Nodes store data on
Bricks [74], and Ceph’s Nodes store data on Object Storage
Devices (OSDs) [98]. In these, and other systems, the storage
backend is the software module that manages space on disks
(OSTs, Bricks, OSDs) attached to physical machines (OSSs,
Nodes).

Widely-used distributed �le systems such as Lustre [102],
GlusterFS [74], OrangeFS [29], BeeGFS [93], XtreemFS [41],
and (until recently) Ceph [98] rely on general local �le sys-
tems, such as ext4 and XFS, to implement their storage back-
ends. While di�erent systems require di�erent features from
a storage backend, two of these features, (1) e�cient trans-

actions and (2) fast metadata operations appear to be
common; another emerging requirement is (3) support for
novel, backward-incompatible storage hardware.

Transaction support in the storage backend simpli�es im-
plementing strong consistency that many distributed �le
systems provide [41, 74, 98, 102]. A storage backend can
seamlessly provide transactions if the backing �le system
already supports them [55, 77]. Yet, most �le systems imple-
ment the POSIX standard, which lacks a transaction concept.

354

OSDs

PGs
...

...

...

...

Objects

Pool

Figure 1. High-level depiction of Ceph’s architecture. A
single pool with 3× replication is shown. Therefore, each
placement group (PG) is replicated on three OSDs.

Therefore, distributed �le system developers typically re-
sort to using ine�cient or complex mechanisms, such as
implementing a Write-Ahead Log (WAL) on top of a �le sys-
tem [74], or leveraging a �le system’s internal transaction
mechanism [102].
Metadata management is another recurring pain point

in distributed �le systems [69]. Inability to e�ciently enu-
merate large directory contents or handle small �les at scale
in local �le systems can cripple performance for both cen-
tralized [101, 102] and distributed [74, 98] metadata manage-
ment designs. To address this problem, distributed �le system
developers use metadata caching [74], deep directory hierar-
chies arranged by data hashes [98], custom databases [89],
or patches to local �le systems [12, 13, 112].

An emerging requirement for storage backends is support
for novel storage hardware that operates using backward-
incompatible interfaces. For example, SMR can boost HDD
capacity by more than 25% and hardware vendors claim that
by 2023, over half of data center HDDs will use SMR [83].
Another example is ZNS SSDs that eliminate FTL and do not
su�er from uncontrollable garbage collection delays [9], al-
lowing better tail-latency control. Both of these new classes
of hardware storage present backward-incompatible inter-
faces that are challenging for local, block-based �le systems
to adopt.

2.2 Ceph Distributed Storage System Architecture

Figure 1 shows the high-level architecture of Ceph. At the
core of Ceph is the Reliable Autonomic Distributed Object
Store (RADOS) service [100]. RADOS scales to thousands of
Object Storage Devices (OSDs), providing self-healing, self-
managing, replicated object storage with strong consistency.
Ceph’s librados library provides a transactional interface
for manipulating objects and object collections in RADOS.
Out of the box, Ceph provides three services implemented us-
ing librados: the RADOSGateway (RGW), an object storage
similar to Amazon S3 [5]; the RADOS Block Device (RBD), a
virtual block device similar to Amazon EBS [4]; and CephFS,
a distributed �le system with POSIX semantics.

EBOFS

FileStore/Btrfs

FileStore/XFS

NewStore

BlueStore

 2004 2006 2008 2010 2012 2014 2016 2018 2020

Development Production

Figure 2. Timeline of storage backend evolution in Ceph.
For each backend, the period of development, and the period
of being the default production backend is shown.

Objects in RADOS are stored in logical partitions called
pools. Pools can be con�gured to provide redundancy for
the contained objects either through replication or erasure
coding. Within a pool, the objects are sharded among aggre-
gation units called placement groups (PGs). Depending on the
replication factor, PGs are mapped to multiple OSDs using
CRUSH, a pseudo-random data distribution algorithm [99].
Clients also use CRUSH to determine the OSD that should
contain a given object, obviating the need for a centralized
metadata service. PGs and CRUSH form an indirection layer
between clients and OSDs that allows the migration of ob-
jects between OSDs to adapt to cluster or workload changes.

In every node of a RADOS cluster, there is a separate Ceph
OSD daemon per local storage device. Each OSD processes
client I/O requests from librados clients and cooperates
with peer OSDs to replicate or erasure code updates, migrate
data, or recover from failures. Data is persisted to the local
device via the internal ObjectStore interface, which provides
abstractions for objects, object collections, a set of primitives
to inspect data, and transactions to update data. A transac-
tion combines an arbitrary number of primitives operating
on objects and object collections into an atomic operation. In
principle, each OSD may make use of a di�erent backend im-
plementation of the ObjectStore interface, although clusters
tend to be uniform in practice.

2.3 Evolution of Ceph’s Storage Backend

The �rst implementation of the ObjectStore interface was in
fact a user space �le system called Extent and B-Tree-based
Object File System (EBOFS). In 2008, Btrfs was emerging
with attractive features such as transactions, deduplication,
checksums, and transparent compression, which were lack-
ing in EBOFS. Therefore, as shown in Figure 2, EBOFS was
replaced by FileStore, an ObjectStore implementation on top
of Btrfs.

In FileStore, an object collection is mapped to a directory
and object data is stored in a �le. Initially, object attributes
were stored in POSIX extended �le attributes (xattrs), but
were latermoved to LevelDBwhen object attributes exceeded

355

size or count limitations of xattrs. FileStore on Btrfs was
the production backend for several years, throughout which
Btrfs remained unstable and su�ered from severe data and
metadata fragmentation. In the meantime, the ObjectStore in-
terface evolved signi�cantly, making it impractical to switch
back to EBOFS. Instead, FileStore was ported to run on top of
XFS, ext4, and later ZFS. Of these, FileStore on XFS became
the de facto backend because it scaled better and had faster
metadata performance [36].
While FileStore on XFS was stable, it still su�ered from

metadata fragmentation and did not exploit the full potential
of the hardware. Lack of native transactions led to a user
space WAL implementation that performed full data journal-
ing and capped the speed of read-modify-write workloads, a
typical Ceph workload, to theWAL’s write speed. In addition,
since XFS was not a copy-on-write �le system, clone opera-
tions used heavily by snapshots were signi�cantly slower.
NewStore was the �rst attempt at solving the metadata

problems of �le-system-based backends. Instead of using
directories to represent object collections, NewStore stored
object metadata in RocksDB, an ordered key-value store,
while object data was kept in �les. RocksDB was also used to
implement the WAL, making read-modify-write workloads
e�cient due to a combined data andmetadata log. Storing ob-
ject data as �les and running RocksDB on top of a journaling
�le system, however, introduced high consistency overhead.
This led to the implementation of BlueStore, which used raw
disks. The following section describes the challenges Blue-
Store aimed to resolve. A complete description of BlueStore
is given in § 4.

3 Building Storage Backends on Local File
Systems is Hard

This section describes the challenges faced by the Ceph team
while trying to build a distributed storage backend on top of
local �le systems.

3.1 Challenge 1: E�cient Transactions

Transactions simplify application development by encapsu-
lating a sequence of operations into a single atomic unit of
work. Thus, a signi�cant body of work aims to introduce
transactions into �le systems [39, 63, 65, 72, 77, 80, 87, 106].
None of these works have been adopted by production �le
systems, however, due to their high performance overhead,
limited functionality, interface complexity, or implementa-
tion complexity.

Hence, there are three tangible options for providing trans-
actions in a storage backend running on top of a �le system:
(1) hooking into a �le system’s internal (but limited) trans-
action mechanism; (2) implementing a WAL in user space;
and (3) using a key-value database with transactions as a
WAL. Next, we describe why each of these options results in
signi�cant performance or complexity overhead.

3.1.1 Leveraging File System Internal Transactions

Many �le systems implement an in-kernel transaction frame-
work that enables performing compound internal operations
atomically [18, 23, 86, 94]. Since the purpose of this frame-
work is to ensure internal �le system consistency, its func-
tionality is generally limited, and thus, unavailable to users.
For example, a rollback mechanism is not available in �le
system transaction frameworks because it is unnecessary for
ensuring internal consistency of a �le system.
Until recently, Btrfs was making its internal transaction

mechanism available to users through a pair of system calls
that atomically applied operations between them to the �le
system [23]. The �rst version of FileStore that ran on Btrfs
relied on these system calls, and su�ered from the lack of a
rollback mechanism. More speci�cally, if a Ceph OSD ecoun-
tered a fatal event in the middle of a transaction, such as a
software crash or a KILL signal, Btrfs would commit a partial
transaction and leave the storage backend in an inconsistent
state.

Solutions attempted by the Ceph and Btrfs teams included
introducing a single system call for specifying the entire
transaction [96], and implementing rollback through snap-
shots [95], both of which proved costly. Btrfs authors recently
deprecated transaction system calls [15]. This outcome is
similar to Microsoft’s attempt to leverage NTFS’s in-kernel
transaction framework for providing an atomic �le transac-
tion API, which was deprecated due to its high barrier to
entry [53].

These experiences strongly suggest that it is hard to lever-
age the internal transaction mechanism of a �le system in a
storage backend implemented in user space.

3.1.2 Implementing the WAL in User Space

An alternative to utilizing the �le system’s in-kernel trans-
action framework was to implement a logical WAL in user
space. While this approach worked, it su�ered from three
major problems.

Slow Read-Modify-Write. Typical Ceph workloads per-
form many read-modify-write operations on objects, where
preparing the next transaction requires reading the e�ect
of the previous transaction. A user space WAL implemen-
tation, on the other hand, performs three steps for every
transaction. First, the transaction is serialized and written to
the log. Second, fsync is called to commit the transaction to
disk. Third, the operations speci�ed in the transaction are
applied to the �le system. The e�ect of a transaction cannot
be read by upcoming transactions until the third step com-
pletes, which is dependent on the second step. As a result,
every read-modify-write operation incurred the full latency
of the WAL commit, preventing e�cient pipelining.

Non-Idempotent Operations. In FileStore, objects are rep-
resented by �les and collections are mapped to directories.

356

With this data model, replaying a logical WAL after a crash
is challenging due to non-idempotent operations. While the
WAL is trimmed periodically, there is always a window of
time when a committed transaction that is still in the WAL
has already been applied to the �le system. For example, con-
sider a transaction consisting of three operations: 1© clone

a→b; 2© update a; 3© update c. If a crash happens after
the second operation, replaying the WAL corrupts object b.
As another example, consider a transaction: 1© update b;

2© rename b→c; 3© rename a→b; 4© update d. If a crash
happens after the third operation, replaying the WAL cor-
rupts object a, which is now named b, and then fails because
object a does not exist anymore.

FileStore on Btrfs solved this problem by periodically tak-
ing persistent snapshots of the �le system and marking the
WAL position at the time of snapshot. Then on recovery the
latest snapshot was restored, and the WAL was replayed
from the position marked at the time of the snapshot.
When FileStore abandoned Btrfs in favor of XFS (§ 2.3),

the lack of e�cient snapshots caused two problems. First, on
XFS the sync system call is the only option for synchronizing
�le system state to storage. However, in typical deployments
with multiple drives per node, sync is too expensive because
it synchronizes all �le systems on all drives. This problem
was resolved by adding the syncfs system call [97] to the
Linux kernel, which synchronizes only a given �le system.

The second problem was that with XFS, there is no option
to restore a �le system to a speci�c state after which theWAL
can be replayed without worrying about non-idempotent
operations. Guards (sequence numbers) were added to avoid
replaying non-idempotent operations, however, verifying
correctness of guards for complex operations was hard due
to the large problem space. Tooling was written to generate
random permutations of complex operation sequences, and it
was combinedwith failure injection to semi-comprehensively
verify that all failure cases were correctly handled. However,
the FileStore code ended up fragile and hard-to-maintain.

DoubleWrites.The �nal problemwith theWAL in FileStore
is that data is written twice: �rst to the WAL and then to
the �le system, halving the disk bandwidth. This is a known
problem that leads most �le systems to only log metadata
changes, allowing data loss after a crash. It is possible to
avoid the penalty of double writes for new data, by �rst writ-
ing it to disk and then logging only the respective metadata.
However, FileStore’s approach of using the state of the �le
system to infer the namespace of objects and their states
makes this method hard to use due to corner cases, such
as partially written �les. While FileStore’s approach turned
out to be problematic, it was chosen for a technical reason:
the alternative required implementing an in-memory cache
for data and metadata to any updates waiting on the WAL,
despite the kernel having a page and inode cache of its own.

3.1.3 Using a Key-Value Store as the WAL

With NewStore, the metadata was stored in RocksDB, an
ordered key-value store, while the object data were still rep-
resented as �les in a �le system. Hence, metadata operations
could be performed atomically; data overwrites, however,
were logged into RocksDB and executed later. We �rst de-
scribe how this design addresses the three problems of a
logical WAL, and then show that it introduces high consis-
tency overhead that stems from running atop a journaling
�le system.
First, slow read-modify-write operations are avoided be-

cause the key-value interface allows reading the new state
of an object without waiting for the transaction to commit.

Second, the problem of non-idempotent operation replay
is avoided because the read side of such operations is resolved
at the time when the transaction is prepared. For example,
for clone a→b, if object a is small, it is copied and inserted
into the transaction; if object a is large, a copy-on-write
mechanism is used, which changes both a and b to point to
the same data and marks the data read-only.
Finally, the problem of double writes is avoided for new

objects because the object namespace is now decoupled from
the �le system state. Therefore, data for a new object is
�rst written to the �le system and then a reference to it is
atomically added to the database.
Despite these favorable properties, the combination of

RocksDB and a journaling �le system introduces high con-
sistency overhead, similar to the journaling of journal prob-
lem [48, 81]. Creating an object in NewStore entails two
steps: (1) writing to a �le and calling fsync, and (2) writing
the object metadata to RocksDB synchronously [44], which
also calls fsync. Ideally, the fsync in each step should issue
one expensive FLUSH CACHE command [105] to disk. With
a journaling �le system, however, each fsync issues two
�ush commands: after writing the data, and after commit-
ting the corresponding metadata changes to the �le system
journal. Hence, creating an object in NewStore results in
four expensive �ush commands to disk.

We demonstrate the overhead of journaling using a bench-
mark that emulates a storage backend creating many ob-
jects. The benchmark has a loop where each iteration �rst
writes 0.5MiB of data and then inserts a 500-byte metadata
to RocksDB. We run the benchmark on two setups. The �rst
setup emulates NewStore, issuing four �ush operations for
every object creation: data is written as a �le to XFS, and the
metadata is inserted to stock RocksDB running on XFS. The
second setup emulates object creation on raw disk, which
issues two �ush operations for every object creation: data is
written to the raw disk and the metadata is inserted to a mod-
i�ed RocksDB that runs on a raw disk with a preallocated
pool of WAL �les.

357

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

HDD

O
b
je

ct
s/

s

Creating objects on XFS
Creating objects on raw device

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

SSD

O
b
je

ct
s/

s

Figure 3. The overhead of running an object store workload
on a journaling �le system. Object creation throughput is
80% higher on a raw HDD (4 TB Seagate ST4000NM0023)
and 70% higher on a raw NVMe SSD (400GB Intel P3600).

Figure 3 shows that the object creation throughput is 80%
higher on raw disk than on XFS when running on a HDD
and 70% when running on an NVMe SSD.

3.2 Challenge 2: Fast Metadata Operations

Ine�ciency of metadata operations in local �le systems is a
source of constant struggle for distributed �le systems [69,
71, 112]. One of the key metadata challenges in Ceph with
the FileStore backend stems from the slow directory enumer-
ation (readdir) operations on large directories, and the lack
of ordering in the returned result [85].
Objects in RADOS are mapped to a PG based on a hash

of their name, and enumerated by hash order. Enumeration
is necessary for operations like scrubbing [78], recovery, or
for serving librados calls that list objects. For objects with
long names—as is often the case with RGW—FileStore works
around the �le name length limitation in local �le systems
using extended attributes, which may require a stat call to
determine the object name. FileStore follows a commonly-
adopted solution to the slow enumeration problem: a di-
rectory hierarchy with large fan-out is created, objects are
distributed among directories, and then selected directories’
contents are sorted after being read.

To sort them quickly and to limit the overhead of potential
stat calls, directories are kept small (a few hundred entries)
by splitting them when the number of entries in them grows.
This is a costly process at scale, for two primary reasons.
First, processing millions of inodes at once reduces the e�ec-
tiveness of dentry cache, resulting in many small I/Os to disk.
And second, XFS places subdirectories in di�erent alloca-
tion groups [45] to ensure there is space for future directory
entries to be located close together [61]; therefore, as the
number of objects grows, directory contents spread out, and
split operations take longer due to seeks. As a result, when
all Ceph OSDs start splitting in unison the performance suf-
fers. This is a well-known problem that has been a�ecting
many Ceph users over the years [16, 27, 88].

 0

 4000

 8000

 12000

 16000

 20000

 0 2 4 6 8 10 12 14 16

O
b
je

ct
s/

s

Time (min)

16-node all-SSD Ceph Cluster

Figure 4. The e�ect of directory splitting on throughput
with FileStore backend. The workload inserts 4 KiB objects
using 128 parallel threads at the RADOS layer to a 16-node
Ceph cluster (setup explained in § 6). Directory splitting
brings down the throughput for 7 minutes on an all-SSD
cluster. Once the splitting is complete, the throughput re-
covers but does not return to peak, due to combination of
deeper nesting of �les, increased size of the underlying �le
system, and an imperfect implementation of the directory
hashing code in FileStore.

To demonstrate this e�ect, we con�gure a 16-node Ceph
cluster (§ 6) with roughly half the recommended number
of PGs to increase load per PG and accelerate splitting, and
insert millions of 4 KiB objects with queue depth of 128 at the
RADOS layer (§ 2.2). Figure 4 shows the e�ect of the splitting
on FileStore for an all-SSD cluster. While the �rst split is not
noticeable in the graph, the second split causes a precipitous
drop that kills the throughput for 7 minutes on an all-SSD
and 120 minutes on an all-HDD cluster (not shown), during
which a large and deep directory hierarchy with millions of
entries is scanned and even a deeper hierarchy is created. The
recovery takes an order of magnitude longer on an all-HDD
cluster due to high cost of seeks.

3.3 Challenge 3: Support For New Storage Hardware

The changing storage hardware landscape presents a new
challenge for distributed �le systems that depend on local
�le systems. To increase capacity, hard disk drive vendors
are shifting to SMR that works best when using a backward-
incompatible interface. While the vendors have produced
drive-managed SMR drives that are backward compatible,
these drives have unpredictable performance [1]. For leverag-
ing the extra capacity and achieving predictable performance
at the same time, host-managed SMR drives with a backward-
incompatible zone interface should be used [46]. The zone
interface, on the other hand, manages the disk as a sequence
of 256MiB regions that must be written sequentially, en-
couraging a log-structured, copy-on-write design [76]. This
design is in direct opposition to in-place overwrite design
followed by most mature �le systems.

358

Data center SSDs are going through a similar change.
OpenChannel SSDs eliminate the FTL, leaving the manage-
ment of raw �ash to the host. Lacking an o�cial standard,
several vendors have introduced di�erent methods of in-
terfacing OpenChannel SSDs, resulting in fragmented im-
plementations [11, 21, 33]. To prevent this, major vendors
have joined forces to introduce a new NVMe standard called
Zoned Namespaces (ZNS) that de�nes an interface for man-
aging SSDs without an FTL [10]. Eliminating the FTL results
in many advantages, such as reducing the write ampli�ca-
tion, improving latency outliers and throughput, reducing
overprovisioning by an order of magnitude, and cutting the
cost by reducing DRAM—the highest costing component in
SSD after the NAND �ash.
Both of these technologies—host-managed SMR drives

and ZNS SSDs—are becoming increasingly important for
distributed �le systems, yet, both have a backward incompat-
ible zone interface that requires radical changes to local �le
systems [9, 26]. It is not surprising that attempts to modify
production �le systems, such as XFS and ext4, to work with
the zone interface have so far been unsuccessful [19, 68],
primarily because these are overwrite �le systems, whereas
the zone interface requires a copy-on-write approach to data
management.

3.4 Other Challenges

Many public and private clouds rely on distributed stor-
age systems like Ceph for providing storage services [67].
Without the complete control of the I/O stack, it is hard for
distributed �le systems to enforce storage latency SLOs. One
cause of high-variance request latencies in �le-system-based
storage backends is the OS page cache. To improve user expe-
rience, most OSs implement the page cache using write-back
policy, in which a write operation completes once the data is
bu�ered in memory and the corresponding pages are marked
as dirty. On a system with little I/O activity, the dirty pages
are written back to disk at regular intervals, synchronizing
the on-disk and in-memory copies of data. On a busy system,
on the other hand, the write-back behavior is governed by a
complex set of policies that can trigger writes at arbitrary
times [8, 24, 107].
Hence, while the write-back policy results in a respon-

sive system for users with lightly loaded systems, it compli-
cates achieving predictable latency on busy storage backends.
Even with a periodic use of fsync, FileStore has been unable
to bound the amount of deferred inode metadata write-back,
leading to inconsistent performance.
Another challenge for �le-system-based backends is im-

plementing operations that work better with copy-on-write
support, such as snapshots. If the backing �le system is
copy-on-write, these operations can be implemented e�-
ciently. However, even if the copy-on-write is supported, a
�le system may have other drawbacks, like fragmentation
in FileStore on Btrfs (§ 2.3). If the backing �le system is not

Storage Device

BlueStore

RocksDB

BlueFS

metadatadata

Figure 5. The high-level architecture of BlueStore. Data is
written to the raw storage device using direct I/O. Metadata
is written to RocksDB running on top of BlueFS. BlueFS is a
user space library �le system designed for RocksDB, and it
also runs on top of the raw storage device.

copy-on-write, then these operations require performing ex-
pensive full copies of objects, which makes snapshots and
overwriting of erasure-coded data prohibitively expensive
in FileStore (§ 5.2).

4 BlueStore: A Clean-Slate Approach

BlueStore is a storage backend designed from scratch to
solve the challenges (§ 3) faced by backends using local �le
systems. Some of the main goals of BlueStore were:

1. Fast metadata operations (§ 4.1)
2. No consistency overhead for object writes (§ 4.1)
3. Copy-on-write clone operation (§ 4.2)
4. No journaling double-writes (§ 4.2)
5. Optimized I/O patterns for HDD and SSD (§ 4.2)

BlueStore achieved all of these goals within just two years
and became the default storage backend in Ceph. Two fac-
tors played a key role in why BlueStore matured so quickly
compared to general-purpose POSIX �le systems that take
a decade to mature [30, 56, 103, 104]. First, BlueStore imple-
ments a small, special-purpose interface, and not a complete
POSIX I/O speci�cation. Second, BlueStore is implemented
in user space, which allows it to leverage well-tested and
high-performance third-party libraries. Finally, BlueStore’s
control of the I/O stack enables additional features whose
discussion we defer to § 5.
The high-level architecture of BlueStore is shown in Fig-

ure 5. BlueStore runs directly on raw disks. A space allocator
within BlueStore determines the location of new data, which
is asynchronously written to disk using direct I/O. Internal
metadata and user object metadata is stored in RocksDB,
which runs on BlueFS, a minimal user space �le system tai-
lored to RocksDB. The BlueStore space allocator and BlueFS
share the disk and periodically communicate to balance free
space. The remainder of this section describes metadata and
data management in BlueStore.

359

4.1 BlueFS and RocksDB

BlueStore achieves its �rst goal, fast metadata operations,
by storing metadata in RocksDB. BlueStore achieves its sec-
ond goal of no consistency overhead with two changes.
First, it writes data directly to raw disk, resulting in one
cache �ush for data write. Second, it changes RocksDB to
reuse WAL �les as a circular bu�er, resulting in one cache
�ush for metadata write—a feature that was upstreamed to
the mainline RocksDB.
RocksDB itself runs on BlueFS, a minimal �le system de-

signed speci�cally for RocksDB that runs on a raw storage
device. RocksDB abstracts out its requirements from the
underlying �le system in the Env interface. BlueFS is an im-
plementation of this interface in the form of a user space,
extent-based, and journaling �le system. It implements basic
system calls required by RocksDB, such as open, mkdir, and
pwrite. A possible on-disk layout of BlueFS is shown in Fig-
ure 6. BlueFS maintains an inode for each �le that includes
the list of extents allocated to the �le. The superblock is
stored at a �xed o�set and contains an inode for the journal.
The journal has the only copy of all �le system metadata,
which is loaded into memory at mount time. On every meta-
data operation, such as directory creation, �le creation, and
extent allocation, the journal and in-memory metadata are
updated. The journal is not stored at a �xed location; its
extents are interleaved with other �le extents. The journal
is compacted and written to a new location when it reaches
a precon�gured size, and the new location is recorded in the
superblock. These design decisions work because large �les
and periodic compactions limit the volume of metadata at
any point in time.

Metadata Organization. BlueStore keeps multiple names-
paces in RocksDB, each storing a di�erent type of metadata.
For example, object information is stored in theO namespace
(that is, RocksDB keys start withO and their values represent
object metadata), block allocation metadata is stored in the B
namespace, and collection metadata is stored in the C names-
pace. Each collection maps to a PG and represents a shard of
a pool’s namespace. The collection name includes the pool
identi�er and a pre�x shared by the collection’s object names.
For example, a key-value pair C12.e4-6 identi�es a collec-
tion in pool 12 with objects that have hash values starting
with the 6 signi�cant bits of e4. Hence, the object O12.e532
is a member, whereas the object O12.e832 is not. Such orga-
nization of metadata allows a collection of millions of objects
to be split into multiple collections merely by changing the
number of signi�cant bits. This collection splitting operation
is necessary to rebalance data across OSDs when, for ex-
ample, a new OSD is added to the cluster to increase the
aggregate capacity or an existing OSD is removed from the
cluster due to a malfunction. With FileStore, collection split-
ting, which is di�erent than directory splitting (§ 3.2), was an
expensive operation that was done by renaming directories.

Superblock

Journal inode

Journal data

WAL inode

WAL data

Figure 6. A possible on-disk data layout of BlueFS. The
metadata in BlueFS lives only in the journal. The journal does
not have a �xed location—its extents are interleaved with �le
data. The WAL, LOG, and SST �les are write-ahead log �le,
debug log �le, and a sorted-string table �les, respectively,
generated by RocksDB.

4.2 Data Path and Space Allocation

BlueStore is a copy-on-write backend. For incoming writes
larger than a minimum allocation size (64 KiB for HDDs,
16 KiB for SSDs) the data is written to a newly allocated ex-
tent. Once the data is persisted, the corresponding metadata
is inserted to RocksDB. This allows BlueStore to provide an
e�cient clone operation. A clone operation simply incre-
ments the reference count of dependent extents, and writes
are directed to new extents. It also allows BlueStore to avoid
journal double-writes for object writes and partial over-
writes that are larger than the minimum allocation size.

For writes smaller than the minimum allocation size, both
data and metadata are �rst inserted to RocksDB as promises
of future I/O, and then asynchronously written to disk after
the transaction commits. This deferred write mechanism has
two purposes. First, it batches small writes to increase e�-
ciency, because new data writes require two I/O operations
whereas an insert to RocksDB requires one. Second, it op-
timizes I/O based on the device type. 64 KiB (or smaller)
overwrites of a large object on an HDD are performed asyn-
chronously in place to avoid seeks during reads, whereas
in-place overwrites only happen for I/O sizes less than 16 KiB
on SSDs.

Space Allocation. BlueStore allocates space using two mod-
ules: the FreeList manager and the Allocator. The FreeList
manager is responsible for a persistent representation of
the parts of the disk currently in use. Like all metadata in
BlueStore, this free list is also stored in RocksDB. The �rst
implementation of the FreeList manager represented in-use
regions as key-value pairs with o�set and length. The dis-
advantage of this approach was that the transactions had
to be serialized: the old key had to be deleted �rst before
inserting a new key to avoid an inconsistent free list. The
second implementation is bitmap-based. Allocation and deal-
location operations use RocksDB’s merge operator to �ip

360

bits corresponding to the a�ected blocks, eliminating the
ordering constraint. The merge operator in RocksDB per-
forms a deferred atomic read-modify-write operation that
does not change the semantics and avoids the cost of point
queries [43].
The Allocator is responsible for allocating space for the

new data. It keeps a copy of the free list in memory and
informs the FreeList manager as allocations are made. The
�rst implementation of Allocator was extent-based, dividing
the free extents into power-of-two-sized bins. This design
was susceptible to fragmentation as disk usage increased. The
second implementation uses a hierarchy of indexes layered
on top of a single-bit-per-block representation to track whole
regions of blocks. Large and small extents can be e�ciently
found by querying the higher and lower indexes, respectively.
This implementation has a �xed memory usage of 35MiB
per terabyte of capacity.

Cache. Since BlueStore is implemented in user space and
accesses the disk using direct I/O, it cannot leverage the
OS page cache. As a result, BlueStore implements its own
write-through cache in user space, using the scan resistant
2Q algorithm [49]. The cache implementation is sharded for
parallelism. It uses an identical sharding scheme to Ceph
OSDs, which shard requests to collections across multiple
cores. This avoids false sharing, so that the same CPU context
processing a given client request touches the corresponding
2Q data structures.

5 Features Enabled by BlueStore

In this section we describe new features implemented in
BlueStore. These features were previously lacking because
implementing them e�ciently requires full control of the
I/O stack.

5.1 Space-E�cient Checksums

Ceph scrubs metadata every day and data every week. Even
with scrubbing, however, if the data is inconsistent across
replicas it is hard to be sure which copy is corrupt. Therefore,
checksums are indispensable for distributed storage systems
that regularly deal with petabytes of data, where bit �ips are
almost certain to occur.

Most local �le systems do not support checksums. When
they do, like Btrfs, the checksum is computed over 4 KiB
blocks to make block overwrites possible. For 10 TiB of data,
storing 32-bit checksums of 4 KiB blocks results in 10GiB
of checksum metadata, which makes it di�cult to cache
checksums in memory for fast veri�cation.

On the other hand, most of the data stored in distributed
�le systems is read-only and can be checksummed at a larger
granularity. BlueStore computes a checksum for every write
and veri�es the checksum on every read. While multiple
checksum algorithms are supported, crc32c is used by de-
fault because it is well-optimized on both x86 and ARM

architectures, and it is su�cient for detecting random bit er-
rors. With full control of the I/O stack, BlueStore can choose
the checksum block size based on the I/O hints. For example,
if the hints indicate that writes are from the S3-compatible
RGW service, then the objects are read-only and the check-
sum can be computed over 128KiB blocks, and if the hints
indicate that objects are to be compressed, then a check-
sum can be computed after the compression, signi�cantly
reducing the total size of checksum metadata.

5.2 Overwrite of Erasure-Coded Data

Ceph has supported erasure-coded (EC) pools (§ 2.2) through
the FileStore backend since 2014. However, until BlueStore,
EC pools only supported object appends and deletions—
overwrites were slow enough to make the system unusable.
As a result, the use of EC pools were limited to RGW; for
RBD and CephFS only replicated pools were used.

To avoid the “RAID write hole” problem [92], where crash-
ing during a multi-step data update can leave the system in
an inconsistent state, Ceph performs overwrites in EC pools
using two-phase commit. First, all OSDs that store a chunk
of the EC object make a copy of the chunk so that they can
roll back in case of failure. After all of the OSDs receive the
new content and overwrite their chunks, the old copies are
discarded. With FileStore on XFS, the �rst phase is expensive
because each OSD performs a physical copy of its chunk.
BlueStore, however, makes overwrites practical because its
copy-on-write mechanism avoids full physical copies.

5.3 Transparent Compression

Transparent compression is crucial for scale-out distributed
�le systems because 3× replication increases storage costs
[32, 40]. BlueStore implements transparent compressionwhere
written data is automatically compressed before being stored.

Getting the full bene�t of compression requires compress-
ing over large 128 KiB chunks, and compression works well
when objects are written in their entirety. For partial over-
writes of a compressed object, BlueStore places the new data
in a separate location and updates metadata to point to it.
When the compressed object gets too fragmented due to mul-
tiple overwrites, BlueStore compacts the object by reading
and rewriting. In practice, however, BlueStore uses hints and
simple heuristics to compress only those objects that are
unlikely to experience many overwrites.

5.4 Exploring New Interfaces

Despite multiple attempts [19, 68], local �le systems are
unable to leverage the capacity bene�ts of SMR drives due
to their backward-incompatible interface, and it is unlikely
that they will ever do so e�ciently [28, 30]. Supporting these
denser drives, however, is important for scale-out distributed
�le systems because it lowers storage costs [59].

361

Unconstrained by the block-based designs of local �le
systems, BlueStore has the freedom of exploring novel in-
terfaces and data layouts. This has recently enabled porting
RocksDB and BlueFS (§ 4.1) to run on host-managed SMR
drives, and an e�ort is underway to store object data on such
drives next [3]. In addition, the Ceph community is explor-
ing a new backend that targets a combination of persistent
memory and emerging NVMe devices with novel interfaces,
such as ZNS SSDs [9, 26] and KV SSDs [51].

6 Evaluation

This section compares the performance of a Ceph cluster
using FileStore, a backend built on a local �le system, and
BlueStore, a backend using the storage device directly. We
�rst compare the throughput of object writes to the RADOS
distributed object storage (§ 6.1). Then, we compare the end-
to-end throughput of random writes, sequential writes, and
sequential reads to RBD, the Ceph virtual block device built
on RADOS (§ 6.2). Finally, we compare the throughput of
random writes to an RBD device allocated on an erasure-
coded pool (§ 6.3).
We run all experiments on a 16-node Ceph cluster con-

nected with a Cisco Nexus 3264-Q 64-port QSFP+ 40GbE
switch. Each node has a 16-core Intel E5-2698Bv3 Xeon
2GHz CPU, 64GiB RAM, 400GB Intel P3600 NVMe SSD,
4TB 7200RPM Seagate ST4000NM0023 HDD, and a Mellanox
MCX314A-BCCT 40GbE NIC. All nodes run Linux kernel
4.15 on Ubuntu 18.04, and the Luminous release (v12.2.11) of
Ceph. We use the default Ceph con�guration parameters.

6.1 Bare RADOS Benchmarks

We start by comparing the performance of object writes to
RADOS when using the FileStore and BlueStore backends.
We focus on write performance improvements because most
BlueStore optimizations a�ect writes.
Figure 7 shows the throughput for di�erent object sizes

written with a queue depth of 128. At the steady state, the
throughput on BlueStore is 50-100% greater than FileStore.
The throughput improvement on BlueStore stems from avoid-
ing double writes (§ 3.1.2) and consistency overhead (§ 3.1.3).

Figure 8 shows the 95th and above percentile latencies of
object writes to RADOS. BlueStore has an order of magnitude
lower tail latency than FileStore. In addition, with BlueStore
the tail latency increases with the object size, as expected,
whereas with FileStore even small-sized object writes may
have high tail latency, stemming from the lack of control
over writes (§ 3.4).

The read performance on BlueStore (not shown) is similar
or better than on FileStore for I/O sizes larger than 128 KiB;
for smaller I/O sizes FileStore is better because of the kernel
read-ahead [6]. BlueStore does not implement read-ahead
on purpose. It is expected that the applications implemented
on top of RADOS will perform their own read-ahead.

 0

 100

 200

 300

 400

 500

64 128 256 512 1024 2048 4096

M
iB

/s

I/O Size (KiB)

BlueStore FileStore

Figure 7.Throughput of steady state object writes to RADOS
on a 16-node all-HDD cluster with di�erent sizes using 128
threads. Compared to FileStore, the throughput is 50-100%
greater on BlueStore and has a signi�cantly lower variance.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1 1.2

F
ra

ct
io

n
 o

f
W

ri
te

s

Latency (s)

BlueStore

64 KiB
128 KiB

256 KiB
512 KiB

1024 KiB
2048 KiB

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 4 8 12 16 20 24

F
ra

ct
io

n
 o

f
W

ri
te

s

Latency (s)

FileStore

Figure 8. 95th and above percentile latencies of object writes
to RADOS on a 16-node all-HDD cluster with di�erent sizes
using 128 threads. BlueStore (top graph) has an order of
magnitude lower tail latency than FileStore (bottom graph).

BlueStore eliminates the directory splitting e�ect of File-
Store by storing metadata in an ordered key-value store. To
demonstrate this, we repeat the experiment that showed
the splitting problem in FileStore (§ 3.2) on an identically
con�gured Ceph cluster using a BlueStore backend. Figure 9
shows that the throughput on BlueStore does not su�er the
precipitous drop, and in the steady state it is 2× higher than
FileStore throughput on SSD (and 3× higher than FileStore

362

throughput on HDD—not shown). Still, the throughput on
BlueStore drops signi�cantly before reaching a steady state
due to RocksDB compaction whose cost grows with the ob-
ject corpus.

6.2 RADOS Block Device Benchmarks

Next, we compare the performance of RADOS Block Device
(RBD), a virtual block device service implemented on top of
RADOS, when using the BlueStore and FileStore backends.
RBD is implemented as a kernel module that exports a block
device to the user, which can be formatted and mounted like
a regular block device. Data written to the device is striped
into 4MiB RADOS objects and written in parallel to multiple
OSDs over the network.

For RBD benchmarks we create a 1 TB virtual block device,
format it with XFS, and mount it on the client. We use fio [7]
to perform sequential and random I/O with queue depth of
256 and I/O sizes ranging from 4KiB to 4MiB. For each
test, we write about 30GiB of data. Before starting every
experiment, we drop the OS page cache for FileStore, and
we restart OSDs for BlueStore to eliminate caching e�ects
in read experiments. We �rst run all the experiments on a
Ceph cluster installed with FileStore backend. We then tear
down the cluster, reinstall it with BlueStore backend, and
repeat all the experiments.
Figure 10 shows the results for sequential writes, ran-

dom writes, and sequential reads. For I/O sizes larger than
512 KiB, sequential and random write throughput is on aver-
age 1.7× and 2× higher with BlueStore, respectively, again
mainly due to avoiding double-writes. BlueStore also dis-
plays a signi�cantly lower throughput variance because it
can deterministically push data to disk. In FileStore, on the
other hand, arbitrarily-triggered writeback (§ 3.4) con�icts
with the foreground writes to the WAL and introduces long
request latencies.

For medium I/O sizes (128–512 KiB) the throughput di�er-
ence decreases for sequential writes because XFS masks out
part of the cost of double writes in FileStore. With medium
I/O sizes the writes to WAL do not fully utilize the disk.
This leaves enough bandwidth for another write stream to
go through and not have a large impact on the foreground
writes to WAL. After writing the data synchronously to the
WAL, FileStore then asynchronously writes it to the �le sys-
tem. XFS bu�ers these asynchronous writes and turns them
into one large sequential write before issuing to disk. XFS
cannot do the same for random writes, which is why the
high throughput di�erence continues even for medium-sized
random writes.
Finally, for I/O sizes smaller than 64KiB (not shown) the

throughput of BlueStore is 20% higher than that of FileStore.
For these I/O sizes BlueStore performs deferred writes by
inserting data to RocksDB �rst, and then asynchronously
overwriting the object data to avoid fragmentation (§ 4.2).

 0

 8000

 16000

 24000

 32000

 40000

 0 2 4 6 8 10 12 14 16

O
b
je

ct
s/

s

Time (min)

BlueStore FileStore

Figure 9. Throughput of 4 KiB RADOS object writes with
queue depth of 128 on a 16-node all-SSD cluster. At steady
state, BlueStore is 2× faster than FileStore on SSD. BlueStore
does not su�er from directory splitting; however, its through-
put is gradually brought down by the RocksDB compaction
overhead.

The throughput of read operations in BlueStore is similar
or slightly better than that of FileStore for I/O sizes larger
than 32 KiB. For smaller I/O sizes, as the rightmost graph in
Figure 10 shows, FileStore throughput is better because of the
kernel readahead. While RBD does implement a readahead,
it is not as well-tuned as the kernel readahead.

6.3 Overwriting Erasure-Coded Data

One of the features enabled by BlueStore is the e�cient
overwrite of EC data. We have measured the throughput
of random overwrites for both BlueStore and FileStore. Our
benchmark creates 1 TB RBD using one client. The client
mounts the block device and performs 5GiB of random 4KiB
writes with queue depth of 256. Since the RBD is striped
in 4MiB RADOS objects, every write results in an object
overwrite.We repeat the experiment on a virtual block device
allocated on a replicated pool, on an EC pool with parameters
k = 4 andm = 2 (EC4-2), and k = 5 andm = 1 (EC5-1).

Figure 11 compares the throughput of replicated and EC
pools when using BlueStore and FileStore backends. Blue-
Store EC pools achieve 6× more IOPS on EC4-2, and 8×
more IOPS on EC5-1 than FileStore. This is due to BlueStore
avoiding full physical copies during the �rst phase of the two-
phase commit required for overwriting EC objects (§ 5.2). As
a result, it is practical to use EC pools with applications that
require data overwrite, such as RBD and CephFS, with the
BlueStore backend.

7 Challenges of Building E�cient Storage
Backends on Raw Storage

This section describes some of the challenges that the Ceph
team faced when building a storage backend on raw storage
devices from scratch.

363

 0

 100

 200

 300

 400

 500

 600

 128 256 512 1024 2048 4096

M
B

/s

I/O Size (KiB)

BlueStore sequential write
FileStore sequential write

 0

 100

 200

 300

 400

 500

 600

 128 256 512 1024 2048 4096

M
B

/s

I/O Size (KiB)

BlueStore random write
FileStore random write

 0

 100

 200

 300

 400

 500

 600

 4 8 16 32 64 128

M
B

/s

I/O Size (KiB)

BlueStore sequential read
FileStore sequential read

Figure 10. Sequential write, random write, and sequential read throughput with di�erent I/O sizes and queue depth of 256 on
a 1 TB Ceph virtual block device (RBD) allocated on a 16-node all-HDD cluster. Results for an all-SSD cluster were similar but
not shown for brevity.

 0

 200

 400

 600

 800

 1000

 1200

BlueStore FileStore

IO
P

S

Rep 3X EC 4-2 EC 5-1

Figure 11. IOPS observed from a client performing random
4KiB writes with queue depth of 256 to a Ceph virtual block
device (RBD). The device is allocated on a 16-node all-HDD
cluster.

7.1 Cache Sizing and Writeback

The OS fully utilizes the machine memory by dynamically
growing or shrinking the size of the page cache based on
the application’s memory usage. It writes back the dirty
pages to disk in the background trying not to adversely
a�ect foreground I/O, so that memory can be quickly reused
when applications ask for it.

A storage backend based on a local �le system automati-
cally inherits the bene�ts of the OS page cache. A storage
backend that bypasses the local �le system, however, has
to implement a similar mechanism from scratch (§ 4.2). In
BlueStore, for example, the cache size is a �xed con�gura-
tion parameter that requires manual tuning. Building an
e�cient user space cache with the dynamic resizing func-
tionality of the OS page cache is an open problem shared
by other projects, like PostgreSQL [25] and RocksDB [42].
With the arrival of fast NVMe SSDs, such a cache needs to
be e�cient enough that it does not incur overhead for write-
intensive workloads—a de�ciency that current page cache
su�ers from [20].

7.2 Key-value Store E�ciency

The experience of the Ceph team demonstrates that mov-
ing all of the metadata to an ordered key-value store, like
RocksDB, signi�cantly improves the e�ciency of metadata
operations. However, the Ceph team has also found that em-
bedding RocksDB in BlueStore is problematic in multiple
ways: (1) RocksDB’s compaction and high write ampli�ca-
tion have been the primary performance limiters when using
NVMe SSDs in OSDs; (2) since RockDB is treated as a black
box, data is serialized and copied in and out of it, consuming
CPU time; and (3) RocksDB has its own threading model,
which limits the ability to do custom sharding. These and
other problems with RocksDB and similar key-value stores
keeps the Ceph team researching better solutions.

7.3 CPU and Memory E�ciency

Modern compilers align and pad basic datatypes in memory
so that CPU can fetch data e�ciently, thereby increasing
performance. For applications with complex structs, the
default layout can waste a signi�cant amount of memory [22,
64]. Many applications are rightly not concerned with this
problem because they allocate short-lived data structures.
A storage backend that bypasses the OS page cache, on the
other hand, runs continously and controls almost all of a
machine’s memory. Therefore, the Ceph team spent a lot
of time packing structures stored in RocksDB to reduce the
total metadata size and also compaction overhead. The main
tricks used were delta and variable-integer encoding.
Another observation with BlueStore is that on high-end

NVMe SSDs the workloads are becoming increasingly CPU-
bound. For its next-generation backend, the Ceph community
is exploring techniques that reduce CPU consumption, such
as minimizing data serialization-deserialization, and using
the SeaStar framework [79] with shared-nothing model that
avoids context switches due to locking.

364

8 Related Work

The primary motivator for BlueStore is the lack of transac-
tions and unscalablemetadata operations in local �le systems.
In this section we compare BlueStore to previous research
that aims to address these problems.

Transaction Support. Previous works have generally fol-
lowed three approaches when introducing transactional in-
terface to �le system users.

The �rst approach is to leverage the in-kernel transaction
mechanism present in the �le systems. Examples of the this
are Btrfs’ export of transaction system calls to userspace [23],
Transactional NTFS [52], Valor [87], and TxFS [39]. The draw-
backs of this approach are the complexity and incomplete-
ness of the interface, and the a signi�cant implementation
complexity. For example, Btrfs and NTFS both recently dep-
recated their transaction interface [15, 53] citing di�culty
guaranteeing correct or safe usage, which corroborates File-
Store’s experience (§ 3.1.1). Valor [87], while not tied to a
speci�c �le system, also has a nuanced interface that re-
quires correct use of a combo of seven system calls, and a
complex in-kernel implementation. TxFS is a recent work
that introduces a simple interface built on ext4’s journal-
ing layer; however, its implementation requires non-trivial
amount of change to the Linux kernel. BlueStore, informed
by FileStore’s experience, avoids using �le systems’ in-kernel
transaction infrastructure.

The second approach builds a user space �le system atop
a database, utilizing existing transactional semantics. For
example, Amino [106] relies on Berkeley DB [66] as the
backing store, and Inversion [65] stores �les in a POSTGRES
database [91]. While these �le systems provide seamless
transactional operations, they generally su�er from high per-
formance overhead because they accrue the overhead of the
layers below. BlueStore similarly leverages a transactional
database, but incurs zero overhead because it eliminates the
local �le system and runs the database on a raw disk.
The third approach provides transactions as a �rst-class

abstraction in the OS and implements all services, includ-
ing the �le system, using transactions. QuickSilver [77] is
an example of such system that uses built-in transactions
for implementing a storage backend for a distributed �le
system. Similarly, TxOS [72] adds transactions to the Linux
kernel and converts ext3 into a transactional �le system. This
approach, however, is too heavyweight for achieving �le sys-
tem transactions, and such a kernel is tricky to maintain [39].

Metadata Optimizations. A large body of work has pro-
duced a plethora of approaches to metadata optimizations in
local �le systems. BetrFS [47] introduces Bϵ -Tree as an index-
ing structure for e�cient large scans. DualFS [70], hFS [110],
and ext4-lazy [2] abandon traditional FFS [61] cylinder group
design and aggregate all metadata in one place to achieve

signi�cantly faster metadata operations. TableFS [75] and
DeltaFS [111] store metadata in LevelDB running atop a �le
system and achieve orders of magnitude faster metadata
operations than local �le systems.

While BlueStore also stores metadata in RocksDB—a Lev-
elDB derivative—to achieve similar speedup, it di�ers from
the above in two important ways: (1) in BlueStore, RocksDB
runs atop a raw disk incurring zero overhead, and (2) Blue-
Store keeps all metadata, including the internal metadata,
in RocksDB as key-value pairs. Storing internal metadata
as variable-sized key-value pairs, as opposed to �xed-sized
records on disk, scales more easily. For example, the Lustre
distributed �le system that uses an ext4-derivate called LD-
ISKFS for the storage backend, has changed on-disk format
twice in a short period to accommodate for increasing disk
sizes [12, 13].

9 Conclusion

Distributed �le system developers conventionally adopt local
�le systems as their storage backend. They then try to �t the
general-purpose �le system abstractions to their needs, in-
curring signi�cant accidental complexity [14]. At the core of
this convention lies the belief that developing a storage back-
end from scratch is an arduous process, akin to developing a
new �le system that takes a decade to mature.

Our paper, relying on the Ceph team’s experience, shows
this belief to be inaccurate. Furthermore, we �nd that de-
veloping a special-purpose, user space storage backend from
scratch (1) reclaims the signi�cant performance left on the
table when building a backend on a general-purpose �le
system, (2) makes it possible to adopt novel, backward in-
compatible storage hardware, and (3) enables new features
by gaining complete control of the I/O stack. We hope that
this experience paper will initiate discussions among storage
practitioners and researchers on fresh approaches to design-
ing distributed �le systems and their storage backends.

Acknowledgments

We thank Robert Morris (our shepherd), Matias Bjørling,
and the anonymous reviewers for their feedback. We would
like to acknowledge the BlueStore authors, which include
Igor Fedotov, Xie Xingguo, Ma Jianpeng, Allen Samuels,
Varada Kari, and Haomai Wang. We also thank the mem-
bers and companies of the PDL Consortium: Alibaba Group,
Amazon, Datrium, Facebook, Google, Hewlett Packard En-
terprise, Hitachi Ltd., Intel Corporation, IBM, Micron, Mi-
crosoft Research, NetApp, Inc., Oracle Corporation, Sales-
force, Samsung Semiconductor Inc., Seagate Technology, and
Two Sigma for their interest, insights, feedback, and support.

Abutalib Aghayev is supported by an SOSP 2019 student
scholarship from the National Science Foundation. Michael
Kuchnik is supported by an SOSP 2019 student scholarship
from the ACM Special Interest Group in Operating Systems
and by an NDSEG Fellowship.

365

References
[1] Abutalib Aghayev and Peter Desnoyers. 2015. Skylight—A Window

on Shingled Disk Operation. In 13th USENIX Conference on File and

Storage Technologies (FAST 15). USENIX Association, Santa Clara, CA,

USA, 135–149. h�ps://www.usenix.org/conference/fast15/technical-

sessions/presentation/aghayev

[2] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and Peter Desnoy-

ers. 2017. Evolving Ext4 for Shingled Disks. In 15th USENIX Con-

ference on File and Storage Technologies (FAST 17). USENIX Associa-

tion, Santa Clara, CA, 105–120. h�ps://www.usenix.org/conference/

fast17/technical-sessions/presentation/aghayev

[3] Abutalib Aghayev, Sage Weil, Greg Ganger, and George Amvrosiadis.

2019. Reconciling LSM-Trees with Modern Hard Drives using BlueFS.

Technical Report CMU-PDL-19-102. CMU Parallel Data Labora-

tory. h�p://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-19-102_abs.

shtml

[4] Amazon.com, Inc. 2019. Amazon Elastic Block Store. h�ps://aws.

amazon.com/ebs/.

[5] Amazon.com, Inc. 2019. Amazon S3. h�ps://aws.amazon.com/s3/.

[6] Jens Axboe. 2009. Queue sysfs �les. h�ps://www.kernel.org/doc/

Documentation/block/queue-sysfs.txt.

[7] Jens Axboe. 2016. Flexible I/O Tester. git://git.kernel.dk/fio.git.

[8] Jens Axboe. 2016. Throttled Background Bu�ered Writeback. h�ps:

//lwn.net/Articles/698815/.

[9] Matias Bjørling. 2019. From Open-Channel SSDs to Zoned Names-

paces. In Linux Storage and Filesystems Conference (Vault 19). USENIX

Association, Boston, MA.

[10] Matias Bjørling. 2019. New NVMe Speci�cation De�nes

Zoned Namespaces (ZNS) as Go-To Industry Technology.

h�ps://nvmexpress.org/new-nvmetm-specification-defines-

zoned-namespaces-zns-as-go-to-industry-technology/.

[11] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. 2017. Light-

NVM: The Linux Open-Channel SSD Subsystem. In 15th USENIX

Conference on File and Storage Technologies (FAST 17). USENIX Associ-

ation, Santa Clara, CA, 359–374. h�ps://www.usenix.org/conference/

fast17/technical-sessions/presentation/bjorling

[12] Artem Blagodarenko. 2016. Scaling LDISKFS for the future. h�ps:

//www.youtube.com/watch?v=ubbZGpxV6zk.

[13] Artem Blagodarenko. 2017. Scaling LDISKFS for the future. Again.

h�ps://www.youtube.com/watch?v=HLfEd0_Dq0U.

[14] Frederick P Brooks Jr. 1986. No Silver Bullet—Essence and Accident

in Software Engineering.

[15] Btrfs. 2019. Btrfs Changelog. h�ps://btrfs.wiki.kernel.org/index.php/

Changelog.

[16] David C. 2018. [ceph-users] Luminous | PG split causing slow re-

quests. h�p://lists.ceph.com/pipermail/ceph-users-ceph.com/2018-

February/024984.html.

[17] Luoqing Chao and Thunder Zhang. 2015. Implement Object Storage

with SMR based key-value store. h�ps://www.snia.org/sites/default/

files/SDC15_presentations/smr/QingchaoLuo_Implement_Object_

Storage_SMR_Key-Value_Store.pdf.

[18] Dave Chinner. 2010. XFS Delayed Logging Design.

h�ps://www.kernel.org/doc/Documentation/filesystems/xfs-

delayed-logging-design.txt.

[19] Dave Chinner. 2015. SMR Layout Optimization for XFS. h�p://xfs.

org/images/f/f6/Xfs-smr-structure-0.2.pdf.

[20] Dave Chinner. 2019. Re: pagecache locking (was: bcachefs status

update) merged). h�ps://lkml.org/lkml/2019/6/13/1794.

[21] Alibaba Clouder. 2018. Alibaba Deploys Alibaba Open

Channel SSD for Next Generation Data Centers. h�ps:

//www.alibabacloud.com/blog/alibaba-deploys-alibaba-open-

channel-ssd-for-next-generation-data-centers_593802.

[22] William Cohen. 2016. How to avoid wasting megabytes of memory a

few bytes at a time. h�ps://developers.redhat.com/blog/2016/06/01/

how-to-avoid-wasting-megabytes-of-memory-a-few-bytes-at-a-

time/.

[23] Jonathan Corbet. 2009. Supporting transactions in Btrfs. h�ps://lwn.

net/Articles/361457/.

[24] Jonathan Corbet. 2011. No-I/O dirty throttling. h�ps://lwn.net/

Articles/456904/.

[25] Jonathan Corbet. 2018. PostgreSQL’s fsync() surprise. h�ps://lwn.

net/Articles/752063/.

[26] Western Digital. 2019. Zoned Storage. h�p://zonedstorage.io.

[27] Anton Dmitriev. 2017. [ceph-users] All OSD fails after few requests

to RGW. h�p://lists.ceph.com/pipermail/ceph-users-ceph.com/2017-

May/017950.html.

[28] Jake Edge. 2015. Filesystem support for SMR devices. h�ps://lwn.

net/Articles/637035/.

[29] Jake Edge. 2015. The OrangeFS distributed �lesystem. h�ps://lwn.

net/Articles/643165/.

[30] Jake Edge. 2015. XFS: There and back ... and there again? h�ps:

//lwn.net/Articles/638546/.

[31] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel:

An Operating System Architecture for Application-level Resource

Management. In Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles (SOSP ’95). ACM, New York, NY, USA,

251–266. h�ps://doi.org/10.1145/224056.224076

[32] Andrew Fikes. 2010. Storage Architecture and Challenges. h�ps:

//cloud.google.com/files/storage_architecture_and_challenges.pdf.

[33] Mary Jo Foley. 2018. Microsoft readies new cloud SSD storage spec for

the Open Compute Project. h�ps://www.zdnet.com/article/microso�-

readies-new-cloud-ssd-storage-spec-for-the-open-compute-

project/.

[34] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The

Google File System. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles (SOSP ’03). ACM, New York, NY, USA,

29–43. h�ps://doi.org/10.1145/945445.945450

[35] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-

Hosekote, Andrew A. Chien, and Haryadi S. Gunawi. 2016. The

Tail at Store: A Revelation from Millions of Hours of Disk and

SSD Deployments. In 14th USENIX Conference on File and Storage

Technologies (FAST 16). USENIX Association, Santa Clara, CA, 263–

276. h�ps://www.usenix.org/conference/fast16/technical-sessions/

presentation/hao

[36] Christoph Hellwig. 2009. XFS: The Big Storage File System for Linux.

USENIX ;login issue 34, 5 (2009).

[37] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,

Robert N. Sidebotham, and M. West. 1987. Scale and Performance in

a Distributed File System. In Proceedings of the Eleventh ACM Sym-

posium on Operating Systems Principles (SOSP ’87). ACM, New York,

NY, USA, 1–2. h�ps://doi.org/10.1145/41457.37500

[38] Joel Hruska. 2019. Western Digital to Demo Dual Actu-

ator HDD, Will Use SMR to Hit 18TB Capacity. h�ps:

//www.extremetech.com/computing/287319-western-digital-

to-demo-dual-actuator-hdd-will-use-smr-to-hit-18tb-capacity.

[39] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng, Vijay

Chidambaram, and Emmett Witchel. 2018. TxFS: Leveraging File-

System Crash Consistency to Provide ACID Transactions. In 2018

USENIX Annual Technical Conference (USENIX ATC 18). USENIX Asso-

ciation, Boston, MA, 879–891. h�ps://www.usenix.org/conference/

atc18/presentation/hu

[40] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,

Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Coding

in Windows Azure Storage. In Presented as part of the 2012 USENIX

Annual Technical Conference (USENIX ATC 12). USENIX, Boston, MA,

15–26. h�ps://www.usenix.org/conference/atc12/technical-sessions/

presentation/huang

366

[41] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht,

Matthias Hess, Jesus Malo, JonathanMarti, and Eugenio Cesario. 2008.

The XtreemFS Architecture – a Case for Object-based File Systems

in Grids. Concurrency and Computation: Practice and Experience 20,

17 (Dec. 2008), 2049–2060. h�ps://doi.org/10.1002/cpe.v20:17

[42] Facebook Inc. 2019. RocksDB Direct IO. h�ps://github.com/facebook/

rocksdb/wiki/Direct-IO.

[43] Facebook Inc. 2019. RocksDB Merge Operator. h�ps://github.com/

facebook/rocksdb/wiki/Merge-Operator.

[44] Facebook Inc. 2019. RocksDB Synchronous Writes.

h�ps://github.com/facebook/rocksdb/wiki/Basic-Operations#

synchronous-writes.

[45] Silicon Graphics Inc. 2006. XFS Allocation Groups. h�p:

//xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure/tmp/en-

US/html/Allocation_Groups.html.

[46] INCITS T10 Technical Committee. 2014. Information technology -

Zoned Block Commands (ZBC). Draft Standard T10/BSR INCITS

536. American National Standards Institute, Inc. Available from

h�p://www.t10.org/dra�s.htm.

[47] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Es-

met, Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy,

Leif Walsh, Michael A. Bender, Martin Farach-Colton, Rob Johnson,

Bradley C. Kuszmaul, and Donald E. Porter. 2015. BetrFS: Write-

Optimization in a Kernel File System. Trans. Storage 11, 4, Article 18

(Nov. 2015), 29 pages. h�ps://doi.org/10.1145/2798729

[48] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip

Won. 2013. I/O Stack Optimization for Smartphones. In Presented as

part of the 2013 USENIX Annual Technical Conference (USENIX ATC 13).

USENIX, San Jose, CA, 309–320. h�ps://www.usenix.org/conference/

atc13/technical-sessions/presentation/jeong

[49] Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead

High Performance Bu�er Management Replacement Algorithm. In

Proceedings of the 20th International Conference on Very Large Data

Bases (VLDB ’94). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 439–450. h�p://dl.acm.org/citation.cfm?id=645920.672996

[50] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M.

Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert

Grimm, John Jannotti, and Kenneth Mackenzie. 1997. Application

Performance and Flexibility on Exokernel Systems. In Proceedings

of the Sixteenth ACM Symposium on Operating Systems Principles

(SOSP ’97). ACM, New York, NY, USA, 52–65. h�ps://doi.org/10.1145/

268998.266644

[51] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee,

Francisco Londono, Sangyoon Oh, Jongyeol Lee, and Daniel D. G.

Lee. 2019. Towards Building a High-performance, Scale-in Key-value

Storage System. In Proceedings of the 12th ACM International Confer-

ence on Systems and Storage (SYSTOR ’19). ACM, New York, NY, USA,

144–154. h�ps://doi.org/10.1145/3319647.3325831

[52] John Kennedy and Michael Satran. 2018. About Transactional

NTFS. h�ps://docs.microso�.com/en-us/windows/desktop/fileio/

about-transactional-ntfs.

[53] John Kennedy and Michael Satran. 2018. Alternatives to using Trans-

actional NTFS. h�ps://docs.microso�.com/en-us/windows/desktop/

fileio/deprecation-of-txf.

[54] Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO Com-

plying SSDs Through OPS Isolation. In 13th USENIX Conference on File

and Storage Technologies (FAST 15). USENIX Association, Santa Clara,

CA, 183–189. h�ps://www.usenix.org/conference/fast15/technical-

sessions/presentation/kim_jaeho

[55] Butler Lampson and Howard E Sturgis. 1979. Crash recovery in a

distributed data storage system. (1979).

[56] Adam Leventhal. 2016. APFS in Detail: Overview. h�p://dtrace.org/

blogs/ahl/2016/06/19/apfs-part1/.

[57] Peter Macko, Xiongzi Ge, John Haskins Jr., James Kelley, David Slik,

Keith A. Smith, and Maxim G. Smith. 2017. SMORE: A Cold Data

Object Store for SMRDrives (Extended Version). CoRR abs/1705.09701

(2017). h�p://arxiv.org/abs/1705.09701

[58] Magic Pocket &Hardware Engineering Teams. 2018. ExtendingMagic

Pocket Innovationwith the �rst petabyte scale SMR drive deployment.

h�ps://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-

innovation-with-the-first-petabyte-scale-smr-drive-deployment/.

[59] Magic Pocket & Hardware Engineering Teams. 2019. SMR: What we

learned in our �rst year. h�ps://blogs.dropbox.com/tech/2019/07/smr-

what-we-learned-in-our-first-year/.

[60] Lars Marowsky-Brée. 2018. Ceph User Survey 2018 results. h�ps:

//ceph.com/ceph-blog/ceph-user-survey-2018-results/.

[61] Marshall K McKusick, William N Joy, Samuel J Le�er, and Robert S

Fabry. 1984. A Fast File System for UNIX. ACM Transactions on

Computer Systems (TOCS) 2, 3 (1984), 181–197.

[62] Chris Mellor. 2019. Toshiba embraces shingling for next-gen

MAMR HDDs. h�ps://blocksandfiles.com/2019/03/11/toshiba-mamr-

statements-have-shingling-absence/.

[63] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and

Young Ik Eom. 2015. Lightweight Application-Level Crash Consis-

tency on Transactional Flash Storage. In 2015 USENIX Annual Techni-

cal Conference (USENIX ATC 15). USENIX Association, Santa Clara,

CA, 221–234. h�ps://www.usenix.org/conference/atc15/technical-

session/presentation/min

[64] Sumedh N. 2013. Coding for Performance: Data alignment and

structures. h�ps://so�ware.intel.com/en-us/articles/coding-for-

performance-data-alignment-and-structures.

[65] Michael A. Olson. 1993. The Design and Implementation of the

Inversion File System. In USENIX Winter.

[66] Michael A. Olson, Keith Bostic, and Margo Seltzer. 1999. Berkeley DB.

In Proceedings of the Annual Conference on USENIX Annual Technical

Conference (ATEC ’99). USENIX Association, Berkeley, CA, USA, 43–

43. h�p://dl.acm.org/citation.cfm?id=1268708.1268751

[67] OpenStack Foundation. 2017. 2017 Annual Report. h�ps://www.

openstack.org/assets/reports/OpenStack-AnnualReport2017.pdf.

[68] Adrian Palmer. 2015. SMRFFS-EXT4—SMR Friendly File System.

h�ps://github.com/Seagate/SMR_FS-EXT4.

[69] Swapnil Patil and Garth Gibson. 2011. Scale and Concurrency of

GIGA+: File SystemDirectories withMillions of Files. In Proceedings of

the 9th USENIX Conference on File and Stroage Technologies (FAST’11).

USENIX Association, Berkeley, CA, USA, 13–13. h�p://dl.acm.org/

citation.cfm?id=1960475.1960488

[70] Juan Piernas. 2002. DualFS: A New Journaling File System without

Meta-data Duplication. In In Proceedings of the 16th International

Conference on Supercomputing. 137–146.

[71] Poornima G and Rajesh Joseph. 2016. Metadata Performance Bottle-

necks in Gluster. h�ps://www.slideshare.net/GlusterCommunity/

performance-bo�lenecks-for-metadata-workload-in-gluster-with-

poornima-gurusiddaiah-rajesh-joseph.

[72] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexan-

der Benn, and Emmett Witchel. 2009. Operating System Transactions.

In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles (SOSP ’09). ACM, New York, NY, USA, 161–176.

h�ps://doi.org/10.1145/1629575.1629591

[73] Lee Prewitt. 2019. SMR and ZNS – Two Sides of the Same Coin.

h�ps://www.youtube.com/watch?v=jBxzO6YyMxU.

[74] Red Hat Inc. 2019. GlusterFS Architecture. h�ps://docs.gluster.org/

en/latest/�ick-Start-Guide/Architecture/.

[75] Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Metadata

E�ciency in the Local File System. In Presented as part of the 2013

USENIX Annual Technical Conference (USENIX ATC 13). USENIX, San

Jose, CA, USA, 145–156. h�ps://www.usenix.org/conference/atc13/

technical-sessions/presentation/ren

367

[76] Mendel Rosenblum and John K. Ousterhout. 1991. The Design and

Implementation of a Log-structured File System. In Proceedings of the

Thirteenth ACM Symposium on Operating Systems Principles (SOSP

’91). ACM, New York, NY, USA, 1–15. h�ps://doi.org/10.1145/121132.

121137

[77] Frank Schmuck and Jim Wylie. 1991. Experience with Transactions

in QuickSilver. In Proceedings of the Thirteenth ACM Symposium on

Operating Systems Principles (SOSP ’91). ACM, New York, NY, USA,

239–253. h�ps://doi.org/10.1145/121132.121171

[78] Thomas J. E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. E. Long,

Andy Hospodor, and Spencer Ng. 2004. Disk Scrubbing in Large

Archival Storage Systems. In Proceedings of the The IEEE Computer

Society’s 12th Annual International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunications Systems (MAS-

COTS ’04). IEEE Computer Society, Washington, DC, USA, 409–418.

h�p://dl.acm.org/citation.cfm?id=1032659.1034226

[79] Seastar. 2019. Shared-nothing Design. h�p://seastar.io/shared-

nothing/.

[80] Margo I. Seltzer. 1993. Transaction Support in a Log-Structured File

System. In Proceedings of the Ninth International Conference on Data

Engineering. IEEE Computer Society, Washington, DC, USA, 503–510.

h�p://dl.acm.org/citation.cfm?id=645478.654970

[81] Kai Shen, Stan Park, and Men Zhu. 2014. Journaling of Journal Is

(Almost) Free. In Proceedings of the 12th USENIX Conference on File

and Storage Technologies (FAST 14). USENIX, Santa Clara, CA, 287–

293. h�ps://www.usenix.org/conference/fast14/technical-sessions/

presentation/shen

[82] Anton Shilov. 2017. Seagate Ships 35th Millionth SMR

HDD, Con�rms HAMR-Based Drives in Late 2018. h�ps:

//www.anandtech.com/show/11315/seagate-ships-35th-millionth-

smr-hdd-confirms-hamrbased-hard-drives-in-late-2018.

[83] A. Shilov. 2019. Western Digital: Over Half of Data Center HDDsWill

Use SMR by 2023. h�ps://www.anandtech.com/show/14099/western-

digital-over-half-of-dc-hdds-will-use-smr-by-2023.

[84] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The Hadoop Distributed File System. In Proceed-

ings of the 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST) (MSST ’10). IEEE Computer Society, Washington,

DC, USA, 1–10. h�ps://doi.org/10.1109/MSST.2010.5496972

[85] Chris Siebenmann. 2011. About the order that readdir() returns entries

in. h�ps://utcc.utoronto.ca/~cks/space/blog/unix/ReaddirOrder.

[86] Chris Siebenmann. 2013. ZFS transaction groups and the

ZFS Intent Log. h�ps://utcc.utoronto.ca/~cks/space/blog/solaris/

ZFSTXGsAndZILs.

[87] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok,

and Charles P. Wright. 2009. Enabling Transactional File Access

via Lightweight Kernel Extensions. In 7th USENIX Conference on

File and Storage Technologies (FAST 09). USENIX Association, San

Francisco, CA. h�ps://www.usenix.org/conference/fast-09/enabling-

transactional-file-access-lightweight-kernel-extensions

[88] Stas Starikevich. 2016. [ceph-users] RadosGW performance degrada-

tion on the 18 millions objects stored. h�p://lists.ceph.com/pipermail/

ceph-users-ceph.com/2016-September/012983.html.

[89] Jan Stender, Björn Kolbeck, Mikael Högqvist, and Felix Hupfeld. 2010.

BabuDB: Fast and E�cient File System Metadata Storage. In Proceed-

ings of the 2010 International Workshop on Storage Network Architec-

ture and Parallel I/Os (SNAPI ’10). IEEE Computer Society, Washing-

ton, DC, USA, 51–58. h�ps://doi.org/10.1109/SNAPI.2010.14

[90] Michael Stonebraker. 1981. Operating System Support for Database

Management. Communications of the ACM 24, 7 (July 1981), 412–418.

h�ps://doi.org/10.1145/358699.358703

[91] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of

POSTGRES. In Proceedings of the 1986 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’86). ACM, New York,

NY, USA, 340–355. h�ps://doi.org/10.1145/16894.16888

[92] ZAR team. 2019. "Write hole" phenomenon. h�p://www.raid-

recovery-guide.com/raid5-write-hole.aspx.

[93] ThinkParQ. 2018. An introduction to BeeGFS. h�ps://www.beegfs.

io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf.

[94] Stephen C Tweedie. 1998. Journaling the Linux ext2fs Filesystem. In

The Fourth Annual Linux Expo. Durham, NC, USA.

[95] Sage Weil. 2009. Re: [RFC] big fat transaction ioctl. h�ps://lwn.net/

Articles/361472/.

[96] Sage Weil. 2009. [RFC] big fat transaction ioctl. h�ps://lwn.net/

Articles/361439/.

[97] Sage Weil. 2011. [PATCH v3] introduce sys_syncfs to sync a single

�le system. h�ps://lwn.net/Articles/433384/.

[98] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,

and Carlos Maltzahn. 2006. Ceph: A Scalable, High-performance

Distributed File System. In Proceedings of the 7th Symposium on Op-

erating Systems Design and Implementation (OSDI ’06). USENIX Asso-

ciation, Berkeley, CA, USA, 307–320. h�p://dl.acm.org/citation.cfm?

id=1298455.1298485

[99] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.

2006. CRUSH: Controlled, Scalable, Decentralized Placement of

Replicated Data. In Proceedings of the 2006 ACM/IEEE Conference

on Supercomputing (SC ’06). ACM, New York, NY, USA, Article 122.

h�ps://doi.org/10.1145/1188455.1188582

[100] Sage A.Weil, AndrewW. Leung, Scott A. Brandt, and CarlosMaltzahn.

2007. RADOS: A Scalable, Reliable Storage Service for Petabyte-scale

Storage Clusters. In Proceedings of the 2Nd International Workshop

on Petascale Data Storage: Held in Conjunction with Supercomputing

’07 (PDSW ’07). ACM, New York, NY, USA, 35–44. h�ps://doi.org/10.

1145/1374596.1374606

[101] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian

Mueller, Jason Small, Jim Zelenka, and Bin Zhou. 2008. Scalable

Performance of the Panasas Parallel File System. In Proceedings of

the 6th USENIX Conference on File and Storage Technologies (FAST’08).

USENIX Association, Berkeley, CA, USA, Article 2, 17 pages. h�p:

//dl.acm.org/citation.cfm?id=1364813.1364815

[102] Lustre Wiki. 2017. Introduction to Lustre Architecture. h�p://wiki.

lustre.org/images/6/64/LustreArchitecture-v4.pdf.

[103] Wikipedia. 2018. Btrfs History. h�ps://en.wikipedia.org/wiki/Btrfs#

History.

[104] Wikipedia. 2018. XFS History. h�ps://en.wikipedia.org/wiki/XFS#

History.

[105] Wikipedia. 2019. Cache �ushing. h�ps://en.wikipedia.org/wiki/Disk_

bu�er#Cache_flushing.

[106] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez

Zadok. 2007. Extending ACID Semantics to the File System. Trans.

Storage 3, 2, Article 4 (June 2007). h�ps://doi.org/10.1145/1242520.

1242521

[107] Fengguang Wu. 2012. I/O-less Dirty Throttling. h�ps://events.

linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf.

[108] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-

nathan Sundararaman, Andrew A. Chien, and Haryadi S. Gunawi.

2017. Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collec-

tion Tail Latencies in NAND SSDs. In 15th USENIX Conference on File

and Storage Technologies (FAST 17). USENIX Association, Santa Clara,

CA, 15–28. h�ps://www.usenix.org/conference/fast17/technical-

sessions/presentation/yan

[109] Lawrence Ying and Theodore Ts’o. 2017. Dynamic Hybrid-

SMR: an OCP proposal to improve data center disk drives.

h�ps://www.blog.google/products/google-cloud/dynamic-hybrid-

smr-ocp-proposal-improve-data-center-disk-drives/.

[110] Zhihui Zhang and Kanad Ghose. 2007. hFS: A Hybrid File System

Prototype for Improving Small File and Metadata Performance. In

Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference

368

on Computer Systems 2007 (EuroSys ’07). ACM, New York, NY, USA,

175–187. h�ps://doi.org/10.1145/1272996.1273016

[111] Qing Zheng, Charles D. Cranor, Danhao Guo, Gregory R. Ganger,

George Amvrosiadis, Garth A. Gibson, Bradley W. Settlemyer, Gary

Grider, and Fan Guo. 2018. Scaling Embedded In-situ Indexing with

deltaFS. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage, and Analysis (SC ’18). IEEE

Press, Piscataway, NJ, USA, Article 3, 15 pages. h�p://dl.acm.org/

citation.cfm?id=3291656.3291660

[112] Alexey Zhuravlev. 2016. ZFS: Metadata Performance. h�ps:

//www.eofs.eu/_media/events/lad16/02_zfs_md_performance_

improvements_zhuravlev.pdf.

369

	Abstract
	1 Introduction
	2 Background
	2.1 Essentials of Distributed Storage Backends
	2.2 Ceph Distributed Storage System Architecture
	2.3 Evolution of Ceph's Storage Backend

	3 Building Storage Backends on Local File Systems is Hard
	3.1 Challenge 1: Efficient Transactions
	3.2 Challenge 2: Fast Metadata Operations
	3.3 Challenge 3: Support For New Storage Hardware
	3.4 Other Challenges

	4 BlueStore: A Clean-Slate Approach
	4.1 BlueFS and RocksDB
	4.2 Data Path and Space Allocation

	5 Features Enabled by BlueStore
	5.1 Space-Efficient Checksums
	5.2 Overwrite of Erasure-Coded Data
	5.3 Transparent Compression
	5.4 Exploring New Interfaces

	6 Evaluation
	6.1 Bare RADOS Benchmarks
	6.2 RADOS Block Device Benchmarks
	6.3 Overwriting Erasure-Coded Data

	7 Challenges of Building Efficient Storage Backends on Raw Storage
	7.1 Cache Sizing and Writeback
	7.2 Key-value Store Efficiency
	7.3 CPU and Memory Efficiency

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

