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Abstract. We discuss and solve the problem of constructing a diffeomor- 

phic componentwise extension for an arbitrary invertible combinatorial 

function. Interpreted in physical terms, our solution constitutes a proof of 

the physical realizability of general computing mechanisms based on revers- 
ible primitives. 

1. Motivations 

In an ordinary digital computer, the two logic states associated with a binary 

signal are realized as distinguished values of a continuous variable which 

represents the range of a physical quantity; correspondingly, the logic function 

associated with a given combinatorial network is realized as the appropriate 

restriction of a suitable continuous function which Characterizes a physical 

system involving a number of such quantities. If the logic function is not 

invertible (note that a computation may yield the same output for different 

inputs), its continuous extension cannot be invertible. On the other hand, the 

microscopic physical laws which underly the operation of a computer are 

presumed to be strictly reversible, i.e., they uniquely specify a trajectory both 

forward and backward in time. Thus, it is clear that a noninvertible continuous 

function such as the above may characterize a physical system only in terms of 

statistical mechanics, rather than of microscopic mechanics. In other words, such 

a function is necessarily an incomplete specification of a mechanical system [1]; 

in particular, it does not give one the means to deal in any detail with the 

information that is "discarded" during a computation, besides accounting for it 

in terms of the increase of a single scalar quantity, the entropy of the system [2]. 

In an attempt to exercise some control on the details of the work-to-heat 

conversion processes that accompany physical computing (and which are related 

*This research was supported by Grant N00014-75-C-0661, Office of Naval Research, funded 
by DARPA. 

0025/5661/81/0014-0013502.20 
© 1981 Springer-Verlag New York Inc. 



14 T. Toffoli 

to the irreversibility of computation), a different approach to the mathematical 

modeling and the design of computers has been suggested by several authors 

(see Appendix for a brief summary and references). In that approach, geneti- 

cally termed reversible computing, a major obstacle to arriving at a complete 

mechanical specification of a computing system is removed, since computation 

is there modeled exclusively in terms of invertible combinatorial functions. It 

remains to show that such functions admit in general of a physical realization. 

This we do in the present paper. 

2. Statement  of  the problem 

Goal 2.1. Given the Set B = (0,1) and an invertible function f("): B"~B", f ind a 

connected manifold M ~ B and a diffeomorphism F¢n) : Mn--~ M ~ such that F ~) is a 
restriction of F (n). 

Our goal can be given the following kinematical interpretation. Consider a 

box having n input levers and n output levers, as depicted in Fig. 1 for n = 2. 

M represents the range of accessible positions for each lever (a manifold is 

the appropriate mathematical structure for describing this range). Two dis- 

tinguished positions within M are marked "0" and "1". Assume that the input 

levers are interconnected to the output ones by means of a passive physical 

mechanism (for instance, an assembly of gears, cams, etc.) in such a way that 

(a) When all input levers occupy distinguished positions, so do all the 

output ones. In this way, the box "computes" a combinatorial function from 

binary n-tuples to binary n-tuples. 

(b) The collective configuration of the output levers is a continuous func- 

tion of the input configuration. Continuity should extend to the higher deriva- 

tives (velocity, acceleration, etc.). 

(c) The box is reversible, i.e., condition (b) holds when input and output 

levers are exchanged. 

Clearly, (c) implies that (a) too holds when input and output levers are 

exchanged. Thus, the combinatorial function "computed" by the box must be 

invertible. We want design principles to construct a box with the above proper- 

ties for any invertible combinatorial function f~n). The specifications for such a 

box will be represented by a diffeomorphism F ~n) from M" to M ~. (When one is 

Fig. 1. Realization of a combinatorial function by means of continuous mechanisms. 
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Fig. 2. An extension which is not componentwise. Only one degree of freedom is used to represent 
several binary variables. 

dealing with manifolds instead of intervals of the real line, a diffeomorphism is 

the appropriate generalization of a bicontinuous function). 

It must be stressed that Goal 2.1 does not just ask for an arbitrary 

diffeomorphic extension of the given function f(n) to an arbitrary manifold. 

Rather, the extension must be componentwise. In other words, besides being a 

superset of B n, the manifold must also be of the form M n, i.e., possess the same 

Cartesian product structure as B~; moreover, the extension itself must maintain 

the variables separated, i.e., each component of the extension must be an 

extension of the corresponding component of the given function. In physical 

terms, each binary variable must be encoded in a separate "channel," so that in 

interconnecting several boxes of this kind each variable may be routed indepen- 

dently of the others. Fig. 2 illustrates the case of an extension that is not 

componentwise. This box too "computes" a combinatorial function, but it is 

hard to see how the components of the input n-tuple could be made to come 

from different boxes, and those of the output n-tuple go to different boxes, 

without using complex encoders and decoders for which the problem of physical 

realizability would arise afresh. 

3. Notation and Mathematical Pre "lnninaries 

We shall be dealing exclusively with functions that are invertible, and whose 

domain and range are structured sets, i.e., are explicitly given as indexed 

Cartesian products of sets. In particular, in all cases domain and range will be 

products of identical sets and will coincide. 

A restriction of a function of the form ¢b:A~B is usually defined by 

specifying a subset A of the domain ~T. However, when invertibility is an issue, it 

is necessary to explicitly specify also the restriction's intended range. Thus, by 

the restriction of • to (A,B > (where A _CA and B C/~) we shall mean the 

relation ~ from A to B such that aepb whenever a E A, b ~B,  and ~ ( a ) =  b. 

Whether ~ is indeed a function, and an invertible one for that matter, depends 

on the choice of A and B. If g, is the restriction of • to <A,B >, then dp is an 
extension of ~ to <A, B >. 
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Fig. 3. (a) Examples or ordinary composition and (b) one-to-one composition of functions. 

Given + : A I ×  . - -  XAm--->BlX__... XB n, an extension + of + t o  ( P , Q ) i s  
componentwise if there exist sets A i _D A; and B i D_ B i such that P--  A l x . - -  x A m 

and Q -- B I x - . .  x J~n. In this case, + is a componentwise restriction of +. 

When the domain of a function is an indexed Cartesian product of sets, it is 

convenient to speak of input variables (or input components, or, simply, argu- 
ments) of the function, using the same indexing as for the corresponding sets. If 

also the range of the function is an indexed Cartesian product, one may likewise 

speak of output variables (or output components) of the function. In ordinary 

function composition, an output variable of one function may be substituted for 

any number of input variables of other functions, i.e., "fan-out" is allowed, as 

indicated in Fig. 3a. In what follows, we shall use a more restricted form of 

composition, called one-to-one composition, where any substitution of output 

variables for input variables must be one-to-one,  as indicated in Fig. 3b. If the 

output variable and the input variable involved in every such substitution range 

over identical sets, then one-to-one composition always yields invertible func- 

tions when applied to invertible functions. 

A reindexing of input or output variables is a special case of one-to-one 

composition. One-to-one composition is conveniently handled by means of an 

algebraic notation formally analogous to that of tensor calculus [3]. From a 

physical viewpoint, the one-to-one constraint reflects the fact that signal fan-out 

requires a source of energy other than that carried by the signal itself. 

Let + be a binary relation from S x U  I x - . .  x U  n to S ' x U ~ - . .  xU,~,, 

where S,S'  are arbitrary sets and U 1 . . . . .  /.In, U~ . . . . .  U,~, are singletons. For 

convenience, the one element of any of these singletons will be denoted by o. 

The variables associated with these singletons will be called dummy. A relation 

from S X U i × . . .  ×U~e to S ' x U . ' . × . . .  ×U.', where l < i l < . . .  <ip<n and 
J~ Jp, 

1 <Jl < " " " <Jp' < n', is said to be obtained from + by deletion of dummy variables 
if 

n n '  P P '  

( , , o  . . . . .  . . . . .  o ) + ( , ,  

that is, if the two relations coincide when the trailing o's which accompany each 

tuple are disregarded. 

Finally, a combinatorial function is one of the form f :  Bm--)B n, where B is 

the binary set (0,1 }. 
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4. Main Results 

Definition 4.1. Consider the set B = {0,1} with the usual structure of Boolean 

ring, with "@" (exclusive-oR) denoting the addition operator, " e "  the additive- 

inverse operator (which in this case coincides with the identity operator), and 

"o" (AND) the multiplication operator• For any n >0,  the AND/NANDfunction of 
order n, denoted by 0(n) : Bn--->B n, is defined by 

0 (n) : I 
X 
x 2 

Xn-i 
X, 

I'XI l 
X 2 

• 
xn-l 

[ e x . e ( x ,  . . . . .  X._l) 

(4.1) 

Remark 4.1. (a) The e sign in (4.1), which is redundant (since e x n = X. ) ,  has 

been introduced for symmetry with (4.2) below, where it is not redundant. (b) 

For any n > 0, 0(n) is invertible and coincides with its inverse• (c) For i = 1,2 . . . .  , 

n - 1, the i-th component of 0 <~), i.e., 0i (n), coincides with the selector operator for 

the corresponding argument, i.e., O~(")(x~ . . . . .  x , )  = x i. (d) The last component of 

0 ("), i.e., 0~ ~), coincides with the Boolean-complement operator for n =  1 (note 

that x~ . . . . .  x~=l  when i=0),  and with the exclusive-oR of its two arguments 

for n----2. (e) For all other values of n, 0~ ") is still linear in the n-th argument, but 

is nonlinear in the first n - 1 arguments. 

The family of AND/NAND functions was introduced by Toffoli [7] for 

proving the computation and construction universality of reversible cellular 

automata. An earlier, brief mention of the AND/NAND function of order 3 can be 

found in [2]. 

Lemma 4.1. Any invertible combinatorial function of order n can be obtained by 
one-to-one composition of AND/NAND functions of order <n. 

Proof In the following construction we shall make use only of 0 (") (where n is 

the order of the given function) and of 0 (1) (the Boolean-complement operator). 

By definition, 0 (n) is a permutation on the set of n-tuples over B. (a) Any 

permutation can be written as the product of elementary permutations, i.e., of 

permutations that exchange only two n-tuples. In turn, as we shall prove below, 

(b) any elementary permutation of B n can be written as the product of atomic 
permutations, i.e., of permutations that exchange two n-tuples which differ in 

only one component. Observe that 0 (") is the atomic permutation which ex- 

changes (1,1 . . . . .  1,0) with (1,1 . . . . .  1,1). By reordering the components of 0 (n) 

and applying 0 (1) to selected components one obtains the family of all atomic 
permutations. Note that all the operations used above are forms of one-to-one 

composition. It remains to prove (b); this is done in the following way. 
The n-tuples al,a2,..•,a i are said to form a Gray-code path if two adjacent 

n-tuples differ by an atomic permutation. It is easy to verify that by means of 
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sequence of atomic permutations the element at the beginning of the path can be 

moved to the end position, leaving the remainder of the path unchanged. By 

repeating such a move the first and last elements can be exchanged. The proof is 

completed by observing that any two n-tuples can be joined by a Gray-code 

path. []  

Lemma 4.2. Consider the 1-manifold R obtained by identifying all points of the 
real line R that differ by a multiple of 2~r (Px can be thought of as the real circle), 
and let the points 0 and 1 of Bocoincide with, respectively, 0 and ~r of R. Then there 
exists a diffeomorphism from R" to R" whose restriction to (B' ,  B~) coincides with 
0 ('). 

Proof Consider 1~ with addition ("@") and additive inverse ("@") induced 

from those on R, and multiplication ("o") defined as follows 

1 - c o s  x 1 - cosy 
xoy = ~ 2 2 

I~ satisfies all the axioms for a ring except distributivity. Let 0('):I~'-->I~ " be 

defined by 

I 
x 
X 2 

0(") : ' 

X n --  

X n 

'Xl l X 2 
" . (4.2) 

X n  - 1 

L e x ' e ( x , o x 2  . . . . .  xn_,) 

Observe that when the operators defined on l~ are restricted to B C_l~ the 

Boolean-ring structure for B is recovered; thus, the restriction of O ('> to (B n, B" ) 

coincides with 0 ('). Moreover, O (~> is infinitely differentiable by construction 

and coincides with its inverse; thus, O (') is a diffeomorphism. []  

As an immediate consequence of Lemmas 4.1 and 4.2, one obtains the 

following theorem (cf. Goal 2.1). 

T h e o r e m  4.1. Given any invertible combinatorial function f( ') : Bn---~B n, there ex&t 
a connected manifold M ~ B and a diffeomorphism F(n):M'---~M ~ such that f (') is 
the restriction of F (~) to (B ~, B" ) .  

5 .  A d d i t i o n a l  R e s u l t s  

Before continuing with our mathematical exposition, it will be useful to verify in 

an intuitive way the physical realizability of the functions O ('>. With reference to 

Fig. 2.1, we shall consider boxes whose input and output levers are constrained 

to circular motion (i.e., are cranks). In close correspondence with the defining 
formula (4.2), 0 (1) will be realized as in Fig. 4a, and 0 (2) as in Fig. 4b, where 

represent the mechanisms known as "differential gear" which is used, for 
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Fig. 4. (a) RealiTztion of 00), (b) Realization of O (2). 

example, in automobile transmissions. In this mechanism, the angles p, q, and r 

satisfy the relation q = - p  + r. 

0 (3) will be realized as ill Fig. 5a, where the mechanism denoted by AND is 

illustrated in more detail in Fig. 5b. Basically, the rotary motion of the two input 

shafts is converted to linear motion along two orthogonal axes x and y.  The 

resulting composite motion operates a cam in whose two-dimensional surface 

the product of the two orthogonal displacements is encoded as a displacement 

along the z axis. A cam follower tracks the surface of the cam and contributes 

an additive term to the differential gear. (To avoid the use of return springs, the 

cam follower may be made to move between two complementary cam surfaces.) 

In Fig. 5b, note that the upper gears may make an arbitrary number of 

turns. On the other hand, the larger gear will oscillate back and forth but  never 

complete one whole turn. The gear ratio is such that the lower gear will describe 

a 180 ° angle as the cam follower spans the whole range of the cam. Intuitively, 

the product x I ox 2 "modulates" the phase of x 3 within a 0°-180 ° range, and the 

modulated result appears in Y3- 

Note that, although our construction makes use of rotary-to-linear conver- 

sion, which by itself is not an invertible operation and in general may introduce 

"dead points" in a mechanism, the resulting overall mechanism has no dead 

points and is indeed reversible. 

In general, O (n) will be realized according to the scheme of Fig. 6, which is 

convenient also for representing the corresponding discrete function O (n). The 

( n -  1)-dimensional cam required for the ( n -  1)-input AND mechanism can be 

realized by cascading a suitable number of two-dimensional cams. 

A 

x , ~ Ys N )  

Fig. 5. 

iz 
(a) Realization of 0 (3)) (b) Details of the AND mechanism. 
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Schematic representation of 0 in) or 0 (~). 

Returning to our mathematical exposition, let us observe that Lemma 4.1 

supplies a set of invertible primitives for constructing--via one-to-one com- 

p o s i t i o n - a n y  invertible combinatorial function. However, this set is un- 

bounded, in the sense that 0's of ever larger order may be needed as the order of 

the given invertible function increases. It is well known that any combinatorial 

function can be synthesized by ordinary function composition starting from a 

single computing primitive such as the two-input NAr,~ function. In analogy with 

this, can Lemma 4.1 be strengthened so as to require only a finite set of 

primitives? According to Theorem 5.1 below, the answer to this question is 

negative. However, Theorem 5.2 shows that 0 °) is a universal primitive for 

invertible combinatorial functions if componentwise restriction and deletion of 

dummy variables are allowed in addition to one-to-one composition. Using the 

same operations (which have a simple interpretation in terms of physical 

realizability), it is possible to construct a diffeomorphic componentwise exten- 

sion of any invertible combinatorial function using O (3) as a primitive (Theorem 

5.3). In view of the many constraints imposed on the construction, this result is 

quite strong. We conjecture that it is the strongest possible. 

Theorem 5.1. There exist invertible combinatorial functions of order n which 
cannot be obtained by one-to-one composition from AND/NAND functions of order 
<n. 

Proof. In the same context as the proof of Lemma 4.1, when 0 ~0 is applied to 

B n this set is divided into 2 n-i  disjoint collections of 2 i n-tuples, and each 

collection is permuted in an identical fashion. Thus, only even permutations can 

be obtained when i <n.  Since the product of even permutations is even, only 

even permutations can be obtained by one-to-one composition of any number of 

AND/NAND functions of order <n.  [ ]  

Theorem 5.2. Any invertible combinatorial function can be obtained by one-to- 
one composition, componentwise restriction, and deletion of dummy variables from 
0 (3). 

Proof. Consider the function q~(5) of Figure 4. A value of 0 for the fifth input 

component always results in a value of 0 for the corresponding output compo- 

nent. 
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Fig. 7. Construction of ~(~). When x s = 0  , also ys~O. The remaining components behave as the 

corresponding ones of 0 (4) . 

From the restriction of @(5) to ( B 3 x ( 0 } , B 3 X ( 0 } )  one obtains 0 <4) by 

deletion of the dummy variables x 5 and y 5. In a similar way, all O(n)(n >3)  can 

be obtained. 0 <2) and 0 <5) are obtained directly from 0 <3) when the first and, 

respectively, the first two components are restricted to the value 1 and the 

resulting dummy variables are deleted. If one-to-one composition is applied 

before deletion, it is easy to verify that the number of deletions (i.e., the number 

of constant inputs) required for the construction of any invertible combinatorial 

function of order n does not exceed 2n - 3. [ ]  

T h e o r e m  5.3. For any invertible combinatorial function f( '),  a diffeomorphic 
componentwise extension F (n) can be obtained by one-to-one composition, compo- 
nentwise restriction, and deletion of dummy variables from 0 <3). 

Proof. The proof parallels that of Theorem 5.2. [] 

6. C o n c l u s i o n s  

Computing is based on the evaluation of functions that are discrete and 

many-to-one. On the other hand, the mechanisms offered by a schematization of 

physics such as classical mechanics are based on functions that are continuous 
and one-to-one. We have explicitly bridged the gap between these two concep- 

tions. 

A p p e n d i x  

The question of whether there exist reversible systems (i.e., systems characterized 

by an invertible transition function) which possess universal computing capabili- 

ties has been considered by many authors in different contexts. In particular, 

positive answers have been given by Bennett (reversible Turing machines [4]), 
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Fredkin (conservative logic [5]), Priese (reversible Thue systems [6]), and Toffoli 

(reversible cellular automata [7]).* 

The substance of these answers lies in the following basic proposition (cf. 

[81): 
For every combinatorial function ~ : Bm-->B n there exists an invertible combina- 

torial function J~'~ + r) : B m + r__>Bm +, (with r <. n) such that 

A J~im+r)(Xl . . . . .  Xm, 0 . . . . .  O )  = (~i(X| . . . .  ,Xm) .  
l < i , n  

Informally, the required function q~ is obtained f r o m f  (m+r) by assigning constant 

values to the r additional input components and ignoring the "random" values 

obtained for the m +  r - n  additional output components. (We use the term 

"random" for output values that depend on the first m input arguments and thus 

cannot be used as constants for a new computation. By contrast, the additional 

output components used in the proof of Theorem 5.2 yield "nonrandom"~ 

values.) 

We cannot avoid mentioning the analogy of the above scheme of computa- 

tion with the functioning of ordinary physical computers, where one must supply 

work (i.e., a nonrandom form of energy) in addition to the input signals, and 

remove heat (i.e., energy in random form) in addition to the output signals. In 

this context, the theory of reversible computing together with the present results 

point at a way of realizing computing networks in which energy dissipation is 

only proportional to the number of argument/value lines and is independent of 

the number of gates that make up the network (and thus of the "complexity" of 

the computed function). 
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