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Summary - The ‘constructal theory’ of formation of structure in nature is extended to fluid-flow systems. The fluid flow 
path between one point and a finite-size volume (an infinite number of points) is optimized by minimizing the overall flow 

resistance when the flow rate and the duct volume are fixed. The solution is constructed as a sequence of optimization 
and organization steps. The sequence has a definite time direction: it begins with the smallest building block (elemental 
system, with flow by volumetric diffusion), and proceeds toward larger building blocks (assemblies, with flow collected in 
ducts). Optimized at each level are the shape of the assembly, the number of constituents (ie, smaller assemblies), and 
the distribution of the duct volume. It is shown that the ducts of the optimized assemblies form a tree-like structure, 
in which every architectural detail is deterministic. It is also shown that the structure cannot be determined when the 
time direction is reversed, from large elements toward smaller elements. The general importance of the constructal law 
(access-optimization principle) in physics, biology and economics is discussed. 

constructal theory / optimization and organization steps / tree-like structure / reversed time direction 

Resume - Rbseau ramifih constructif d’un koulement de fluide entre un volume de dimension finie et un point. La 
thCorie constructale (ou constructive) relative d la formation de structures dans la nature est appliquCe ti des systtimes 
fluides ouverts. Le trajet de I’tcoulement d’un guide d partir d’un point vers un volume de dimension finie (un nombre infini 
de points) est optimise par la minimisation de la r&stance globale d’&oulement, dans des conditions de ddbit du Puide et 
de volume du tube impost!es. La solution re’sulte d’une stquence de paliers d’optimisation et d’organisation. La stquence 
a une direction du temps bien pre’cise ; e//e a comme origine le plus petit bloc (systime &mentaire oti I’tcoulement se 
fait par diffusion volumique) et tvolue vers des blocs de plus en plus grands (groupes de composants) dont I’t?oulement 
est collects’ dans des tubes. A chaque niveau on optimise /a configuration du groupe, le nombre de composants (par 
exemple /es groupes plus petits) et /a distribution du volume du tube. On montre que les tubes des groupes de composants 

optimise’s prPsentent une structure ramifite (ou de type arborescent), dont chaque detail architectural est diterministe. 
II en r&.&e aussi que la structure ne peut pas e^tre dtterminCe quand la direction du temps est inverste, c’est-&dire en 
al/ant des plus grands tltments vers /es plus petits. L’importance g&&ale de la thLorie constructale en physique, biologie 
et &onomie politique est discutie. 

theorie constructale / paliers d’optimisation et d’organisation / arborescence / inversion de la direction du temps 

Nomenclature 

A, area ......................... 
D, tube diameter ............... 
23 mass diffusivity. ............. 
H, volume height. .............. 
K permeability. ................ 

1, duct length. ................. 

L, volume length.. ............. 

m, mass flow rate ............... 
m “’ volumetric mass flow rate. ... 

% number of constituents 

4 number of branches 

P pressure ..................... 
t volume thickness ............ 

tt1 breathing time. .............. 
11 mean velocity in duct flow ... 

...... m2 
...... m 
...... m’.s-’ 
...... m 
...... m2 
...... m 
...... 
...... kg.s-’ 
...... kg.m-“.s-’ 

...... N.m-’ 
...... m 
...... 
...... mJ: 

1’ volume averaged velocity in Darcy 
flow ................................ 

1; volume ............................. 
Vr, pore volume ........................ 
.I-. y Cartesian coordinates ............... 

m.s-’ 
m3 

m3 
m 

Greek symbols 

n factor (equation (16)) 
AP, pressuredrop....................... 
x factor (equation (15)) 
x Lagrange multiplier (equation (44)) 
v kinematic viscosity 

0 fluid density 

N/m’ 

m’.s ’ 
kg.m-” 

592 

https://www.researchgate.net/profile/Adrian_Bejan2?el=1_x_100&enrichId=rgreq-4fe94379fcff6669f40dbaf004642c81-XXX&enrichSource=Y292ZXJQYWdlOzIyMzMwNjg0MztBUzoxNDMxMjI1MjA2MTI4NjVAMTQxMTEzNDQ3NjIyMQ==


Constructal tree network for fluid flow between a finite-size volume and one source or sink 

1 n CONSTRUCTAL THEORY OF 
ORGANIZATION IN NATURE 

Constructal theory (Bejan, 1996a, 1997a, 1997b & 
1998) is extended in this paper to fluid flow systems 
that exhibit natural shape and structure. Construc- 
tal theory is a new development in thermodynamics. 
It is, first, a theory - a principle from which geomet- 
ric shape and structure are deduced - and, second, 
an engineering method of optimizing the paths for 
flows (heat, fluid, electricity, species) through finite- 
size open systems. In both engineering and physics, 
the constructal method is the most recent addition 
to the explosive growth of the research on ther- 
modynamic optimization (Feidt, 1987; Stecco and 
Moran, 1990 & 1992; Valero and Tsatsaronis, 1992; 
Bejan et al, 1996; Bejan, 1996b). 

Natural structure (self-organization) is often 
exhibited by a flow that connects a point to a 
finite-size volume (an infinity of points). A tree- 
shaped, loopless network is the most visible part 
of the natural structure. Tree networks abound 
in nature, in both living and nonliving systems, 
eg, lungs, botanical trees, vascularized tissues, 
river basins and deltas, lightning, turbulent jets, 
neural dendrites, dendritic crystals, street patterns 
-urban growth - (Bejan, 1996a), and other patterns 
of transportation and telecommunication. 

The currently accepted doctrine is that tree 
networks and other natural structures (animate 
and inanimate) are nondeterministic, ie, the results 
of chance and necessity. In fractal geometry, any 
tree network can be generated by repeating a 
suitably designed algorithm and interrupting it at a 
small and finite scale. Since the algorithm and the 
smallest scale (inner cutoff) have to be postulated, 
fractal geometry is descriptive, not predictive. 

This doctrine was challenged by Bejan (1996a, 
1997a, 199713 & 19981, which showed that all 
the geometric details of the tree and the rest of 
the volume-to-point flow path can be predicted 
in purely deterministic fashion. For example, the 
flow problem proposed by Bejan (1997a) was heat 
conduction in a heterogeneous medium: ‘Consider a 
finite-size volume of low conductivity (/G,) in which 
heat is being generated at every point and which is 
cooled through a small patch (heat sink) located on 
its boundary. A finite amount of high-conductivity 
(IcP) material is available. Determine the optimal 
distribution of lc, material through the given volume 
such that the highest (hot-spot) temperature is 
minimized.’ The solution to this problem reveals two 
important characteristics of natural organization: 
the high-conductivity paths form a tree network, 
and the low conductivity material fills the space 
between the tree branches. This geometric result 
is of the same class as the existence of optimal 
internal spacings for volumes that are swept by 
natural or forced convection (Bejan and Sciubba, 
1992). 

Bejan’s new proposal (1996a) was to minimize 
through geometric optimization the time of travel 
between a finite-size area and one point. Travelers 
have access to several speeds, starting with the 
lowest (Vo, eg, walking) and proceeding toward 
higher speeds (faster vehicles). The geometric 
solution to this problem is shape and structure: 
a tree of streets, where the interstitial areas (eg, 
city blocks) are covered by the slowest mode of 
travel. 

The discovery made by Bejan (1996a & 1997a) 
is purely geometric: every portion of the given 
volume can have its shape optimized, such that its 
resistance to flow is minimal. This unique design 
principle applies at any volume scale, and to other 
forms of transport (fluid, electric, mass species). 
The volume-to-point path was determined in a 
sequence of steps consisting of shape optimization 
and subsequent construction (assembly, grouping). 

Very important is the time arrow of this construc- 
tion, which points from small to large. It starts from 
the smallest building block (elemental system), and 
proceeds toward larger building blocks (assemblies, 
constructs). It was shown (Bejan, 1996a & 1997a) 
that determinism vanishes if the direction is rever- 
sed, from large to small. To emphasize the link 
between determinism and the direction from small 
to large, and as a reminder that theory (determin- 
ism) runs against fractal thinking, the geometric 
optimization approach developed by Bejan (1996a 
and 1997a) was named constructal* theory. 

The solution determined by Bejan (1997a) is 
the structure and the optimized architecture of 
the composite material (lco, kP). The infinity of 
points of the given volume is connected to the 
sink point because, at the smallest volume scale, 
the transport is volumetric, by diffusion through 
the low-conductivity material. At the larger scales, 
the transport is via channels (streams) of high 
conductivity. In time, slow flow and shapelessness 
(diffusion, disorganization) come first, and fast flow 
and structure (channels, organization) come later. 

The completely deterministic construction of 
the volume-to-point flow path is an important 
development, with wide ranging implications in 
physics, biology, and engineering (3 8). The objective 
of the present paper is to extend the constructal 
method to the ilow of a fluid between one point and 
a finite-size volume, or vice versa. Unlike in the heat 
flow problem (Bejan, 1997a), where for simplicity 
the geometry was assumed two-dimensional, in this 
paper the fluid-flow resistance is optimized in the 
three-dimensional space. 

There are two important reasons why this opti- 
mization method deserves to be extended to fluid 
flow. First, the volume-to-point tlow is a fundamen- 
tal configuration in many technologies in which 
working fluids must bathe a three-dimensional solid 
at every point, ie, volumetrically. Examples are the 

* From the Latin verb (to build), which survives as 
construire in French, Italian and Romanian. 
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porous beds used for energy storage, matrices of 
periodic-flow heat or mass exchangers, gas cooled 
electric windings, and convection cooled electronic 
packages. This optimization is generally important 
in engineering, because fluid networks (eg, piping) 
are one of the most basic aspects of power-system 
engineering (Padet, 1991; Falempe, 1995). 

The second reason is purely theoretical. The 
volume-to-point fluid flow has received considerable 
attention in biophysics and geophysics because of its 
numerous manifestations in natural systems. Most 
of this work has been devoted to understanding 
the origin of the architecture of air passages in 
the lungs and capillaries in vascularized tissues. 
As shown in the concluding part of this paper (3 7 
and 8), previous studies of the minimal resistance 
problem used as starting point the observations 
that tree networks exist, and that ducts bifurcate. 
To predict these properties - the tree, and the 
integer 2 (bifurcation) - are the essential objectives 
of the analysis developed in this paper. 

2 I THE FLOW RATE CONSTRAINT 

To construct an analysis that is both effective and 
transparent, it is advisable to rely on the simplest, 
most general possible model that still retains the 
most essential feature of the flow path: its function. 
Such a model begins with figure 1, which shows that 
the function of the path is to distribute the stream 
riz from the point M to every elemental volume AV. 
We focus on this function and optimization problem 
in a general way, without reference to a specific 
application (natural occurrence) of the flow pattern. 

An important consequence of the function of the 
flow path is that in some cases two superimposed 
paths are needed. For example, in the bronchial 
tree the flow is periodic (in 8z out), and only 
one path is needed. In the circulatory system two 
identical paths (in counter-flow) are needed, such 
that each elemental volume fIV receives arterial 
blood at the rate dictated by local metabolism, 
Ati. The elemental volume returns the blood at 
the same rate to the veins (eg, the dark network 
in figure I). Similar pairs of paths in counterflow 
are encountered in trees, roots and leaves. A river 
basin needs only one path, because the volume V is 
flat (the basin area) and Ati is proportional to the 
rainfall per unit area. 

In sum, the function of the flow path is well 
represented by the volumetric mass flow rate 
density 

11, ATil 
m =- 

AV 

which must be collected (integrated) over the 
volume V, and channeled as a single stream (ti) 
to the point M. This operational characteristic 

(ti”‘) is assumed given, and serves as constraint 
in the thermodynamic optimization of the network. 
For simplicity we assume that ti”’ is distributed 
uniformly over V, such that 

7jL = TiL”‘V (2) 

We focus on only one of the tlow paths of figure 1, 
namely the dark one, and recognize that Arh is 
driven from the elemental volume to the origin by 
the pressure difference (P - P&f). This difference 
varies with the position of the AV element relative 
to M: of special interest is the maximum pressure 
difference, AP = (enaLp - PM), which is needed by 
the elemental volumes that are situated the farthest 
from the end of the network. In the lungs and the 
circulatory system, for example, AP is the pressure 
level that must be maintained by the thorax 
and heart muscles. The time-averaged mechanical 
power consumed by these pumps, or the entropy 
generation rate of the entire network is proportional 
to the product ti AP. The total flowrate ti is fixed, 
because V and ti”’ are fixed. In conclusion, the 
thermodynamic optimization of the flow path is 
equivalent to minimizing the maximum pressure 
difference. 

3 n THE FIRST VOLUME ELEMENT 

Two features distinguish the methodology of this 
paper from approaches tried in the past (3 7). First, 
the optimization process has a definite direction: 
from small volume elements toward larger volumes 
(assemblies). Second, the smallest scale of the 
network is finite and known (predictable): this 
scale serves as starting point in the step-by-step 
optimization and organization procedure. 

3.1. OPTIMIZATION OF VOLUME SHAPE 

The smallest volume element is shown in figure 2. 
The volume VI = HI L1 t is fixed because the 
thickness t and the area AI = HI L1 are fixed. The 
shape of the element is variable, and is represented 
by the aspect ratio Hl/Ll. 

The volume VI is visited uniformly by the mass 
flow rate til = h”‘VI. At this first (elemental) level, 
only one tube (diameter DI in figure 3) is used 
to collect the til stream and lead it to one point 
on the boundary: in figure 2, that point is the 
origin (0,O). Symmetry and the requirement that 
AP be minimum suggest that the tube should 
be placed along the 5 axis. The mass flow rate 
through this tube is h(z), with h(O) = til at the 
origin (O-O), and ti(L1) = 0. Except for the point 
of origin, the surfaces of the elemental volume 
K are impermeable. The thickness t is assumed 
to be sufficiently small, t < (HI, L1), such that the 
pressure field that drives the flow is essentially 
two-dimensional, P(x,. y). 
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Fig 1. Flow paths between one point M with every point 
inside a finite volume (V). 

Fig 1. Trajets d’6coulement d’un fluide A partir d’un point 
M vers chaque point d’un volume de dimension finie V. 
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Fig 2. The flow through the first (smallest) volume element. 

Fia 2. Flux traversant le oremier (et le DIUS oetit) Clement 
de-volume. 

+lt+ 

71-r1-r 
i I ; I ; 

I I 

DO-c 
‘4! I ! 

D1+ 
i I I I I 
i I i I i 

. 
._.-.-.-.-.-.-.-.-. 

t 

-I 

LI 

T 
LO 

A- 

Fig 3. The first element modeled as an anisotropic porous 
medium. 

Fig 3. Premier element mod&lis& en tant que milieu poreux 
anisotrope. 

The rest of the flow path between the origin (0,O) 
and any other point (z, y) is located in the material 
situated above and below the z axis. To account 
for the flow that originates from an arbitrary point 
of the finite volume VI, we model this material as 
an anisotropic porous medium in which Darcy flow 
(Nield and Bejan, 1992) is oriented purely in the y 
direction when y # 0, 

K dP v=- -- 
P ( > aY 

(3) 

The Darcy flow bathes every one of the infinity 

of points contained by VI. In equation (3), w 
and K are the volume-averaged velocity and, 
respectively, the permeability in the y direction. 
The fluid may flow in the x direction only along 
the z axis. This anisotropic model is clearly 
a simplification, which later will restrict our 
geometric constructions to drawing only 90” angles 
between successive assemblies. At this early stage 
in the analysis, however, this is a reasonable 
modeling approximation, especially if K is small. 

The pressure field P(x, y) can be determined by 
eliminating w between equation (3) and the local 
mass continuity condition 

all ?v’ 
a?J=p 

and applying the boundary conditions aP/ay = 0 at 

y = HI/2 and P = P(x, 0) at y = 0: 

P(X> Y) = $$(HI y - y”) + P(x,O) (5) 

Equation (5) holds only for y > 0: the corresponding 
expression for y < 0 is obtained by replacing HI 
with -HI in equation (5). 

The function describing the pressure distribution 
along the x axis can be determined after making 
similar assumptions about the fluid mechanics of 
the stream that eventually exits as +a1 through 
the origin. Let us assume as in earlier studies 
(Thomson, 1942; Mac Donald, 1983) that this 
stream is a low Reynolds number (Hagen-Poiseuille) 
flow through a round tube of length L1 and diameter 
D1. First, we use the classical result for the mean 
velocity in the x direction: 

y=o 

to estimate the local mass flow rate +(x), which 
points toward the origin, 

Mass conservation requires that the mass gener- 
ated in the infinitesimal volume slice (HI t dx) con- 
tribute to the k(x) stream, 

ti”‘H1 t dx = -dti (8) 

Integrating equation (8) away from the imperme- 
able plane x = L (where ti = 0), and recalling that 
til = ti”‘HILlt, we obtain: 

ti(x)=?ir”‘H&1-z)=til(l+) (9) 

Finally, equations (7) and (9) yield the pressure 
distribution along the x axis 

P(x, 0) = PO + 128 3 (Llx- $) (10) 
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This result can be combined with equation (5) 
to determine the pressure distribution over the 
rectangular domain HI x LI, where P(O,O) = PO. 
The resulting expression shows that the maxi- 
mum pressure occurs in the two farthest corners, 
P - P(L, &H/2), namely: nlar - 

API = P,,, - PO = ril”‘Y 
64HltL: 

lTD;1 
(11) 

This result can be rearranged by using 
A1 = HI LI, to show explicitly the tradeoff nature of 
the shape of Al: 

(12) 

We reach the important conclusion that A1 can be 
optimized geometrically: API has a minimum with 
respect to HI, which is represented by: 

H1 = (!+)I” !ii!$ 
1 

The permeability K may be kept as a known 
constant and carried through the analysis, for 
example, as in the case of the permeability of soil in 
a river basin model. Since most of the optimization 
studies of volume-to-point flows have dealt with 
the respiratory and vascular systems (Thompson, 
1942; MacDonald, 1983; Cohn, 1954; Weibel, 1963; 
Wilson, 1967; Horsfield and Cumming, 19681, it is 
useful if we say more about K, to show that it is 
indeed known, ie, predictable. 

The y-permeability of the VI element is due to 
a number of ‘pores’ of diameter DO and length LO, 
which are aligned with y (fig 3). For example, in 
the lung the DO scale is dictated by the diffusion 
of mass during the breathing interval tb (Bejan, 
199713): 

DO N (tb l3)l” (14) 

where D is the mass diffusivity of oxygen or carbon 
dioxide through the ‘solid (ie, blood saturated 
medium) that surrounds the pore. Substituting 
the appropriate orders of magnitude into equation 
(14), namely tb N 1 s and D N lop9 rn’.s-l (Bejan, 
1993, p 5891, we obtain DO N 10’ mm. Averaged over 
time, the periodic (in & out) flow through the pore 
sustains a quasisteady mass concentration field in 
the solid material that surrounds the pore. This is 
in fact the reason why the pore exists, and why an 
amount of solid material is assigned to it. The solid 
material is to be contaminated by the species that 
are present in the pore. From the classical solutions 
of steady diffusion (Carslaw and Jaeger, 1959) we 
know that the pore geometry that maximizes the 
ratio of the contaminated solid material divided by 
the pore volume is the spherical configuration. In 
the present case cf;g 2) the pores cannot be spherical 
inclusions because they must communicate at one 
end with the collecting tube (Dl) placed on the z 
axis. The only option then is for each pore to be 

shaped as a ‘finger,’ which means that the pore 
length LO is a small multiple of DO, 

Lo = X Do (15) 

Another aspect of the classical solution for 
steady diffision around an embedded sphere is 
that the scale of the thickness of the spherical 
annulus of contaminated solid material is dictated 
by the scale of the inclusion (DO). This means 
that the finger-shaped pore and the surrounding 
contaminated solid occupy a finger shaped volume 
with a thickness t that is a small multiple of Do: 

t = h D,, (16) 

The precise values of the factors X and 6 are 
not important, although exact estimates of these 
geometric features can be made by solving numer- 
ically the steady diffusion problem associated with 
the finger-shaped cavity. The important conclusion 
is that both X and 6 are numbers of order 1, such 
that the ratio X/S is a number comparable with 1. 
We return to this observation in equation (20). 

Figure 3 summarizes the results obtained until 
now. The vertical permeability constant K of the 
material shown in figure 2 can be estimated as the 
equivalent permeability of a group of parallel tubes 
of diameter DO and spacing t (Bejan, 1995, p 570): 

K-3 (17) 

This formula can be combined with equations (16) 
and (13) to obtain: 

HI= f 
0 

l/3 
z/3 

A, Do D,+ 

Noting in figure 3 that HI = 2 Lo, and recalling that 
LI = A1 /HI, we arrive at: 

The geometric implications of these results 
become clearer if we calculate the now optimized 
aspect ratio: 

HI 9 6 llJ2 -2 -=- - 
Ll 0 4 x 

(20) 

where we used the earlier estimate S/X w 1. In 
equation (20) we reach the important conclusion 
that the shape of the volume must be such that 
H~/LI is practically constant and equal to 2. The 
number of tubes of size (DO, LO) contained in this 
first assembly is also closely represented by the 
number 2 (the smallest integer greater than 1): 

Ll 3/2 n,1 E 2-.- 16 X = - 

t 9 
0 
s 

rv 2 
(21) 

In conclusion, the optimization of the rectangular 
shape of A1 means that AI is an assembly that 
contains only two of the smallest elements. This 
optimal first assembly is illustrated in figure 4. It is 
important to keep in mind that the road travelled 
from figure 2 to figure 4 was one where the number 
nl was free to vary, and the conclusion that nl 
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Fig 4. The optimized first element. 

Fig 4. Premier &ment optimise. 

must be the smallest even number available is 
theoretical. It was geometric optimization that led 
to the conclusion that two ~0 tubes must come 
together and form one tube of diameter DI. In other 
words, reading the present geometric construction 
in the reverse, the fact that in figure 4 the DI 
tube bifurcates is of purely theoretical origin. This 
observation is amplified in 3 7. 

3.2. OPTIMIZATION OF DUCT VOLUME 
DISTRIBUTION 

In figures 2 and 3 the D1 tube ran from one end of 
the assembly to the other end (length Li) because 
the number of vertical DO tubes was arbitrary and 
assumed large. This is no longer the case when the 
first assembly is optimized: in figure 4 the length of 
the D1 tube is L1/2 because its function is to collect 
the rizi stream from the center of the assembly, and 
lead it along the shortest path out of the assembly 
In place of equation (12), the pressure drop formula 
can be written specifically for figure 4: 

where the two terms account for the DI and DO 
portions of the flow path. The 112 factor in front 
of the second term accounts for the fact that one 
end of the DO tube is closed (for example, the in 
& out flow through this ‘sack’ is made possible by 
the periodic and partial swelling and contracting 
of DO). Equation (22) can be rewritten to show 
the geometric parameters of the flow resistance 

encountered by tii, 

(23) 

When the total volume occupied by the ducts is 
constrained, 

V,l = 2D:++2;D;Lo 

there is an optimal way of distributing this volume 
such that the flow resistance is minimized. This 
additional degree of freedom is represented by the 
diameter increase ratio D1 /DO. Noting that LI = LO, 
the minimization of the expression (23) subject to 
the constraint (24) yields: 

Dl -=2 l/2 
Do 

(26) 

3 
Vpl = - n: LoD,2 

4 
(27) 

In conclusion, the first assembly is optimized 
further if the collecting duct (01) is 21/2 times 
thicker than its tributaries. 

It is worth mentioning that the first assembly 
(fig 4) can also be optimized with respect to the 
angle between the Do and D1 ducts. This optimiza- 
tion opportunity has been studied extensively in the 
past, beginning with Murray (1926) and Thompson 
(1942). It is not included in the present analysis for 
the sake of simplicity: the present objective is to 
highlight the optimization with respect to volume 
shape (3 3.1), which is new and solely responsible 
for the organization (assemblies) that emerge in the 
direction of larger scales. 

4 I THE SECOND CONSTRUCT 

The optimization and construction of subsequent 
assemblies of larger size follows the same steps as 
the procedure used for the first assembly. These 
steps were presented in detail in 3 3 and in a 
previous paper by Bejan (1997a). For conciseness, 
we focus on the results and the patterns that emerge 
in going from one assembly to the next, larger size. 

The construction of the second assembly begins 
with taking a large and unspecified number (nz) 
of first assemblies, and arranging them on both 
sides of a new collecting tube of diameter D2. We 
arrive in this way at figure 5, which is in principle 
the same as the generic model analysed earlier 
(fig 3). Consequently, the conclusion that the new 
assembly contains the smallest even number of 
assemblies of the preceding size applies here as 
well: the number n2 has been used to draw figure 6. 
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We see that the shape-optimized second assembly 
contains two first assemblies, which form the larger 
stream (tiz = til + til) right in the center of the 
second assembly. The lizz stream is guided out of the 
second assembly through a new duct of diameter 
Dz and length L2/2 (= LO/~). 

Fig. 4c 

T 

I 

D2 n n n 
H2 

t 
u 

il I I 

l+-L2B 

Fig 5. Second construct containing an unspecified number 
of first elements. 

Fig 5. Deuxieme construction contenant un nombre non 
sphcifik de premiers elements. 

T T Li 1 l--i--l .-.-.- - - 
Fig 6. The optimized second construct. 

Fig 6. Deuxieme construction optimiske. 

The second step in the optimization of the second 
assembly consists in minimizing the total flow 
resistance overcome by ti;?, 

128~ Lz 
AP2=ti2 D1+AP, (28) 

2 

subject to the total pore volume constraint 

In these equations, API and V,I are provided by 
equations (26) and (27). The optimal distribution of 
pore volume is described by: 

D2 -=2 S/6 

DO 

AP2 = ; (2-l’” + 3) 
Lo 

tizv- D4 
0 

1/1,2 = ; (2Z’3 + 3) L,, 0; 

In view of equation (25), the ratio DnlDo = 2’16 

means that in going from the first to the second as- 
sembly the diameter of the collecting duct increases 
by a factor DzlDI = 2l/“. 

5 I THE THIRD ASSEMBLY 

The next shape optimization step leads to a third 
assembly that contains only two second assemblies, 
as shown in figure 7. The new stream (tis = tia+tiz) 
is formed in the centre of the cube of side E-r, (= 2 Lo), 

and is led to the outside through a new duct of 
diameter DS and length L3/2 (= Lo). The second 
step of the optimization method (the distribution 
of pore volume) consists in determining the overall 
fluid resistance function 

128~ L3 
AP:S = ti3 - - 

7~03” 2 sAp2 
(33) 

and minimizing it subject to the pore volume 
constraint 

b1;,3 = !! D2 L3 
4 

3 2 f2Vp2 (34) 

where AP2 and V,Z are given by equations (28) and 
(29). The results of this analysis are: 

D3 -=2 7/6 

Do 
(35) 

A& = $ (z113 + 2-l/” + 3) ti3v- ;4 (36) 
0 

v,pj = TT (21’3 + 2-“3 + 3)L,, 0; (37) 

Equations (35) and (30) show that the new diameter 
increase factor D3/D2 = 2l/” is the same as the 
preceding one, Dz/DI. In conclusion, beginning 
with the second assembly the diameter of each 
new collecting duct increases by a factor of 2’i3. 

6 m HIGHER ORDER CONSTRUCTS 

The assembly optimization and construction pro- 
cedure can be repeated until the assembly size 

T 1 D2 i 
“3 -i- 

I 

DT 

I 
(3 

f 
4 ---i- 

r 1 
I  

t+--- L3-4 

Fig 7. The optimized third construct. 

Fig 7. Troisieme construction optimisbe. 
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TABLE I 

Summary of the optimized geometries and fluid flow resistances of the first nine constructs 

Assembly 1,/1,+1 D,/Di-1 
AP, 0; V 
___ -2% 
m, u LO D:Lo 

i 

1 
1 

i 
p/2 

+f (3) 2 (3) 

2 1 p/3 a (3 + 2-“3) ; (3 + 2-1’3) 

3 2 p/3 i (3 + 2-W + 219 n (3 + 2-1’3 + 21’3) 

4 1 21/3 1 (4 + 2-W + 2W) 2 n (4 + 2-1’3 + 21’3) 

5 1 p/3 ; (4 + 2 x 2-1’3 + 2l’3) 4n (4 + 2 x 2-1’3 + 21’3) 

6 2 p/3 & (4 + 2 x 2-l’” + 2 x 21’3) 8n (4 + 2 x 2-l’” + 2 x 21’“) 

7 1 21/s & (5 + 2 x 2-1’3 + 2 x 21’3) 16x (5 + 2 x 2-~1’3 + 2 x 2”“) 

8 1 p/3 & (5 + 3 x 2-1’3 + 2 x 21’3) 32~(5+3~2-~‘~+2~2~‘“) 

9 2 p/3 & (5 + 3 x 2-1’3 + 3 x ~2~‘~) 64~ (5 + 3 x 2-1’3 + 3 x 2l’“) 

matches the scale of the original volume V. 
The main features of the first nine assemblies 
are summarized in table I. The column 1,/1,-l 
represents the factor by which the length of the 
new collecting duct (1%) increases relative to the 
preceding duct (li). The duct length (li) is to be 
distinguished from the horizontal dimension of the 
assembly (L,): in figure 7, for example, 13 = L3/2. 

As noted already, the diameter increase factor 
settles at D,/Dtel = 2 ‘i3 after the second assembly. 
The length increase factor &/1,-l exhibits a cyclical 
pattern for each sequence of three assembly sizes, 
provided i 3 2. This cycle is more evident when 
i 2 4, especially as we examine the evolution of the 
numerical coefficients obtained for AP, and V,i: each 
of the preceding (smaller) assembly sizes leaves its 
mark on the form of these coefficients. When the 
assembly order (i) is a multiple of 3, the numerical 
results in table I can be extended with the formulas: 

AP, 0; 1 --=- 
rni VLO ‘p5 n 2 + i(1+ 2-1’3 + 21’3) 1 (38) 

61 
m= 

22-3 7T 2 + f(1 + 2-1’3 + 21/3)] 

(i=3,6,9,...) (39) 

Another property of these results is that the 
outer linear dimension of the assembly of order 
(i + 3) is the double of the outer dimension of the 
assembly of order i. This factor of 2 increase also 
applies to the diameters of the largest (collecting) 
ducts of the two assemblies. Figure 8 illustrates the 
doubling of the size, from the third assembly (a) to 
the sixth assembly (b). 

It is important to note that the internal details 
do not double their sizes in going from assembly (i) 

to assembly (i + 3). In other words, assembly (i + 3) 
is not the same as magnifying by a factor of 2 every 
feature of assembly i. The reason is that the fluid 
flow path constructed in this paper has a definite 
(finite and known) beginning: the smallest scale 
(K, or DO), and the optimized first assembly. It is 
the finite-size and geometry of this beginning that 
distinguish the present theoretical construction 
from the algorithms that are postulated and used 
in fractal geometry. In the latter, the algorithm 
can be repeated conceptually ad infinitum, all the 
way down to the scale of size zero (only there, at 
infinity, the structure would be a ‘fractal’). Because 
of the infinite series of steps, the fractals-generated 
image of a certain size can be obtained by simply 
magnifying an image of a smaller size. 

7 I THE IMPORTANCE 

OF THE DIRECTION OF TIME 

In figures 2 to 7 we have constructed the fluid flow 
path that minimizes the flow resistance between 
a finite-size volume and a spot on its boundary. 
The new aspect of this construction is that ev- 
ery single step was determined based on geomet- 
ric optimization. From the shape of the elemen- 
tal volume (H1/L1) to the collecting duct of the 
largest assembly (Dn), we relied on the minimiza- 
tion of flow resistance subject to fixed volume and 
mass flow rate. This deterministic approach gave 
us the optimal shape of each assembly, the opti- 
mal number and orientation of constituents in each 
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Fig 8. The doubling of the outer dimension in going from the optimized third construct (a) to the optimized sixth construct 
(b). 

Fig 8. Doublement de la dimension extkrieure en passant de la troisieme construction optimiske (a) ti la sixieme (b). 

new assembly, and the optimal dimensions of each 
new duct. The construction began with the smallest 
element, in which the fluid flowed volumetrically 
(Darcy flow), and proceeded step-by-step toward 
assemblies of larger sizes. 

To see what is new in this approach, note that one 
portion of the network pattern (namely, the portion 
formed by the higher-order assemblies, table I for 
i > 4) is not new. It was proposed in physiology 
as a heuristic model for the circulatory system 
(Cohn, 1954), where it was known empirically 
that each tube is followed by two smaller tubes, 
ie, each tube undergoes bifurcation. It was also 
known that the tube diameter must decrease by a 
constant factor (2-l’“) during each bifurcation: this 
result had been derived based on flow resistance 
minimization (Thompson, 1942) and later, based on 
entropy generation minimization (Wilson, 1967); 
it was the only theory-based notion present in 
the algorithms used to reconstruct the pulmonary 
tree or other tree-shaped networks that appear in 
nature (trees, roots, leaves, river basins, deltas, 
lightning). The description of these geometric 
constructions was made popular through the advent 
of fractal geometry: in fact, a two-dimensional 
version of Cohn’s (1954) branching fluid network 
appeared later in the books by Mandelbrot (1983) 
and Prigogine (1980), where it was presented 
heuristically as a ‘model of the lung’. 

In spite of these advances, the theory of branch- 
ing fluid networks remained limited to one result: 
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the constant factor for diameter reduction during 
branching [which, upon closer scrutiny, turns out to 
be empirical not theoretical: see equation (48)]. The 
construction steps that were left to be determined 
theoretically are the number of new (smaller) ducts 
formed during branching (why two branches, and 
not six?), the relation between the branch length 
and the length of the original (larger) duct, and the 
position of the smaller branches relative to larger 
branches, ie, the manner in which the flow path fills 
the volume. Another extremely important aspect 
that awaited an explanation is why the theoretical 
diameter reduction factor (z-‘/~) fails to describe 
the sizes of the smallest ducts. In other words, why 
does the heuristic construction of an algorithm- 
based network break down at a sufficiently small 
scale (as in figures 2 and 3)? 

The analysis of sections 2-6 provided theoretical 
answers to all these questions. To see why the 
previous investigations of the volume-to-point flow 
did not lead to a pure theory, let us rethink the 
problem by relying on the traditional approach. 
In past studies of branching fluid networks, the 
network was first seen and accepted, and then it 
was broken down repeatedly (eg, through postulated 
bifurcation), beginning with the largest duct and 
proceedings toward smaller scales. In figure 9 
we assume that the volume V is filled by an 
existing network of ducts. The network is seen 
as a sequence of n branching stages (j = I,&. , n), 

which proceeds in the direction of smaller scales. At 
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1 =o j =I J =2 

No=1 N, N2 

LO f-1 L2 

DO 4 D2 

Fig 9. The time-reversed approach: an assumed fluid 
network that branches in the direction of smaller scales. 

Fig 9. Inversion de la direction du temps : proposition de 
r&.eau de fluides en direction des plus petits Sments. 

each branching stage, the unknown dimensions of 
each duct are D, and Lj. The total number of ducts 
of size (D,, L3) is also unknown, and is labeled 
NJ. The starting (zeroth) duct of the network is 
characterized by DO, LO and NO = 1, where Do 
should not be confused with the smallest scale 
identified in the present analysis @g 3 and 4). The 
directions in which the branches invade the volume 
are unknown. The number of branching stages n is 
also unknown. 

The conservation of the total mass flow rate tie 
at each branching stage j requires: 

tie = NJ ri2, (40) 

where riz, is the mass flow rate through one branch 
of the jth order, 

n AP, 0," 

m3=128Ty 

and AP, is the pressure difference across the jth 
branching stage. Combining equations (40) and (41), 
and summing over all the branching stages, we 
estimate the total pressure difference sustained by 
the network: 

We then minimize the flow resistance 
subject to the duct volume constraint 

J=o 3=0 

This optimization problem is equivalent 
ing the extremum of the function 

(42) 

AP/rizo 

(43) 

to find- 

(44) 

where X is a Lagrange multiplier. The sequence of 
optimal tube diameters that minimizes P, is: 

2 l/6 

Qopt = x 

0 

N3-1’3 (j = 0, 1,. . ,n) (45) 

which shows that the optimal diameters decrease 
as NJ:1’3 from one branching stage to the next. The 
value of the Lagrange multiplier can be determined 
by substituting the optimal distribution (45) into 
the duct volume constraint (43), 

In conclusion, equation (45) shows that if the 
number of ducts at each branching stage is known 
(N,), then we have an optimal sequence of duct 
diameters for minimum overall flow resistance. For 
illustration, consider Thompson’s (1942) example 
of the respiratory and vascular systems, where 
observations showed that each tube is continued 
by two smaller tubes: 

NJ = 2J (47) 

According to equation (45), in this case the optimal 
diameters decrease as Z-J/~, and the ratio between 
two consecutive tube sizes is a constant: 

= 2-l/” g 0.8 
(48) 

opt 

Equation (45) is a theoretical result, and, in it, the 
NJ and L, values are left unspecified. Equation 
(48), on the other hand, is empirical because 
equation (47) is empirical: it rests on the direct 
and unexplained observation that in the lung and 
the vascularized tissue each large tube is continued 
by two smaller tubes. 

Equation (45) is the most that the approach 
based on figure 9 can predict. The analysis of this 
section - the breaking down of each duct into 
a more numerous generation of ducts - showed 
very simply why this approach cannot advance 
theoretically beyond the ability to predict the tube 
diameters when the tube numbers are accepted 
empirically. The features of the fluid network can be 
anticipated in a purely deterministic manner only 
when the analysis proceeds from small building 
blocks toward larger building blocks. The present 
method of accessing a finite volume from one point 
invites us to rethink the language in which we 
describe naturally organized systems. Confluence 
yes, branching no. Coalescence yes, bifurcation no. 
Construction yes, fracturing no. Constructal yes, 
fractal no. 

8 I THE OPTIMAL-ACCESS LAW, 

AND THE ORIGIN OF SHAPE 

AND STRUCTURE IN NATURE 

The present method suggests that the three- 
dimensional tree networks that are so common in 
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nature are the fingerprint of the minimization of 
the flow resistance between a finite volume and one 
point. They are the result of optimizing the access 
between all the points of the volume (an infinite 
number of points) and the single point that serves 
as source or sink. 

This deterministic approach has two very special 
features that have not been recognized in the 
past. One is the time direction (from small to 
large), which was discussed at length in 5 7. The 
other is the notion that the flow (the access) 
between the source point and a point inside the 
finite volume can occur via two regimes, not one. 
One regime is volumetric diffusion [disorganized 
molecular motion, eg, equation (311 and the other 
is an ‘organized’ flow [streams, eg, equation (6)]. 
Each flow path is a combination of a portion with 
high resistance (diffusion) and a portion with low 
resistance (streams). 

Access to the infinite number of points inside 
the finite size volume is assured by placing the 
slowest (diffusion) regime in the smallest volume 
element. This is why the small-to-large direction 
is so important. After this initial step, the access 
optimization problem becomes one of allocating low- 
resistance path (duct volume) to finite volumes of 
increasingly larger sizes. Had there been only one 
flow regime in the finite volume (eg, diffusion), the 
volume-to-point access would have been described 
by the well known ‘radial’ flow (sink, source) 
solution. 

These two features are evident in all the volume- 
to-point and area-to-point flows found in animate 
and inanimate systems in nature. There are most 
visible at the end of the pencil-and-paper analysis 
by which the time of travel between an area 
and one point is minimized (Bejan, 1996a). Tree 
networks of alleys, streets of avenues emerge 
naturally They are the result of the same principle 
(time minimization) that in the past allowed us to 
rationalize the natural occurrence of straight rays 
of light, the equality of the incident and reflection 
angles (Heron of Alexandria), and the existence of 
an optimal angle of refraction (Fermat). 

The discovery that tree networks are determin- 
istic is very important to the design of telecom- 
munication networks and computer architecture. 
In mathematics, the problem of connecting with the 
shortest line several points spread over a finite area 
is known as Steiner’s problem (Courant and Rob- 
bins, 1941). According to Bern and Graham’s review 
(19891, ‘the solution to this problem has eluded the 
fastest computers and the sharpest mathematical 
minds,’ and its solutions ‘defy analysis.’ Solutions 
have been found for connecting a moderate num- 
ber of points in a plane. Worth noting is that as 
computers become more powerful this number will 
increase, but it will never be infinite to cover com- 
pletely the given area. Furthermore, the opaque 
optimization performed by the computer will never 
be theory The alternative to Steiner’s problem (Be- 
jan, 1996a & 1997a) was the proposal to optimize 
access (ie, to minimize flow resistance, travel time, 
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etc), when the flow has at least two regimes, one 
slow, and the others considerably faster. 

The geometric structure formed by slow and fast 
flow regimes is a feature that unites all the volume- 
to-point access phenomena found in nature. In this 
paper, we discussed the flow of oxygen through a 
mammal: the slow flow is volumetric mass diffusion 
through the tissues, while the faster regime is mass 
convection through blood vessels and bronchial pas- 
sages. The same is true in every turbulent flow, 
which is another form of natural organization: vol- 
umetric diffusion in the smallest volume elements is 
accompanied by faster and thinner currents known 
as eddies. Artificial constructs such as the internal 
architecture of computers require the same cooper- 
ation between slow and fast heat transfer, with the 
slow mode (volumetric thermal diffusion) placed at 
the smallest scale. The examples go on. This co- 
operation is most obvious in living groups, from 
bacterial colonies to the most advanced societies: 
every member has a place in the structure, in such 
a way that every member benefits. The urge to 
organize is an expression of selfish behavior. 

In the fluid flow system analyzed in this paper 
we neglected some of the internal details (degrees of 
freedom) of the structure, eg, the angles between the 
collecting ducts and their tributaries. In a follow up 
study (Ledezma et al, 1997) of the heat flow problem 
(Bejan, 1997a), we demonstrated numerically that 
the finer details of the tree network play a negligible 
role indeed. The shapes of each of the building 
blocks are the important geometric optima that 
determine the optimal numbers of streams that 
merge into larger streams at each level of assembly. 
This is an important conclusion because it sheds 
light on the origin of the coexistence of order and 
disorder in natural structures. If the optimal access 
from a finite-size volume to one point is what counts, 
then the finer details of the path are not important: 
they may vary according to unknown, incidental 
factors that can be labeled ‘chance.’ 

The main point is that the larger picture, the op- 
timal overall performance, structure, and working 
mechanisms, can be described in a purely deter- 
ministic fashion; that is, if the access-optimization 
principle is recognized as a law. This law can be 
stated as follows: For a finite-size system to persist 

in time (to live), it must evolve in such a way that 
it provides easier access (less resistance) to the im- 
posed currents that flow through it (Bejan, 1997a). 
This statement has two parts. First, it recognizes 
the natural tendency of imposed global currents to 
construct paths (shapes, structures) for better ac- 
cess through constrained open systems. The second 
part accounts for the evolution of the structure, 
which occurs in an identifiable direction that can be 
aligned with time itself Small size and shapeless 
flow (disorganization, diffusion) are followed in time 
by larger sizes and organized flows (organization, 
streams). Complexity continues to increase in time. 

The importance of this theoretical development 
stretches beyond engineering, physics and biology. 
Consider the economic activity that covers a given 
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area. The economic activity is the optimization 
principle, and the structure that covers the area is 
its result. To see how the present constructal theory 
explains the origin of structure in economics and 
business, consider a stream of goods that proceeds 
from one point (producer, or factory) to every point 
of a finite-size territory (consumers). The flow may 
also proceed in the opposite direction (eg, grain, 
carpets woven by individuals). The objective is to 
minimize the total cost associated with the given 
stream. The economies of scale principle tells us 
that the unit cost is lower when the goods move 
in the aggregate, ie, when they are organized into 
thicker streams. The unit cost is also proportional 
to the distance traveled. Clearly, the unit cost 
plays the same role as the local thermal resistance 
in heat trees (Bejan, 1997a), or the inverse of 
the travel speed in street trees (Bejan, 1996a), 
or the local fluid-flow resistance in the present 
paper. The given territory is covered naturally by 
links of decreasing unit cost, starting from the 
highest unit cost which is allocated to the smallest 
area scale (the individual), and continuing with 
a sequence of intermediaries (distributors) who 
handle increasingly larger fractions of the given 
stream of goods. 

Another by-product of the constructal theory is 
that it explains also why natural structures ‘happen 
to look’ like the images generated by assumed 
fractal algorithms that are truncated arbitrarily 
An explanation for the physics principle behind 
the design of the algorithm had been missing. 
Constructal theory is about the single physics 
principle from which geometry (shape, structure, 
organization) can be deduced. Constructal theory 
is deterministic (predictive), in sharp contrast to 
fractal geometry, which is at best descriptive. 

How important is the constructal theory of op- 
timal access, ie, this single geometric optimization 
principle that allows us to anticipate the tree ar- 
chitecture seen in so many natural systems? In 
contemporary physics a significant research vol- 
ume is being devoted to the search for universal 
design principles that may explain organization in 
animate and inanimate systems. In this search, 
the tree network is recognized as the symbol of 
the challenge that physicists and biologists face 
(Kauffman, 1993, pp 13-14): ‘Image a set of identi- 
cal round-topped hills, each subjected to rain. Each 
hill will develop a particular pattern of rivulets 
which branch and converge to drain the hill. Thus 
the particular branching pattern will be unique to 
each hill, a consequence of particular contingencies 
in rock placement, wind direction, and other fac- 
tors. The particular history of the evolving patterns 
of rivulets will be unique to each hill. But viewed 
from above, the statistical features of the branching 
patterns may be very similar. Therefore, we might 
hope to develop a theory of the statistical features 
of such branching patterns, if not of the particular 
pattern on one hill.’ 

The constructal approach described in this paper 
and in previous ones (Bejan, 1996a, 1997a, 199713 

& 1998; Ledezma et al, 1997) is a deterministic 
answer to the challenge articulated so well by 
Kauffman. It introduces an engineering flavor in the 
current debate on natural organization, which until 
now has been carried out mainly in physics and 
biology. By training, engineers begin the design of a 
device by first understanding its purpose. The size 
of the device is always finite, never infinitesimal. 
The device must function (ie, fulfill its purpose) 
subject to certain constraints. Finally, to analyze 
(describe) the device is not sufficient: to optimize 
it, to construct it, and to make it work is the 
ultimate objective. All these features, purpose, finite 
size, constraints, optimization, and construction, 
can be seen in the constructions reported in this 
paper and in previous ones (Bejan, 1996a, 1997a, 
1997b & 1998; Ledezma et al, 1997). The resulting 
tree networks are entirely deterministic, and, 
consequently, they represent an alternative worthy 
of consideration in fields outside engineering. The 
progress made in this direction is reviewed in a new 
book (Bejan, 1998). 
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