
36 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

V
viewpoints

P
H

O
T

O
 B

Y
 D

A
N

 S
E

A
R

S
,

T
H

E
 U

N
I

V
E

R
S

I
T

Y
 O

F
 N

O
R

T
H

 C
A

R
O

L
I

N
A

 A
T

 C
H

A
P

E
L

 H
I

L
L

Interview
An Interview with
Fred Brooks
ACM Fellow and A.M. Turing Award recipient Fred Brooks
reflects on his career.

I paid $35 for. I made my own McBee
card keysort systemb for keeping track
of my map collection. So I have al-
ways been fascinated with the kind of
machines that process information.
When I was 13, I read in a Time maga-

b	 An edge-notched card filing system invented
in 1896; see http://en.wikipedia.org/wiki/
Edge-notched_card

A
CM F E LL OW FREDERICK
(“Fred”) Brooks, recipient
of the 1999 A.M. Turing
Award, has made landmark
contributions to computer

architecture, operating systems, and
software engineering. After earning
a Ph.D. in Applied Mathematics and
Computer Science from Harvard under
the legendary Howard Aiken, he worked
for IBM on several landmark computer
systems, most notably the System/360
series that came to dominate main-
frame computing for decades. He left
IBM in 1964 to found the Computer Sci-
ence Department at the University of
North Carolina, from which he retired
at the end of the Spring 2015 semester.

Noted software architect Grady
Booch conducted an oral interview of
Brooks in Cambridge, U.K., in Septem-
ber 2007. The complete transcripta of
this interview is available in the Com-
puter History Museum’s oral history
archive; presented here is a condensed
and highly edited version designed to
whet your appetite.

—Len Shustek

Falling in Love with Technology
I was born in Duke University Hospital
because my father was teaching chem-
istry at the University of North Caroli-
na, and that was the nearest hospital at
the time. When I was about six months
old he decided to change careers and

a	 http://www.computerhistory.org/collections/
catalog/102658255

go to medical school, so we settled in
Greensboro, N.C. It was a great place
to grow up because of the superb
school system.

My favorite subject was physics, but
I always had a fascination with busi-
ness equipment. When the local corset
factory went out of business, I bought
filing cabinets for $4 apiece and a
Burroughs comptometer that I think

DOI:10.1145/2822519	 Len Shustek

Fred Brooks with a statue created in his honor at the University of North Carolina
Department of Computer Science.

http://dx.doi.org/10.1145/2822519

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 37

viewpoints

V
viewpoints

an improvement, and that was essen-
tially the machine I designed for my
dissertation, but there were no further
economies to be had by making it spe-
cialized for payroll.

Aiken was a very impressive person,
and did something I cannot do with my
students: he came to my office every
day during the year I was working on
my dissertation and wanted to see the
prose that had appeared since the day
before. And guess what? Some had ap-
peared since the day before.

Helpful Summer Jobs
I was offered a summer job at Mara-
thon Oil Company in Findlay, OH, us-
ing an IBM 650 to mechanize payroll.
That was priceless experience. The
complexities in business data pro-
cessing are that you are trying to lump
a wide variety of cases under a single
process, so typically on the 650 when
it was doing business applications,
half of all instructions would be con-
ditional branches. That is not true in
scientific computing.

It helped me as a computer archi-
tect that I was also doing scientific
computing. I spent a summer at North
American Aviation doing missile track-
ing and database building. A summer
at Bell Labs trying to identify which
party on a four-party line was dialing
this call. A summer at IBM in Endi-
cott, NY, where I learned punched card
machines and was in the physics de-
partment doing acoustics. Those four
summers were a priceless part of my
education, and they exposed me to rad-
ically different corporate cultures and
radically different geographies.

Working on IBM’s Supercomputer
Steve Dunwell, who was project man-
ager for Stretch, came through Harvard
in 1956 looking for people. His offer
was very attractive: a chance to work on
the world’s fastest computer. I leapt at
the opportunity. My wife Nancy, whom
I had met the first Sunday night at Har-
vard, worked on the transistor circuits,
and I worked with the architects under
Werner Buchholtz.

IBM had been thinking about it for
a year, and had just signed the contract
with the National Security Agency to
build Harvest, a variant of Stretch for
breaking wire-wheel cryptographic
codes. I was the only one of the archi-

zine in the little town library about the
Harvard Mark I computer and I knew
from then on that was what I wanted
to do.

Studying Computers at Harvard
I did my undergraduate major at Duke
University in physics, but I also stud-
ied math, economics, and accounting
as well as the humanities because that
was also my interest. The head of the
physics department was determined
that his best students should go to
Harvard to study physics, and two of
us did. When I told my advisor there
that I really want to study computers,
he said, “Fred, you’re too late to get in
on the ground floor, but you can catch
the first landing.” That meant I had a
chance to meet and really get to know
J. Presper Eckert, John Mauchly, and
Konrad Zuse. Howard Aiken was my
thesis advisor. So I got to really know
the pioneers even though I was not in
that generation, and that has been a
great joy.

I went into the computation lab, a
very small group that was part of a di-
vision of engineering in applied phys-
ics. There was Aiken, who was the
boss, and two young instructors, Ken
Iverson and Bob Minnick. Every day
the boss was in town the whole crowd
gathered for coffee at 5 p.m. in the ma-
chine room, which had the Harvard
Mark I on one side and the Harvard
Mark IV on the other side, each about
60 feet long. We would talk for a half-
hour or 45 minutes, and then he would
go home to supper and we would go
back to work.

Programming the Harvard Mark IV
We programmed the Mark IV start-
ing the first semester. My present col-
league Bill Wright and I undertook,
for our first year project, to write a
program that would analyze melodies
and create synthetic melodies using
an eightfold Markovian process. We
chose common meter hymns because
we could find a lot of them that had
the same metrical structure. We trans-
posed them all to the same key, then
we analyzed the transition probabili-
ties of the melodies. It took us three
years to get done, but we got music you
could pass off on any choir.

The Mark IV was programmed in
decimal absolute. It had 230 registers,

10,000 words of program storage, and
4,000 words of backup drum storage.
There wasn’t an assembler, but Aiken
had designed a relay box that enabled
you to encode it algebraically. Our first
program for determining the Markov
frequencies ran about 2,500 instruc-
tions. We were allowed two one-hour
slots on the machine during the semes-
ter, so we did extensive desk checking.
It is the only big program I ever wrote
that ran right the first time.

Howard Aiken as an Advisor
At the end of my first year Aiken told
Ken Iverson “I would like you to pre-
pare a course on the application of
computers to business.” Nobody had
ever taught any such course anywhere
in the world. I had had trouble with a
course in boundary value problems
and was not continuing my NSF fel-
lowship, so I went to Ken and said,
“Can I be your teaching assistant, be-
cause that’s right down my alley?” Out
of that came our book Automatic Data
Processing, which went through an edi-
tion based on the IBM 650 and then six
years later an edition based on the 360.
Ken was fully as important in my edu-
cation as Aiken was.

For my dissertation, Aiken said “I
want you to design a machine special-
ized for payrolls.” That sounded like a
good topic, even though he was more
interested in the machine and I was
more interested in the design method-
ology—how you get from the require-
ments to the machine.

His hypothesis was that by special-
izing a machine for payroll you could
make significant improvements in
cost performance. That turned out
not to be the case. By specializing for
serial file processing you could get

When I was 13, I read
about the Harvard
Mark I computer
and I knew from
then on that was
what I wanted to do.

38 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

viewpoints

make sure my boys landed on their feet
in the reassignment. I was on the way
out back to research when, to my utter
amazement, Bob asked me to take the
new product line. The crown jewels!

I was dubious. We had been fighting
pretty hard. But Jerry Haddad, who was
Bob’s boss at the time, said, “I never
knew anybody that regretted working
for Bob Evans.” So I gave it a try, and
it went really well. We clicked, and we
fought shoulder to shoulder, side by
side, the rest of the way. Bob is one of
four great bosses I had in my life.

Designing the System/360
Architecturally we started out in the
data systems division pursuing a stack
architecture, which is what Burroughs
had done. It turns out that works great
if you’ve got a transistor register for sev-
eral levels, and it does not work great if
you’ve got it all in memory, and you are
having to pull and push all the time.

The problem is addressing. If you
put addresses big enough on the littlest
machine, your littlest machine is se-
rial by byte and that means you spend
a lot of cycles fetching address bytes
that you are never going to use, and
that compromises your performance.
The stack architecture was a way of ad-
dressing that by not fetching as many
addresses, but when we went through
the performance and cost estimation
in March 1962, the stack machine was
working fine from the middle size up
but was not competitive below because
of all this pushing data in and out of
memory. We had accepted the assign-
ment of making the whole product line
upward and downward compatible
with one architecture.

So we scrapped it and had a design
competition, which was Gene Am-
dahl’s idea. I think there were 12 or
13 internal teams, mostly of three or
four people. I said the decision of the
judge will be final. Gene’s team and
Jerry’s team came in with essentially
the same concept, which was to use
the base registers that Philco had in-
troduced in a machine a year or so
earlier. Base registers meant we could
get by with short addresses.

There was one very big difference.
Gene’s machine was based on the
existing 6-bit byte and multiples of
that: 24-bit instructions and a 48-bit
instruction or floating point. Jerry’s

tects proper who was native-born, so I
could get the security clearance to work
on it. Stretch, as the host, was about
15-feet long and 5-feet high and 5-feet
deep. Harvest was a “plug-in card”
that added another 20 feet of special-
ized electronics. It processed about 4
million bytes a second, and had about
250 bytes of instruction to set it up that
would take half a day to write.

The purpose of Stretch was to make
the fastest machine we could, cost
no object. That is both liberating and
tempting, but we did not succeed.
Dunwell had set out to make a ma-
chine 100 times faster than the IBM
704. But the memories available were
only six times faster, and the circuits
were about 10 times faster. The idea
was that by using more of everything
we could get there, and you can’t. We
only got to 50 times faster.

It was declared a disaster and with-
drawn from the market. But later
IBM recognized Stretch technology
enabled the 7090s, 7080s, and 7074s,
and that the concepts became cru-
cial for the System/360. Tom Watson,
to his credit, went back and got Steve
Dunwell out of disgrace and made a
special award to him recognizing the
important influence the Stretch had
on the company’s welfare.

Figuring Out IBM’s Future
The Data Systems Division, which was
the middle of the market in computers,
recognized they had a product problem
with their many existing lines. The vice
president for engineering appointed a
committee to study what a successor
product line architecture might look
like. I had moved to the research divi-
sion, but I chaired that committee.

At the end of the summer I was
asked to come back to the Data Sys-
tems Division as manager of architec-
ture. We undertook to design a new
product line called the 8000 series,
built around Stretch concepts. There
was a small scientific computer, small
and mid-sized business machines,
a grown-up version for high perfor-
mance use by insurance companies
and utilities, and a grown-up version
for scientific computing. We worked
very hard, and in January of 1961 we
had cost estimates and market fore-
casts, plus a plan that involved creat-
ing new markets by making these ma-

chines communications oriented.
In January we did an all-day presen-

tation of the 8000 series with the brass
up from Armonk and White Plains. The
whole program was very well received,
except for one fellow sitting in the back
who just got glummer as the day went
on. That was Vin Learson, and that is
not who you want to get glummer, be-
cause he was executive vice president
of the company. Well, that night he
fired my boss. He brought in Bob Evans
and told him “If it’s right, make it hap-
pen; if it’s wrong, turn it around.”

Bob spent three weeks looking
into it, then took me out to dinner at
a restaurant in Poughkeepsie and told
me he had decided it was wrong. We
were losing market share to the Seven
Dwarfs.c Everybody was out after us. We
were obsolete. We were fundamentally
address-size limited. We could not at-
tach more memory to the 7090 or the
7080, and the applications were hungry
for more memory.

He proposed to wait for a new semi-
integrated circuit technology that was
going to be three years down the road.
The problem is, how do you hold the
market in the meantime? My plan
would get out there now, although it
had some fundamental difficulties.

He was right and I was wrong. He had
two parts of his vision. One was that we
ought not to do a new product line for
the Data Systems Division; we ought to
do a new product line for the IBM com-
pany, big and little. The other was that
we ought to make the new product line
coincide with the new technology.

We fought back and forth. We went to
the Corporate Management Committee
in March, and I won. That did not slow
Bob down a bit. Bob is unstoppable.
He went to the Corporate Management
Committee in May, and he won. It was
over. This meant stopping all the 8000
series projects in the Poughkeepsie lab
and reassigning all the people. His plan
was to do temporizing machines—the
7094, the 7080 model 3, and so forth—
to hold the market as best we could un-
til we could get there with the new prod-
uct line using the new technology.

I had gone to a retreat up at Sara-
toga Springs to spend a week ironing
out who is going to do what, and to

c	 Burroughs, Sperry Rand, Control Data Corpora-
tion, Honeywell, General Electric, RCA, and NCR.

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 39

viewpoints

machine was based on an 8-bit byte
and 32-bit instructions, so 64-bit and
32-bit floating point. This is not a
real happy choice. There are strong
arguments each way, but you want
your architecture to be consistent.
You are not going to have an 8-bit
byte and 48-bit instruction floating-
point word.

It was our biggest internal fight.
Gene and I each quit the company
once that week, but Mannie Piore,
the senior scientist in the company
and a person of great wisdom, got us
back together. I had made the deci-
sion for the 8-bit byte. Gene appealed
to Bob; but Bob affirmed it. Of all my
technical accomplishments, making
the 8-bit byte decision is far and away
the most important. The reason was
that it opened up the lowercase al-
phabet. I saw language processing as
being another new market area that
we were not in, and could not get into
very well as long we were doing 6-bit
character sets.

When we announced the 360 in April
1964, I said to my team is “Tonight the
lights will be on in the other guys’ of-
fices”—those of our Seven Dwarfs

competitors—because the project had
been kept pretty well secret. And the
orders just started pouring in.

Operating Systems
In 1962 we formulated a plan to have
four software levels, known as Ro-
mans I, II, III, IV. Because we had
hardware compatibility across the
line, the software levels had to be dis-
tinguished only by the memory size.
W.B. McWhirter, who was the Data
Systems Division president, took the
software away from us, but they were
busy, and they did not give the 360
software much attention.

Before the announcement I said to
Bob, “Look, the machines are being
released to the factory. The hardware
part is done. The machines are on the
track. Everything’s rolling. But the
software is in an utter mess. Between
now and September, when I will leave
to help found the Computer Science
Department at the University of North
Carolina at Chapel Hill, let me go over
there and bail, and just see what can be
done with the boat.”

I changed teams, and we had a
retreat off in the woods in February

1964. We came back with a totally
different product plan that involved
these memory levels, compatibil-
ity among them, a variety of language
processors—two FORTRANs, a Report
Program Generator, two levels of CO-
BOL—and a modular operating sys-
tem that would start at 16K. You have
got to leave some space for the appli-
cation programs, so we said the oper-
ating system has to be resident in 4KB.
It turned out we could not do that, so
we ended up making 32KB the mini-
mum size machine for OS/360. We
had a tape-based operating system, a
card-based operating system, and a
little disk operating system called Ba-
sic Operating System. Those got deliv-
ered on schedule in February 1965.

But the big operating system was in
trouble. We patched and bailed, but by
summer it was clear that we were still
in trouble. Tom Watson invited me
down to Armonk for one of these one-
on-one luncheons in the executive din-
ing room and said, “Why don’t you stay
here?” I said that I really wanted to get
back closer to the technical level. “Well,
will you stay another year and keep on
bailing out the operating system? If you

Handbook of ColleCtive
intelligenCe
edited by Thomas W. Malone and
Michael S. Bernstein

—Duncan J. Watts, Principal Researcher,
Microsoft
Hardcover | $30 | £20.95

Regulating tHe Cloud

Policy for Computing Infrastructure
edited by Christopher S. Yoo and
Jean-François Blanchette

Information Policy series | Paperback | $30 | £20.95

tHe little PRoveR
Daniel P. Friedman and Carl Eastlund
foreword by J Strother Moore
afterword by Matthias Felleisen
drawings by Duane Bibby

—Shriram Krishnamurthi, Professor of
Computer Science, Brown University

NEW BOOKS FROM THE MIT PRESS

"... Friedman and Eastlund, two jolly
characters, eschew talk of bugs and
bombs, and strip [computational theorem
proving] down to its essence as only a
Little book can. Want proof? Look inside!”

The emergence of the cloud as infrastructure:
experts from a range of disciplines consider
policy issues including reliability, privacy,
consumer protection, national security, and
copyright.

"... ambitious and invigorating.
Whether looking to start your research
career or simply curious to understand
what collective intelligence is about,
you will find no better starting point
than this book."

Paperback | $34 | £23.95

mitpress.mit.edu

40 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

viewpoints

dollars, which would be $4 billion to-
day roughly.

We recognized that building big
systems is different from building
programs. There is still an awful lot
we do not know about how to build
complicated systems and keep them
under control. Tom Watson asked
me a question at lunch: “You’ve man-
aged the hardware program. You’ve
managed the software program.
What’s the difference?” I said, “Well
I can’t answer that one but I’ll think
about it.” That’s where The Mythical
Man Month came from. As I say in the
book, managing software is more like
managing hardware than most soft-
ware people believe and it is less like
managing hardware than most hard-
ware managers believe.

On to Chapel Hill
I love to teach, and the atmosphere and
the support at Chapel Hill in terms of my
colleagues could not have been better.

One of the areas we picked for em-
phasis when we started the depart-
ment was interactive three-dimen-
sional computer graphics. I worked
for 30 years with protein chemists,
building tools to enable them to
construct protein structures from
crystallographic data. Then the vir-
tual reality concepts came along as
a natural extension of 3D interactive
computer graphics. We have been
doing that for years, looking mostly
at serious applications as opposed to
entertainment applications.

I would advise someone consid-
ering a career in the computer field
to look at the intersection between
the computer field and biology. The
ablest young people today are often
opting entirely to go totally into bi-
ology instead of computers, and bi-
ology offers the same promise today
that the computer field did to me in
1953. On the other hand, the key to
much biology is information: where
it is hidden and how is it processed.
For the computer scientist the inter-
action with biology and biologists is
the golden opportunity. That is where
the fun is going to be.	

Len Shustek (shustek@computerhistory.org) is the
chairman of the Computer History Museum.

Copyright held by author.

will, we’ll send somebody to Chapel
Hill to teach your courses. You go one
week a month to get your department
organized. And when you need a new
computer in Chapel Hill, we will help.”
That was a good offer, so I said yes.

The workforce peaked at about
1,000. We did deliver the first version in
April or May of 1965, but it was slow. It
was November, really, before a respect-
able version was delivered.

The worst decision, which is docu-
mented in The Mythical Man Month,d
was to take the software away from
the architecture group and give it to
the operating system manager. The
architecture manager had said, “If
you leave it with me, it’ll be the same
amount late, it will cost the same, but
it’ll be right.” He was right and I was
wrong, and that was a multimillion-
dollar mistake.

Languages
Assembly language, surprisingly
enough, posed a lot of technical
problems. There were two entirely
different schools of thought. On the
commercial side, the assembly lan-
guage served as a platform on which
high priests in corporations wrote
macros and the troops programmed
in the macro language. In the scien-
tific community, the scientists would
write their own macros and they pro-
grammed in macro-enhanced assem-
bly language. The question of how to
resolve all this led me into the thickest
technical thickets I got into.

The other set of technical decisions
had to do with PL/I. One serious ques-
tion is: Do we do independent evalua-
tion of expressions so that you can fac-
tor out common sub-expressions? The
answer was yes, but that leads you to pe-
culiarities such as one divided by three
equals zero because of data typing.

The basic concept was to make a
universal programming language that
would meld and displace FORTRAN
and COBOL. ALGOL was not really a
factor, although part of our product
plan included delivering an ALGOL
compiler for government reasons. AL-
GOL was popular in Europe and had
a lot of important concepts in it, par-
ticularly having to do with subroutine

d	 Frederick P. Brooks, Jr., The Mythical Man-
Month. Addison-Wesley, 1975, 1982, 47.

calls and parameter passing, which
we had to master and adopt. An im-
portant step forward in PL/I was the
provision of compile-time mode, just
like macro assembler.

If we had been smart, we would
also have done a schedule-time mode
of PL/I instead of doing JCL, the Job
Control Language. But we weren’t
smart. The worst mistake we made
was JCL. Its existence was a mistake.
Building it on a card format was a
mistake. Building it on assembly lan-
guage was a mistake. Thinking of it as
only six little control cards instead of
a language was a mistake, because it
had no proper subroutine facilities,
no proper branching facilities. That
we did not see it as a language was the
fundamental problem; we saw it as a
set of control cards.

Except in the U.K., IBM waffled
about its support for PL/I. They did
the same thing with APL—on again,
off again—when a wholehearted sup-
port would have made it happen. Now,
could you have displaced FORTRAN?
No, I now think that would have been
impossible. I think you could have
displaced COBOL, whose community
is more coherent. It is more top-down
oriented, and PL/I is a better substitute
for COBOL than it is for FORTRAN.

How Big the Project Was
My hardware development budget was
about $100 million. That doesn’t count
all the I/O devices, the disks, the tapes,
the new keypunches to accommodate
8-bit bytes and the larger character
set, and the capital for the factories.
The whole program cost billions. The
software budget for the OS, not count-
ing DOS, I think was somewhere in the
neighborhood of $400 million in 1964

There is still an awful
lot we do not know
about how to build
complicated systems
and keep them
under control.

