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IN A FORECASTING exercise, Gordon Earle Moore, 
co-founder of Intel, plotted data on the number of 
components—transistors, resistors, and capacitors—
in chips made from 1959 to 1965. He saw an 
approximate straight line on log paper (see Figure 1). 
Extrapolating the line, he speculated that the number 
of components would grow from 26 in 1965 to 216 in 
1975, doubling every year. His 1965–1975 forecast 
came true. In 1975, with more data, he revised the 
estimate of the doubling period to two years. In those 
days, doubling components also doubled chip speed 
because the greater number of components could 
perform more powerful operations and smaller circuits 
allowed faster clock speeds. Later, Moore’s Intel 
colleague David House claimed the doubling time

for speed should be taken as 18 
months because of increasing clock 
speed, whereas Moore maintained that 
the doubling time for components was 
24 months. But clock speed stabilized 
around 2000 because faster speeds 
caused more heat dissipation than 
chips could withstand. Since then, the 
faster speeds are achieved with multi-
core chips at the same clock frequency. 

Moore’s Law is one of the most 
durable technology forecasts ever 
made.10,20,31,33 It is the emblem of the 
information age, the relentless march 
of the computer chip enabling a tech-
nical, economic, and social revolution 
never before experienced by humanity. 

The standard explanation for Moore’s 
Law is that the law is not really a law at 
all, but only an empirical, self-fulfill-
ing relationship driven by economic 
forces. This explanation is too weak, 
however, to explain why the law has 
worked for more than 50 years and why 
exponential growth works not only at 
the chip level but also at the system 
and market levels. Consider two prom-
inent cases of systems evolution. 

Supercomputers are complete sys-
tems, including massively parallel 
arrays of chips, interconnection net-
works, memory systems, caches, I/O 
systems, cooling systems, languages 
for expressing parallel computations, 
and compilers. Various groups have 
tracked these systems over the years. 
Figure 2 is a composite graph of data 
from these groups on the speeds of 
the fastest computers since 1940. 
The performance of these comput-
ers has grown exponentially. One of 
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˽˽ Exponential growth seems to be unique to 

computing and information technologies 
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˽˽ Exponential growth occurs 
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computing ecosystem—chips, systems, 
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growth as companies switch to new 
technologies when the current ones reach 
their points of diminishing return. 
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ogy (see Figure 3).25 He projected that 
this remarkable exponential doubling 
trend would continue for another 100 
years, relying on jumps to new tech-
nologies every couple of decades. He 
also forecast a controversial claim—a 
“singularity” around 2040 when artifi-
cial intelligence will exceed human in-
telligence.25,32 The exponential growth 
in this case clearly does not depend on 
Moore’s Law at all. How do we explain 
the exponential growth in this case? 

The three kinds of exponential 
growth, as noted—doubling of compo-
nents, speeds, and technology adop-
tions—have all been lumped under the 
heading of Moore’s Law. Because the 

original Moore’s Law applies only to 
components on chips, not to systems 
or families of technologies, other phe-
nomena must be at work. We will use 
the term “Moore’s Law” for the com-
ponent-doubling rule Moore proposed 
and “exponential growth” for all the 
other performance measures that plot 
as straight lines on log paper. What 
drives the exponential growth effect? 
Can we continue to expect exponential 
growth in the computational power of 
our technologies? 

Exponential growth depends on 
three levels of adoption in the com-
puting ecosystem (see the table here). 
The chip level is the domain of Moore’s 
Law, as noted. However, the faster 
chips cannot realize their potential 
unless the host computer system sup-
ports the faster speeds and unless ap-
plication workloads provide sufficient 
parallel computational work to keep 
the chips busy. And the faster systems 
cannot reach their potential without 
rapid adoption by the user community. 
The improvement process at all three 
levels must be exponential; otherwise, 
the system or community level would 
be a bottleneck, and we would not ob-
serve the effects often described as 
Moore’s Law. 

With supporting mathematical mod-
els, we will show what enables exponen-
tial doubling at each level. Information 
technology may be unique in being 
able to sustain exponential growth at 

the tracking groups, TOP500 (https://
www.top500.org/), has used a Linpack 
benchmark since 1993 to compare the 
fastest machines at each point in time 
for mathematical software, noting that 
the growth rate may be slowing be-
cause the market for such machines is 
slowing. The speeds of supercomput-
ing systems depend on at least eight 
technologies besides the chips. How 
do we explain the exponential growth 
in this case? 

Ray Kurzweil, futurist and author of 
The Singularity Is Near: When Humans 
Transcend Biology, formulated a set of 
predictions about information tech-
nology by constructing a graph of the 
computational speed growth over five 
generations of information technol-

Figure 1. Moore’s original prediction graph 
showed component count followed a 
straight line when plotted on log paper.26 

Figure 2. Speeds of the fastest computers from 1940 show an exponential rise in speed. 
From 1965 to 2015, the growth was a factor of 12 orders of 10 over 50 years, or a doubling 
approximately every 1.3 years. 
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Three levels of exponential growth in the computing ecosystem.

Level Explanation

Chip Chip designers found technology paths for reducing compo-
nent dimensions using Dennard Scaling6 until around 2000, 
when heat-dissipation problems prevented clocks faster 
than about 3GHz. Since then, they have considered a host 
of methods, including multicore and clock distribution, to 
reduce power consumption and keep the components busy. 

System Improvements in chips, parallelism, cache, memory 
interconnects, networks, languages, compilers, and cooling 
enable a computer system to periodically double its speed 
and relieve performance bottlenecks in the system. Data-
intensive workloads present a wealth of parallel threads 
sufficient to keep any multicore system busy. 

Community New system generations are highly attractive innovation 
enablers, and their adoption spreads exponentially in user 
communities.
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quantum-limit argument offered by 
Nobel physicist Richard Feynman12 in 
1985 to conclude that this downward 
scaling process could continue until 

all three levels. We will conclude that 
Moore’s Law and exponential doubling 
have scientific bases. Moreover, the ex-
ponential doubling process is likely to 
continue across multiple technologies 
for decades to come. 

Self-Fulfillment 
The continuing achievement signified 
by Moore’s Law is critically important 
to the digital economy. Economist 
Richard G. Anderson said, “Numerous 
studies have traced the cause of the 
productivity acceleration to technolog-
ical innovations in the production of 
semiconductors that sharply reduced 
the prices of such components and of 
the products that contain them (as well 
as expanding the capabilities of such 
products).”1 Robert Colwell, Director 
of DARPA’s Microsystems Technology 
Office, echoes the same conclusion, 
which is why DARPA has invested in 
overcoming technology bottlenecks in 
post-Moore’s-Law technologies.5 If and 
when Moore’s Law ends, that end’s im-
pact on the economy will be profound. 

It is no wonder then that the stan-
dard explanation of the law is econom-
ic; it became a self-fulfilling prophesy 
of all chip companies to push the tech-
nology to meet the expected exponen-
tial growth and sustain their markets. 
A self-fulfilling prophecy is a predic-
tion that causes itself to become true. 
For most of the past 50-plus years of 
computing, designers have empha-
sized performance. Faster is better. To 
achieve greater speed, chip architects 
increased component density by add-
ing more registers, higher-level func-
tions, cache memory, and multiple 
cores to the same chip area and the 
same power dissipation. Moore’s Law 
became a design objective. 

Designers optimize placement of 
components on highly constrained 
real estate, seeking to fill every square 
nanometer of area. Doubling com-
ponent density—and therefore the 
number of components per nanome-
ter of area—was not an outrageous 
objective because it requires only 
a reduction of 30% in both dimen-
sions of 2D components. To achieve 
the next generation of Moore’s Law, 
designers halve the area of each com-
ponent, which means reducing each 
dimension to sqrt(1/2) = 0.71 of its 
former value; we call this the “square 

root reduction rule.” Figure 4 shows 
that the die size of chips has consis-
tently followed this rule over many 
generations. Wu et al.32 extended a 

Figure 4. Logarithm of actual versus predicted feature size since 1970 matches a straight 
line with regression coefficient R2 = 0.97. Future sizes are predicted by dividing the previous 
size by sqrt(2); see the open triangles and dotted line. Future sizes two generations into the 
future are close to half the current sizes; see the square dots.  
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Data from David Harris, Lecture 21: “Scaling and Economics,” Harvey Mudd College, Claremont, CA, 2004 

(http://pages.hmc.edu/harris/class/e158/04/lect21.pdf) and Zvi Or-Bach, “Is the Cost Reduction Associated 

with Scaling Over?” MonolithIC3D, San Jose, CA, 2004 (http://www.monolithic3d.com/blog/is-the-cost-

reduction-associated-with-scaling-over).

Figure 3. Kurzweil’s graph of speed of information technologies since 1900 spans five 
families of technologies. From 1900 to 2000, the growth was 14 orders of 10 over 100 years, 
or a doubling approximately every 1.3 years. 

Source: http://www.kurzweilai.net
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in a chip generation is a feasible goal, 
as in Figure 2, and a method called 
“Dennard scaling” (described in the 
following paragraphs) was invented to 
accomplish it. Few other technologies 
(such as automobiles) feature complex 
systems composed of large numbers of 
identical parts. 

Component doubling every chip 
generation may be feasible but is not 
easy. The underlying silicon technol-
ogy, CMOS, cannot support the contin-
ued component reductions. What are 
the problems? And what options are 
available to overcome them? We cover 
three main ones: 

Path to the square root reduction rule. 
Dennard scaling, which defined a path 
to the square root reduction rule for 
nearly 30 years, why it came to an end, 
and what has been done to increase 
computational speed since then; 

Clock trees and clock distribution. 
Why do we have clocks? What is the 
problem with clocked circuits? Could 
it be solved with an additional clock 
distribution layer on the chip? Or by re-
placing clocked circuits with fast asyn-
chronous (unclocked) circuits?; and 

Taxonomy. A taxonomy of issues 
needed to keep Moore’s Law at chip 
level going for more generations. 

Dennard Scaling. In 1974, electri-
cal engineer and inventor Robert Den-
nard and his team at IBM proposed a 
method to scale down transistors while 
maintaining a constant power density.6 
The power density is energy dissipated 
in a square unit of chip area. It is pro-
portional to the switching speed and 

the number of transistors in a unit 
area. Greater power densities mean 
more heat to dissipate—and too much 
heat will burn up the chip. Dennard 
scaling says that power density stays 
constant as transistors get smaller so 
the power used is proportional to area. 

Reducing the size of a subsystem and 
its components can allow for the clock 
interval to be shortened because the 

device sizes approached the Compton 
wavelength of an electron, which will 
happen by approximately 2036. 

Motivated by the promise of enor-
mous economic payoffs, designers 
overcame many challenges to sustain 
this rule. Even so, we find self-fulfill-
ment to be an unsatisfying explanation 
of the persistence of Moore’s Law. Why 
does the law not work for other technol-
ogies? What if systems had too many 
bottlenecks or workloads contained in-
sufficient parallelism? What if people 
failed to adopt new technologies? 

Moore’s Law at the Chip Level 
What is special about information tech-
nologies that makes exponential growth 
a possibility? This possibility is not 
available for every technology. We might 
wish for automobiles that travel 1,600 
miles on a gallon of gasoline—approxi-
mately six doublings (26) better than to-
day’s most efficient automobiles—but 
wishing will not make it happen. There 
is no technology path leading to that 
level of automobile efficiency. What is 
different about chip technology? 

The answer is that the basic per-
formance measure of computing sys-
tems is computational steps per unit 
time (or energy). Twice as many com-
ponents enable twice as many com-
putational steps. And the regularity of 
components enables doubling them by 
scaling down size. 

A chip is made of a very large number 
of simple basic components, mostly 
transistors and interconnecting wires. 
Doubling the number of components 

Figure 5. Computer subsystems are organized as stateless logic circuits (AND, OR, NOT 
gates without feedback loops) driving flip-flops that record the subsystem’s state. Clock 
pulses trigger the flip-flops (x1,...,xk) to assume the states generated by the logic outputs. 
Too short a clock interval risks a metastable state because the logic outputs driving the 
flip-flops may not have settled since the last clock pulse. 

logic
circuit

x1

x2

xk 

••• 

clock  

external in  external out  

Figure 6. Four iterations of the space-filling 
H-tree fractal show how to quadruple the 
number of terminal nodes by halving the 
size of each “H.” Each iteration appends a 
half-size “H” to the terminal nodes of the 
previous “H.” A clock signal is injected at 
the center and arrives at all the terminal 
nodes simultaneously because the H-tree is 
balanced; see http://www.tamurajones.net/
FractalGenealogy.xhtml  

http://www.tamurajones.net/FractalGenealogy.xhtml
http://www.tamurajones.net/FractalGenealogy.xhtml
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other. Designers use special protocols 
(such as ready-acknowledge signaling) 
to minimize the risk of synchroniza-
tion failure in those cases.7 

A major design problem is trans-
mitting signals from a clock to all the 
components that need clock signals. 
The wires that do this take space on the 
chip, and there is a propagation delay 
along each wire. The term “clock skew” 
refers to the difference between the 
path with shortest delay and the path 
with longest delay. To avoid metasta-
bility, engineers must choose the clock 
time long enough to overcome skew. 

The ideal circuit to distribute clock 
signals is a balanced tree with the clock 
at its root and the components at its 
leaves. In a balanced tree, all paths are 
the same length, and there is no skew. 
Many designers considered the H-tree 
fractal, a mathematical model of a geo-
metric tree structure that replicates at 
ever-finer dimensions with each gen-
eration (see Figure 6). However, the 
H-fractal is space-filling, meaning that 
as the dimension of the tree gets larger 
the area occupied by the wires eventu-
ally fills the chip, leaving little room for 
active components. This forces chip 
designers to use more ad hoc meth-
ods that depend on unbalanced trees 
restricted to a portion of the area (see 
Figure 7). The unbalanced trees have a 
much larger number of leaf nodes than 
needed, so the designer can choose 
leaf nodes nearest the components 
needing signals and minimize clock 
skew. Some designers propose to put 

logic gates switch faster and the wires 
connecting them are shorter. As not-
ed, however, there is a limit to this ap-
proach because the increased number 
of state switches produces more heat. 
Engineers were able to increase clock 
speeds from approximately 5MHz in 
1981 (IBM PC) to approximately 2GHz 
in 2000, leveling off at approximately 
3.5GHz since 2002 (Intel Pentium 4). 
The cost of heat-sink technology to sup-
port greater clock speeds is prohibitive. 

Even when clock speeds were held 
constant, chip engineers started to 
discover in the 1990s that leakage and 
quantum-tunneling effects became 
significant at small dimensions and 
produced more heat than Dennard 
scaling predicted. Dennard scaling was 
no longer a reliable pathway to reduc-
ing component size. 

Multicore architectures were the 
response to the demise of Dennard 
scaling. The first two-core chips had 
twice as many components as the pre-
vious one-core chips. They were orga-
nized as two CPUs running in parallel 
at the same limiting clock speed (ap-
proximately 3.5GHz). Two cores could 
achieve twice the one-core speed if the 
computational workload had multiple 
computational threads. However, dou-
bling on-chip cores every generation 
has its own heat-dissipation problems 
that will limit how many cores can be 
usefully placed on a chip.11 Moreover, 
multicore architecture pushed some of 
the responsibility for speedup to multi-
threaded programming and paralleliz-
ing compilers. Multicore parallelism is 
a fine strategy but draws programmers 
into parallel programming, something 
many were never trained to do.2 

Metastability, clocks, and clock 
trees. Clocks became an integral fea-
ture of computer logic circuits in the 
1940s because engineers could quick-
ly and simply avoid a host of timing-
dependent failures that result from 
metastable behavior in computer cir-
cuits. If the clock interval is too short, 
the flip-flops recording a subsystem’s 
state can be triggered before their in-
puts have settled down, risking internal 
oscillations that freeze circuits or cause 
other malfunctions (see Figure 5).7 

Metastability is also an issue when 
asynchronous subsystems (no com-
mon clock) can sense unsettled signals 
in an attempt to synchronize with each 

Few other 
technologies  
(such as 
automobiles) 
feature complex 
systems composed 
of large numbers  
of identical parts. 

Figure 7. Design of an actual chip has 
approximately half its area devoted to 
the clock tree (dense lines) and half to its 
actual components (colored boxes). Image 
courtesy of Sung Kyu Lim at The Georgia 
Institute of Technology.27 
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a balanced H-tree on a new layer of the 
chip,27 but layering is controversial be-
cause putting other circuits (such as 
memory) on the new layer might ben-
efit computing capacity more. 

Due to these practical difficulties 
with clock-signal distribution, many 
designers have looked to asynchronous 
circuits. Two subsystems can exchange 
data by following a ready-acknowledge 
protocol. The sender signals that it has 
some data to send by setting a “ready” 
line to 1. On receipt of the signal, the re-
ceiver acknowledges by setting an “ac-
knowledge” line to 1. When the sender 
sees the acknowledge, it deposits the 
data in a buffer and signals completion 
by returning “ready” to 0. Finally, the 
receiver takes the data from the buffer 
and sets “acknowledge” to 0. One unit 
of data can be transmitted at each cycle 
of this protocol. 

Circuit designers have studied 
asynchronous signaling since the 
1960s and developed reliable asyn-
chronous circuits. Because these 
circuits are somewhat slower than 
clocked circuits, ready-acknowledge 
signaling is used only when there is no 
alternative (such as a CPU interacting 
with an I/O device). 

Modern chips sometimes use asyn-
chronous signaling (judiciously) to 
overcome clock distribution and skew 
problems. The chip is divided into 
modules, each with its own clock. 
Clocked circuits are used inside a mod-
ule with asynchronous signaling be-
tween modules. For example, the mod-
ule that displays a graphical image can 
be turned on just when a user wants to 
display the image and run at the clock 
speed necessary to render the image 
well; communication with the display 
module can be asynchronous. 

Designing an all-asynchronous com-
puter has been a holy grail among circuit 
designers for years. Intel is said to have 
demonstrated an asynchronous circuit 
for the fetch-execute control of a CPU 
but has not yet succeeded at creating an 
arithmetic-logic unit (ALU). The main 
research problem is finding a way for the 
ALU to report when it is done with an op-
eration, given that the time of the opera-
tion can vary significantly depending on 
the inputs. Computer graphics pioneer 
Ivan Sutherland has long advocated for 
all-asynchronous circuits and demon-
strated asynchronous pipeline chips.30 

Wu et al.33 conducted a study of possible directions for continuing the Moore’s Law 
effect, citing seven major barriers to the continuation of the current Moore’s Law with 
CMOS technology: 

Performance demand of the processor. Exponential growth cannot be 
sustained inside a single technology; 
Power consumption and heat dissipation. They grow worse per unit area as 
component size decreases; 
Communication costs of moving data through networks, interconnects, and 
caches. They grow with the number of cores served; 
Tunneling effect. Electrons jump narrow insulating barriers; 
Quantum limit to Moore’s Law. Compton wavelength is the fundamental limit 
to measuring the position of electrons; if component dimensions become 
that small, it will no longer be possible to tell where electrons are and whether 
they are being switched properly; 
Economic limit to Moore’s Law. Costs of R&D and manufacturing are rising 
exponentially, making it increasingly difficult for each next generation to be 
economically viable; 
On-board limits. As designers move more functions onto a chip, the chip’s 
performance depends on all the technologies, not just the logic circuits; for 
example, mixed-signal circuits (such as analog-digital converters and digital 
signal processors) are limited by sampling frequencies and sensitive to 
fabrication variations in transistors; and 
Mobile technologies. Smartphones and multimedia phones present a phalanx 
of barriers to performance improvement, including increasing demand for 
bandwidth, concern for power reduction and battery life, limits on size and 
weight, and limits on what consumers are willing to pay. 

Despite these barriers, Wu et al. saw eight ways new technology could address them: 
DNA scaffolding. Employ DNA scaffolding technologies to build (grow)  
circuit boards.
3D fabrication. Move to 3D fabrication; 
Carbon nanotubes and grapheme. Build components from carbon nanotubes  
and grapheme;
Single-atom transistor. Develop a single-atom transistor; 
Quantum dots. Design logic around quantum dots; 
Spintronics. Employ spintronics to represent and process data; 
DNA computing. Employ DNA computing to represent and process data; and 
Quantum computers. Employ quantum computers to represent and process data. 

Although the last three might produce benefits only in specialized cases (such as 
certain massively parallel search problems), some of them are so widespread that 
special processors may be economically viable. 

An IEEE group called “Rebooting Computing” (http://rebootingcomputing.ieee.
org/) is examining how to continue technology scaling in a post-Moore’s Law era.29 John 
Shalf of the National Energy Research Scientific Computing Center and Robert Leland 
of Sandia National Laboratory discussed a comprehensive study to form a taxonomy of 
possible CMOS-successor technologies,29 identifying five possible categories in which 
successors might be found: 

Architectures and software advances. Energy management, new kinds of 
circuits, system on a chip, neuronal chips,19 specialized chips, dark silicon, 
and near-threshold voltage operation; 
3D integration and packaging. Multiple tiered stacked chip, metal layers, and 
other types of active layers; 
Resistance reduction. Superconductors and crystalline metals; 
Millivolt switches (better transistors). Tunnel field-effect transistors, 
heterogeneous semiconductors, carbon nanotubes, graphene, and 
piezoelectric transistors; and 
New logic paradigms. Spintronics, topological insulators, nanophotonics, 
biological computing, and chemical computing. 

It is noteworthy that many of these directions involve technology jumping, a 
phenomenon observed in the Kurzweil charts,25 as in Figure 3. The search for CMOS 
successors aims to jump to a new technology and continue the exponential growth 
from there. 

Wu et al. are confident these lines of development will produce exponential growth 
advances for another 50 years. Shalf and Leland are more cautious but still show 
considerable optimism. Only time will tell, but you can be sure that some very good 
people are working each of these angles. 

Technology Jumping in 
Pursuit of Moore’s Law 
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computers from 1946 to 2009 and found 
exponential growth in two measures: 
computation speeds per computer and 
computations per kilowatt-hour (kwh); 
see Figure 8 for his graph of computa-
tions per kwh. The doubling times were 
about the same—1.57 years—in both 
graphs. The improvements relative to 
energy consumption, summarized as 
Koomey’s Law,10 have assumed great 
importance in an energy-constrained 
world, from large data centers with fixed 
power draw to mobile devices with fixed 
battery life. This trend could continue 
for at least another several decades. 

Even when systems are designed 
so no bottlenecks stand in the way of 

Perhaps the most complete design of a 
computer that has no clocks is the data-
flow architecture proposed by computer 
scientist Jack Dennis.9 It did not inspire 
sufficient commercial interest because 
its circuits ran slower than convention-
al clocked circuits; the machine got its 
throughput from massive data parallel-
ism, which was not common at the time. 
Because the number of data-intensive 
applications continues to grow, the mas-
sively parallel dataflow architecture may 
yet find acceptance. 

Potential technology directions. 
Many engineers have been studying 
how to enable the continued growth 
of Moore’s Law, given that the existing 
CMOS technology cannot be pushed 
much further; for more on the inten-
sive research in this area, see the side-
bar “Technology Jumping in Pursuit of 
Moore’s Law.” 

Exponential Growth  
at the System Level 
Users of computation are hungry for 
performance, measured as calcula-
tions per second or (more recently) 
calculations per watt-hour. But it does 
little good to embed faster chips in sys-
tems that are limited by other bottle-
necks (such as communication band-
width and cooling systems). 

Bottlenecks are the main barrier 
to performance in systems. Engineers 
spend a lot of time identifying bottle-
necks and speeding them up. Each 
generation of system improvement is 
more challenging because engineers 
must search multiple new technolo-
gies to resolve all bottlenecks. 

Colwell5 discussed bottlenecks gen-
erated by “neighboring technologies,” or 
technologies from other fields on which 
microchips depend. Wu et al.33 gave a 
nice example with ubiquitous modern 
analog-digital converters (ADC). ADCs 
sample a continuous input signal at 
twice its highest frequency, producing 
a series of digital snapshots; according 
to the Nyquist sampling theorem, no 
information is lost at this sampling rate 
because the continuous signal can be 
regenerated from the samples. As logic 
circuits get faster, the ADC sampling 
rate is itself eventually a bottleneck. 
Engineers are searching for new sam-
pling methods with higher rates. 

The memory system is another poten-
tial bottleneck. Caches are a critical driver 

of performance; modern chips rely exten-
sively on caches to position needed data 
near the processor, and poorly positioned 
data slows the cache and, in turn, the 
processor. Considerable research effort 
has gone into measuring locality of work-
loads and designing the caches for opti-
mal performance with those workloads. 
Cache designers are under constant 
pressure to produce memory improve-
ments matching CPU improvements. 

Despite these challenges, computer 
engineers have been very successful 
over the years at producing complete 
systems with performance that has 
grown exponentially. Koomey22,23 gath-
ered data for a large number of different 

Figure 8. Koomey’s Law graph illustrates the continuing success of designing systems that 
produce more computation for the same power consumption. Careful power management 
over the past decade has enabled the explosion of mobile devices that depend critically on 
technologies that minimize power use. 
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(1)	

For example, an application 10% se-
rial would run at most 10 times faster 
than its single-stream time, even with 
a large number of parallel processing 
cores. That is, even if a small part of 
the overall computation is serial, it is 
impossible to achieve much multicore 
speedup with control parallelism.18 

Amdahl’s Law would seem to limit 
the speedup to considerably less than 
the number of cores, because it as-
sumes parallelism comes from remod-
eling a serial algorithm into a parallel 
algorithm. However, Amdahl’s Law 
overlooks parallelism inherent in data. 
Data-parallel workloads are now com-
mon in data-intensive applications 
(such as MapReduce operations on the 
Web). In a data-intensive problem, the 
data space can be partitioned into many 
small subsets, each of which can be 
processed by its own thread. The finer 
the grain of the partition, the larger the 
number of threads. The same algorithm 
runs in each thread on the data subset 

belonging to that thread. Computer 
scientist John Gustafson observed that 
large data-intensive problems could al-
ways be partitioned into as many grains 
as could be supported by cores in the 
processors when there is sufficient data 
parallelism.16 In this case, the compu-
tational work completed on one core is 
W(1) = a+b, as outlined earlier. With n 
cores, it jumps to W(n) = a + bn because 
each of the n cores is performing the 
same operation on its thread’s (differ-
ent) data items. Gustafson’s Law says 
the speedup is linear in n 

(2)	

That is, for data-intensive applica-
tions with small serial fraction p, add-
ing cores increases the computational 
work in direct proportion to the num-
ber of cores. 

Rather than parallelizing the al-
gorithm, data-parallel programming 
parallelizes the data. Gustafson’s Law 
models data-parallel computing, where 
the speedup scales with the size of the 
data, not the number of control-paral-
lel paths specified in the algorithm. 

Parallelizing data instead of algo-
rithms was a paradigm shift that began 
in the 1980s.8 Today, it exploits mul-
ticore systems even when algorithms 
cannot be parallelized. It extends to het-
erogeneous data parallelism for com-
mon applications on the Internet (such 
as querying databases, serving email, 
and executing graphics-intensive appli-
cations, as in games). Peer-to-peer com-
puting is a form of loosely coupled data 
parallelism, and cloud computing with 
multicore servers is a form of tightly 
coupled data parallelism. 

Data parallelism and its variants is 
why multicore systems can continue to 
double output without increasing clock 
frequency. At the system level, as long 
as the applications contain many paral-
lel tasks, there is always work available 
for the new cores in next-generation 
systems. This paradigm is especially 
useful for processing big data now be-
ing routinely provided by users of prod-
ucts from companies like Google, Face-
book, Twitter, and LinkedIn. 

performance, it is possible that the 
workloads presented to those systems 
are not sufficient to use all the avail-
able computing power. In 1967, Gene 
Amdahl, a mainframe computer de-
signer at IBM, investigated whether 
it would be better to get faster speed 
through a faster CPU or through sev-
eral slower parallel CPUs. Based on 
his experience designing instruction-
lookahead CPUs, he realized that sub-
stantial parts of code must be execut-
ed sequentially in the given compiled 
sequence; only some of the instruc-
tions could be speeded up by parallel 
execution. He derived a formula that 
became known as Amdahl’s Law to 
express the speedup potential from a 
set of n processors (cores) working on 
a program. Amdahl’s idea—express-
ing the parallelizable part as a set of 
parallel instruction streams—was 
known in his time as “control parallel-
ism.” Suppose the time of the job us-
ing 1 stream is T(1) = a+b, where a is 
the time for the serial part, and b is the 
time for the parallelizable part. The 
serial fraction is p = a/(a+b), and par-
allelizable fraction is 1−p. The time to 
execute on n streams is T(n) = a + b/n 
because only the control-parallel por-
tion of the algorithm can benefit from 
n processors. Amdahl’s Law says the 
speedup is 

Figure 9. The logistics function—the mathematical model for growth of a population  
(such as adopters of a technology)—plots as an S-curve (black) over time. Initially,  
the curve follows an exponential (red) curve, but after an inflection point (here at time 6)  
it flattens out because of market saturation. 
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pose n(t) is the number of members of 
a population who have adopted a tech-
nology as of time t. Each adopter dem-
onstrates the value of the new technolo-
gy to the rest of the population. Let a be 
the rate at which one adopter influences 
a non-adopter to adopt. In a small time 
interval h, the probability that a new 
adopter comes on board is ah. At time 
t+h, there are thus ahn(t) new adopters, 
giving n(t+h)−n(t) = ahn(t). Rearranging 
this equation and letting h go to 0 yields 
the differential equation 

(3)	

The solution to this equation is 
n(t) = eat. The size of the adopting pop-
ulation increases exponentially and 
the mean time between adoptions is 
1/a. We can conclude from this sim-
ple equation that exponential growth 
happens when the rate of change also 
increases with current state. 

This model is also too simple be-
cause it does not account for diminish-
ing returns due to market saturation 
or technology reaching a limit where 
growth stops, when, for example, ev-
eryone in the population has adopted 
the technology. We can extend the 
model to account for the diminishing 
population of non-adopters. As before, 
let n(t) denote the number of members 

Technology Diffusion at 
the Community Level 
Moore spoke of a second law, also 
known as Rock’s Law, which is less well 
known than Moore’s own component-
doubling law. The second law says that 
the cost of the fabrication facility for 
new chips doubles approximately ev-
ery four years. This is due to the greater 
precision and ever-smaller size of li-
thography. An important implication is 
that the market for a new generation of 
chips at the same price must be at least 
double the market for the current gener-
ation, just to pay for the new fabrication 
facility. That is, Moore and Rock recog-
nized that the markets had to expand 
exponentially to support the continua-
tion of the basic Moore’s Law. Without 
exponential expansion of adoption at 
the community level, Moore’s Law at 
the chip level would be unsustainable. 

Many business strategists believe in 
the S-curve model whereby the num-
ber of people using a technology ini-
tially grows exponentially to an inflec-
tion point and then flattens out (see 
Figure 9). The flattening out is caused 
by the saturation of the market—no 
more new adopters. Businesses try to 
time their entry into new technologies 
whose new S-curves are in their expo-
nential growth stage when the older 
technology starts to flatten, or “tech-

nology jumping.” Businesses ride a se-
ries of S-waves and experience continu-
ous exponential growth as they hop 
from one wave to the next. 

Technology jumping is an integral, 
recurrent theme in computing. We 
noted earlier that Kurzweil explained 
exponential growth in the power of in-
formation technology by five massive 
switches to new technology that made 
older ones obsolete.25 He assumed that 
the process of technology jumping 
will continue well into the 21st century. 
Steve Jobs of Apple spoke frequently 
about his strategy of timing his jump 
to the next technology with the inflec-
tion point of the S-curve for the current 
technology. Andy Grove of Intel took 
the emergence of a new technology 
that did a job 10 times better than the 
current technology as a sign of an in-
flection point and built his company’s 
strategy around well-timed jumps.15 

Whether or not a new technology is 
adopted depends on whether people 
use it instead of something else to ac-
complish something they care about.13 
Innovators play an important role in 
this process by making products and 
services that influence community 
members to commit to adopt the new 
technology into their practice. 

A simple argument shows why initial 
growth of adoption is exponential. Sup-

Figure 10. Four different technology-adoption histories illustrate how versatile the Bass model is for accurately representing and 
forecasting technology adoptions. Data gleaned from Gentry,14 Jones,21 and Kumar.24 
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begins to slow as diminishing returns 
set in. Figure 10 depicts four differ-
ent technology adoptions since 1980. 
Bass’s model can be solved to find the 
inflection-point value of at, helping fit 
the model to data. 

No matter what, the initial growth 
up to the inflection point is exponen-
tial. Historically, information tech-
nologists have jumped from one tech-
nology to another when an incumbent 
technology nears its inflection point. 
After each jump, they are on a new 
curve growing exponentially toward a 
new inflection point. Moore’s Law, and 
others like it, are intrinsically exponen-
tial because their rate of change is pro-
portional to their current state. 

Conclusion 
The original 1965 Moore’s Law was an 
empirical observation that component 
density on a computer chip doubled 
every two years. Similar doubling rates 
have been observed in chip speeds, 
computer speeds, and computations 
per unit of energy. However, the dura-
bility of these technology forecasts sug-
gests deeper phenomena. 

We have argued that exponential 
growth would not have succeeded 
without sustained exponential growth 
at three levels of the computing eco-
system—chip, system, and adopting 
community. Growth (progress) feeds 
on itself up to the inflection point. Di-
minishing returns then set in, signaling 
the need to jump to another technology, 
system design, or class of application or 
community. 

At the chip level, there are strong 
economic motivations for chip com-
panies and their engineers to feed 
on previous improvements, building 
faster chips that grow exponentially 
up to the inflection point. The first sig-
nificant technology path for exponen-
tial chip growth appeared in the form 
of Dennard scaling, which showed 
how to reduce component dimension 
without increasing power density. 
Dennard scaling reached an inflection 
point in the 1990s due to heat-dissi-
pation problems that limited clock 
speed to approximately 3.5Ghz. En-
gineers responded with a technology 
jump to multicore chips, which gave 
speedup through parallelism. This 
jump has been enormously effective. 
Cloud platforms and supercomput-

in a population of size N who have ad-
opted a technology. The change in the 
number of adopters from time t to time 
t+h would then be proportional to two 
quantities: the number who have al-
ready adopted, as in equation 3, and 
the fraction who have not yet adopted. 
This gives the differential equation 

(4)	

which is called the “logistics equation” 
in the literature; its solution is 

(5)	

This function grows exponentially 
to its inflection point. Initially, when 
t=0, there is only one adopter, n(0) = 1, 
and after a long period of time there 
are N adopters. 

Reality is more complicated because 
individuals have their own adoption 
time constants. Sociologist Everett Rog-
ers discovered in 1962 that individuals 
fall into five groups according to the 
time they take to commit to an adop-
tion—innovator, early adopter, early 
majority, late majority, and laggard.28 
The histogram of adoption times fol-
lows a Bell curve. The five categories cor-
respond to five zones of standard devia-
tions. For example, innovators are 2.5% 
of the population, with adoption times 
at least two standard deviations below 
the mean; early adopters are 13.5% and 
are one to two standard deviations be-
low the mean; early majority are 34% and 
zero to one standard deviations below 
the mean. In 1969, professor of market-
ing Frank Bass modified the Rogers dif-
fusion model by quantifying the impact 
of early-adopter and word-of-mouth (all 
other) followers, inserting parameters p 
(early adoption rate), q (word-of-mouth 
follower rate), and N into the simple lo-
gistics curve.3,4 Ashish Kumar and others 
have since validated Bass’s extensions 
for real products by finding parameters 
p, q, and N for a number of technology 
products.14,24 Setting a=p+q and r=q/p, 
the Bass model then gives 

(6)	

Bass’s equation is still a logistics 
model that more accurately forecasts 
sales and also reaches an inflection 
point where the exponential growth 

Data parallelism 
and its variants 
is why multicore 
systems can 
continue to double 
output without 
increasing  
clock frequency. 
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ers achieve high computation rates 
through massive parallelism among 
many chips. 

A major technology barrier to chip 
growth has been the distribution of clock 
signals to all components on a chip. The 
theoretically most efficient distribution 
mechanism is the space-filling fractal 
H-tree that reaches diminishing returns 
when the tree itself starts to consume 
most of the physical space on the chip. 
Engineers are experimenting with hy-
brids that feature subsystems (such as 
cores) with their own clocks interacting 
via asynchronous signaling. Some en-
gineers have been exploring the design 
of all-asynchronous circuits (no clocks), 
but these systems cannot yet compete in 
speed with clocked systems. 

Engineers have been systematically 
examining the barriers that prevent the 
continuation of Moore’s Law for CMOS 
technologies. As alternatives mature, it 
will be feasible to jump to the new tech-
nologies and continue the exponential 
growth. Although there is controversy 
about how successful some of the alter-
natives may be, there is considerable 
optimism that some will work out and 
exponential growth can continue with 
new base technologies. 

When chips and other components 
are assembled into complete computer 
systems, engineers have located and 
relieved technology bottlenecks that 
would prevent the systems from scaling 
up in speed as fast as their component 
chips scale. Koomey’s Laws document 
exponential growth of computations per 
computer and per unit of energy from 
1946 to 2009. Koomey’s Law for compu-
tations per unit of energy is especially 
important throughout an energy-con-
strained industry. Additionally, the tech-
nology jump from algorithm parallelism 
to data parallelism further assures us we 
can grow systems performance as long 
as the workloads have sufficient parallel-
ism, which has turned out to be the case 
for cloud and supercomputing systems. 

Finally, we demonstrated that sim-
ple assumptions about adoption proc-
ess lead to the S-curve model in which 
adoptions grow exponentially until an 
inflection point and then slow down 
because of market saturation. Business 
leaders use the S-curve model to guide 
them in jumping to new technologies 
when the older ones start to encoun-
ter their limits. Exponential growth in 

sales through ever-expanding applica-
tions and communities provides the 
financial stimulus to advance the chip- 
and system-level technologies (Rock’s 
Law). It is a complete cycle. 

These analyses show that the con-
ditions exist at all three levels of the 
computing ecosystem to sustain expo-
nential growth. They support the op-
timism of many engineers that many 
additional years of exponential growth 
are likely. Moore’s Law was sustained 
for five decades. Exponential growth is 
likely to be sustained for many more. 
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