
54 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
E

T
E

R
 C

R
O

W
T

H
E

R
 A

S
S

O
C

I
A

T
E

S

IN A FORECASTING exercise, Gordon Earle Moore,
co-founder of Intel, plotted data on the number of
components—transistors, resistors, and capacitors—
in chips made from 1959 to 1965. He saw an
approximate straight line on log paper (see Figure 1).
Extrapolating the line, he speculated that the number
of components would grow from 26 in 1965 to 216 in
1975, doubling every year. His 1965–1975 forecast
came true. In 1975, with more data, he revised the
estimate of the doubling period to two years. In those
days, doubling components also doubled chip speed
because the greater number of components could
perform more powerful operations and smaller circuits
allowed faster clock speeds. Later, Moore’s Intel
colleague David House claimed the doubling time

for speed should be taken as 18
months because of increasing clock
speed, whereas Moore maintained that
the doubling time for components was
24 months. But clock speed stabilized
around 2000 because faster speeds
caused more heat dissipation than
chips could withstand. Since then, the
faster speeds are achieved with multi-
core chips at the same clock frequency.

Moore’s Law is one of the most
durable technology forecasts ever
made.10,20,31,33 It is the emblem of the
information age, the relentless march
of the computer chip enabling a tech-
nical, economic, and social revolution
never before experienced by humanity.

The standard explanation for Moore’s
Law is that the law is not really a law at
all, but only an empirical, self-fulfill-
ing relationship driven by economic
forces. This explanation is too weak,
however, to explain why the law has
worked for more than 50 years and why
exponential growth works not only at
the chip level but also at the system
and market levels. Consider two prom-
inent cases of systems evolution.

Supercomputers are complete sys-
tems, including massively parallel
arrays of chips, interconnection net-
works, memory systems, caches, I/O
systems, cooling systems, languages
for expressing parallel computations,
and compilers. Various groups have
tracked these systems over the years.
Figure 2 is a composite graph of data
from these groups on the speeds of
the fastest computers since 1940.
The performance of these comput-
ers has grown exponentially. One of

Exponential
Laws of
Computing
Growth

DOI:10.1145/2976758

Moore’s Law is one small component
in an exponentially growing planetary
computing ecosystem.

BY PETER J. DENNING AND TED G. LEWIS

 key insights
˽˽ Exponential growth seems to be unique to

computing and information technologies
and their markets, stimulating continued
economic, social, and political disruptions.

˽˽ Exponential growth occurs
simultaneously at all levels of the
computing ecosystem—chips, systems,
adopting communities.

˽˽ Technology jumping sustains exponential
growth as companies switch to new
technologies when the current ones reach
their points of diminishing return.

http://dx.doi.org/10.1145/2976758

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 55

56 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

contributed articles

ogy (see Figure 3).25 He projected that
this remarkable exponential doubling
trend would continue for another 100
years, relying on jumps to new tech-
nologies every couple of decades. He
also forecast a controversial claim—a
“singularity” around 2040 when artifi-
cial intelligence will exceed human in-
telligence.25,32 The exponential growth
in this case clearly does not depend on
Moore’s Law at all. How do we explain
the exponential growth in this case?

The three kinds of exponential
growth, as noted—doubling of compo-
nents, speeds, and technology adop-
tions—have all been lumped under the
heading of Moore’s Law. Because the

original Moore’s Law applies only to
components on chips, not to systems
or families of technologies, other phe-
nomena must be at work. We will use
the term “Moore’s Law” for the com-
ponent-doubling rule Moore proposed
and “exponential growth” for all the
other performance measures that plot
as straight lines on log paper. What
drives the exponential growth effect?
Can we continue to expect exponential
growth in the computational power of
our technologies?

Exponential growth depends on
three levels of adoption in the com-
puting ecosystem (see the table here).
The chip level is the domain of Moore’s
Law, as noted. However, the faster
chips cannot realize their potential
unless the host computer system sup-
ports the faster speeds and unless ap-
plication workloads provide sufficient
parallel computational work to keep
the chips busy. And the faster systems
cannot reach their potential without
rapid adoption by the user community.
The improvement process at all three
levels must be exponential; otherwise,
the system or community level would
be a bottleneck, and we would not ob-
serve the effects often described as
Moore’s Law.

With supporting mathematical mod-
els, we will show what enables exponen-
tial doubling at each level. Information
technology may be unique in being
able to sustain exponential growth at

the tracking groups, TOP500 (https://
www.top500.org/), has used a Linpack
benchmark since 1993 to compare the
fastest machines at each point in time
for mathematical software, noting that
the growth rate may be slowing be-
cause the market for such machines is
slowing. The speeds of supercomput-
ing systems depend on at least eight
technologies besides the chips. How
do we explain the exponential growth
in this case?

Ray Kurzweil, futurist and author of
The Singularity Is Near: When Humans
Transcend Biology, formulated a set of
predictions about information tech-
nology by constructing a graph of the
computational speed growth over five
generations of information technol-

Figure 1. Moore’s original prediction graph
showed component count followed a
straight line when plotted on log paper.26

Figure 2. Speeds of the fastest computers from 1940 show an exponential rise in speed.
From 1965 to 2015, the growth was a factor of 12 orders of 10 over 50 years, or a doubling
approximately every 1.3 years.

10–1

101

103

105

107

109

1011

P
ea

k
S

p
ee

d
 (

R
m

ax
)

Year

1013

1015

1017

1940

FLOPS OPS

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Source: Wikipedia Creative Commons.

Three levels of exponential growth in the computing ecosystem.

Level Explanation

Chip Chip designers found technology paths for reducing compo-
nent dimensions using Dennard Scaling6 until around 2000,
when heat-dissipation problems prevented clocks faster
than about 3GHz. Since then, they have considered a host
of methods, including multicore and clock distribution, to
reduce power consumption and keep the components busy.

System Improvements in chips, parallelism, cache, memory
interconnects, networks, languages, compilers, and cooling
enable a computer system to periodically double its speed
and relieve performance bottlenecks in the system. Data-
intensive workloads present a wealth of parallel threads
sufficient to keep any multicore system busy.

Community New system generations are highly attractive innovation
enablers, and their adoption spreads exponentially in user
communities.

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 57

contributed articles

quantum-limit argument offered by
Nobel physicist Richard Feynman12 in
1985 to conclude that this downward
scaling process could continue until

all three levels. We will conclude that
Moore’s Law and exponential doubling
have scientific bases. Moreover, the ex-
ponential doubling process is likely to
continue across multiple technologies
for decades to come.

Self-Fulfillment
The continuing achievement signified
by Moore’s Law is critically important
to the digital economy. Economist
Richard G. Anderson said, “Numerous
studies have traced the cause of the
productivity acceleration to technolog-
ical innovations in the production of
semiconductors that sharply reduced
the prices of such components and of
the products that contain them (as well
as expanding the capabilities of such
products).”1 Robert Colwell, Director
of DARPA’s Microsystems Technology
Office, echoes the same conclusion,
which is why DARPA has invested in
overcoming technology bottlenecks in
post-Moore’s-Law technologies.5 If and
when Moore’s Law ends, that end’s im-
pact on the economy will be profound.

It is no wonder then that the stan-
dard explanation of the law is econom-
ic; it became a self-fulfilling prophesy
of all chip companies to push the tech-
nology to meet the expected exponen-
tial growth and sustain their markets.
A self-fulfilling prophecy is a predic-
tion that causes itself to become true.
For most of the past 50-plus years of
computing, designers have empha-
sized performance. Faster is better. To
achieve greater speed, chip architects
increased component density by add-
ing more registers, higher-level func-
tions, cache memory, and multiple
cores to the same chip area and the
same power dissipation. Moore’s Law
became a design objective.

Designers optimize placement of
components on highly constrained
real estate, seeking to fill every square
nanometer of area. Doubling com-
ponent density—and therefore the
number of components per nanome-
ter of area—was not an outrageous
objective because it requires only
a reduction of 30% in both dimen-
sions of 2D components. To achieve
the next generation of Moore’s Law,
designers halve the area of each com-
ponent, which means reducing each
dimension to sqrt(1/2) = 0.71 of its
former value; we call this the “square

root reduction rule.” Figure 4 shows
that the die size of chips has consis-
tently followed this rule over many
generations. Wu et al.32 extended a

Figure 4. Logarithm of actual versus predicted feature size since 1970 matches a straight
line with regression coefficient R2 = 0.97. Future sizes are predicted by dividing the previous
size by sqrt(2); see the open triangles and dotted line. Future sizes two generations into the
future are close to half the current sizes; see the square dots.

Year of Introduction

Log[VLSI Feature Size] vs. Year of Introduction

-

(2.00)

(1.50)

(1.00)

(0.50)

(0.50)

(1.00)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

log(Size(t)/sqrt(2)))

log(Size(t))

log(Size(t-2)/2)

LO
G

(S
iz

e
(m

ic
ro

ns
))

Data from David Harris, Lecture 21: “Scaling and Economics,” Harvey Mudd College, Claremont, CA, 2004

(http://pages.hmc.edu/harris/class/e158/04/lect21.pdf) and Zvi Or-Bach, “Is the Cost Reduction Associated

with Scaling Over?” MonolithIC3D, San Jose, CA, 2004 (http://www.monolithic3d.com/blog/is-the-cost-

reduction-associated-with-scaling-over).

Figure 3. Kurzweil’s graph of speed of information technologies since 1900 spans five
families of technologies. From 1900 to 2000, the growth was 14 orders of 10 over 100 years,
or a doubling approximately every 1.3 years.

Source: http://www.kurzweilai.net

http://pages.hmc.edu/harris/class/e158/04/lect21.pdf
http://www.monolithic3d.com/blog/is-the-cost-reduction-associated-with-scaling-over
http://www.monolithic3d.com/blog/is-the-cost-reduction-associated-with-scaling-over

58 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

contributed articles

in a chip generation is a feasible goal,
as in Figure 2, and a method called
“Dennard scaling” (described in the
following paragraphs) was invented to
accomplish it. Few other technologies
(such as automobiles) feature complex
systems composed of large numbers of
identical parts.

Component doubling every chip
generation may be feasible but is not
easy. The underlying silicon technol-
ogy, CMOS, cannot support the contin-
ued component reductions. What are
the problems? And what options are
available to overcome them? We cover
three main ones:

Path to the square root reduction rule.
Dennard scaling, which defined a path
to the square root reduction rule for
nearly 30 years, why it came to an end,
and what has been done to increase
computational speed since then;

Clock trees and clock distribution.
Why do we have clocks? What is the
problem with clocked circuits? Could
it be solved with an additional clock
distribution layer on the chip? Or by re-
placing clocked circuits with fast asyn-
chronous (unclocked) circuits?; and

Taxonomy. A taxonomy of issues
needed to keep Moore’s Law at chip
level going for more generations.

Dennard Scaling. In 1974, electri-
cal engineer and inventor Robert Den-
nard and his team at IBM proposed a
method to scale down transistors while
maintaining a constant power density.6
The power density is energy dissipated
in a square unit of chip area. It is pro-
portional to the switching speed and

the number of transistors in a unit
area. Greater power densities mean
more heat to dissipate—and too much
heat will burn up the chip. Dennard
scaling says that power density stays
constant as transistors get smaller so
the power used is proportional to area.

Reducing the size of a subsystem and
its components can allow for the clock
interval to be shortened because the

device sizes approached the Compton
wavelength of an electron, which will
happen by approximately 2036.

Motivated by the promise of enor-
mous economic payoffs, designers
overcame many challenges to sustain
this rule. Even so, we find self-fulfill-
ment to be an unsatisfying explanation
of the persistence of Moore’s Law. Why
does the law not work for other technol-
ogies? What if systems had too many
bottlenecks or workloads contained in-
sufficient parallelism? What if people
failed to adopt new technologies?

Moore’s Law at the Chip Level
What is special about information tech-
nologies that makes exponential growth
a possibility? This possibility is not
available for every technology. We might
wish for automobiles that travel 1,600
miles on a gallon of gasoline—approxi-
mately six doublings (26) better than to-
day’s most efficient automobiles—but
wishing will not make it happen. There
is no technology path leading to that
level of automobile efficiency. What is
different about chip technology?

The answer is that the basic per-
formance measure of computing sys-
tems is computational steps per unit
time (or energy). Twice as many com-
ponents enable twice as many com-
putational steps. And the regularity of
components enables doubling them by
scaling down size.

A chip is made of a very large number
of simple basic components, mostly
transistors and interconnecting wires.
Doubling the number of components

Figure 5. Computer subsystems are organized as stateless logic circuits (AND, OR, NOT
gates without feedback loops) driving flip-flops that record the subsystem’s state. Clock
pulses trigger the flip-flops (x1,...,xk) to assume the states generated by the logic outputs.
Too short a clock interval risks a metastable state because the logic outputs driving the
flip-flops may not have settled since the last clock pulse.

logic
circuit

x1

x2

xk

•••

clock

external in external out

Figure 6. Four iterations of the space-filling
H-tree fractal show how to quadruple the
number of terminal nodes by halving the
size of each “H.” Each iteration appends a
half-size “H” to the terminal nodes of the
previous “H.” A clock signal is injected at
the center and arrives at all the terminal
nodes simultaneously because the H-tree is
balanced; see http://www.tamurajones.net/
FractalGenealogy.xhtml

http://www.tamurajones.net/FractalGenealogy.xhtml
http://www.tamurajones.net/FractalGenealogy.xhtml

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 59

contributed articles

other. Designers use special protocols
(such as ready-acknowledge signaling)
to minimize the risk of synchroniza-
tion failure in those cases.7

A major design problem is trans-
mitting signals from a clock to all the
components that need clock signals.
The wires that do this take space on the
chip, and there is a propagation delay
along each wire. The term “clock skew”
refers to the difference between the
path with shortest delay and the path
with longest delay. To avoid metasta-
bility, engineers must choose the clock
time long enough to overcome skew.

The ideal circuit to distribute clock
signals is a balanced tree with the clock
at its root and the components at its
leaves. In a balanced tree, all paths are
the same length, and there is no skew.
Many designers considered the H-tree
fractal, a mathematical model of a geo-
metric tree structure that replicates at
ever-finer dimensions with each gen-
eration (see Figure 6). However, the
H-fractal is space-filling, meaning that
as the dimension of the tree gets larger
the area occupied by the wires eventu-
ally fills the chip, leaving little room for
active components. This forces chip
designers to use more ad hoc meth-
ods that depend on unbalanced trees
restricted to a portion of the area (see
Figure 7). The unbalanced trees have a
much larger number of leaf nodes than
needed, so the designer can choose
leaf nodes nearest the components
needing signals and minimize clock
skew. Some designers propose to put

logic gates switch faster and the wires
connecting them are shorter. As not-
ed, however, there is a limit to this ap-
proach because the increased number
of state switches produces more heat.
Engineers were able to increase clock
speeds from approximately 5MHz in
1981 (IBM PC) to approximately 2GHz
in 2000, leveling off at approximately
3.5GHz since 2002 (Intel Pentium 4).
The cost of heat-sink technology to sup-
port greater clock speeds is prohibitive.

Even when clock speeds were held
constant, chip engineers started to
discover in the 1990s that leakage and
quantum-tunneling effects became
significant at small dimensions and
produced more heat than Dennard
scaling predicted. Dennard scaling was
no longer a reliable pathway to reduc-
ing component size.

Multicore architectures were the
response to the demise of Dennard
scaling. The first two-core chips had
twice as many components as the pre-
vious one-core chips. They were orga-
nized as two CPUs running in parallel
at the same limiting clock speed (ap-
proximately 3.5GHz). Two cores could
achieve twice the one-core speed if the
computational workload had multiple
computational threads. However, dou-
bling on-chip cores every generation
has its own heat-dissipation problems
that will limit how many cores can be
usefully placed on a chip.11 Moreover,
multicore architecture pushed some of
the responsibility for speedup to multi-
threaded programming and paralleliz-
ing compilers. Multicore parallelism is
a fine strategy but draws programmers
into parallel programming, something
many were never trained to do.2

Metastability, clocks, and clock
trees. Clocks became an integral fea-
ture of computer logic circuits in the
1940s because engineers could quick-
ly and simply avoid a host of timing-
dependent failures that result from
metastable behavior in computer cir-
cuits. If the clock interval is too short,
the flip-flops recording a subsystem’s
state can be triggered before their in-
puts have settled down, risking internal
oscillations that freeze circuits or cause
other malfunctions (see Figure 5).7

Metastability is also an issue when
asynchronous subsystems (no com-
mon clock) can sense unsettled signals
in an attempt to synchronize with each

Few other
technologies
(such as
automobiles)
feature complex
systems composed
of large numbers
of identical parts.

Figure 7. Design of an actual chip has
approximately half its area devoted to
the clock tree (dense lines) and half to its
actual components (colored boxes). Image
courtesy of Sung Kyu Lim at The Georgia
Institute of Technology.27

60 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

contributed articles

a balanced H-tree on a new layer of the
chip,27 but layering is controversial be-
cause putting other circuits (such as
memory) on the new layer might ben-
efit computing capacity more.

Due to these practical difficulties
with clock-signal distribution, many
designers have looked to asynchronous
circuits. Two subsystems can exchange
data by following a ready-acknowledge
protocol. The sender signals that it has
some data to send by setting a “ready”
line to 1. On receipt of the signal, the re-
ceiver acknowledges by setting an “ac-
knowledge” line to 1. When the sender
sees the acknowledge, it deposits the
data in a buffer and signals completion
by returning “ready” to 0. Finally, the
receiver takes the data from the buffer
and sets “acknowledge” to 0. One unit
of data can be transmitted at each cycle
of this protocol.

Circuit designers have studied
asynchronous signaling since the
1960s and developed reliable asyn-
chronous circuits. Because these
circuits are somewhat slower than
clocked circuits, ready-acknowledge
signaling is used only when there is no
alternative (such as a CPU interacting
with an I/O device).

Modern chips sometimes use asyn-
chronous signaling (judiciously) to
overcome clock distribution and skew
problems. The chip is divided into
modules, each with its own clock.
Clocked circuits are used inside a mod-
ule with asynchronous signaling be-
tween modules. For example, the mod-
ule that displays a graphical image can
be turned on just when a user wants to
display the image and run at the clock
speed necessary to render the image
well; communication with the display
module can be asynchronous.

Designing an all-asynchronous com-
puter has been a holy grail among circuit
designers for years. Intel is said to have
demonstrated an asynchronous circuit
for the fetch-execute control of a CPU
but has not yet succeeded at creating an
arithmetic-logic unit (ALU). The main
research problem is finding a way for the
ALU to report when it is done with an op-
eration, given that the time of the opera-
tion can vary significantly depending on
the inputs. Computer graphics pioneer
Ivan Sutherland has long advocated for
all-asynchronous circuits and demon-
strated asynchronous pipeline chips.30

Wu et al.33 conducted a study of possible directions for continuing the Moore’s Law
effect, citing seven major barriers to the continuation of the current Moore’s Law with
CMOS technology:

Performance demand of the processor. Exponential growth cannot be
sustained inside a single technology;
Power consumption and heat dissipation. They grow worse per unit area as
component size decreases;
Communication costs of moving data through networks, interconnects, and
caches. They grow with the number of cores served;
Tunneling effect. Electrons jump narrow insulating barriers;
Quantum limit to Moore’s Law. Compton wavelength is the fundamental limit
to measuring the position of electrons; if component dimensions become
that small, it will no longer be possible to tell where electrons are and whether
they are being switched properly;
Economic limit to Moore’s Law. Costs of R&D and manufacturing are rising
exponentially, making it increasingly difficult for each next generation to be
economically viable;
On-board limits. As designers move more functions onto a chip, the chip’s
performance depends on all the technologies, not just the logic circuits; for
example, mixed-signal circuits (such as analog-digital converters and digital
signal processors) are limited by sampling frequencies and sensitive to
fabrication variations in transistors; and
Mobile technologies. Smartphones and multimedia phones present a phalanx
of barriers to performance improvement, including increasing demand for
bandwidth, concern for power reduction and battery life, limits on size and
weight, and limits on what consumers are willing to pay.

Despite these barriers, Wu et al. saw eight ways new technology could address them:
DNA scaffolding. Employ DNA scaffolding technologies to build (grow)
circuit boards.
3D fabrication. Move to 3D fabrication;
Carbon nanotubes and grapheme. Build components from carbon nanotubes
and grapheme;
Single-atom transistor. Develop a single-atom transistor;
Quantum dots. Design logic around quantum dots;
Spintronics. Employ spintronics to represent and process data;
DNA computing. Employ DNA computing to represent and process data; and
Quantum computers. Employ quantum computers to represent and process data.

Although the last three might produce benefits only in specialized cases (such as
certain massively parallel search problems), some of them are so widespread that
special processors may be economically viable.

An IEEE group called “Rebooting Computing” (http://rebootingcomputing.ieee.
org/) is examining how to continue technology scaling in a post-Moore’s Law era.29 John
Shalf of the National Energy Research Scientific Computing Center and Robert Leland
of Sandia National Laboratory discussed a comprehensive study to form a taxonomy of
possible CMOS-successor technologies,29 identifying five possible categories in which
successors might be found:

Architectures and software advances. Energy management, new kinds of
circuits, system on a chip, neuronal chips,19 specialized chips, dark silicon,
and near-threshold voltage operation;
3D integration and packaging. Multiple tiered stacked chip, metal layers, and
other types of active layers;
Resistance reduction. Superconductors and crystalline metals;
Millivolt switches (better transistors). Tunnel field-effect transistors,
heterogeneous semiconductors, carbon nanotubes, graphene, and
piezoelectric transistors; and
New logic paradigms. Spintronics, topological insulators, nanophotonics,
biological computing, and chemical computing.

It is noteworthy that many of these directions involve technology jumping, a
phenomenon observed in the Kurzweil charts,25 as in Figure 3. The search for CMOS
successors aims to jump to a new technology and continue the exponential growth
from there.

Wu et al. are confident these lines of development will produce exponential growth
advances for another 50 years. Shalf and Leland are more cautious but still show
considerable optimism. Only time will tell, but you can be sure that some very good
people are working each of these angles.

Technology Jumping in
Pursuit of Moore’s Law

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 61

contributed articles

computers from 1946 to 2009 and found
exponential growth in two measures:
computation speeds per computer and
computations per kilowatt-hour (kwh);
see Figure 8 for his graph of computa-
tions per kwh. The doubling times were
about the same—1.57 years—in both
graphs. The improvements relative to
energy consumption, summarized as
Koomey’s Law,10 have assumed great
importance in an energy-constrained
world, from large data centers with fixed
power draw to mobile devices with fixed
battery life. This trend could continue
for at least another several decades.

Even when systems are designed
so no bottlenecks stand in the way of

Perhaps the most complete design of a
computer that has no clocks is the data-
flow architecture proposed by computer
scientist Jack Dennis.9 It did not inspire
sufficient commercial interest because
its circuits ran slower than convention-
al clocked circuits; the machine got its
throughput from massive data parallel-
ism, which was not common at the time.
Because the number of data-intensive
applications continues to grow, the mas-
sively parallel dataflow architecture may
yet find acceptance.

Potential technology directions.
Many engineers have been studying
how to enable the continued growth
of Moore’s Law, given that the existing
CMOS technology cannot be pushed
much further; for more on the inten-
sive research in this area, see the side-
bar “Technology Jumping in Pursuit of
Moore’s Law.”

Exponential Growth
at the System Level
Users of computation are hungry for
performance, measured as calcula-
tions per second or (more recently)
calculations per watt-hour. But it does
little good to embed faster chips in sys-
tems that are limited by other bottle-
necks (such as communication band-
width and cooling systems).

Bottlenecks are the main barrier
to performance in systems. Engineers
spend a lot of time identifying bottle-
necks and speeding them up. Each
generation of system improvement is
more challenging because engineers
must search multiple new technolo-
gies to resolve all bottlenecks.

Colwell5 discussed bottlenecks gen-
erated by “neighboring technologies,” or
technologies from other fields on which
microchips depend. Wu et al.33 gave a
nice example with ubiquitous modern
analog-digital converters (ADC). ADCs
sample a continuous input signal at
twice its highest frequency, producing
a series of digital snapshots; according
to the Nyquist sampling theorem, no
information is lost at this sampling rate
because the continuous signal can be
regenerated from the samples. As logic
circuits get faster, the ADC sampling
rate is itself eventually a bottleneck.
Engineers are searching for new sam-
pling methods with higher rates.

The memory system is another poten-
tial bottleneck. Caches are a critical driver

of performance; modern chips rely exten-
sively on caches to position needed data
near the processor, and poorly positioned
data slows the cache and, in turn, the
processor. Considerable research effort
has gone into measuring locality of work-
loads and designing the caches for opti-
mal performance with those workloads.
Cache designers are under constant
pressure to produce memory improve-
ments matching CPU improvements.

Despite these challenges, computer
engineers have been very successful
over the years at producing complete
systems with performance that has
grown exponentially. Koomey22,23 gath-
ered data for a large number of different

Figure 8. Koomey’s Law graph illustrates the continuing success of designing systems that
produce more computation for the same power consumption. Careful power management
over the past decade has enabled the explosion of mobile devices that depend critically on
technologies that minimize power use.

C
om

pu
ta

tio
ns

 p
er

 k
W

h

1940 1950

1.E+02

1.E+03

1960 1970 1980 1990 2000 2010

1.E+01

1.E+05

1.E+04

1.E+06

1.E+00

1.E+09

1.E+10

1.E+08

1.E+12

1.E+11

1.E+13

1.E+15

1.E+14

1.E+16

1.E+07

Eniac

EDVAC

Univac I

Univac II

SDS 920 Commodore 64

DEC PDP-11/20

Cray 1 supercomputer IBM PC-XT

IBM PC-ATIBM PC

IBM PS/2 E + Sun SS1000

Gateway P3, 733 MHz

Dell Dimensions 2400

SiCortex SC5832

2008+2009 laptops

Dell Optipiex GXI

Macintosh 128k

486/25 and 486/33
Desktops

Compaq Deskpro 386/20e

Apple IIe

Altair
8800

Univac III (transistors)

Regression results:
N = 80
Adjusted R-squared = 0.983
Comps/kWh = exp(0.4401939 x Year - 849.1617)
Average doubling time (1946 to 2009) = 1.57 years

1.E+01

Source: Koomey’s blog, creative commons license.

62 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

contributed articles

(1)	

For example, an application 10% se-
rial would run at most 10 times faster
than its single-stream time, even with
a large number of parallel processing
cores. That is, even if a small part of
the overall computation is serial, it is
impossible to achieve much multicore
speedup with control parallelism.18

Amdahl’s Law would seem to limit
the speedup to considerably less than
the number of cores, because it as-
sumes parallelism comes from remod-
eling a serial algorithm into a parallel
algorithm. However, Amdahl’s Law
overlooks parallelism inherent in data.
Data-parallel workloads are now com-
mon in data-intensive applications
(such as MapReduce operations on the
Web). In a data-intensive problem, the
data space can be partitioned into many
small subsets, each of which can be
processed by its own thread. The finer
the grain of the partition, the larger the
number of threads. The same algorithm
runs in each thread on the data subset

belonging to that thread. Computer
scientist John Gustafson observed that
large data-intensive problems could al-
ways be partitioned into as many grains
as could be supported by cores in the
processors when there is sufficient data
parallelism.16 In this case, the compu-
tational work completed on one core is
W(1) = a+b, as outlined earlier. With n
cores, it jumps to W(n) = a + bn because
each of the n cores is performing the
same operation on its thread’s (differ-
ent) data items. Gustafson’s Law says
the speedup is linear in n

(2)	

That is, for data-intensive applica-
tions with small serial fraction p, add-
ing cores increases the computational
work in direct proportion to the num-
ber of cores.

Rather than parallelizing the al-
gorithm, data-parallel programming
parallelizes the data. Gustafson’s Law
models data-parallel computing, where
the speedup scales with the size of the
data, not the number of control-paral-
lel paths specified in the algorithm.

Parallelizing data instead of algo-
rithms was a paradigm shift that began
in the 1980s.8 Today, it exploits mul-
ticore systems even when algorithms
cannot be parallelized. It extends to het-
erogeneous data parallelism for com-
mon applications on the Internet (such
as querying databases, serving email,
and executing graphics-intensive appli-
cations, as in games). Peer-to-peer com-
puting is a form of loosely coupled data
parallelism, and cloud computing with
multicore servers is a form of tightly
coupled data parallelism.

Data parallelism and its variants is
why multicore systems can continue to
double output without increasing clock
frequency. At the system level, as long
as the applications contain many paral-
lel tasks, there is always work available
for the new cores in next-generation
systems. This paradigm is especially
useful for processing big data now be-
ing routinely provided by users of prod-
ucts from companies like Google, Face-
book, Twitter, and LinkedIn.

performance, it is possible that the
workloads presented to those systems
are not sufficient to use all the avail-
able computing power. In 1967, Gene
Amdahl, a mainframe computer de-
signer at IBM, investigated whether
it would be better to get faster speed
through a faster CPU or through sev-
eral slower parallel CPUs. Based on
his experience designing instruction-
lookahead CPUs, he realized that sub-
stantial parts of code must be execut-
ed sequentially in the given compiled
sequence; only some of the instruc-
tions could be speeded up by parallel
execution. He derived a formula that
became known as Amdahl’s Law to
express the speedup potential from a
set of n processors (cores) working on
a program. Amdahl’s idea—express-
ing the parallelizable part as a set of
parallel instruction streams—was
known in his time as “control parallel-
ism.” Suppose the time of the job us-
ing 1 stream is T(1) = a+b, where a is
the time for the serial part, and b is the
time for the parallelizable part. The
serial fraction is p = a/(a+b), and par-
allelizable fraction is 1−p. The time to
execute on n streams is T(n) = a + b/n
because only the control-parallel por-
tion of the algorithm can benefit from
n processors. Amdahl’s Law says the
speedup is

Figure 9. The logistics function—the mathematical model for growth of a population
(such as adopters of a technology)—plots as an S-curve (black) over time. Initially,
the curve follows an exponential (red) curve, but after an inflection point (here at time 6)
it flattens out because of market saturation.

0
–

2.0

4.0

6.0

8.0

10.0

12.0

2 4

Logistical Exponential

6 8 10 12

Time

P
er

fo
rm

an
ce

Comparison of Logistical, Exponential Performance

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 63

contributed articles

pose n(t) is the number of members of
a population who have adopted a tech-
nology as of time t. Each adopter dem-
onstrates the value of the new technolo-
gy to the rest of the population. Let a be
the rate at which one adopter influences
a non-adopter to adopt. In a small time
interval h, the probability that a new
adopter comes on board is ah. At time
t+h, there are thus ahn(t) new adopters,
giving n(t+h)−n(t) = ahn(t). Rearranging
this equation and letting h go to 0 yields
the differential equation

(3)	

The solution to this equation is
n(t) = eat. The size of the adopting pop-
ulation increases exponentially and
the mean time between adoptions is
1/a. We can conclude from this sim-
ple equation that exponential growth
happens when the rate of change also
increases with current state.

This model is also too simple be-
cause it does not account for diminish-
ing returns due to market saturation
or technology reaching a limit where
growth stops, when, for example, ev-
eryone in the population has adopted
the technology. We can extend the
model to account for the diminishing
population of non-adopters. As before,
let n(t) denote the number of members

Technology Diffusion at
the Community Level
Moore spoke of a second law, also
known as Rock’s Law, which is less well
known than Moore’s own component-
doubling law. The second law says that
the cost of the fabrication facility for
new chips doubles approximately ev-
ery four years. This is due to the greater
precision and ever-smaller size of li-
thography. An important implication is
that the market for a new generation of
chips at the same price must be at least
double the market for the current gener-
ation, just to pay for the new fabrication
facility. That is, Moore and Rock recog-
nized that the markets had to expand
exponentially to support the continua-
tion of the basic Moore’s Law. Without
exponential expansion of adoption at
the community level, Moore’s Law at
the chip level would be unsustainable.

Many business strategists believe in
the S-curve model whereby the num-
ber of people using a technology ini-
tially grows exponentially to an inflec-
tion point and then flattens out (see
Figure 9). The flattening out is caused
by the saturation of the market—no
more new adopters. Businesses try to
time their entry into new technologies
whose new S-curves are in their expo-
nential growth stage when the older
technology starts to flatten, or “tech-

nology jumping.” Businesses ride a se-
ries of S-waves and experience continu-
ous exponential growth as they hop
from one wave to the next.

Technology jumping is an integral,
recurrent theme in computing. We
noted earlier that Kurzweil explained
exponential growth in the power of in-
formation technology by five massive
switches to new technology that made
older ones obsolete.25 He assumed that
the process of technology jumping
will continue well into the 21st century.
Steve Jobs of Apple spoke frequently
about his strategy of timing his jump
to the next technology with the inflec-
tion point of the S-curve for the current
technology. Andy Grove of Intel took
the emergence of a new technology
that did a job 10 times better than the
current technology as a sign of an in-
flection point and built his company’s
strategy around well-timed jumps.15

Whether or not a new technology is
adopted depends on whether people
use it instead of something else to ac-
complish something they care about.13
Innovators play an important role in
this process by making products and
services that influence community
members to commit to adopt the new
technology into their practice.

A simple argument shows why initial
growth of adoption is exponential. Sup-

Figure 10. Four different technology-adoption histories illustrate how versatile the Bass model is for accurately representing and
forecasting technology adoptions. Data gleaned from Gentry,14 Jones,21 and Kumar.24

1.E+02

1.E+03

1.E+05

1.E+04

1.E+06

1.E+00

1.E+08

1.E+07

1.E+01

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

M
ar

ke
t

P
en

et
ra

ti
on

 (
M

il
li

on
s)

Technology Adoptions and Bass Models:
1980–2017 (Projected)

Facebook Actual

Twitter Actual
Bass Facebook Model

Bass Twitter Model

CD Player (1983–2000)
Personal Computer (1980–2000)

64 COMMUNICATIONS OF THE ACM | JANUARY 2017 | VOL. 60 | NO. 1

contributed articles

begins to slow as diminishing returns
set in. Figure 10 depicts four differ-
ent technology adoptions since 1980.
Bass’s model can be solved to find the
inflection-point value of at, helping fit
the model to data.

No matter what, the initial growth
up to the inflection point is exponen-
tial. Historically, information tech-
nologists have jumped from one tech-
nology to another when an incumbent
technology nears its inflection point.
After each jump, they are on a new
curve growing exponentially toward a
new inflection point. Moore’s Law, and
others like it, are intrinsically exponen-
tial because their rate of change is pro-
portional to their current state.

Conclusion
The original 1965 Moore’s Law was an
empirical observation that component
density on a computer chip doubled
every two years. Similar doubling rates
have been observed in chip speeds,
computer speeds, and computations
per unit of energy. However, the dura-
bility of these technology forecasts sug-
gests deeper phenomena.

We have argued that exponential
growth would not have succeeded
without sustained exponential growth
at three levels of the computing eco-
system—chip, system, and adopting
community. Growth (progress) feeds
on itself up to the inflection point. Di-
minishing returns then set in, signaling
the need to jump to another technology,
system design, or class of application or
community.

At the chip level, there are strong
economic motivations for chip com-
panies and their engineers to feed
on previous improvements, building
faster chips that grow exponentially
up to the inflection point. The first sig-
nificant technology path for exponen-
tial chip growth appeared in the form
of Dennard scaling, which showed
how to reduce component dimension
without increasing power density.
Dennard scaling reached an inflection
point in the 1990s due to heat-dissi-
pation problems that limited clock
speed to approximately 3.5Ghz. En-
gineers responded with a technology
jump to multicore chips, which gave
speedup through parallelism. This
jump has been enormously effective.
Cloud platforms and supercomput-

in a population of size N who have ad-
opted a technology. The change in the
number of adopters from time t to time
t+h would then be proportional to two
quantities: the number who have al-
ready adopted, as in equation 3, and
the fraction who have not yet adopted.
This gives the differential equation

(4)	

which is called the “logistics equation”
in the literature; its solution is

(5)	

This function grows exponentially
to its inflection point. Initially, when
t=0, there is only one adopter, n(0) = 1,
and after a long period of time there
are N adopters.

Reality is more complicated because
individuals have their own adoption
time constants. Sociologist Everett Rog-
ers discovered in 1962 that individuals
fall into five groups according to the
time they take to commit to an adop-
tion—innovator, early adopter, early
majority, late majority, and laggard.28
The histogram of adoption times fol-
lows a Bell curve. The five categories cor-
respond to five zones of standard devia-
tions. For example, innovators are 2.5%
of the population, with adoption times
at least two standard deviations below
the mean; early adopters are 13.5% and
are one to two standard deviations be-
low the mean; early majority are 34% and
zero to one standard deviations below
the mean. In 1969, professor of market-
ing Frank Bass modified the Rogers dif-
fusion model by quantifying the impact
of early-adopter and word-of-mouth (all
other) followers, inserting parameters p
(early adoption rate), q (word-of-mouth
follower rate), and N into the simple lo-
gistics curve.3,4 Ashish Kumar and others
have since validated Bass’s extensions
for real products by finding parameters
p, q, and N for a number of technology
products.14,24 Setting a=p+q and r=q/p,
the Bass model then gives

(6)	

Bass’s equation is still a logistics
model that more accurately forecasts
sales and also reaches an inflection
point where the exponential growth

Data parallelism
and its variants
is why multicore
systems can
continue to double
output without
increasing
clock frequency.

JANUARY 2017 | VOL. 60 | NO. 1 | COMMUNICATIONS OF THE ACM 65

contributed articles

15.	 Grove, A. Only the Paranoid Survive. Doubleday, New
York, 1996.

16.	 Gustafson, J. Re-evaluating Amdahl’s Law. Commun.
ACM 31, 5 (May 1988), 522–533.

17.	 Henderson, B. The Experience Curve—Reviewed (Part
II). BCG Perspectives (Jan. 1973); https://www.
bcgperspectives.com/content/classics/corporate_
finance_corporate_strategy_portfolio_management_
the_experience_curve_reviewed_history/

18.	 Hill, M. Amdahl’s Law in the multicore era. IEEE
Computer 41, 7 (July 2008), 33–38.

19.	 IBM. Announcement of SyNAPSE Chip: New IBM
SyNAPSE Chip Could Open Era of Vast Neural
Networks. IBM, San Jose, CA, Aug. 7, 2014; http://
www-03.ibm.com/press/us/en/pressrelease/44529.wss

20.	 IEEE Spectrum. Special Report on 50 Years of Moore’s
Law. IEEE Spectrum (Apr. 2015); http://spectrum.ieee.
org/static/special-report-50-years-of-moores-law

21.	 Jones, K. Growth of Social Media v2.0. Search
Engine Journal Blog, Nov. 15, 2013; https://www.
searchenginejournal.com/growth-social-media-2-0-
infographic/77055/

22.	 Koomey, J., Berard, S., Sanchez, M., and Wong, H.
Implications of historical trends in the electrical
efficiency of computing. IEEE Annals of the History of
Computing 33, 3 (July–Sept. 2011) 46–54.

23.	 Koomey, J. More on efficiency trends in computing,
from my forthcoming book, blog, including Koomey
Law graph and pointer to creative commons
attribution-noncommercial-noderivative license, Dec.
11, 2011; http://www.koomey.com/post/14466436072

24.	 Kumar, A., Baisya, R.J., Shankar, R., and Momaya, K.
Diffusion of mobile communications: Application of Bass
Diffusion Model to BRIC countries. Journal of Scientific
& Industrial Research 66 (Apr. 2007), 312–316.

25.	 Kurzweil, R. The Age of Spiritual Machines. Penguin
Books, New York, 1999.

26.	 Moore, G. Cramming more components onto integrated
circuits. Electronics 38, 8 (Apr. 1965), 114–117.

27.	 Panth, S., Samadi, K., Du, Y., and Lim, S.K. Design
and CAD methodologies for low-power gate-level
monolithic 3D ICs. In Proceedings of the ACM/
IEEE International Symposium on Low Power
Electronics and Design (La Jolla, CA, Aug. 11–13).
ACM Press, New York, 2014, 171–176; http://dx.doi.
org/10.1145/2627369.2627642

28.	 Rogers, E. Diffusion of Innovations, Fifth Edition. Free
Press, New York, 2003.

29.	 Shalf, J. and Leland, R. Computing beyond Moore’s
Law. IEEE Computer 48, 12 (Dec. 2015), 14–23.

30.	 Sutherland, I. The tyranny of the clock. Commun.
ACM 55, 10 (Oct. 2012), 35–36.

31.	 Thackary, A., Brock, D., and Jones, R. Moore’s Law:
The Life of Gordon Moore, Silicon Valley’s Quiet
Revolutionary. Basic Books, New York, 2015.

32.	 Ubiquity. Ubiquity Symposium on the Technological
Singularity, 2014; http://ubiquity.acm.org/symposia.cfm

33.	 Wu, J., Shen, Y.-L., Reinhardt, K., Szu, H., and Dong,
B. A nanotechnology enhancement to Moore’s
Law. Applied Computational Intelligence and Soft
Computing 2013, Article ID 426962; http://dx.doi.
org/10.1155/2013/426962

Peter J. Denning (pjd@nps.edu) is Distinguished
Professor of Computer Science and Director of the
Cebrowski Institute for information innovation at the
Naval Postgraduate School in Monterey, CA, Editor of
ACM Ubiquity, and a past-president of ACM. The views
expressed here are not necessarily those of his employer
or of the U.S. federal government.

Ted G. Lewis (tedglewis@redshift.com) is an author
and consultant with more than 30 books on computing
and hi-tech business, retired professor of computer
science, most recently at the Naval Postgraduate School,
Monterey, CA, Fortune 500 executive, and co-founder of
the Center for Homeland Defense and Security at the
Naval Postgraduate School, Monterey, CA.

© 2017 ACM 0001-0782/17/01 $15.00

Watch the authors discuss
their work in this exclusive
Communications video.
http://cacm.acm.org/videos/
exponential-laws-of-computing-
growth

ers achieve high computation rates
through massive parallelism among
many chips.

A major technology barrier to chip
growth has been the distribution of clock
signals to all components on a chip. The
theoretically most efficient distribution
mechanism is the space-filling fractal
H-tree that reaches diminishing returns
when the tree itself starts to consume
most of the physical space on the chip.
Engineers are experimenting with hy-
brids that feature subsystems (such as
cores) with their own clocks interacting
via asynchronous signaling. Some en-
gineers have been exploring the design
of all-asynchronous circuits (no clocks),
but these systems cannot yet compete in
speed with clocked systems.

Engineers have been systematically
examining the barriers that prevent the
continuation of Moore’s Law for CMOS
technologies. As alternatives mature, it
will be feasible to jump to the new tech-
nologies and continue the exponential
growth. Although there is controversy
about how successful some of the alter-
natives may be, there is considerable
optimism that some will work out and
exponential growth can continue with
new base technologies.

When chips and other components
are assembled into complete computer
systems, engineers have located and
relieved technology bottlenecks that
would prevent the systems from scaling
up in speed as fast as their component
chips scale. Koomey’s Laws document
exponential growth of computations per
computer and per unit of energy from
1946 to 2009. Koomey’s Law for compu-
tations per unit of energy is especially
important throughout an energy-con-
strained industry. Additionally, the tech-
nology jump from algorithm parallelism
to data parallelism further assures us we
can grow systems performance as long
as the workloads have sufficient parallel-
ism, which has turned out to be the case
for cloud and supercomputing systems.

Finally, we demonstrated that sim-
ple assumptions about adoption proc-
ess lead to the S-curve model in which
adoptions grow exponentially until an
inflection point and then slow down
because of market saturation. Business
leaders use the S-curve model to guide
them in jumping to new technologies
when the older ones start to encoun-
ter their limits. Exponential growth in

sales through ever-expanding applica-
tions and communities provides the
financial stimulus to advance the chip-
and system-level technologies (Rock’s
Law). It is a complete cycle.

These analyses show that the con-
ditions exist at all three levels of the
computing ecosystem to sustain expo-
nential growth. They support the op-
timism of many engineers that many
additional years of exponential growth
are likely. Moore’s Law was sustained
for five decades. Exponential growth is
likely to be sustained for many more.

Acknowledgments
We are grateful to Douglas Fouts
and Ted Huffmire, both of the Naval
Postgraduate School, Monterey, CA,
for conversations and insights as we
worked on this article. 	

References
1.	 Anderson, R.G. How Well Do Wages Follow Productivity

Growth? Federal Reserve Bank of St. Louis Economic
Synopses, St. Louis, MO, 2007; https://research.
stlouisfed.org/publications/es/07/ES0707.pdf

2.	 Asanovic, K., Bodik, R., Demmel, J., Keaveny, T.,
Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson,
D., Sen, K., Wawrzynek, J., Wessel, D., and Yelick, K. A
view of the parallel computing landscape. Commun.
ACM 52, 10 (Oct. 2009), 56–67.

3.	 Bass, F. A new product growth model for consumer
durables. Management Science 15, 5 (Jan. 1969),
215–227.

4.	 Bass, F., Krishnan, T., and Jain, D. Why the Bass model
fits without decision variables. Marketing Science 13, 3
(Summer 1994), 203–223.

5.	 Colwell, R. The chip design game at the end of Moore’s
Law. In Proceedings of the IEEE/ACM Symposium on
High-Performance Chips (Hot Chips) (Palo Alto, CA,
Aug. 25–27). ACM Press, New York, 2013; http://www.
hotchips.org/wp-content/uploads/hc_archives/hc25/
HC25.15-keynote1-Chipdesign-epub/HC25.26.190-
Keynote1-ChipDesignGame-Colwell-DARPA.pdf

6.	 Dennard, R., Gaensslen, F., Yu, H.-N., Rideout, V.L.,
Bassous, E., and LeBlanc, A. Design of ion-implanted
mosfets with very small physical dimensions. IEEE
Journal of Solid State Circuits (1974), 256–268.

7.	 Denning, P. The choice uncertainty principle. Commun.
ACM 50, 11 (Nov. 2007), 9–14.

8.	 Denning, P. and Tichy, W. Highly parallel computation.
Science 250 (Nov. 1990), 1217–1222.

9.	 Dennis, J. and Misunas, D. A preliminary architecture
for a basic data-flow processor. In Proceedings of the
Second Annual Symposium on Computer Architecture
(ISCA) (Houston, TX, Jan. 20–22). ACM Press, New
York, 1975, 126–132.

10.	 Economist. A deeper law than Moore’s? Economist
blog (Oct. 10, 2011); http://www.economist.com/blogs/
dailychart/2011/10/computing-power

11.	 Esmaeilzadeh, H., Blem, E., St. Amant, R.,
Sankaralingam, K., and Burger, D. Dark silicon and the
end of multicore scaling. In Proceedings of the 38th
International Symposium on Computer Architecture
(ISCA) (San Jose, CA, June 4–8). ACM Press, New
York, 2011, 365–376.

12.	 Feynman, R. The Pleasure of Finding Things Out: The
Best Short Works of Richard P. Feynman. Penguin
Books, New York, 2001.

13.	 Flores, F. and Denning, P. Emergent innovation.
Interview by Peter J. Denning. Commun. ACM 58, 6
(June 2015), 28–31.

14.	 Gentry, L. and Calantone, R. Forecasting Consumer
Adoption of Technological Innovation: Choosing the
Appropriate Diffusion Models for New Products and
Services Before Launch. Faculty Research & Creative
Works, Paper 662. Missouri University of Science and
Technology, Rolla, MO, 2007; http://scholarsmine.mst.
edu/faculty_work/662

https://www.bcgperspectives.com/content/classics/corporate_finance_corporate_strategy_portfolio_management_the_experience_curve_reviewed_history/
https://www.bcgperspectives.com/content/classics/corporate_finance_corporate_strategy_portfolio_management_the_experience_curve_reviewed_history/
https://www.bcgperspectives.com/content/classics/corporate_finance_corporate_strategy_portfolio_management_the_experience_curve_reviewed_history/
https://www.bcgperspectives.com/content/classics/corporate_finance_corporate_strategy_portfolio_management_the_experience_curve_reviewed_history/
http://www-03.ibm.com/press/us/en/pressrelease/44529.wss
http://www-03.ibm.com/press/us/en/pressrelease/44529.wss
http://spectrum.ieee.org/static/special-report-50-years-of-moores-law
http://spectrum.ieee.org/static/special-report-50-years-of-moores-law
https://www.searchenginejournal.com/growth-social-media-2-0-infographic/77055/
https://www.searchenginejournal.com/growth-social-media-2-0-infographic/77055/
https://www.searchenginejournal.com/growth-social-media-2-0-infographic/77055/
http://www.koomey.com/post/14466436072
http://dx.doi.org/10.1145/2627369.2627642
http://dx.doi.org/10.1145/2627369.2627642
http://ubiquity.acm.org/symposia.cfm
http://dx.doi.org/10.1155/2013/426962
http://dx.doi.org/10.1155/2013/426962
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.15-keynote1-Chipdesign-epub/HC25.26.190-Keynote1-ChipDesignGame-Colwell-DARPA.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.15-keynote1-Chipdesign-epub/HC25.26.190-Keynote1-ChipDesignGame-Colwell-DARPA.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.15-keynote1-Chipdesign-epub/HC25.26.190-Keynote1-ChipDesignGame-Colwell-DARPA.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.15-keynote1-Chipdesign-epub/HC25.26.190-Keynote1-ChipDesignGame-Colwell-DARPA.pdf
http://www.economist.com/blogs/dailychart/2011/10/computing-power
http://www.economist.com/blogs/dailychart/2011/10/computing-power
http://scholarsmine.mst.edu/faculty_work/662
http://scholarsmine.mst.edu/faculty_work/662

