

Mechanical Turing Machine in Wood

Explained

By

Richard J. Ridel

Why did I build this?

By Richard J. Ridel

 Well, I have always been interested in computers. I built my
first one in 1976 using an Intel 8008 microprocessor. It worked. It
was an 8 bit processor with a 1 meg clock and 4k memory. I didn’t do
much with it and subsequently realized it was more fun building it
than using it. I still have the 4k memory board and the 8008 chip.
The rest got dismantled and tossed over the years. I went to the
movies to see “The Imitation Game.” Loved the movie and looked up
Allen Turing on the internet. I found his 1936 paper on computable
numbers and got hooked. Another search on the internet yielded a
small list of machines built by others. Several had electronic
controllers controlling the mechanics. I can hear Mr. Turing say, “A
computer running a computer. Whaaaat?” And a few came closer using
only motors and relays and electrical widgets. Closer. But I was
looking for something completely mechanical. Ergo, the challenge.

 I’m going to make a huge assumption: If you are reading this
then I’m sure you have read all about Alan Turing and his theoretical
computing machines. Therefore, I do not need to go over all the
specifications and requirements of the machine. I will, however,
offer a few departures, though I am sure you can figure them out
yourself. The data tape cannot be infinitely long. The character set
cannot be infinitely large and the configuration table containing
states cannot be infinite. Infinite is theoretical not practical.

 The mechanical and size limitations began to dictate how many
characters and states I would build into the machine. So I went on an
internet search to see what others had determined. Why reinvent the
wheel. I found the work of Steven Wolfram and his challenge. He
offered $25,000 to anyone who could prove what the minimum data
elements and states are to perform any calculation. In May 2007 Alex
Smith, a 20 year old undergraduate in England, submitted a 40 page
proof and won the prize. He proved that only 3 data elements and 2
states were needed. I have programming experience: Basic, C++, C,
Assembly and Machine. So I downloaded a Turing Machine simulator to
my iPad and programmed a few calculations. Then I restricted myself
to the minimums (minima?) stated above and discovered I’m not that
creative a programmer as I thought I was. But I found that 3 data
elements and 3 states seemed to work and decided to implement those
numbers.

I decided to make this out of wood, having woodworking skills
and tools, with no electrical parts. I wanted an antiquish (not a
real word) look with rounded corners and turnings and whatnots. I
used pine, oak, maple and mahogany, with stain here and there. I

don’t have mechanical training but I learn quickly, especially during
trial and error work. I will talk about force and throw while
explaining the various parts of the machine. Ah yes, trial and error.
Do not think that I sat down, did some thinking and built this
machine just like that. I have a box full of parts that did not work.
Most of the machine was reengineered and rebuilt. The configuration
table mechanism itself went through three iterations, one of them
having over 100 parts. They now help populate the junk box.

 Okay, enough. Let’s get to the good stuff.

 There are four steps in one cycle of the machine. Later in this
document I’ll present a 360O chart showing all the action in one
cycle.

1. Read the Data Tape
2. Read the Configuration Table
3. Write to the Data Tape
4. Move the Data Tape

It is important to mention that an initial start condition must

exist prior to executing the four steps above. I must mechanically
set the Data Tape to a bit before the actual data and reset the
configuration table to the start state, which is state ‘A’.

The section diagram above shows the Mover as two parts, a

Shifter and a Lifter. I will start with the Data Tape first, then the
Mover, the Writer and the Reader. And finally the Configuration
Mechanism.

The Data Tape is built out of small blocks glued onto a

synthetic ribbon. Pegs are inserted into the blocks. The pegs need to
slide easily yet not fall out of the blocks. The forces needed to
move the pegs will get multiplied as they are translated through the
Writer mechanism. So the easier they slide the easier the remaining
mechanism performs. The tape runs along a Rail. The sides of the Rail
should not lift the Bit Blocks by the pegs. Precision is necessary
when cutting the blocks and drilling the holes for the pegs.
Consistent peg length is also necessary. Precision is also necessary
when it come to the Catch on the Mover and the Sensors on the Reader.

At this time I would like to say a few words about measurements.

I will not offer any here. To do so would demand a complete set of
measurements for the whole machine. That I do not have. This machine
was built from the ground up, from one part to the next. I cut Bit
Blocks and pegs that I thought would work. If they didn’t work I
threw them away and started over. I built the Rail to fit the Data
Tape, then the Catch to fit the pegs. And on, and on, and on.

The Mover

The Mover is comprised of two parts, a Shifter and a Lifter. A

Catch on the Shifter Arm locks onto a Data Bit on the tape and shifts
the entire tape either forward or reverse one bit. Without the action
of the Lifter, however, the Shifter will move the tape forward then
reverse leaving the tape in the original position. The Lifter will
lift the Shifter Arm above the tape either during the forward or
reverse motion of the arm thereby allowing the opposite action to
take place. The Shifter mechanism by design reverses the tape first
then forwards it. Lifting the Shifter Arm during the reverse action
will not move the tape. Lowering the Arm to engaging the Catch at the
end of the reverse action will shift the tape one bit forward during
the forward action.

This diagram shows the motion of the Shifter Arm.

The Lifter has two cams that push down on Rocker Arms. The cams
are positioned to lift the Shifter Arm at the precise moments in the
movement cycle. Lift during reverse movement and forward motion of
the tape results. Lift during forward movement and reverse motion of
the tape results. The Forward and Reverse Wires control this action.
Because the wires are moved by a Toggle, the Reversing Toggle, one
wire will be moved into the Puller and the other wire will be moved
out of the Puller. Both cannot, by design, be moved into the Puller
at the same time. Both wires also rest in their corresponding Rocker
Arms. When a wire is moved into the Puller any action on the Rocker
Arm is transferred to the Puller. This process is called the ‘Pin
Locking Concept.’ It essentially locks the Puller to the Rocker
allowing the Shifter Arm to be lifted by one of the direction Cams.
The following diagram shows the lifter action.

The Writer

The purpose of the Writer is to move the Pegs in the Bit Blocks.

Either set them to ‘b’ or ‘0’ or ‘1’. If you look at the Data Tape
diagram above you will see that the Writer will need to move the pegs
all the way down or all the way up or position the peg exactly half
way. Notice the small remainder of the peg when it is moved all the
way. That small portion is needed for the Mover Catch to grab and
allow the shifter to move the tape.

The Writer mechanism Lock Boxes push down and pull up all the

way every cycle. The Push Cam moves the Push Pull Mechanism which
moves the Lock Boxes. The Push Bars do the actual work of moving the
Pegs. The Top Push Bar will push the peg down and the lower push bar
will push the peg up through the End Finger. The movement will be one
hundred percent. The Write mechanism will destroy itself if both Push
Bars are allowed to push at the same time. Consequently, only one
Push Bar should engage the peg for a full push at any one time. Only
when a ‘0’ needs to be written will both Push Bars be locked into the
Lock Boxes. These locking pins will only engage for half the movement
for both Push Bars.

When the Control Wire in the Lock Box is moved through the Push

Bar and into the other side of the Lock Box that Push Bar is locked
in and will take the movement of the Lock Box. If the Control Wire is
moved through the ‘0’ slot of the Push Bar then it will only move
half of what the Lock Box moves. The length of the slot is equal to
half of the full throw of the Lock Box.

Because the Push Bars will be floating most of the time there is

a danger they could migrate out into the Data Tape area and may jam
extended Pegs as they move across the writing area. Therefore,
extremely light springs are needed to keep them from jamming the
tape. The Lock Boxes also have light springs to keep them held in the
rest position. Another purpose and for these springs is to keep the
holes in the Lock Boxes and Push Bars aligned for a smooth movement
of the Control Wires.

The Control Wires are connected to three Toggles: a ‘b’ Toggle,

and ‘0’ Toggle and a ‘1’ Toggle. These Toggles are under the
Configuration Mechanism and set by wires connected to the Table
Hammers (as described later). The ‘0’ Toggle controls the ‘0’ wires
for both Lock Boxes since both Push Bars need to move to set the peg
exactly half way and since the initial state of the peg is not known
by the machine (Not going to engineer that mechanism).

The Reader

I don’t think I need to go over the Cam on the Power Shaft or

the Actuator Arm that presses the reading Sensors down. That should
be self-evident. All the other parts of the Reader are shown below.

The Reader detects the position of the Bit Pegs by the Peg

Sensors. The Actuator Arm pushes the Puller/Holder down until it
rests on the Bit Block. It does two things: hold the Bit Block from
rocking in the Rail and pulling the Front and Rear Peg Sensors down
onto the peg. All three elements are loose in the Reader Housing.
When the Puller/Holder drops a spring on top pulls down on a wire
that forces the Peg Sensors down. The spring is needed because the
Peg Sensors could come down onto a Peg or down onto the machine
frame. When reading a ‘b’, blank, the Front Sensor will rest on the
Peg and the rear sensor will rest onto the frame. When reading a ‘0’
both Sensors will rest on the Peg. When reading a ‘1’ the Front
Sensor will rest on the frame and the Rear Sensor will rest on the
Peg. These differing positions of the Sensors will not allow a rigid
connection to the Puller/Holder.

Each Peg Sensor has two more parts added: a Return Block and a

Rocker Tab. The Return Block will be engaged by the Puller/Holder on
its way back up. This will make sure Peg Sensors are up and out of
the way of the Data Tape movement. The Rocker Tab will push the Read
Rocker into a position that represents the position of the Peg in the
Bit Block. The Read Rocker has a Reset Horn that returns the Read
Rocker to its default position as the Rocker Tabs on the Peg Sensors
return to the upper position. This default position is equal to the
‘0’ position of the Read Rocker.

The Read Rocker operates Linkage that translates its position to

a Finger Window at the rear of the Configuration Mechanism. Three
Fingers on the Kicker mechanism push Data Stops in the Configuration
Mechanism but only one Finger will pass through the Window. That
Finger will push its corresponding Data Stop as the data read on the
tape.

The Kicker mechanism best displays the need to be aware of how

far parts will be traveling and how much force will be needed to
perform a necessary action. The consideration of travel and force was
in the forefront of my thoughts when every mechanism was designed.
The end of the Finger may need to travel an inch and push a Data Stop
Block. And a cam on the Power Shaft would take too long. I needed a
Wooden Collar with a rounded screw head, which is how the Finger
Mechanism is moved, to quickly move the Fingers. A screw will not
move a lever very far. So Lever A pushes Lever B, which has a pivot
very close to the force. This amplifies the travel of the upper end
of Lever B but also diminishes the force at that end. This then
pushes the Pull Block which in turn pulls the Fingers forward using
springs. But only one Finger passes through the Finger Window and
pushes the Data Stop Block. The other two Fingers are held back but
nothing jams because of the springs.

Configuration Table Mechanism

This part of the machine is by far the most complex. In fact I

believe I spent most of the time building three versions of this. The
second version had over one hundred parts. But in the end I learned a
lot and found out what will and what won’t work. The final version is
by far a work of, (dare I say it), nah I won’t. This unit has four
tasks to perform.

1. Receive input from the Tape Reader.
2. Line up the proper row on the program board.
3. Read the Program Board.
4. Set the output wires for the Mover and Writer.
5. Set the next cycle State.

You can see how it can be as complex as the remainder of the

machine.

The initial state must be set before we start. The Data Stops

need to be manually reset. The State Ramp Sliders must be manually
reset which puts the machine in the ‘A’ state. The Mover and Writer
wires need to be reset. And the Data Tape needs to be positioned. Now
the machine is ready to begin computations.

The input is the work of the Fingers mentioned in the previous

section. The Tape Reader sets the Finger Window and the Fingers, or
one Finger, kicks the appropriate Data Stop forward.

With the State and Data Stops set the Table, which has

previously been raised, can be lowered to the position matching the
stops. With State ‘A’ and Data ‘0’ the Table will lower to the point
where row ‘A0’ is under the Hammer Heads. Figure 5 on the next page
shows the Table Stop Block. It also happens to be one of those
optical things. But I think I found a way to see it properly. Look at
it as thought the steps are in a distant corner of a room. Now, look
at it with the corner facing toward you, not away. You should be able
to see the steps properly. You need to look at Figures 3, 5 and 6 to
see how the Data Stop Block limits the travel on the Data Stops so
only the ‘A’, in our case above, steps will effect the Table Stop
Block. Since the Program Board is locked into the Program Board Frame
which is connected to the Table Stop Block the proper row will appear
under the Hammer Heads once that whole assembly is lowered and stops.

The Program Board is read by swinging the Swing Arm toward the

Program Board. As you can see in Figure 2 when the Hammer hits the
Program Board the lower end of the Hammer does not move. When it
encounters a Pin the lower end of the Hammer also swings toward the
Program Board. A Connector linkage transmits that movement to the
Toggles under the Configuration Mechanism. These Toggles control the
wires used in the Mover and Writer mechanisms. The three State

Hammers transmit the movement to the State Ramp Sliders as shown in
Figure 4. This Slider remains set during most machine operations and
is reset just before being set again. In effect this is the State
Memory for the machine.

I mentioned the Toggles several times and one can be seen in the
Mover Lifter diagram above. The ‘b’, ‘0’ and ‘1’ Toggles only have
one wire attached at the upper right. The Toggle is turned by the
linkage of the Hammer when a Pin is encountered. And the Hammer
Linkage sits in a curved slot so it can return as the Hammer returns
to its rest position. Therefore, the Toggle will not be pulled back
to its rest position. Reset Arms will do that later. The turn or
throw of the Toggle needs to be calculated so the wires engage
properly.

I also mentioned a 360 degree diagram showing the activities of

this machine. The best place to start and stop the machine is around
the 300 degree mark. I made a wooden compass and fit it over the
right end of the Power Shaft. Then I attached a wooden pointer. This
enabled me to chart and see when things were happening. I could
tighten up activities using overlap and adjust cams for an optimum
operation.

This should help you understand the timing of the machine.

Other Thoughts

There are a number of issues that need mentioning.

I did not build a safeguard into the Writing Wires. Things will
break if the machine attempts to write a ‘0’ as well as a ‘1’.
And wires can migrate and drift.

The Reader Rocker basically floats when reading a ‘0’. It could
move and present the wrong data to the back of the Configuration
Mechanism.

Build the machine so timing and throw are adjustable.

Build the machine so you can remove a part without having to
completely dismantle the entire thing.

My part names are not the most logical nor clear.

My engineering technique is not the best, however, efficiency
and simplicity can be ignored for artistic aesthetics.

In the end, I had fun building it. And I guess that’s all that
matters.

Conclusion

So there you have it. The machine is initialized, the Data Tape

is Read and the data entered into the back of the Configuration
Mechanism. The Configuration Table drops to the proper row and the
Hammers read the Program Pins. They in turn set the wires that
control the Writing of the Data Bits on the tape and then the
movement of the Data Tape forward or reverse. They also set the State
Slider for the State of the next cycle. Then various resets get the
machine ready to do it all over again. That’s it, QED.

I’m sure you have read about the “Halting Problem,”

Entscheidungsproblem. (Go ahead. Check the spelling on that.)
Basically, Mr. Turing also theorized a Universal Machine that would
take the data tape AND program pins as separate inputs to another
machine. That machine would then be considered Universal as it would
not need to be programmed. (Is that another challenge?) He did that
in order to mathematically try to solve the Halting Problem. Which
is; can a machine determine if a computation is complete or
infinitely looping? And the result is a resounding, NO. It can’t.
Therefore, the problem.

My machine has a similar problem. According to the 1936

specifications of a Turing Machine the point where a computation is
completed is not specified. It is mostly guesswork and not
mechanical. In other words, you see that the machine processed the
input and is done.

Or is it.

