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Abstract This paper outlines different design options and 
most suitable memory devices for implementing dense vector-by-
matrix multiplication operation, the key operation in 
neuromorphic computing. The considered approaches are 
evaluated by modeling system-level performance of 55-nm 4-bit 
mixed-signal neuromorphic inference processor running common 
deep learning feedforward and recurrent neural network models.  
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I. INTRODUCTION 

The growing applications of neural networks calls for the 
development of efficient neuromorphic computing hardware. A 
very promising approach to address this need is to utilize 
mixed-signal (MS) circuits based on emerging nonvolatile 
memories (NVMs), which enables dense in-memory vector-by-
matrix multiplication (VMM) with low-to-medium precision, 
the most critical operation in inference computation. 

Though the general idea is similar for many MS-VMM 
circuits (Fig. 1a) [1, 2], there are differences in peripheral 
circuitry design and how input/output signals and weight are 
encoded, which in turn favor the specific choice of NVM. The 
goal of this paper is to compare different approaches and 
provide examples of their use in MS neuromorphic processor. 

II. MIXED-SIGNAL MULTIPLIER DESIGN OPTIONS 

MS-VMM circuits can be broadly classified by the type of 
input encoding and utilized signal amplification in the 
crosspoint memory cells (Fig. 1b). The choice of these options 
determines the optimal design of other parts VMM circuit, e.g. 
of the output integration (OI) and conversion (OC) circuits. 

Specifically, for the fastest, instant (INS) encoding, the 
inputs are encoded by the amplitudes of the fixed-duration 
voltage pulses (or current pulses in gate-coupled design [3]). In 
the linear (LIN) encoding, the inputs are applied sequentially, 
bit by bit, using fixed-duration digital pulses, so that the total 
input duration (Tin) is proportional to the input signal precision 
(p) [4]. For the slowest, exponential (EXP) time-based 
encoding, the inputs are encoded in the duration of the digital 
pulses, with the worst-case input time scaling as 2p with 
precision [5]. Digital inputs of LIN (and EXP) scheme 
eliminate the need for (allow to replace with more compact 
counters) potentially bulky DAC circuits needed in INS 
approach, at the cost of adding more complex clock distribution 

networks and other synchronization circuits. Higher switching 
activity in LIN, though, could result in higher dynamic energy. 

All floating gate memories in MS-VMM circuits are 
typically biased in subthreshold mode, thus providing signal 
amplification in the cell [2,3,5,6]. A subthreshold-based 
transistor in 1T1R cells can be also used as adjustable current 
source, by tuning resistance of source-connected memristor 
[4,7]. Alternatively, 1T1R (and 0T1R) can be used as purely 
passive cells.  

The lack of signal amplification generally means 
using more expensive active peripheral circuits. Indeed, the 
biggest advantage of active cells is high input/output array 
impedance, which greatly cuts OI and IC overheads [2]. On the 
other hand, the overhead of OI in passive cells circuit is 
typically quite heavy due high-gain sense amplifiers, and 
especially bad for LIN and EXP due to additional requirement 
of high bandwidth. A potential strength for active OI is superior 
precision due to better control of an input current. It should be 

 
Fig. 1. (a) Top level schematics for NVM-based mixed-signal VMM circuitry. 
(b) Design options. The first two / last four columns are also reffered as current-
mode / charge-based designs. (c) Performance comparison. The last two rows 
show potentials for increasing input/compute precision and improving all 
performance metrics due to memory/periphery feature scaling. 3D-NAND with 
INS encoding is also possible though only after substantial array redesign.      



also noted that in EXP approach, OI overhead could be 
significant for large p due to large integration times and hence 
larger capacitors. This is less of an issue for passive LIN design 
due to efficient successive integration and division scheme [4]. 

ned into digital signals with ADCs 
or by converting output voltage into pulse duration and using 
time-to-digital converter. The latter approach is more practical 
for active LIN and EXP schemes, due to their 
static energy consumption [4-7]. Also, the digital circuits in OI, 
IC, and OC are generally more efficient and conducive to 
aggressive technology scaling, compared to the analog ones.  

Main metrics of considered approaches are outlined in Fig. 
1c. (Note that Fig. 1 omits  of 
using LIN with digital integration [8].)      

III. CASE STUDIES FOR NEUROMORPHIC PROCESSOR 

Three representative designs based on active cell 2D-NOR 
[2, 3], 1T-1R [4, 7] and 3D-NAND [6] were evaluated by 
modeling inference performance of 4-bit aCortex (Fig. 2a), a 
multi-purpose neuromorphic inference processor [2, 6], for 
popular deep learning models, such as GNMT-1024 recurrent 
network (with input sequence of 10), and image classifiers 
ResNet-152 and Inception-V1. The system-level estimates are 
based on simulations in 55-nm process, and, e.g., included 
line/device parasitics, leakages, and overheads of buses and 
tuning circuitry. 

As expected, area-efficiency (AE), which is defined as the 
weight capacity normalized to processor area, is the best for 3D-
NAND approach due to very dense memory cells (Fig. 2c, d). 
The second best is 1T-1R design due to relatively small cell area 
and very compact periphery. Energy efficiency (EE) closely 
follows AE for the first two approaches, while worse for the 3D-
NAND design due to much larger parasitics, i.e. high 
capacitance word planes/bit select lines and high pass voltages. 
The instant encoding and low operating currents of the 2D-NOR 
approach leads to faster VMM operation (Fig. 1c) and hence the 
highest system-level throughput for smaller networks. However, 
due to very compact periphery for both sensing and front-end 
and back-end conversion circuits, 1T-1R design has the best 

throughput at the system level. The superior memory density 
and relatively low assumed computing precision also help 
achieving high throughput for larger models in the 3D-NAND 
approach. 

Though the performance is generally much better compared 
to purely digital implementations, there are still many reserves 
for improvements. For example, shrinking the cell area in 1T-
1R design would improve performance. 3D-NAND approach 
would benefit from more compact, previously demonstrated 
capacitor implementations, while its AE can be further improved 
by sharing peripheral circuitry. Finally, let us note that the 
considered version of aCortex is optimized for EE. A better 
throughput can be achieved by sacrificing EE at the circuit and 
architecture levels. Understanding such tradeoffs is important 
future goal. Also, though preliminary results for sensitivity of 
performance to device and circuit non-idealities are encouraging 
[9], more extensive experimental verifications are needed.  

REFERENCES 
[1] G.W. Burr et al Neuromorphic computing using non- , 

Advances in Physics: X, vol. 2, pp. 89-124, 2019. 
[2] M. Bavandpour et al. Mixed-signal neuromorphic inference accelerators: 

recent results and future , San Francisco, 
CA, Dec. 2018, p. 20.4.1. 

[3] X. Guo et al. -insensitive analog vector-by-matrix multiplier 
, Austin, TX, 

Apr.-May 2017, p. 1.  
[4] M. Bavandpour et al Efficient mixed-signal neurocomputing via 

successive integration and division  
[5] Energy-efficient time-

domain vector-by-matrix multiplier for neurocomputing and beyond,
IEEE TCAS-II, 2019 (early access). 

[6] -aCortex: 
An ultra-compact energy-efficient neurocomputing platform based on 
commercial 3D-NAND flash m submitted to , 2019. 

[7] Time-
domain mixed-signal vector-by-matrix multiplier exploiting 1T-1R array
arXiv:1905.09454, 2019. 

[8] A. Shafiee et al., ISAAC: A convolutional neural network accelerator with 
in-situ analog arithmetic in crossbars Computer Architecture News, vol. 
44, pp.14-26, 2016.  

[9] X. Guo et al Fast, energy-efficient, robust, and reproducible mixed-
signal neuromorphic classifier based on embedded NOR flash memory 
technology,  in: Proc. IEDM'17, San Francisco, CA, Dec. 2017, p. 6.5.1. 

 
Fig. 2. (a) The main components of aCortex architecture including centralized eDRAM-based memory, a configurable chain of digital buffers, 2D/3D arrays 
of MS-VMM blocks (PE), an array of neurons (IDU), and a digital auxiliary unit (AUX) used for infrequent pooling/addition/vector-vector multiplication 
operations. (b) Example of data movement during convolution operation on 2D-aCortex. The whole computation is perfomed one layer at a time by enabling 
specific PE blocks. (c) System-level estimates of major performance metrics and (d) thier breakdown. In panel c, the circle size represents the chip area, which 
is reported assuming minimum resources (mainly PEs) needed to run specific model. Note that due to possibility of disabling not utilized components, EE is 
almost the same when mapping smaller models on the largest, GNMT-compatible processor [2]. All circuit/memory assumptions are similar to cited references. 


