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Summary. This paper  describes a technique for transforming functional 

programs that repeatedly traverse a data structure into more efficient alter- 

natives that do not. The transformation makes essential use of lazy evalua- 

tion and local recursion (such as provided by ietrec, or its equivalent) to 

build a circular program that, on one pass over the structure, determines 

the effects of the individual traversals and then combines them. 

1. Introduction 

One of the advantages of programming in a functional language is that many 

ideas for improving efficiency can be formulated as simple transformations on 

the functions that constitute the program. The purpose of this note is to 

describe one such optimisation. The technique, which involves building a 

circular program in order to avoid the repeated traversal of a data structure, is 

familiar to a number  of functional programmers,  including Hughes [6] and 

Wadler (who first formulated it as a transformation in [9]), but it deserves to 

be more widely known. We shall illustrate it in a simple setting in order to 

make the nature of tbe underlying transformation apparent.  It turns out that, 

in order to describe the transformation, one requires certain definition mecha- 

nisms to be available in the given language. We regard this aspect of the work 

as evidence of the importance of such mechanisms in functional programming.  

The technique will be introduced through an example. Consider the prob- 

lem of changing a given tree, such as the one depicted in Fig. 1 into a second 

tree identical in shape to the first, but with all the tip values replaced by the 

minimum tip value. For  example, the tree of Fig. 1 is changed into the tree of 

Fig. 2. 

In a straightforward solution to this problem the tree is traversed twice: 

once to find the minimum value and once to carry out the tip replacements. In 
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Pascal, for instance, the algorithm might be implemented by the following 

definitions: 

type t ree= ^node; 

node = record 

case tag: (tip, fork) of 

tip: (val: integer); 

fork: (left, right: tree) 

end; 

function tmin (t: tree): integer; 

begin 

with t ^ do 

case tag of 

tip: tmin :=va l ;  
fork: tmin :=  min (t min (left), t min (right)) 

end 

end; 

procedure replace (t: tree; m: integer); 

begin 

with t ^ do 

case tag of 

tip: va l :=m;  

fork: begin replace (left, m); replace (right, m) end 

end 

end 

The required tree replacement is now achieved by the call replace 

(t, tmin (t)). 

The programmer with a keen eye for possible optimisation will realise that 

it is not essential for the tree to be traversed twice in order to solve the 

problem. An alternative solution can, on a single pass through the tree, com- 

pute the minimum value and, at the same time, discover and store the addresses 

of the tip nodes in a linear list. Having calculated the minimum, the algorithm 

then inserts this value as the new tip value in each of the nodes stored in the 

list. If the tree contains N nodes, of which n are tip nodes, then the revised 
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algorithm does an extra n units of work during the traversal (to store the 

addresses of the tips) and a further n units to process the list. On the other 

hand, it traverses the tree only once. Assuming it takes N units to do this, the 

former algorithm takes 2N units, while the revised version takes N + 2 n  units. 

For the kind of trees we have been considering. N = 2 n +  1 so the sensible 

p rogrammer  will reject the optimisation as not being worthwhile. However, 

there is nothing essential about  binary trees as far as this problem is concerned 

(they were chosen purely for notational simplicity), and if one supposes more 

general trees in which the number  of internal nodes can be arbitrarily larger 

than the number  of tips (essentially, trees with unary as well as binary forks), 

then the revised version of the algorithm can generate a substantial saving. 

2. A Functional Algorithm 

Consider now how a solution to the same problem might be expressed in a 

functional language such as K R C  [8] or H O P E  [2]. (In what follows we shall 

employ a KRC-like notation with HOPE-l ike  data types: given the Pascal 

definitions above, we trust these will be self explanatory.) The straightforward 

solution is easily p rogrammed with the aid of the following data type: 

data tree = tip int[ fork tree tree 

The required functions are: 

transform t = replace t (tmin t) 

replace (tip n) m = tip m 

replace (fork L R) m = fork (replace Lm) (replace R m) 

tmin (tip n) = n 

tmin (fork L R) = min (tmin L) (tmin R) 

The above statement of the solution seems cleaner and simpler than its Pascal 

counterpart,  but as there is no concept of tree addresses as individual entities 

in a functional framework, it is not obvious how, if at all, the corresponding 

single-pass algorithm might be formulated. However, given certain assumptions 

about the semantics and definition mechanisms available in the language, a 

single-pass algorithm can be described and it is the object of this note to show 

how. 

As a first step it seems natural, given the common recursive form of replace 

and tmin, to at tempt to combine the two functions into one by defining 

repmin t m = [replace t m, tmin t]. 

F rom this definition we can synthesize a new one that constructs the two 

components  in one traversal of t. The derivation is a standard application of 

the unfold-fold method [3] and the two cases are: 

(i) repmin (tip n) m = [-replace (tip n)m, tmin (tip n)] 

= [tip m, n] 
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by instantiating (tip n) for t and subsequently unfolding the definitions of 

replace and tmin; 

(ii) repmin (fork L R) m 

= [replace (fork L R) m, tmin (fork L R)] 

= [fork (replace L m) (replace Rm), min (tmin L) (train R)] 

= [fork t l  t2, m i n m l  m2] 

where l,tl, m l ]  = repmin L m 

and [t2, m2] = repmin R m. 

Here, instantiation and unfolding is followed by a where abstraction and a fold 

step in which the original definition of repmin is used a second time to obtain 

a new recursive definition. Alternatively, we can eliminate the where clause in 

favour of an explicit function h, say, and write 

repmin (fork L R) m = h(repmin L m) (repmin R m) 

h l,tl, m l ]  It2, m2] = [fork t l  t2, min ml  m2] 

The new definition of repmin certainly achieves the objective of evaluating 

replace and tmin with a single traversal, but the idea does not appear to help 

since the two components of the result seem to have been fatally decoupled 

from each other. What  we really want is the second argument m of repmin to 

be the second component  of its value. Suppose we were allowed to define 

p = repmin t (snd p) 

where snd [a, b] = b. Then the solution to our problem can be expressed as 

transform t = fst p, 

where fst I-a, b] =a .  Is such a move possible? Under what circumstances can we 

expect the definition 

transform t = fst p 

where p = repmin t (snd p) 

to be well-formed and correct? 

The answer is that, firstly, the functional language has to permit the 

recursive definition of local objects through the medium of where clauses (or 

their equivalent) and, secondly, that its semantics are based on a call by need 

(or lazy evaluation [5]) mechanism. The combination of lazy evaluation and 

local recursion enables circular program structures to be constructed at run- 

time, and this is just what is required for single-pass algorithm. Under a call by 

value regime, the value of the second argument of repmin is demanded before 

the value of repmin can be calculated: this leads to infinite regress and non- 

termination. With lazy evaluation, on the other hand, the structure 

fst ( ~ ) )  
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is built and repmin can be elaborated without evaluation of its second argu- 

ment until it is actually required. To see this, we can work through a small 

example. Suppose t=fork(t ip2)(t ip 1). The evaluation of 

fst ($repmin t (sndT)) 

(where, for convenience, the backward line has been replaced by appropriately 
pointing arrows) is as follows: 

fst ($ repmin (fork (tip 2) (tip 1)) (snd T)) 

= fst (J, h (repmin (tip 2) (snd T)) (repmin (tip 1 ) (snd T))) 

= fst ($h [tip (sndT), 2] [tip (snd 1'), 1]) 
= fst (1 [fork (tip (snd T)) (tip (snd T)), min 12]) 
= fork (tip (snd'~)) (tip (snd]')), 

(where T still points to [fork (tip (snd 1')) (tip (snd 1")), min 1 2]) 
= fork (tip (min 1 2)) (tip (min 1 2)) 
= fork (tip 1) (tip 1). 

At each step just that portion of the expression required to continue the 
derivation is expanded. For instance, the definition of h requires that its 

arguments be pairs of values: consequently, the derivation is continued to 
establish this fact (though the actual values are not required at this stage) 

before the rule for h can itself be invoked. Note that a call by need mechanism 

ensures that min 1 2 is evaluated once only - when the first tip value is 

demanded - and thereafter its value is passed to the remaining tips. 
It should now be clear why lazy evaluation is an essential ingredient of the 

transformation, but the second requirement, the ability to define local re- 
cursions, may not seem so important. One can, after all, define a version of 
transform in which the where statement is replaced by an explicit function: 

transform t = fst (p t) 

p t = repmin t (snd (p t)). 

This is a perfectly correct alternative, but since no circular structure is created, 

merely an extra - albeit curious - recursive function p, the main advantage of 
the earlier version is lost: the tree is again traversed twice. To see this, consider 
again the example t = fork (tip 2) (tip 1); we have 

transform t 

= fst (repmin t (snd (p t))) 
= fst (h (repmin (tip 2) (snd (p t))) (repmin (tip 1) (snd (p t))) 
= fst (h [tip (snd (p t)), 2] [tip (snd (p t)), 1]) 

= fst [-fork (tip (snd (p t))) (tip (snd (p t))), min 2 1] 
= fork (tip (snd (p t))) (tip (snd (p t))) 

At this point, the argument (snd (pt)) is demanded and the value p t is reduced 
once more: essentially, this means a second traversal of the tree. 

It is worth pointing out that local recursions are not permitted in Turner's 
KRC [8], even though this language has call by need semantics. One cannot 
therefore exploit the full power of lazy evaluation in KRC, or in any other 
language without such a facility. 
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3. T e r m i n a t i o n  

The above  p r o g r a m  terminates  because the second a rgument  of  repmin  is 

d e m a n d e d  only when the first a rgument  - the final tree - is required to be 

output .  It is easy to define circular structures that  do not terminate  when 

executed, s imply because such arguments  are demanded  too early. To  illustrate 

this point,  consider the p rob lem of determining whether  a given list of integers 

is pal indromic,  i.e. equal  to its reverse. We can define 

pa l ind rome  x = eqlist x (reverse x) 

eqlist [ ] [ ] = true 

eqlist (a :x) (b :y)=(a=b) and eqlist xy 

reverse x = reverse'  x [ ] 

reverse '  [ ] z = z 

reverse '  (a :x) z = reverse'  x (a : z) 

using an efficient definition of reverse (see e.g. [5]) and a predicate  eqlist for 

testing the equali ty of equal- length lists. Al though  it is unlikely to gain much  

in this case, we can at least try the effect of using the t rans format ion  on the 

definit ion of pal indrome.  First, we introduce 

eqrev xyz  = [eqlist xy, reverse'  xz] 

and then redefine 

pa l indrome x = fst p 

where  p = eqrev x (snd p) [ ] 

The  last step is to synthesize a new definition of eqrev, eqrev'  say. The  result is 

(i) eqrev'  [ ] [ ] z =  [eqlist [ ] [ ], reverse'  [ ] z] 

= [true, z] 

(ii) eqrev (a : x) (b : y) z 

= [eqlist (a : x) (b : y), reverse'  (a : x) z] 

= [ ( a =  b) and eqlist xy, reverse'  x(a:z)] 

= [(a = b) and t, r]  

where  It, r]  = eqrev x y (a : z). 

Unfor tuna te ly  this definition has an infinite loop:  eqrev'  demands  informat ion  

abou t  its second a rgument  too early. In order  for rule (ii) to be used, the 

second a rgumen t  has to be evaluated to the point  where it is established that  it 

is not  the empty  list. Thus  in the compu ta t ion  of, say, pa l indrome [1], re- 
duct ion of 

f s t ( l eqrev '  [1] (sndT) [ ]) 

requires reduct ion of eqrev'  [1] (sndT) [ ] and hence part ial  evaluat ion of 

(sndT). In turn, this requires evaluat ion of eqrev [1] (sndT) [ ]. The  com- 

puta t ion  therefore gets stuck in an infinite loop. 
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What  has gone wrong? The answer is subtle: the culprit is not the transfor- 

mation of pal indrome but the fold-unfold synthesis of the new definition of 

eqrev. The original eqrev and the new eqrev' are n o t  equivalent: one only has 

e q r e v ' ~ e q r e v  where ~_ is the approximation ordering of fixed point theory 

[1]. If the undefined value is denoted by co, then we have 

eqrev x co z + co 

e q r e v  ~ x co 2 ~ co 

for any defined values x and z. The reason is that with a call by need 

semantics a pair of values, the first of which is co, is not the same as the 

undefined value co. Moreover,  the problem with the synthesis is not with 

folding, a transformation known to preserve only partial correctness [7], but 

with the choice of a list of instantiated clauses as replacement for the program. 

Under a call by need semantics even the functional program 

three x = 3  

cannot always be replaced by the clauses 

three 0 = 3 

three (x+  1)=0,  

since the latter, which is the same as 

three x = if x = 0 then 3 else 3, 

is undefined for an undefined argument. When building circular programs, one 

has to be careful to avoid demanding information about  an argument, either 

through pattern matching on the left hand side or an explicit conditional on 

the right, when such information can be delayed or avoided altogether. 

The way to establish that a cyclic program is well-behaved is to look at the 

partial approximations of the program as defined by fixed point theory. For 

instance, suppose we have a definition of the form 

f u n x = f s t p  

where p = pair x (snd p) 

where pair is some function which returns a pair of values, and fst and snd are 

as defined above. Fixed point theory tells us that 

f u n x = f s t (  U P,) 
n>O 

where 

In particular, 

Po = [co, co] 

P.+ 1 = pair x (snd p,). 

Pl = pair x (snd Po) 

= pair x co 

P2 = pair x (snd P0.  
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F r o m  this it is easy to prove  that  fun x:#~o for all x+~o  provided that  the 

following condi t ions are satisfied: 

(C1) snd(pa i rxco)+~o  for all x4:co 

(C2) f s t (pa i rxy )  4:m for all x, y4:o.~ 

By (C1) we know s n d p l = s n d ( p a i r x c o ) + ~ o  provided x4:e~, and by (C2) that  

fstp2@o~. Hence,  since f s tpz_~funx  , one can conclude funx4 :m.  A further 

example  of  this kind of reasoning is given in the next section. 

Return ing  to the pa l indrome prob lem,  the way out  of the difficulty is to 

rewrite eqrev so that  its second a rgument  is "pass ive"  in the associated 

reduct ion rules. This means  that  the definition must  be recast in the form 

eqrev" [ ] yz  = [true, z] 

eqrev" (a : x) y z = [(a = hd y) and t, r] 

where It, r] = eqrev" x (tl y) (a : z). 

Here  the functions hd and tl are defined by the rules hd(b:y)=b and t l (b :y)  

= y. Under  the assumpt ion  that  defined values of y are lists of the same length 

as x, one can show that  

eqrev" x y z = [eqlist x y, reverse'  x z] 

for all values of  x , y  and z. Hence  with the revised definition of eqrev the 

difficulty is r emoved  and te rminat ion  guaranteed.  

4. A Further Example 

Since p r o g r a m m i n g  with circular structures requires a little practice, we consid- 

er a third example  closely related to the first. In this p rob lem we are again 

required to t ransform a binary tree into one of the same shape, but this t ime 

the tip values have to be the tip values of the original tree ar ranged in 

increasing order.  The  direct solut ion can be formula ted  as follows: 

t ransform t = replace t (sort (tips t)) 

replace (tip n) [m] = tip m 

replace (fork L R) x = fork (replace L (take (size L) x)) 

(replace R (drop (size L) x)) 

tips (tip n) = In] 

tips (fork L R) = tips L + + tips R 

size (tip n) = 1 

size (fork LR) = size L + size R 

In this p r o g r a m  the tree is t raversed a first t ime in order  to discover and sort  

the list of  tip values (infix opera to r  + +  concatenates  two lists, and sort is 

some suitably chosen sort ing function whose definition we omit). The  tree is 

then t raversed a second t ime with function replace. This function selects 
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appropr ia t e  chunks  of the sor ted sequence x - take k x  takes the first k values 

and drop  k x  takes all but  the first k values - in order  to pass them on to the 

left and right subtrees. At each step, the n u m b e r  of  values selected depends  on 

the size of  the left subtree,  so implicit  in the a lgor i thm is a third t raversal  

which de termine  sizes. Since the size of  the left subtree is recalculated for every 

internal  node, the a lgor i thm takes c n 2 steps in the worst  case, n being the 

number  of  tips. Even if mult iple  r ecomputa t ions  of  size were avoided  - say 

th rough  use of  a m e m o  funct ion that  s tored sizes at internal  nodes - the 

a lgor i thm still possesses a quadra t ic  worst  case complexity.  There  are two 

separa te  reasons for this: firstly, the compu ta t i on  of tips is inefficient since 

repeated  use of  conca tena t ion  + +  gives quadra t ic  behav iour ;  secondly, take 

and d rop  are inefficient. Thus,  even if one uses a guaran teed  O(n log n) sort ing 

a lgor i thm,  the running t ime is domina ted  by purely housekeeping  operat ions.  

Nevertheless,  the foregoing version is the na tura l  way to specify the p rob lem 

since it describes the recursive case in terms of r enumber ing  the left and right 

subtrees independently.  

Each of the men t ioned  sources of  inefficiency can be r emoved  by transfor-  

mat iona l  p rog ramming .  Let  us deal first with concatenat ion.  We define 

ntips t x  = tips t + + x. 

Since t i p s t = n t i p s t [  ], use of  + +  can be avoided by synthesing an efficient 

version of ntips. N o w  

(i) nt ips( t ip n) x = t ips(t ip n) + +  x 

= [ n ] + + x  

~ n : X  

(ii) ntips (fork L R) x = tips (fork L R) + + x 

= (tips L + +  tips R) + +  x 

= tips L + + (tips R + + x) 

= tips L + +  n tips R x  

= ntips L(ntips Rx)  

The new definit ion of ntips is linear in the n u m b e r  of  tips. 

We are now in a posi t ion to deal with take and drop. The  solut ion is to 

consider an a lgor i thm that  combines  the mult iple  t raversals  into one. With  a 

little foresight, we define 

repnd  t x y =  [-replace t ( take (size t) x), 

drop  (size t) x, ntips t y]. 

Provided we can derive an efficient al ternat ive definition for repnd,  the so- 

lution to the p rob lem can be put  in the form 

t rans form t = fst p 

where p = repnd t (sort (thd p)) [ ]. 

Here,  thd [a, b, c] = c. This version of the a lgor i thm builds a circular  s t ructure  

in the way we have seen before. 
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It remains to tackle the synthesis of repnd: 

(i) repnd (tip n) x y 

= [replace (tip n) (take (size (tip n)) x), 

drop (size (tip n)) x, ntips (tip n) y] 

= Freplace (tip n) (take I x), drop 1 x, n : y] 

= [tip (hd x), tl x, n: y] 

(ii) repnd (fork L R) xy 

= [replace (fork L R) (take (size (fork L R)) x), 

drop (size(fork L R)) x, ntips(fork L R) y] 

= [fork (replace L(take (size L) (take (size L + size R) x)) 

(replace R (drop (size L) (take (size L + size R) x))), 

drop (size L + size R) x, ntips L(ntips Ry)]. 

To continue the derivation, we need the following facts about take and drop, 

all of which can be proved by straightforward means: 

take n (take (n + m) x) = take n x 

drop n (take (n + m) x) = take m (drop n x) 

drop (n + m)x = drop m (drop nx). 

Using these results we can continue the derivation: 

repnd (fork L R) xy 

= [fork (replace L (take (size L)x)) 

(replace R (take (size R) (drop (size L)x))), 
drop (size R) (drop (size L)x), 

ntips L(ntips Ry)] 

= [fork t l  t2, x2, y l ]  

where [ t l ,  x l ,  y l ]  =repndLxy2  

and It2, x2, y2] = repnd R x t y. 

Observe that with this last fold step we have built a second cyclic structure 

into the algorithm: y2 depends on x l which in turn depends on y2. One can 

appreciate its similarity to previous examples of cyclic structures by recasting it 
in the form 

repnd (fork L R) xy = combine p q 

where p = repnd Lx (thd q) 

and q = repnd R (snd p) y 

combine [ t l ,  x l ,  y l ]  It2, x2, y2] = [fork t l  t2, x2, y l ] .  

It is easy to check that the program is well-behaved since 

snd (repnd t co co) + co 

thd (repnd toy)  • co 

for all t, x, and y (4  co), and so both p and q are well-defined. 
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The final algorithm is the following: 

transform t --- fst p 

where p = repnd t (sort (thd p)) [ ] 

repnd (tip n) xy = [tip (hd x), tl x, n :y] 

repnd (fork L R) xy  = combine p q 

where p = repnd Lx  (thd q) 

and q = repnd R (snd p) y 

combine [ t l ,  x l ,  y l ]  [t2, x2, y2] = [fork t l  t2, x2, y l ]  

Apart from the time spent sorting, the rest of the algorithm is linear in the 

number of tips. Though incomprehensible taken by itself, the final version has 

been derived systematically from the original specification using cyclic pro- 

gramming in conjunction with other transformations. 

5. Conclusions 

Although the examples deal with trees and linear lists, the technique obviously 

applies to any other structure which has to be multiply traversed in order to 

deliver a result. Moreover, once understood, the underlying transformation is 

simple to implement, though one does have to check conditions such as those 

given in Sect. 3 to ensure termination. The Pascal programmer confronted with 

the same idea for optimisation has to undertake a major revision of his or her 

program to achieve the same end. Given the necessary features - lazy evalua- 

tion and local recursion - in their language, functional programmers have a 
much easier task. 

Finally, one should point out that there are alternative transformations for 

eliminating multiple traversals that do not involve the construction of circular 

programs. For  instance, Feather's composition transformation [4] can be used 

to avoid the construction of intermediate lists in a program (in fact. given 

appropriate restrictions on the form of function definitions allowed. Wadler 

[10] has shown in his listless transformer that such optimisations can be done 

quite automatically). There is an interesting connection between Feather's 
transformation and ours. Briefly, Feather's composition deals with expressions 

of the form f (gx) ,  where both of f and g are list-to-list functions. In deference 

to the B combinator of combinatory logic, one may call this B-composition 

transformation. Now, the transformation described in the body of the paper 

deals essentially with expressions of the form fx(gx) .  Such expressions are 

related to the S combinator of combinatory logic, so one could call the 
technique S-composition transformation. 
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