
Acta Informatica 21,239-250 (1984)

�9 Sprtnger-Verlag 1984

Using Circular Programs

to Eliminate Multiple Traversals of Data

R.S. Bird

Programming Research Group, Oxford University, 8-11 Keble Road, Oxford OX1 3QD, UK

Summary. This paper describes a technique for transforming functional

programs that repeatedly traverse a data structure into more efficient alter-

natives that do not. The transformation makes essential use of lazy evalua-

tion and local recursion (such as provided by ietrec, or its equivalent) to

build a circular program that, on one pass over the structure, determines

the effects of the individual traversals and then combines them.

1. Introduction

One of the advantages of programming in a functional language is that many

ideas for improving efficiency can be formulated as simple transformations on

the functions that constitute the program. The purpose of this note is to

describe one such optimisation. The technique, which involves building a

circular program in order to avoid the repeated traversal of a data structure, is

familiar to a number of functional programmers, including Hughes [6] and

Wadler (who first formulated it as a transformation in [9]), but it deserves to

be more widely known. We shall illustrate it in a simple setting in order to

make the nature of tbe underlying transformation apparent. It turns out that,

in order to describe the transformation, one requires certain definition mecha-

nisms to be available in the given language. We regard this aspect of the work

as evidence of the importance of such mechanisms in functional programming.

The technique will be introduced through an example. Consider the prob-

lem of changing a given tree, such as the one depicted in Fig. 1 into a second

tree identical in shape to the first, but with all the tip values replaced by the

minimum tip value. For example, the tree of Fig. 1 is changed into the tree of

Fig. 2.

In a straightforward solution to this problem the tree is traversed twice:

once to find the minimum value and once to carry out the tip replacements. In

240 R.S. Bird

2 /~ 2 2

Fig. 1 Fig. 2

Pascal, for instance, the algorithm might be implemented by the following

definitions:

type t ree= ^node;

node = record

case tag: (tip, fork) of

tip: (val: integer);

fork: (left, right: tree)

end;

function tmin (t: tree): integer;

begin

with t ^ do

case tag of

tip: tmin :=va l ;
fork: tmin := min (t min (left), t min (right))

end

end;

procedure replace (t: tree; m: integer);

begin

with t ^ do

case tag of

tip: va l :=m;

fork: begin replace (left, m); replace (right, m) end

end

end

The required tree replacement is now achieved by the call replace

(t, tmin (t)).

The programmer with a keen eye for possible optimisation will realise that

it is not essential for the tree to be traversed twice in order to solve the

problem. An alternative solution can, on a single pass through the tree, com-

pute the minimum value and, at the same time, discover and store the addresses

of the tip nodes in a linear list. Having calculated the minimum, the algorithm

then inserts this value as the new tip value in each of the nodes stored in the

list. If the tree contains N nodes, of which n are tip nodes, then the revised

Using Circular Programs to Eliminate Multiple Traversals of Data 241

algorithm does an extra n units of work during the traversal (to store the

addresses of the tips) and a further n units to process the list. On the other

hand, it traverses the tree only once. Assuming it takes N units to do this, the

former algorithm takes 2N units, while the revised version takes N + 2 n units.

For the kind of trees we have been considering. N = 2 n + 1 so the sensible

p rogrammer will reject the optimisation as not being worthwhile. However,

there is nothing essential about binary trees as far as this problem is concerned

(they were chosen purely for notational simplicity), and if one supposes more

general trees in which the number of internal nodes can be arbitrarily larger

than the number of tips (essentially, trees with unary as well as binary forks),

then the revised version of the algorithm can generate a substantial saving.

2. A Functional Algorithm

Consider now how a solution to the same problem might be expressed in a

functional language such as K R C [8] or H O P E [2]. (In what follows we shall

employ a KRC-like notation with HOPE-l ike data types: given the Pascal

definitions above, we trust these will be self explanatory.) The straightforward

solution is easily p rogrammed with the aid of the following data type:

data tree = tip int[fork tree tree

The required functions are:

transform t = replace t (tmin t)

replace (tip n) m = tip m

replace (fork L R) m = fork (replace Lm) (replace R m)

tmin (tip n) = n

tmin (fork L R) = min (tmin L) (tmin R)

The above statement of the solution seems cleaner and simpler than its Pascal

counterpart, but as there is no concept of tree addresses as individual entities

in a functional framework, it is not obvious how, if at all, the corresponding

single-pass algorithm might be formulated. However, given certain assumptions

about the semantics and definition mechanisms available in the language, a

single-pass algorithm can be described and it is the object of this note to show

how.

As a first step it seems natural, given the common recursive form of replace

and tmin, to at tempt to combine the two functions into one by defining

repmin t m = [replace t m, tmin t].

F rom this definition we can synthesize a new one that constructs the two

components in one traversal of t. The derivation is a standard application of

the unfold-fold method [3] and the two cases are:

(i) repmin (tip n) m = [-replace (tip n)m, tmin (tip n)]

= [tip m, n]

242 R.S. Bird

by instantiating (tip n) for t and subsequently unfolding the definitions of

replace and tmin;

(ii) repmin (fork L R) m

= [replace (fork L R) m, tmin (fork L R)]

= [fork (replace L m) (replace Rm), min (tmin L) (train R)]

= [fork t l t2, m i n m l m2]

where l,tl, m l] = repmin L m

and [t2, m2] = repmin R m.

Here, instantiation and unfolding is followed by a where abstraction and a fold

step in which the original definition of repmin is used a second time to obtain

a new recursive definition. Alternatively, we can eliminate the where clause in

favour of an explicit function h, say, and write

repmin (fork L R) m = h(repmin L m) (repmin R m)

h l,tl, m l] It2, m2] = [fork t l t2, min ml m2]

The new definition of repmin certainly achieves the objective of evaluating

replace and tmin with a single traversal, but the idea does not appear to help

since the two components of the result seem to have been fatally decoupled

from each other. What we really want is the second argument m of repmin to

be the second component of its value. Suppose we were allowed to define

p = repmin t (snd p)

where snd [a, b] = b. Then the solution to our problem can be expressed as

transform t = fst p,

where fst I-a, b] =a . Is such a move possible? Under what circumstances can we

expect the definition

transform t = fst p

where p = repmin t (snd p)

to be well-formed and correct?

The answer is that, firstly, the functional language has to permit the

recursive definition of local objects through the medium of where clauses (or

their equivalent) and, secondly, that its semantics are based on a call by need

(or lazy evaluation [5]) mechanism. The combination of lazy evaluation and

local recursion enables circular program structures to be constructed at run-

time, and this is just what is required for single-pass algorithm. Under a call by

value regime, the value of the second argument of repmin is demanded before

the value of repmin can be calculated: this leads to infinite regress and non-

termination. With lazy evaluation, on the other hand, the structure

fst (~))

Using Circular Programs to Eliminate Multiple Traversals of Data 243

is built and repmin can be elaborated without evaluation of its second argu-

ment until it is actually required. To see this, we can work through a small

example. Suppose t=fork(t ip2)(t ip 1). The evaluation of

fst ($repmin t (sndT))

(where, for convenience, the backward line has been replaced by appropriately
pointing arrows) is as follows:

fst ($ repmin (fork (tip 2) (tip 1)) (snd T))

= fst (J, h (repmin (tip 2) (snd T)) (repmin (tip 1) (snd T)))

= fst ($h [tip (sndT), 2] [tip (snd 1'), 1])
= fst (1 [fork (tip (snd T)) (tip (snd T)), min 12])
= fork (tip (snd'~)) (tip (snd]')),

(where T still points to [fork (tip (snd 1')) (tip (snd 1")), min 1 2])
= fork (tip (min 1 2)) (tip (min 1 2))
= fork (tip 1) (tip 1).

At each step just that portion of the expression required to continue the
derivation is expanded. For instance, the definition of h requires that its

arguments be pairs of values: consequently, the derivation is continued to
establish this fact (though the actual values are not required at this stage)

before the rule for h can itself be invoked. Note that a call by need mechanism

ensures that min 1 2 is evaluated once only - when the first tip value is

demanded - and thereafter its value is passed to the remaining tips.
It should now be clear why lazy evaluation is an essential ingredient of the

transformation, but the second requirement, the ability to define local re-
cursions, may not seem so important. One can, after all, define a version of
transform in which the where statement is replaced by an explicit function:

transform t = fst (p t)

p t = repmin t (snd (p t)).

This is a perfectly correct alternative, but since no circular structure is created,

merely an extra - albeit curious - recursive function p, the main advantage of
the earlier version is lost: the tree is again traversed twice. To see this, consider
again the example t = fork (tip 2) (tip 1); we have

transform t

= fst (repmin t (snd (p t)))
= fst (h (repmin (tip 2) (snd (p t))) (repmin (tip 1) (snd (p t)))
= fst (h [tip (snd (p t)), 2] [tip (snd (p t)), 1])

= fst [-fork (tip (snd (p t))) (tip (snd (p t))), min 2 1]
= fork (tip (snd (p t))) (tip (snd (p t)))

At this point, the argument (snd (pt)) is demanded and the value p t is reduced
once more: essentially, this means a second traversal of the tree.

It is worth pointing out that local recursions are not permitted in Turner's
KRC [8], even though this language has call by need semantics. One cannot
therefore exploit the full power of lazy evaluation in KRC, or in any other
language without such a facility.

244 R.S. Bird

3. T e r m i n a t i o n

The above p r o g r a m terminates because the second a rgument of repmin is

d e m a n d e d only when the first a rgument - the final tree - is required to be

output . It is easy to define circular structures that do not terminate when

executed, s imply because such arguments are demanded too early. To illustrate

this point, consider the p rob lem of determining whether a given list of integers

is pal indromic, i.e. equal to its reverse. We can define

pa l ind rome x = eqlist x (reverse x)

eqlist [] [] = true

eqlist (a :x) (b :y)=(a=b) and eqlist xy

reverse x = reverse' x []

reverse ' [] z = z

reverse ' (a :x) z = reverse' x (a : z)

using an efficient definition of reverse (see e.g. [5]) and a predicate eqlist for

testing the equali ty of equal- length lists. Al though it is unlikely to gain much

in this case, we can at least try the effect of using the t rans format ion on the

definit ion of pal indrome. First, we introduce

eqrev xyz = [eqlist xy, reverse' xz]

and then redefine

pa l indrome x = fst p

where p = eqrev x (snd p) []

The last step is to synthesize a new definition of eqrev, eqrev' say. The result is

(i) eqrev' [] [] z = [eqlist [] [], reverse' [] z]

= [true, z]

(ii) eqrev (a : x) (b : y) z

= [eqlist (a : x) (b : y), reverse' (a : x) z]

= [(a = b) and eqlist xy, reverse' x(a:z)]

= [(a = b) and t, r]

where It, r] = eqrev x y (a : z).

Unfor tuna te ly this definition has an infinite loop: eqrev' demands informat ion

abou t its second a rgument too early. In order for rule (ii) to be used, the

second a rgumen t has to be evaluated to the point where it is established that it

is not the empty list. Thus in the compu ta t ion of, say, pa l indrome [1], re-
duct ion of

f s t (l eqrev ' [1] (sndT) [])

requires reduct ion of eqrev' [1] (sndT) [] and hence part ial evaluat ion of

(sndT). In turn, this requires evaluat ion of eqrev [1] (sndT) []. The com-

puta t ion therefore gets stuck in an infinite loop.

U s i n g C i r c u l a r P r o g r a m s to E l imina t e M u l t i p l e T rave r sa l s of D a t a 245

What has gone wrong? The answer is subtle: the culprit is not the transfor-

mation of pal indrome but the fold-unfold synthesis of the new definition of

eqrev. The original eqrev and the new eqrev' are n o t equivalent: one only has

e q r e v ' ~ e q r e v where ~_ is the approximation ordering of fixed point theory

[1]. If the undefined value is denoted by co, then we have

eqrev x co z + co

e q r e v ~ x co 2 ~ co

for any defined values x and z. The reason is that with a call by need

semantics a pair of values, the first of which is co, is not the same as the

undefined value co. Moreover, the problem with the synthesis is not with

folding, a transformation known to preserve only partial correctness [7], but

with the choice of a list of instantiated clauses as replacement for the program.

Under a call by need semantics even the functional program

three x = 3

cannot always be replaced by the clauses

three 0 = 3

three (x+ 1)=0,

since the latter, which is the same as

three x = if x = 0 then 3 else 3,

is undefined for an undefined argument. When building circular programs, one

has to be careful to avoid demanding information about an argument, either

through pattern matching on the left hand side or an explicit conditional on

the right, when such information can be delayed or avoided altogether.

The way to establish that a cyclic program is well-behaved is to look at the

partial approximations of the program as defined by fixed point theory. For

instance, suppose we have a definition of the form

f u n x = f s t p

where p = pair x (snd p)

where pair is some function which returns a pair of values, and fst and snd are

as defined above. Fixed point theory tells us that

f u n x = f s t (U P,)
n>O

where

In particular,

Po = [co, co]

P.+ 1 = pair x (snd p,).

Pl = pair x (snd Po)

= pair x co

P2 = pair x (snd P0.

246 R.S. Bird

F r o m this it is easy to prove that fun x:#~o for all x+~o provided that the

following condi t ions are satisfied:

(C1) snd(pa i rxco)+~o for all x4:co

(C2) f s t (pa i rxy) 4:m for all x, y4:o.~

By (C1) we know s n d p l = s n d (p a i r x c o) + ~ o provided x4:e~, and by (C2) that

fstp2@o~. Hence, since f s tpz_~funx , one can conclude funx4 :m. A further

example of this kind of reasoning is given in the next section.

Return ing to the pa l indrome prob lem, the way out of the difficulty is to

rewrite eqrev so that its second a rgument is "pass ive" in the associated

reduct ion rules. This means that the definition must be recast in the form

eqrev" [] yz = [true, z]

eqrev" (a : x) y z = [(a = hd y) and t, r]

where It, r] = eqrev" x (tl y) (a : z).

Here the functions hd and tl are defined by the rules hd(b:y)=b and t l (b :y)

= y. Under the assumpt ion that defined values of y are lists of the same length

as x, one can show that

eqrev" x y z = [eqlist x y, reverse' x z]

for all values of x , y and z. Hence with the revised definition of eqrev the

difficulty is r emoved and te rminat ion guaranteed.

4. A Further Example

Since p r o g r a m m i n g with circular structures requires a little practice, we consid-

er a third example closely related to the first. In this p rob lem we are again

required to t ransform a binary tree into one of the same shape, but this t ime

the tip values have to be the tip values of the original tree ar ranged in

increasing order. The direct solut ion can be formula ted as follows:

t ransform t = replace t (sort (tips t))

replace (tip n) [m] = tip m

replace (fork L R) x = fork (replace L (take (size L) x))

(replace R (drop (size L) x))

tips (tip n) = In]

tips (fork L R) = tips L + + tips R

size (tip n) = 1

size (fork LR) = size L + size R

In this p r o g r a m the tree is t raversed a first t ime in order to discover and sort

the list of tip values (infix opera to r + + concatenates two lists, and sort is

some suitably chosen sort ing function whose definition we omit). The tree is

then t raversed a second t ime with function replace. This function selects

Using Circular Programs to Eliminate Multiple Traversals of Data 247

appropr ia t e chunks of the sor ted sequence x - take k x takes the first k values

and drop k x takes all but the first k values - in order to pass them on to the

left and right subtrees. At each step, the n u m b e r of values selected depends on

the size of the left subtree, so implicit in the a lgor i thm is a third t raversal

which de termine sizes. Since the size of the left subtree is recalculated for every

internal node, the a lgor i thm takes c n 2 steps in the worst case, n being the

number of tips. Even if mult iple r ecomputa t ions of size were avoided - say

th rough use of a m e m o funct ion that s tored sizes at internal nodes - the

a lgor i thm still possesses a quadra t ic worst case complexity. There are two

separa te reasons for this: firstly, the compu ta t i on of tips is inefficient since

repeated use of conca tena t ion + + gives quadra t ic behav iour ; secondly, take

and d rop are inefficient. Thus, even if one uses a guaran teed O(n log n) sort ing

a lgor i thm, the running t ime is domina ted by purely housekeeping operat ions.

Nevertheless, the foregoing version is the na tura l way to specify the p rob lem

since it describes the recursive case in terms of r enumber ing the left and right

subtrees independently.

Each of the men t ioned sources of inefficiency can be r emoved by transfor-

mat iona l p rog ramming . Let us deal first with concatenat ion. We define

ntips t x = tips t + + x.

Since t i p s t = n t i p s t [], use of + + can be avoided by synthesing an efficient

version of ntips. N o w

(i) nt ips(t ip n) x = t ips(t ip n) + + x

= [n] + + x

~ n : X

(ii) ntips (fork L R) x = tips (fork L R) + + x

= (tips L + + tips R) + + x

= tips L + + (tips R + + x)

= tips L + + n tips R x

= ntips L(ntips Rx)

The new definit ion of ntips is linear in the n u m b e r of tips.

We are now in a posi t ion to deal with take and drop. The solut ion is to

consider an a lgor i thm that combines the mult iple t raversals into one. With a

little foresight, we define

repnd t x y = [-replace t (take (size t) x),

drop (size t) x, ntips t y].

Provided we can derive an efficient al ternat ive definition for repnd, the so-

lution to the p rob lem can be put in the form

t rans form t = fst p

where p = repnd t (sort (thd p)) [].

Here, thd [a, b, c] = c. This version of the a lgor i thm builds a circular s t ructure

in the way we have seen before.

248 R.S. Bird

It remains to tackle the synthesis of repnd:

(i) repnd (tip n) x y

= [replace (tip n) (take (size (tip n)) x),

drop (size (tip n)) x, ntips (tip n) y]

= Freplace (tip n) (take I x), drop 1 x, n : y]

= [tip (hd x), tl x, n: y]

(ii) repnd (fork L R) xy

= [replace (fork L R) (take (size (fork L R)) x),

drop (size(fork L R)) x, ntips(fork L R) y]

= [fork (replace L(take (size L) (take (size L + size R) x))

(replace R (drop (size L) (take (size L + size R) x))),

drop (size L + size R) x, ntips L(ntips Ry)].

To continue the derivation, we need the following facts about take and drop,

all of which can be proved by straightforward means:

take n (take (n + m) x) = take n x

drop n (take (n + m) x) = take m (drop n x)

drop (n + m)x = drop m (drop nx).

Using these results we can continue the derivation:

repnd (fork L R) xy

= [fork (replace L (take (size L)x))

(replace R (take (size R) (drop (size L)x))),
drop (size R) (drop (size L)x),

ntips L(ntips Ry)]

= [fork t l t2, x2, y l]

where [t l , x l , y l] =repndLxy2

and It2, x2, y2] = repnd R x t y.

Observe that with this last fold step we have built a second cyclic structure

into the algorithm: y2 depends on x l which in turn depends on y2. One can

appreciate its similarity to previous examples of cyclic structures by recasting it
in the form

repnd (fork L R) xy = combine p q

where p = repnd Lx (thd q)

and q = repnd R (snd p) y

combine [t l , x l , y l] It2, x2, y2] = [fork t l t2, x2, y l] .

It is easy to check that the program is well-behaved since

snd (repnd t co co) + co

thd (repnd toy) • co

for all t, x, and y (4 co), and so both p and q are well-defined.

Using Circular Programs to Eliminate Multiple Traversals of Data 249

The final algorithm is the following:

transform t --- fst p

where p = repnd t (sort (thd p)) []

repnd (tip n) xy = [tip (hd x), tl x, n :y]

repnd (fork L R) xy = combine p q

where p = repnd Lx (thd q)

and q = repnd R (snd p) y

combine [t l , x l , y l] [t2, x2, y2] = [fork t l t2, x2, y l]

Apart from the time spent sorting, the rest of the algorithm is linear in the

number of tips. Though incomprehensible taken by itself, the final version has

been derived systematically from the original specification using cyclic pro-

gramming in conjunction with other transformations.

5. Conclusions

Although the examples deal with trees and linear lists, the technique obviously

applies to any other structure which has to be multiply traversed in order to

deliver a result. Moreover, once understood, the underlying transformation is

simple to implement, though one does have to check conditions such as those

given in Sect. 3 to ensure termination. The Pascal programmer confronted with

the same idea for optimisation has to undertake a major revision of his or her

program to achieve the same end. Given the necessary features - lazy evalua-

tion and local recursion - in their language, functional programmers have a
much easier task.

Finally, one should point out that there are alternative transformations for

eliminating multiple traversals that do not involve the construction of circular

programs. For instance, Feather's composition transformation [4] can be used

to avoid the construction of intermediate lists in a program (in fact. given

appropriate restrictions on the form of function definitions allowed. Wadler

[10] has shown in his listless transformer that such optimisations can be done

quite automatically). There is an interesting connection between Feather's
transformation and ours. Briefly, Feather's composition deals with expressions

of the form f (gx) , where both of f and g are list-to-list functions. In deference

to the B combinator of combinatory logic, one may call this B-composition

transformation. Now, the transformation described in the body of the paper

deals essentially with expressions of the form fx(gx) . Such expressions are

related to the S combinator of combinatory logic, so one could call the
technique S-composition transformation.

Acknowledgements. The author first appreciated the power of circular program structures in the

above context from John Hughes [6], who uses the idea extensively in his super-combinator

compiler. Phil Wadler outlined to the author how the idea could be formulated as a transfor-

mation. Geraint Jones also knew about the technique. Without their insights this note could not

have been written. Thanks are also due to Tony Hoare for detailed comments on a first draft of

the paper. The research was supported by Science and Engineering Research Council Grant

GR/c/78704.

250 R.S. Bird

References

l. Bird, R.S.: Programs and Machines - An Introduction to the Theory of Computation.
London: John Wiley 1976

2. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs. J.
ACM 24, 44-67 (1977)

3. Burstall, R.M., Macqueen, D.B., Sannella, D.T.: HOPE: an experimental applicative language.
Int Res Report. Dept Computer Science, University of Edinburgh 1980

4. Feather, M.: A system for assisting program transformation. ACM Trans Progr. Lang. Syst. 4,
1-20 (1982)

5. Henderson, P.: Functional Programming: Application and Implementation. Englewood Cliffs:
Prentice-Hall 1980

6. Hughes, R.J.M.: The Design and Implementation of Programming Languages. D. Phil. Thesis.
Oxford University 1983

7. Kott, L.: About a transformation system: a theoretical study. Proc. Third Symp. Progr. Paris,
1971

8. Turner, D.: Recursion equations as a programming language. In: Functional Programming and
its Applications (Darlington, J., Henderson, P., Turner, D. (eds.). Cambridge: University Press, 1982

9. Wadler, P.: (personal communication)
10. Wadler, P.: Listlessness is better than laziness. Ph.D. Thesis, Carnegie-Mellon University, 1984

Received January 28, 1984 / May 15, 1984

