
The Architecture of the Utrecht Haskell Compiler

Atze Dijkstra Jeroen Fokker S. Doaitse Swierstra
Department of Information and Computing Sciences

Universiteit Utrecht
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{atze,jeroen,doaitse}@cs.uu.nl

Abstract
In this paper we describe the architecture of the Utrecht Haskell
Compiler (UHC). UHC is a new Haskell compiler, that supports
most (but not all) Haskell 98 features, plus some experimental ex-
tensions. It targets multiple backends, including a bytecode inter-
preter backend and a whole-program analysis backend, both via
C. The implementation is rigorously organized as stepwise trans-
formations through some explicit intermediate languages. The tree
walks of all transformations are expressed as an algebra, with the
aid of an Attribute Grammar based preprocessor. The compiler is
just one materialization of a framework that supports experimen-
tation with language variants, thanks to an aspect-oriented internal
organization.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Compilers; Preprocessors; F.3.2 [Logics and meanings
of programs]: Program analysis

General Terms Languages, Design

Keywords Haskell, compiler architecture, attribute grammar, as-
pect orientation

1. Introduction
On the occasion of the Haskell Hackathon on April 18th, 2009,
we announced the first release of a new Haskell compiler: the
Utrecht Haskell Compiler, or UHC for short. Until Haskell Prime
[16] is available as a standard, UHC strives to be a full Haskell
98 [30] compiler (although currently it lacks a few features). The
reason that we announce the compiler even though it is not yet fully
finished, is that we feel that UHC is mature enough to use for play
and experimentation.
One can ask why there is a need for (yet) another Haskell compiler,
where the Glasgow Haskell Compiler (GHC) is already available as
a widely used, fully featured, production quality Haskell compiler
[26, 15, 28, 31]. In fact, we are using GHC ourselves for the
implementation of UHC. Also, various alternatives exist, like Hugs
(that in its incarnation of Gofer was the epoch maker for Haskell),
and the Haskell compilers from York (NHC/YHC).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’09, September 3, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-508-6/09/09. . . $10.00

Still, we think UHC has something to add to existing compilers,
not so much as a production compiler (yet), but more because of its
systematically designed and extensible architecture. It is intended
to be a platform for those who wish to experiment with adding new
language or type system features. In a broader sense, UHC is a
framework from which one can construct a series of increasingly
complex compilers for languages reaching from simple lambda
calculus to (almost-)Haskell 98. The UHC compiler in strict sense
is just the culmination point of the series. We have been referring to
the framework as ‘EHC’ (E for essential, extensible, educational,
experimental. . .) in the past [10], but for ease we now call both
the framework and its main compiler ‘UHC’. Internally we use a
stepwise and aspect-wise approach, realized by the use of attribute
grammars (AG) and other tools.
In its current state, UHC supports most of the Haskell 98 (including
polymorphic typing, type classes, input/output, base library), but a
few features are still lacking (like defaulting, and some members of
the awkward squad [29]). On the other hand, there are some exten-
sions, notably to the type system. The deviations from the standard
are not caused by obstinacy or desire to change the standard, but
rather because of arbitrary priorization of the feature wish list.
The main structure of the compiler is shown in Figure 1. Haskell
source text is translated to an executable program by stepwise
transformation. Some transformations translate the program to a
lower level language, many others are transformations within one
language, establishing an invariant or performing an optimization.
All transformations, both within a language and between lan-
guages, are expressed as an algebra giving a semantics to the lan-
guage. The algebras are described with the aid of an attribute gram-
mar, which makes it possible to write multi-pass tree-traversals
without even knowing the exact number of passes. Although the
compiler driver is set up to pass data structures between transfor-
mations, for all intermediate languages we have a concrete syntax
with a parser and a pretty printer. This facilitates debugging the
compiler, by inspecting code between transformations.
Here is a short characterization of the intermediate languages. In
section 3 we give a more detailed description.

• Haskell (HS): a general-purpose, higher-order, polymorphically
typed, lazy functional language.

• Essential Haskell (EH): a higher-order, polymorphically typed,
lazy functional language close to lambda-calculus, without syn-
tactic sugar.

• Core: an untyped, lazy functional language close to lambda-
calculus (at the time of this writing we are working on moving
to a typed intermediate language, a combination of Henk [32],
GHC core, and recent work on calling conventions [6]).

• Grin: ‘Graph reduction intermediate notation’, the instruction
set of a virtual machine of a small functional language with
strict semantics, with features that enable implementation of
laziness [7].

• Silly: ‘Simple imperative little language’, an abstraction of fea-
tures found in every imperative language (if-statements, assign-
ments, explicit memory allocation) augmented with primitives
for manipulating a stack, easily translatable to e.g. C (not all
features of C are provided, only those that are needed for our
purpose).

• BC: A bytecode language for a low-level machine intended
to interpret Grin which is not whole-program analyzed nor
transformed. We do not discuss this language in this paper.

The compiler targets different backends, based on a choice of the
user. In all cases, the compiler starts compiling on a per module
basis, desugaring the Haskell source text to Essential Haskell, type
checking it and translating it to Core. Then there is a choice from
three modes of operation:

• In whole-program analysis mode, the Core modules of the pro-
gram and required libraries are assembled together and pro-
cessed further as a whole. At the Grin level, elaborate inter-
module optimization takes place. Ultimately, all functions are
translated to low level C, which can be compiled by a standard
compiler. As alternative backends, we are experimenting with
other target languages, among which are the Common Interme-
diate Language (CIL) from the Common language infrastruc-
ture used by .NET [19], and the Low-Level Virtual Machine
(LLVM) compiler infrastructure [25].

• In bytecode interpreter mode, the Core modules are translated
to Grin separately. Each Grin module is translated into instruc-
tions for a custom bytecode machine. The bytecode is emitted
in the form of C arrays, which are interpreted by a handwritten
bytecode interpreter in C.

• In Java mode, the Core modules are translated to bytecode for
the Java virtual machine (JVM). Each function is translated to
a separate class with an eval function, and each closure is rep-
resented by an object combining a function with its parameters.
Together with a driver function in Java which steers the inter-
pretation, these can be stored in a Java archive (jar) and be in-
terpreted by a standard Java interpreter.

The bytecode interpreter mode is intended for use during program
development: it compiles fast, but because of the interpretation
overhead the generated code is not very fast. The whole-program
analysis mode is intended to use for the final program: it takes more
time to compile, but generates code that is more efficient.
In Section 2 we describe the tools that play an important role in
UHC: the Attribute Grammar preprocessor, a language for express-
ing type rules, and the variant and aspect manager. In Section 3 we
describe the intermediate languages in the UHC pipeline in more
detail, illustrated with a running example. In Section 4 the transfor-
mations are characterized in more detail. Finally, in Section 5 we
draw conclusions about the methodology used, and mention related
and future work.

2. Techniques and Tools
2.1 Tree-oriented programming

Using higher order functions on lists, like map, filter and foldr ,
is a good way to abstract from common patterns in functional
programs.

…

HS

EH

Grin

Core

Silly

C

exe

HS

EH

C C

C

exe

C

Jvm Jvm

Core Core

bytecode
tables

bytecode
interpreter

runtime
system

jar

Java

graph
interpreter

module1 module2

llvm
cil

Grin Grin

BC BC

Figure 1. Intermediate languages and transformations in the UHC
pipeline, in each of the three operation modes: whole-program
analysis (left), bytecode interpreter (middle), and Java (right).

The idea that underlies the definition of foldr , i.e. to capture the
pattern of an inductive definition by having a function parameter
for each constructor of the data structure, can also be used for
other data types, and even for multiple mutually recursive data
types. A function that can be expressed in this way was called
a catamorphism by Bird, and the collective extra parameters to
foldr -like functions an algebra [3, 2]. Thus, ((+), 0) is an algebra
for lists, and ((++), []) is another. In fact, every algebra defines a
semantics of the data structure. When applying foldr -like functions
to the algebra consisting of the original constructor functions, such
as ((:), []) for lists, we have the identity function. Such an algebra
is said to define the “initial” semantics. Outside circles of functional
programmers and category theorists, an algebra is simply known as
a “tree walk specification”.
In compiler construction, algebras are very useful in defining a
semantics of a syntactic structure or, bluntly said, to define tree
walks over the parse tree. The fact that this is not widely done, is
due to the following problems:

1. Unlike lists, for which foldr is standard, in a compiler we deal
with custom data structures for abstract syntax of a language,
which each need a custom fold function. Moreover, whenever
we change the abstract syntax, we need to change the fold
function and every algebra.

2. Generated code can be described as a semantics of the language,
but often we need more than one alternative semantics: listings,
messages, and internal structures (symbol tables etc.). This can
be done by having the semantic functions in algebras return
tuples, but this makes the program hard to maintain.

3. Data structures for abstract syntax tend to have many alterna-
tives, so algebras end up being clumsy tuples containing dozens
of functions.

4. In practice, information not only flows bottom-up in the parse
tree, but also top-down. E.g., symbol tables with global defini-

tions need to be distributed to the leaves of the parse tree to be
able to evaluate them. This can be done by using higher-order
domains for the algebras, but the resulting code becomes even
harder to understand.

5. A major portion of the algebra is involved with moving infor-
mation around. The essence of a semantics usually forms only a
small part of the algebra and is obscured by lots of boilerplate.

Some seek the solution to these problems in the use of monads:
the reader monad to pass information down into the tree, the writer
monad to move information upwards, and the state monad and its
derivatives to accumulate information during the tree walk [20].
Despite the attractiveness of staying inside Haskell we think this
approach is doomed to fail when the algebras to be described are
getting more and more complicated.
To save the nice idea of using an algebra for defining a semantics,
we use a preprocessor [34] for Haskell that overcomes the above-
mentioned problems. It is not a separate language; we can still use
Haskell for writing auxiliary functions, and use all abstraction tech-
niques and libraries available. The preprocessor just allows a few
additional constructs, which can be translated into a custom fold
function and algebras, or an equivalent more efficient implemen-
tation. (If one really wants to avoid a preprocessor, Viera, Swier-
stra and Swierstra recently described a technique to encode an at-
tribute grammar directly in Haskell while keeping the advantages
described below [35].)
We describe the main features of the preprocessor here, and ex-
plain why they overcome the five problems mentioned above. The
abstract syntax of the language is defined in a data declaration,
which is like an Haskell data declaration with named fields, how-
ever without the braces and commas. Constructor function names
need not to be unique between types. As an example, consider a
fragment of a typical imperative language:

data Stat
= Assign dest :: String src :: Expr
| While cond :: Expr body :: Stat
| Group elems :: [Stat]

data Expr
= Const num :: Int
| Var name :: String
| Add left :: Expr right :: Expr
| Call name :: String args :: [Expr]

The preprocessor generates corresponding Haskell data declara-
tions (adding braces and commas, and making the constructors
unique by prepending the type name, like Expr Const), and gen-
erates a custom fold function. This overcomes problem 1 (except
for the part that algebras change when sytax is changed, which will
be solved below).
For any desired value we wish to compute over a tree, we can
declare a “synthesized attribute”. Possibly more than one data type
can have the same attribute. For example, we can declare that both
statements and expressions need to synthesize bytecode as well as
listings, and that expressions can be evaluated to integer values:

attr Expr Stat syn bytecode :: [Instr] syn listing :: String
attr Expr syn value :: Int

The preprocessor generates semantic functions that return tuples
of synthesized attributes, but we can simply refer to attributes by
name. This overcomes problem 2. Moreover, if at a later stage we
add extra attributes, we do not have to refactor a lot of code.

The value of each attribute needs to be defined for every constructor
of every data type which has the attribute. Such definitions are
known as “semantic rules”, and start with keyword sem.

sem Expr | Const lhs.value = @num
| Add lhs.value = @left .value + @right .value

This states that the synthesized (left hand side) value attribute of
a Constant expression is just the contents of the num field, and
that of an Add -expression can be computed by adding the value
attributes of its subtrees. The @-symbol in this context should be
read as “attribute”, not to be confused with Haskell “as-patterns”.
At the left of the =-symbol, the attribute to be defined is men-
tioned; at the right, the defining Haskell expression is given. Each
definition (or group of definitions) is labeled with a constructor
(Const and Add in the example), which in turn are labeled with
the datatype (Expr in the example). Vertical bars separate the con-
structors (and should not be confused with ‘guarded’ equations).
The preprocessor collects and orders all definitions in a single al-
gebra, replacing attribute references by suitable selections from the
results of the tree walk on the children. This overcomes problem 3.
To be able to pass information downward during a tree walk, we can
define “inherited” attributes (the terminology goes back to Knuth
[22]). As an example, it can serve to pass down an environment, i.e.
a lookup table that associates variables to values, which is needed
to evaluate expressions:

type Env = [(String , Int)]
attr Expr inh env :: Env
sem Expr | Var lhs.value = fromJust $

lookup @lhs.env @name

The preprocessor translates inherited attributes into extra parame-
ters for the semantic functions in the algebra. This overcomes prob-
lem 4.
In many situations, sem rules only specify that attributes a tree
node inherits should be passed unchanged to its children, as in a
Reader monad. To scrap the boilerplate expressing this, the pre-
processor has a convention that, unless stated otherwise, attributes
with the same name are automatically copied. A similar automated
copying is done for synthesized attributes passed up the tree, as in
a Writer monad. When more than one child offers a synthesized
attribute with the required name, we can specify to use an operator
to combine several candidates:

attr Expr Stat syn listing use (++) []

which specifies that by default, the synthesized attribute listing is
the concatenation of the listings of all children that produce a sub-
listing, or the empty list if no child produces one. This overcomes
problem 5, and the last bit of problem 1.

2.2 Rule-oriented programming

Using the attribute-grammar (AG) based preprocessor we can de-
scribe the part of a compiler related to tree walks concisely and
efficiently. However, this does not give us any means of looking at
such an implementation in a more formal setting. We use the do-
main specific language Ruler for describing the AG part related to
the type system.
Although the use of Ruler currently is in flux because we are work-
ing on a newer version and therefore are only partially using Ruler
for type system descriptions, we demonstrate some of its capabil-
ities because it is our intent to tackle the difficulties involved with
type system implementations by generating as much as possible
automatically from higher level descriptions.
The idea of Ruler is to generate from a single source both a LaTeX
rendering for human use in technical writing:

v fresh
Γ; Ck ; v → σk `e e1 : σa → σ Cf

Γ; Cf ; σa `e e2 : Ca

Γ; Ck ; σk `e e1 e2 : Caσ Ca
E.APPHM

and its corresponding AG implementation:
sem Expr
| App (func.gUniq , loc.uniq1)

= mkNewLevUID @lhs.gUniq
func.knTy = [mkTyVar @uniq1] ‘mkArrow ‘ @lhs.knTy
(loc.ty a , loc.ty)

= tyArrowArgRes @func.ty
arg .knTy = @ty a
loc .ty = @arg .tyVarMp ⊕ @ty

In this paper we neither further discuss the meaning or intention of
the above fragments [9] nor explain Ruler [12] in depth. However,
to sketch the underlying ideas we show the Ruler source code
required for the above output; we need to define the scheme (or
type) of a judgment and populate these with actual rules.
A scheme defines a LaTeX output template (judgeuse tex) with
holes to be filled in by rules and a parsing template (judgespec).

scheme expr =
holes [node e : Expr , inh valGam : ValGam, inh knTy : Ty

, thread tyVarMp : C, syn ty : Ty]
judgeuse tex valGam; tyVarMp.inh; knTy

` .."e" e : ty tyVarMp.syn
judgespec valGam; tyVarMp.inh; knTy

` e : ty tyVarMp.syn

The rule for application is then specified by specifying premise
judgments (judge above the dash) and a conclusion (below the
dash) using the parsing template defined for scheme expr.

rule e.app =
judge tvarvFresh
judge expr = tyVarMp.inh; tyVarMp; (v → knTy)

` eFun : (ty .a → ty) tyVarMp.fun
judge expr = tyVarMp.fun; valGam; ty .a

` eArg : ty .a tyVarMp.arg
−
judge expr = tyVarMp.inh; valGam; knTy

` (eFun eArg)
: (tyVarMp.arg ty) tyVarMp.arg

For this example no further annotations are required to automat-
ically produce AG code, except for the freshness of a type vari-
able. The judgment tvarvFresh encapsulates this by providing
the means to insert some handwritten AG code.
In summary, the basic idea of Ruler is to provide a description
resembling the original type rule as much as possible, and then
helping the system with annotations to allow the generation of an
implementation and a LaTeX rendering.

2.3 Aspect-oriented programming

UHC’s source code is organized into small fragments, each belong-
ing to a particular variant and aspect. A variant represents a step in
a sequence of languages, where each step adds some language fea-
tures, starting with simply typed lambda calculus and ending with
UHC. Each step builds on top of the previous one. Independent of a
variant each step adds features in terms of aspects. For example, the

type system and code generation are defined as different aspects.
UHC’s build system allows for selectively building a compiler for
a variant and a set of aspects.
Source code fragments assigned to a variant and aspects are stored
in chunked text files. A tool called Shuffle then generates the ac-
tual source code when parameterized with the desired variant and
aspects. Shuffle is language neutral, so all varieties of implementa-
tion languages can be stored in chunked format. For example, the
following chunk defines a Haskell wrapper for variant 2 for the
construction of a type variable:

%%[(2 hmtyinfer || hmtyast).mkTyVar
mkTyVar :: TyVarId -> Ty
mkTyVar tv = Ty_Var tv
%%]

The notation %%[(2 hmtyinfer | hmtyast).mkTyVar begins a
chunk for variant 2 with name mkTyVar for aspect hmtyinfer
(Hindley-Milner type inference) or hmtyast (Hindley-Milner type
abstract syntax), ended by %%]. Processing by Shuffle then gives:

mkTyVar :: TyVarId → Ty
mkTyVar tv = Ty Var tv

The subsequent variant 3 requires a more elaborate encoding of a
type variable (we do not discuss this further). The wrapper must be
redefined, which we achieve by explicitly overriding 2.mkTyVar
by a chunk for 3.mkTyVar:

%%[(3 hmtyinfer || hmtyast).mkTyVar -2.mkTyVar
mkTyVar :: TyVarId -> Ty
mkTyVar tv = Ty_Var tv TyVarCateg_Plain
%%]

Although the type signature can be factored out, we refrain from
doing so for small definitions.
Chunked sources are organized on a per file basis. Each chunked
file for source code for UHC is processed by Shuffle to yield a cor-
responding file for further processing, depending on the language
used. For chunked Haskell a single module is generated, for chun-
ked AG the file may be combined with other AG files by the AG
compiler.
The AG compiler itself also supports a notion of aspects, different
from Shuffle’s idea of aspects in that it allows definitions for at-
tributes and abstract syntax to be defined independent of file and
position in a file. Attribute definitions and attribute equations thus
can be grouped according to the programmers sense of what should
be together; the AG compiler combines all these definitions and
generates corresponding Haskell code.
Finally, chunked files may be combined by Shuffle by means of ex-
plicit reference to the name of a chunk. This also gives a form of
literate programming tools [23] where text is generated by explic-
itly combining smaller text chunks. For example, the above code
for 2.mkTyVar and 3.mkTyVar are extracted from the chunked
source code of UHC and combined with the text for this explana-
tion by Shuffle.

3. Languages
The compiler translates a Haskell program to executable code by
applying many small transformations. In the process, the program
is represented using five different data structures, or languages.
Some transformations map one of these languages to the next,
some are transformations within one language. Together, the five
languages span a spectrum from a full feature, lazy functional
language, to a limited, low level imperative language.

3.1 The Haskell Language

The Haskell language (HS) closely follows Haskell’s concrete
syntax. A combinator-based, error-correcting parser parses the
source text and generates an HS parse tree. It consists of numer-
ous datatypes, some of which have many constructors. A Module
consists of a name, exports, and declarations. Declarations can be
varied: function bindings, pattern bindings, type signatures, data
types, new types, type synonyms, class, instance. . . Function bind-
ings involve a right hand side which is either an expression or a list
of guarded expressions. An expression, in turn, has no less than 29
alternatives. All in all, the description of the context-free grammar
consists of about 1000 lines of code.
We maintain sufficient information in the abstract syntax tree to
reconstruct the original input, including layout and superfluous
parentheses, with only the comments removed.
When processing HS we deal with the following tasks:

• Name resolution: Checking for properly introduced names and
renaming all identifiers to the equivalent fully qualified names.

• Operator fixity and precedence: Expressions are parsed with-
out taking into account the fixity and precedence of operators.
Expressions are rewritten to remedy this.

• Name dependency: Definitions are reordered into different let
bindings such that all identifier uses come after their definition.
Mutually recursive definitions are put into one letrec binding.

• Definition gathering: Multiple definitions for the same identi-
fier are merged into one.

• Desugaring: List comprehensions, do-notation, etc. are desug-
ared.

In the remainder of this section on languages we use the following
running example program to show how the various intermediate
languages are used:

module M where

len :: [a] → Int
len [] = 0
len (x : xs) = 1 + len xs

main = putStr (show (len (replicate 4 ’x’)))

3.2 The Essential Haskell Language

HS processing generates Essential Haskell (EH). The EH equiv-
alent of the running example is shown below. Some details have
been omitted and replaced by dots.

let M .len :: [a] → Int
M .len

= λx1 → case x1 of
UHC .Prelude.[]
→ UHC .Prelude.fromInteger 0

(UHC .Prelude. : x xs)
→ ...

in
let M .main = UHC .Prelude.putStr ...
in
let main :: UHC .Prelude.IO ...

main = UHC .Prelude.ehcRunMain M .main
in
main

In constrast to the HS language, the EH language brings back the
language to its essence, removing as much syntactic sugar as is

possible. An EH module consists of a single expression only, which
is the body of the main function, with local let-bindings for the
other top-level values.
Processing EH deals with the following tasks:

• Type system: Type analysis is done, types are erased when Core
is generated. Type analysis can be done unhindered by syntac-
tical sugar, error messages refer to the original source location
but cannot reconstruct the original textual context anymore.

• Evaluation: Enforcing evaluation is made explicit by means of
a let! Core construct.

• Recursion: Recursion is made explicit by means of a letrec
Core construct.

• Type classes: All evidence for type class predicates are trans-
formed to explicit dictionary parameters.

• Patterns: Patterns are transformed to their more basic equiva-
lent, inspecting one constructor at a time, etc. .

3.3 The Core Language

The Core language is basically the same as lambda-calculus. The
Core equivalent of the running example program is:

module M =
letrec
{M .len =

λM .x1 1 →
let ! { 2 = M .x1 1} in
case 2 of
{ C : { ..., ...} → ...
; C [] { } →

let
{ 3 =

(UHC .Prelude.packedStringToInteger)
(#String "0")} in

let
{ 4 =

(UHC .Prelude.fromInteger)
(UHC .Prelude. d1 Num : DICT)
(3)} in

4
}

in ...

A Core module, apart from its name, consists of nothing more than
an expression, which can be thought of as the body of main:

data CModule
= Mod nm :: Name expr :: CExpr

An expression resembles an expression in lambda calculus. We
have constants, variables, and lambda abstractions and applications
of one argument:

data CExpr
= Int int :: Int
| Char char :: Char
| String str :: String
| Var name :: Name
| Tup tag :: Tag
| Lam arg :: Name body :: CExpr
| App func :: CExpr arg :: Cexpr

Alternative Tup encodes a constructor, to be used with App to
construct actual data alternatives or tuples. The Tag of a Tup
encodes the Int tag, arity, and other information.

Furthermore, there is case distinction and local binding:

| Case expr :: CExpr alts :: [CAlt] dflt :: CExpr
| Let categ :: Categ binds :: [CBind] body :: CExpr

The categ of a Let describes whether the binding is recursive,
strict, or plain. These two constructs use the auxiliary notions of
alternative and binding:

data CAlt
= Alt pat : CPat expr :: CExpr

data CBind
= Bind name : Name expr :: CExpr
| FFI name : Name imp :: String ty :: Ty

A pattern introduces bindings, either directly or as a field of a
constructor:

data CPat
= Var name :: Name
| Con name :: Name tag :: Tag binds :: [CPatBind]
| BoolExpr name :: Name cexpr :: CExpr

data CPatBind
= Bind offset :: Int pat :: CPat

The actual Core language is more complex because of:

• Experiments with extensible records; we omit this part as ex-
tensible records are currently not supported in UHC.

• Core generation is partly non syntax directed because context
reduction determines which dictionaries are to be used for class
predicates. The syntax directed part of Core generation there-
fore leaves holes, later to be filled in with the results of context
reduction; this is a mechanism similar to type variables repre-
senting yet unknown types.

• An annotation mechanism is used to propagate information
about dictionary values. This mechanism is somewhat ad hoc
and we expect it to be changed when more analyses are done in
earlier stages of the compiler.

3.4 The Grin Language

The Grin equivalent of the running example program is:

module M
{M .len M .x1 1 =
{eval M .x1 1; λ 2 →

case 2 of
{C /: →
{ ...}

;C / [] →
{store (C/UHC .Prelude.PackedString "0"); λ 6 →
store (F/UHC .Prelude.packedStringToInteger 6);

λ 3 →
store (P/0/UHC .Prelude.fromInteger

UHC .Prelude. d1 Num); λ 5 →
store (A /apply 5 3); λ 4 →
eval 4 }

}}}

A Grin module consists of its name, global variables with their
initializations, and bindings of function names with parameters to
their bodies.

data GrModule
= Mod nm :: Name globals :: [GrGlobal] binds :: [GrBind]

data GrGlobal
= Glob nm :: Name val :: GrVal

data GrBind
= Bind nm :: Name args :: [Name] body :: GrExpr

Values manipulated in the Grin language are varied: we have nodes
(think: heap records) consisting of a tag and a list of fields, stand-
alone tags, literal ints and strings, pointers to nodes, and ‘empty’.
Some of these are directly representable in the languages (nodes,
tags, literal ints and strings)

data GrVal
= LitInt int :: Int
| LitStr str :: String
| Tag tag :: GrTag
| Node tag :: GrTag flds :: [GrVal]

Pointers to nodes are also values, but they have no direct denotation.
On the other hand, variables ranging over values are not a value
themselves, bur for syntactical convenience we do add the notion
of a ‘variable’ to the GrVal data type:

| Var name :: Name

The tag of a node describes its role. It can be a constructor of a
datatype (Con), a function of which the call is deferred because
of lazy evaluation (Fun), a function that is partially applied but
still needs more arguments (PApp), or a deferred application of an
unknown function (appearing as the first field of the node) to a list
of arguments (App).

data GrTag
= Con name :: Name
| Fun name :: Name
| PApp needs :: Int name :: Name
| App applyfn :: Name

The four tag types are represented as C , F , P and A in the example
program above.
The body of a function denotes the calculation of a value, which
is represented in a program by an ‘expression’. Expressions can be
combined in a monadic style. Thus we have Unit for describing a
computation immediately returning a value, and Seq for binding a
computation to a variable (or rather a lambda pattern), to be used
subsequently in another computation:

data GrExpr
= Unit val :: GrVal
| Seq expr :: GrExpr pat :: GrPatLam body :: GrExpr

There are some primitive computations (that is, constants in the
monad) one for storing a node value (returning a pointer value),
and two for fetching a node previously stored, and for fetching one
field thereof:

| Store val :: GrVal
| FetchNode name :: Name
| FetchField name :: Name offset :: Int

Other primitive computations call Grin and foreign functions, re-
spectively. The name mentioned is that of a known function (i.e.,
there are no function variables) and the argument list should fully
saturate it:

| Call name :: Name args :: [GrVal]
| FFI name :: String args :: [GrVal]

Two special primitive computations are provided for evaluating
node that may contain a Fun tag, and for applying a node that
must contain a PApp tag (a partially applied function) to further
arguments:

| Eval name :: Name
| App name :: Name args :: [GrVal]

Next, there is a computation for selecting a matching alternative,
given the name of the variabele containing a node pointer:

| Case val :: GrVal alts :: [GrAlt]

Finally, we need a primitive computation to express the need of
‘updating’ a variable after it is evaluated. Boquist proposed an
Update expression for the purpose which has a side effect only and
an ‘empty’ result value [7]. We observed that the need for updates
is always next to either a FetchNode or a Unit , and found it more
practical and more efficient to introduce two update primitives:

| FetchUpdate src :: Name dst :: Name
| UpdateUnit name :: Name val :: GrVal

Auxiliary data structures are that for describing a single alternative
in a Case expression:

data GrAlt
| Alt pat :: GrPatAlt expr :: GrExpr

and for two kinds of patterns, occurring in a Seq expression and in
an Alt alternative, respectively. A simplified version of these is the
following, but in reality we have more pattern forms.

data GrPatLam
= Var name :: Name

data GrPatAlt
= Node tag :: GrTag args :: [Name]

4. Transformations
An UHC architecture principle is that the program is transformed
in many small steps, each performing an isolated task. Even when
multiple steps could have been combined, we prefer the simplicity
of doing one task at a time. The Attribute Grammar preprocessor
makes the definition of a tree walk easy, and the runtime overhead
for the additional passes is modest.
Currently we have 12 transformations on the Core language, 24 on
the Grin language, and 4 on the Silly language. Some of them are
applied more than once, so the total number of transformations a
program undergoes is even larger. In this section we give a short
description of all transformations. Of course, this is just a snapshot
of the current situation: the very fact that the steps are isolated and
identified enables us to move them around while developing the
compiler. Yet, the description of the transformations gives an idea
of the granularity of the steps, and as a whole gives an overview of
techniques employed.

4.1 Core Transformations

Three major gaps have to be bridged in the transformation from
Core to Grin. Firstly, where Core has a lazy semantics, in Grin
deferring of function calls and their later evaluation is explicitly
encoded. Secondly, in Core we can have local function definitions,
whereas in Grin all function definitions are at top level. Grin does
have a mechanism for local, explicitly sequenced variable bindings.
Thirdly, whereas Core functions always have one argument, in Grin
functions can have multiple parameters, but they take them all at the
same time. Therefore a mechanism for partial parametrization is
necessary. The end result is lambda lifted Core, that is the floating
of lambda-expressions to the top level and passing of non-global
variables explicitly as parameters.
Core has one construct let! for enforcing evaluation to WHNF
independent of other Core language constructs. This makes the
implementation of seq easier but burdens Core transformations
with the need not to cross an ‘evaluation boundary’ when moving
code around.

The Core transformations listed below also perform some trivial
cleanup and optimizations, because we avoid burdening the Core
generation from EH with such aspects.

1. EtaReduction Performs restricted η-reduction, that is replace
expressions like λx y → f x y with f with the restriction
that arity is not changed. Such expressions are introduced by
coercions which (after context reduction) turn out not to coerce
anything at all.

2. RenameUnique Renames variables such that all variables are
globally unique.

3. LetUnrec Replaces mutually recursive bindings

letrec {v1 = . . ; v2 = . .} in . .

which actually are not mutually recursive by plain bindings

let v1 = . . in let v2 = . . in . .

Such bindings are introduced because some bindings are poten-
tially mutually recursive, in particular groups of dictionaries.

4. InlineLetAlias Inlines let bindings for variables and constants.

5. ElimTrivApp Eliminates application of the id function.

6. ConstProp Performs addition of int constants at compile time.

7. ANormal Complex expressions like

f (g a) (h b)

are broken up into a sequence of bindings and simpler expres-
sions

let v1 = g a in let v2 = h b in f v1 v2

which only have variable references as their subexpressions.

8. LamGlobalAsArg Pass global variables of let-bound lambda-
expressions as explicit parameters, as a preparation for lambda-
lifting.

9. CAFGlobalAsArg Similar for let-bound constant applicative
forms (CAFs).

10. FloatToGlobal Performs ‘lambda lifting’: move bindings of
lambda-expressions and CAFs to the global level.

11. LiftDictFields Makes sure that all dictionary fields exist as a
top-level binding.

12. FindNullaries Finds nullary (parameterless) functions f and
inserts another definition f ′ = f , where f ′ is annotated in such
a way that it will end up as an updateable global variable.

After the transformations, translation to Grin is performed, where
the following issues are addressed:

• for Let-expressions: global expressions are collected and made
into Grin function bindings; local non-recursive expressions
are sequenced by Grin Seq-expressions; for local recursive let-
bindings a Sequence is created which starts out to bind a new
variable to a ‘black hole’ node, then processes the body, and
finally generates a FetchUpdate-expression for the introduced
variable.

• for Case-expressions: an explicit Eval -expression for the scru-
tinee is generated, in Sequence with a Grin Case-expression.

• for App-expressions: it is determined what it is that is applied:

if it is a constructor, then a node with Con tag is returned;

if it is a lambda of known arity which has exactly the
right number of arguments, then either a Call -expression

is generated (in strict contexts) or a node with Fun tag is
stored with a Store-expression (in lazy contexts);

if it is a lambda of known arity that is undersaturated (has
not enough arguments), then a node with PApp tag is re-
turned (in strict contexts) or Stored (in lazy contexts)

if it is a lambda of known arity that is oversaturated (has
too many arguments), then (in strict contexts) first a Call -
expression to the function is generated that applies the func-
tion to some of the arguments, and the result is bound to a
variable that is subSequently Applied to the remaining ar-
guments; or (in non-strict contexts) a node with Fun tag is
Stored, and bound to a variable that is used in another node
which has an App tag.

if it is a variable that represents a function of unknown arity,
then (in strict contexts) the variable is explicitly Evaluated,
and its result used in an App expression to the arguments;
or (in non-strict contexts) as a last resort, both function
variable and arguments are stored in a node with App tag.

• for global bindings: lambda abstractions are ‘peeled off’ the
body, to become the arguments of a Grin function binding.

• for foreign function bindings: functions with IO result type are
treated specially.

We have now reached the point in the compilation pipeline where
we perform our whole-program analysis. The Core module of the
program under compilation is merged with the Core modules of all
used libraries. The resulting big Core module is then translated to
Grin.

4.2 Grin Transformations

In the Grin world, we take the opportunity to perform many op-
timizing transformations. Other transformations are designed to
move from graph manipulation concepts (complete nodes that can
be ‘fetched’, ‘evaluated’ and pattern matched for) to a lower level
where single word values are moved and inspected in the impera-
tive target language.
We first list all transformations in the order they are performed, and
then discuss some issues that are tackled with the combined effort
of multiple transformations.

1. DropUnreachableBindings Drops all functions not reachable
from main , either through direct calls, or through nodes that
store a deferred or partially applied function. The transforma-
tion performs a provisional numbering of all functions, and cre-
ates a graph of dependencies. A standard graph reachability al-
gorithm determines which functions are reachable from main;
the others are dropped. This transformation is done as very first,
because is drastically reduces program size: all unused func-
tions from included libraries are removed.

2. MergeInstance Introduces an explicit dictionary for each in-
stance declaration, by merging the default definitions of func-
tions taken from class declarations. This is possible because we
have the whole program available now (see discussion below).

3. MemberSelect Looks for the selection of a function from a dic-
tionary and its subsequent application to parameters. Replaces
that by a direct call.

4. DropUnreachableBindings (again) Drops the now obsolete im-
plicit constructions of dictionaries.

5. Cleanup Replaces some node tags by equivalent ones: PApp 0,
a partial application needing 0 more parameters, is changed
into Fun , a simple deferred function; deferred applications of

constructor functions are changed to immediate application of
the constructor function.

6. SimpleNullary Optimises nullary functions that immediately
return a value or call another function by inlining them in nodes
that encode their deferred application.

7. ConstInt Replaces deferred applications of integer2int to con-
stant integers by a constant int. This situation occurs for every
numeric literal in an Int context in the source program, because
of the way literals are overloaded in Haskell.

8. BuildAppBindings Introduces bindings for apply functions
with as many parameters as are needed in the program.

9. GlobalConstants Introduces global variables for each constant
found in the program, instead of allocating the constants locally.

10. Inline Inlines functions that are used only once at their call site.

11. SingleCase Replaces case expressions that have a single alter-
native by the body of that alternative.

12. EvalStored Do not do Eval on pointers that bind the result of
a previous Store . Instead, do a Call if the stored node is a
deferred call (with a Fun tag), or do a Unit of the stored node
for other nodes.

13. ApplyUnited Do not perform Apply on variables that bind the
result of a previous Unit of a node with a PApp tag. Instead,
do a Call of the function if it is now saturated, or build a new
PApp node if it is undersaturated.

14. SpecConst Specialize functions that are called with a constant
argument. The transformation is useful for creating a special-
ized ‘increment’ function instead of plus 1, but its main merit
lies in making specialized versions of overloaded functions, that
is functions that take a dictionary argument. If the dictionary is a
constant, specialization exposes new opportunities for the Mem-
berSelect transformation, which is why SpecConst is iterated in
conjunction with EvalStored, ApplyUnited and MemberSelect.

15. DropUnreachableBindings Drops unspecialized functions that
may have become obsolete.

16. NumberIdents Attaches an unique number to each variable and
function name.

17. HeapPointsTo Does a ‘heap points to analysis’ (HPT), which is
an abstract interpretation of the program in order to determine
the possible tags of the nodes that each variable can refer to.

18. InlineEA Replaces all occurrences of Eval and App to equiv-
alent constructs. Each Eval x is replaced by FetchNode x ,
followed by a Case distinction on all possible tag values of the
node referred to by x , which was revealed by the HPT analysis.
If the number of cases is prohibitively large, we resort to a Call
to a generic evaluate function, that is generated for the purpose
and that distinguishes all possible node tags. Each App f x
construct, that is used to apply an unknown function f to argu-
ment x , is replaced by a Case distinction on all possible PApp
tag values of the node referred to by f .

19. ImpossibleCase Removes alternatives from Case constructs
that, according to the HPT analysis, can never occur.

20. LateInline Inlines functions that are used only once at their call
site. New opportunities for this transformation are present be-
cause the InlineEA transformation introduces new Call con-
structs.

21. SingleCase (again) Replaces case expressions that have a single
alternative by the body of that alternative. New opportunities
for this transformation are present because the InlineEA trans-
formation introduces new Case constructs.

22. DropUnusedExpr Removes bindings to variables if the variable
is never used, but only when the expression has no side effect.
Therefore, an analysis is done to determine which expressions
may have side effects. Update and FFI expressions are as-
sumed to have side effects, and Case and Seq expressions if
one of their children has them. The tricky one is Call , which
has a side effect if its body does. This is circular definition of
‘has a side effect’ if the function is recursive. Thus we take
a 2-pass approach: a ‘coarse’ approximation that assumes that
every Call has a side effect, and a ‘fine’ approximation that
takes into account the coarse approximation for the body. Vari-
ables that are never used but which are retained because of the
possible side effects of their bodies are replaced by wildcards.

23. MergeCase Merges two adjacent Case constructs into a single
one in some situations.

24. LowerGrin Translates to a lower level version of Grin, in which
variables never represent a node. Instead, variables are intro-
duced for the separate fields, of which the number became
known through HPT analysis. Also, after this transformation
Case constructs scrutinize on tags rather than full nodes.

25. CopyPropagation Shortcuts repeated copying of variables.

26. SplitFetch Translates to an even lower level version of Grin, in
which the node referred to by a pointer is not fetched as a whole,
but field by field. That is, the FetchNode expression is replaced
by a series of FetchField expressions. The first of these fetches
the tag, the others are specialized in the alternatives of the Case
expression that always follows a FetchNode expression, such
that no more fields are fetched than required by the tag of each
alternative.

27. DropUnusedExpr (again) Removes variable bindings intro-
duced by LowerGrin if they happen not to be used.

28. CopyPropagation Again shortcuts repeated copying of vari-
ables.

Simplification The Grin language has constructs for manipulat-
ing heap nodes, including ones that encode deferred function calls,
that are explicitly triggered by an Eval expression. As part of the
simplification, this high level construct should be decomposed in
smaller steps. Two strategies can be used:

• tagged: nodes are tagged by small numbers, evaluation is per-
formed by calling a special evaluate function that scrutinizes
the tag, and for each possible Fun tag calls the corresponding
function and updates the thunk;

• tagless: nodes are tagged by pointers to code that does the call
and update operations, thus evaluation is tantamount to just
jumping to the code pointed to by the tag.

The tagged approach has overhead in calling evaluate , but the tag-
less approach has the disadvantage that the indirect jump involved
may stall the lookahead buffer of pipelined processors. Boquist pro-
posed to inline the evaluate function at every occurrence of Eval ,
where for every instance the Case expression involved only con-
tains those cases which can actually occur. It is this approach that
we take in UHC.
This way, they high level concept of Eval is replaced by lower
level concepts of FetchNode , Case , Call and Update . In turn,
each FetchNode expression is replaced by a series of FetchField
expressions in a later transformation, and the Case that scrutinizes
a node is replaced by one that scrutinizes the tag only.

Abstract interpretation The desire to inline a specialized version
of evaluate at every Eval instance brings the need for an anal-

ysis that, for each pointer variable, determines the possible tags
of the node. An abstract interpretation of the program, known as
‘heap points to (HPT) analysis’ tries to approximate this knowl-
edge. As preparation, the program is scanned to collect constraints
on variables. Some constraints immediately provide the informa-
tion needed (e.g., the variable that binds the result of a Store ex-
pression is obviously a pointer to a node with the tag of the node
that was stored), but other constraints are indirect (e.g., the vari-
able that binds the result of a Call expression will have the same
value as the called function returns). The analysis is essentially a
whole-program analysis, as actual parameters of functions impose
constraints on the parameters.
The constraint set is solved in a fixpoint iteration, which processes
the indirect constraints based on information gathered thus far. In
order to have fast access to the mapping that records the abstract
value for each variable, we uniquely number all variables, and use
mutable arrays to store the mapping.
The processing of the constraint that expresses that x binds the
result of Eval p deserves special attention. If p is already known
to point to nodes with a Con tag (i.e., values) then this is also a
possible value for x . If p is known to point to nodes with a Fun f
tag (i.e., deferred functions), then the possible results for f are also
possible values for x . And if p is known to point to nodes with an
App apply tag (i.e., generic applications of unknown functions by
apply), then the possible results for apply are also possible values
for x . For a more detailed description of the algorithm, we refer to
another paper [14].

HPT performance The HPT analysis must at least find all possi-
ble tags for each pointer, but it is sound if it reports a superset of
these. The design of the HPT analysis is a tradeoff between time
(the number of iterations it takes to find the fixed point) and ac-
curacy. A trivial solution is to report (in 1 step) that every pointer
may point to every tag; a perfect solution would solve the halting
problem and thus would take infinite time in some situations.
We found that the number of iterations our implementation takes
is dependent of two factors: the depth of the call graph (usually
bounded by a dozen or so in practice), and the length of static data
structures in the program. The latter surprised us, but is understand-
able if one considers the program

main = putStrLn (show (last [id , id , id , id , succ] 1))

where it takes 5 iterations to find out that 1 is a possible parameter
of succ.
As for accuracy, our HPT algorithm works well for first-order func-
tions. In the presence of many higher-order functions, the results
suffer from ‘pollution’: the use of a higher-order function in one
context also influences its result in another context. We counter this
undesired behavior in several ways:

• instead of using a generic apply function, the BuildAppBind-
ings transformation makes a fresh copy for each use by an App
tag. This prevents mutual pollution of apply results, and also
increases the probability that the apply function can be inlined
later;

• we specialize overloaded functions for every dictionary that it
is used with, to avoid the App needed on the unknown function
taken from the dictionary;

• we fall back on explicitly calling evaluate (instead of inlining
it) in situations where the number of possible tags is unreason-
able large.

Instance declarations The basic idea of implementing instances
is simple: an instance is a tuple (known as a ‘dictionary’) containing

all member functions, which is passed as an additional parameter
to overloaded functions. Things are complicated, however, by the
presence of default implementations in classes: the dictionary for
an instance declaration is a merge of the default implementations
and the implementations in the instance declaration. Worse, the
class declaration may reside in another module than the instance
declaration, and still be mutually dependent with it. Think of the
Eq class, having mutually circular definitions of eq and ne , leaving
it to the instance declaration to implement either one of them (or
both).
A clever scheme was designed by Faxén to generate the dictionary
from a generator function that is parameterized by the dictionary
containing the default implementations, while the default dictio-
nary is generated from a generator function parameterized by the
instance dictionary [13]. Lazy evaluation and black holes make this
all work, and we employ this scheme in UHC too. It would be a
waste, however, now that we are in a whole-program analysis situ-
ation, not to try to do as much work as possible at compile time.
Firstly, we have to merge the default and instance dictionaries. In
the Grin world, we have to deal with what the Core2Grin transfor-
mation makes of the Faxén scheme. That is:

• A 1-ary generator function gfd that, given a default dictionary,
will generate the dictionary;

• A 0-ary function fd that binds a variable to a black hole, calls
gfd , and returns the result

• A global variable d which is bound to a node with tag Fun fd .

We want to change this in a situation where d is bound directly to
the dictionary node. This involves reverse engineering the defini-
tions of d , fd and gfd to find the actual member function names
buried deep in the definition of gfd . Although possible, this is very
fragile as it depends on the details of the Core2Grin translation.
Instead, we take a different approach: the definition of fd is an-
notated with the names of the member functions at the time when
they are still explicitly available, that is during the EH2Core trans-
lation. Similarly, class definitions are annotated with the names
of the default functions. Now the Grin.MergeInstance transforma-
tion can easily collect the required dictionary fields, provided that
the Core.LiftDictFields transformation ensures they are available
as top-level functions. The fd and gfd functions are obsolete after-
wards, and can be discarded by a later reachability analysis.
Secondly, we hunt the program for dictionaries d (as constructed
above) and selection functions sk (easily recognizable as a function
that pattern-matches its parameter to a dictionary structure and
returns its kth field xk). In such situations Call sk d can be
replaced by Eval xk . A deferred member selection, involving a
node with tag Fun sk and field d , is dealt with similarly: both are
done by the MemberSelect transformation.
Thirdly, as xk is a dictionary field, it is a known node n . If n has
a Fun f tag, then Eval xk can be replaced by Call f , and other-
wise it can be replaced by Unit n . This is done by the EvalStored
transformation. The new Unit that is exposed by this transforma-
tion can be combined with the App expression that idiomatically
follows the member selection, which is what ApplyUnited does.
All of this only works when members are selected from a constant
dictionary. Overloaded functions however operate on dictionaries
that are passed as parameter, and member selection from a vari-
able dictionary is not caught by MemberSelect. The constant dic-
tionary appears where the overloaded function is called, and can be
brought to the position where it is needed by specializing functions
when they are called with constant arguments. This is done in the
SpecConst transformation. That transformation is not only useful in
the chain of transformations that together remove the dictionaries,

but also for the removal of other constant arguments, giving e.g.
a 1-ary successor function as a specialization of plus 1. (If con-
stant specialization is also done for string constants, we get many
specializations of putStrLn).
The whole pack of transformations is applied repeatedly, as apply-
ing them exposes new opportunities for sub-dictionaries. Four iter-
ations suffice to deal with the common cases (involving Eq , Ord ,
Integral , Read etc.) from the prelude.
The only situation where dictionaries cannot be eliminated com-
pletely, is where an infinite family of dictionaries is necessary, such
as arises from the Eq a ⇒ Eq [a] instance declaration in the
prelude. We then automatically fall back to the Faxén scheme.

4.3 Silly Transformations

1. InlineExpr Avoids copying variables to other variables, if in all
uses the original one could be used just as well (i.e., it is not
modified in between).

2. ElimUnused Eliminates assignments to variables that are never
used.

3. EmbedVars Silly has a notion of function arguments and local
variables. After this transformation, these kind of variables are
not used anymore, but replaced by explicit stack offsets. So, this
transformation does the mapping of variables to stack positions
(and, if available, registers). In a tail call, the parameters of
the function that is called overwrites the parameters and local
variables of the function that does the call. The assignments are
scheduled in such a way that no values are overridden that are
still needed in assignments to follow.

4. GroupAllocs This transformation combines separate, adjacent
calls to malloc into one, enabling to do heap overflow check
only once for all the memory that is allocated in a particular
function.

5. Conclusion
5.1 Code size

UHC is the standard materialization of a more general code base
(the UHC framework, formerly known as EHC), from which in-
creasingly powerful ‘variants’ of the compiler can be drawn, where
independent experimental ‘aspects’ can be switched on or off. The
whole source code base consists of a fairly exact 100.000 lines
of code. Just over half of it is Attribute Grammar code, which of
course has lots of embedded Haskell code in it. One third of the
code base is plain Haskell (mostly for utility functions, the com-
piler driver, and the type inferencer), and one sixth is C (for the
runtime system and a garbage collector).
In Figure 2 the breakdown of code size over various subsystems
in the pipeline is shown. All numbers are in kilo-lines-of-code, but
because of the total of 100.000 lines they can also be interpreted
as percentages. Column ‘UHC only’ shows the size of the code
that is selected by Shuffle for the standard compiler, i.e. the most
powerful variant without experimental aspects. On average, 60%
of the total code base is used in UHC. The rest is either code
for low variants which is overwritten in higher variants, code for
experimental aspects that are switched off in UHC, chunk header
overhead, or comments that were placed outside chunks.
The fraction of code used for UHC is relatively low in the type
inferencer (as there are many experimental aspects here), in the
experimental backends like Java, Cil and LLVM (as most of them
are switched off), and in the garbage collector (as it is not yet used:
UHC by default uses the Boehm garbage collector [5, 4]).

subsystem All variants and aspects UHC only
AG HS C total total fract.

utility/general 1.7 18.3 20.0 14.0 70%
Haskell 6.7 3.3 9.9 6.9 70%
EH 11.2 0.6 11.8 6.7 57%
EH typing 8.0 7.5 15.5 7.0 45%
Core 7.1 1.0 8.0 4.7 58%
ByteCode 2.1 2.1 1.7 82%
Grin 11.3 1.6 12.9 8.5 66%
Silly 2.8 2.8 2.6 93%
exp.backends 2.5 0.4 2.9 0.8 26%
runtime system 8.1 8.1 6.2 77%
garb.collector 6.0 6.0 0.7 11%
total 53.4 32.5 14.1 100.0 59.8 60%

Figure 2. Code size (in 1000 lines of code) of source files contain-
ing Attribute Grammar code (AG), Haskell code (HS) and C code
(C), for various subsystems. Column ‘all variants’ is the total code
base for all variants and aspects, column ‘UHC’ is the selection of
the standard compiler, where ‘fract.’ shows the fraction of the full
code base that is selected for UHC.

5.2 Methodological observations

Aspect-oriented organization UHC and its framework use an
aspect-wise organization in which as much as possible is described
by higher level domain specific languages from which we generate
lower level implementations. UHC as a framework offers a set of
compilers, thus allowing picking and choosing a starting point for
play and experimentation. This makes UHC a good starting point
for research, but debugging is also facilitated by it. A problem can
more easily be pinpointed to originate in a particular step of the
whole sequence of language increments; the framework then allows
to debug the compiler in this limited context, with less interaction
by other features.
The stepwise organization, where language features are built on top
of each other, offers a degree of isolation. Much better would be
to completely independently describe language features. However,
this is hard to accomplish because language features often interact
and require redefinition of parts of their independent implementa-
tion when combined. To do this for arbitrary combinations would
be more complicated then to do it for a sequence of increments.
Testing can also be kept relatively simple this way. As long as an
increment in features does not remove previous features or only
changes the generated test output, tests for a previous step can
still be reused and extended with new tests. In UHC this only fails
when the presence of a Prelude is assumed; the testing framework
is aware of this.
The aspect-wise organization impacts all source code: AG code,
Haskell code, C code, the build system, etc.. Implementing aspects
as part of the used languages would be a major undertaking, as all
languages then should be aware of aspects, and in a similar way.
In UHC we have chosen to factor out aspect management and deal
with it by preprocessing.

UHC as an experimentation platform An obvious tension exists
between UHC as a “full Haskell compiler” and a “nimble compiler
for experimentation”. Many seemingly innocent paragraphs of the
Haskell language report have major impact on the implementation,
making the implementation disproportional complex. Although this
cannot be avoided, it can be isolated to a certain degree, which is
what we hope to have accomplished using an aspect-wise approach.
Although the chosen layering of language features and implemen-
tation techniques restricts the extent one can deviate from it for

experimentation, one can always select a minimal starting point in
the sequence of compilers and build on top of that. When we add
new functionality, we usually start by making it work in an early
variant, and then gradually make it work for subsequent variants.

AG Design Patterns We tend to use various AG idioms fre-
quently. For example, information is often gathered over a tree
via a synthesized attribute, and subsequently passed back as an in-
herited attribute. This leads to a “cyclic program” when lazy code is
generated from the AG description, or a 2-pass tree traversal when
strict code is generated (after checking for absence of cycles).
Some idiomatic use is directly supported by the AG system. For
example, transformations are expressed as attribute grammars with
a single, specially designated, attribute declaration for a copy of the
tree being walked over. The only thing that remains to be specified
is where the transformed tree differs from the original.
The AG notation allows us to avoid writing much boilerplate code,
similar to other tree traversal approaches [37, 36, 24]. The use
of attributes sometimes also resembles reader, writer, and state
monads. In practice, the real strength of the AG system lies in
combining separately defined tree traversals into one. For example,
the EH type analysis repeatedly builds environments for kinds,
types, datatypes, etc. Combined with the above idiomatic use this
easily leads to many passes over the EH tree; something we’d rather
not write by hand using monads (and monad transformers) or other
mechanisms more suitable for single-pass tree traversals!
However, not all idiomatic use is supported by AG. For example,
the need to pattern match on subtrees arises when case analysis
on abstract syntax trees must be done. Currently this must be
programmed by hand, and we would like to have automated support
for it (as in Stratego [37, 36]).

The use of intermediate languages UHC uses various interme-
diate languages and transformations on them. The benefit of this
approach is that various compiling tasks can be done where it best
fits an intermediate language and can be expressed as small, easy to
understand, transformations independently from other tasks. Draw-
backs are that some tasks have more than one appropriate place
in the pipeline and sometimes require information thrown away in
earlier stages (e.g. absence of types in Core).

The use of domain specific languages (DSL) We use various
special purpose languages for subproblems: AG for tree traversals,
Shuffle for incremental, aspect-wise, and better explainable devel-
opment, Ruler for type systems. Although this means a steeper
learning curve for those new to the implementation, in practice the
DSLs we used and their supporting tools effectively solve an iden-
tifiable design problem.

5.3 Related work

Clearly other Haskell compilers exist, most notably GHC [26],
which is hard if not impossible to match in its reliability and feature
richness: UHC itself uses GHC as its main development tool.
Recently, JHC [27] and LHC [18] (derived from JHC) also take the
whole-program analysis approach proposed by Boquist [8, 7] as
their starting point. LHC in its most recent incarnation is available
as a backend to GHC, and thus is not a standalone Haskell compiler.
Already longer available alongside GHC are Hugs [21] which was
influential on Haskell as a language, NHC98 [38], and YHC [33]
derived from NHC98, all mature Haskell 98 compilers with ex-
tensions. Helium [17] (also from Utrecht) does not implement full
Haskell 98 but focuses on good error reporting, thereby being suit-
able for learning Haskell. We also mention HBC [1] (not main-
tained anymore) for completeness.

The distinguishing feature of UHC is its internal organization.
UHC, in particular its internal aspect-wise organized framework, is
designed to be (relatively) easy to use as a platform for research and
education. In Utrecht students regularly use the UHC framework to
experiment with. The use of AG and other tools also make UHC
different from other Haskell compilers, most of them written in
Haskell or lower level languages.

5.4 Future work

We have recently made a first public release of UHC [11]. In the
near future we intend to add support for better installation, in partic-
ular the use of Cabal, and to add missing language features and li-
braries. On a longer time scale we will continue working on whole-
program analysis, the optimizations allowed by it, add classical
analyses (e.g. strictness), and improve the runtime system (switch-
ing to our own garbage collector). As we recently included the stan-
dard libraries, we will be able to run benchmark suites to compare
the performance (code size, compilation time, run time) of each op-
eration mode (bytecode interpreter, whole-program analysis) with
each other and with other compilers. We welcome those who want
to contribute in these or other areas of interest.

References
[1] L. Augustsson. The HBC compiler.

http://www.cs.chalmers.se/~augustss/hbc/hbc.html,
1998.

[2] R. Bird and O. de Moor.The algebra of programming.Prentice Hall,
1996.

[3] R. S. Bird.Using Circular Programs to Eliminate Multiple Traversals
of Data.Acta Informatica, 21:239–250, 1984.

[4] H. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/, 2006.

[5] H. Boehm and M. Weiser. Garbage Collection in an Uncooperative
Environment.Software Practice and Experience, pages 807–820, Sep
1988.

[6] M. Bolingbroke and S. Peyton Jones.Types are calling conventions
(submitted to Haskell Symposium 2009).2009.

[7] U. Boquist. Code Optimisation Techniques for Lazy Functional
Languages, PhD Thesis.Chalmers University of Technology, 1999.

[8] U. Boquist and T. Johnsson.The GRIN Project: A Highly Optimising
Back End For Lazy Functional Languages. In Selected papers from
the 8th International Workshop on Implementation of Functional
Languages, 1996.

[9] A. Dijkstra.Stepping through Haskell.PhD thesis, Utrecht University,
Department of Information and Computing Sciences, 2005.

[10] A. Dijkstra, J. Fokker, and S. D. Swierstra. The Structure of the
Essential Haskell Compiler, or Coping with Compiler Complexity.In
Implementation of Functional Languages, 2007.

[11] A. Dijkstra, J. Fokker, and S. D. Swierstra. UHC Utrecht Haskell
Compiler.http://www.cs.uu.nl/wiki/UHC, 2009.

[12] A. Dijkstra and S. D. Swierstra.Ruler: Programming Type Rules. In
Functional and Logic Programming: 8th International Symposium,
FLOPS 2006, Fuji-Susono, Japan, April 24-26, 2006, number 3945 in
LNCS, pages 30–46. Springer-Verlag, 2006.

[13] K.-F. Faxén. A Static Semantics for Haskell. Journal of Functional
Programming, 12(4):295, 2002.

[14] J. Fokker and S. D. Swierstra. Abstract interpretation of functional
programs using an attribute grammar system. In A. Johnstone and
J. Vinju, editors, Language Descriptions, Tools and Applications
(LDTA08), 2008.

[15] GHC Team. The New GHC/Hugs Runtime System.
http://citeseer.ist.psu.edu/marlow98new.html, 1998.

[16] Haskell’ Committee. Haskell Prime.
http://hackage.haskell.org/trac/haskell-prime/,
2009.

[17] B. Heeren, A. v. IJzendoorn, and J. Hage.Helium, for learning Haskell.
http://www.cs.uu.nl/helium/, 2005.

[18] D. Himmelstrup, S. Bronson, and A. Seipp.LHC Haskell Compiler.
http://lhc.seize.it/, 2009.

[19] ISO. Common language infrastructure (ISO/EIC standard 23271).
ECMA, 2006.

[20] M. P. Jones.Typing Haskell in Haskell.In Haskell Workshop, 1999.

[21] M. P. Jones.Hugs 98.http://www.haskell.org/hugs/, 2003.

[22] D. Knuth.Semantics of context-free languages.Mathematical Systems
Theory, 2(2):127–145, 1968.

[23] D. Knuth.Literate Programming.Journal of the ACM, (42):97–111,
1984.

[24] R. Lämmel and S. Peyton Jones.Scrap your boilerplate: a practical
design pattern for generic programming.In Types In Languages Design
And Implementation, pages 26–37, 2003.

[25] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation.In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[26] S. Marlow and S. Peyton Jones. The Glasgow Haskell Compiler.
http://www.haskell.org/ghc/, 2004.

[27] J. Meacham. Jhc Haskell Compiler.
http://repetae.net/computer/jhc/, 2009.

[28] S. Peyton Jones. Compiling Haskell by program transformation: a
report from the trenches.In European Symposium On Programming,
pages 18–44, 1996.

[29] S. Peyton Jones.Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell .
In Engineering theories of software construction, Marktoberdorf
Summer School, 2002.

[30] S. Peyton Jones. Haskell 98, Language and Libraries, The Revised
Report.Cambridge Univ. Press, 2003.

[31] S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell
Compiler inliner. Journal of Functional Programming, pages 393–
434, 2002.

[32] S. Peyton Jones and E. Meijer.Henk: A Typed Intermediate Language.
In Workshop on Types in Compilation, 1997.

[33] T. Shackell, N. Mitchell, A. Wilkinson, et al. YHC York Haskell
Compiler.http://haskell.org/haskellwiki/Yhc, 2009.

[34] S. D. Swierstra, P. Azero Alocer, and J. Saraiva. Designing and
Implementing Combinator Languages. In 3rd Advanced Functional
Programming, number 1608 in LNCS, pages 150–206. Springer-
Verlag, 1999.

[35] M. Viera, S. D. Swierstra, and W. S. Swierstra.Attribute grammars
fly first class: How to do aspect oriented programming in haskell. In
International Conference on Functional programming (ICFP ’09),
New York, NY, USA, 2009. ACM Press.

[36] E. Visser. Stratego: A language for program transformation based
on rewriting strategies. System description of Stratego 0.5. In
A. Middeldorp, editor, Rewriting Techniques and Applications
(RTA’01), number 2051 in LNCS, pages 357–361. Springer-Verlag,
2001.

[37] E. Visser. Stratego Home Page.
http://www.program-transformation.org/Stratego/WebHome,
2005.

[38] York Functional Programming Group. NHC98 Haskell Compiler.
http://haskell.org/nhc98/, 2007.

