
Symbolics Architecture

David A. Moon

Symbolics, Inc.

This architecture
enables rapid
development and
efficient execution of
large, ambitious
applications. An
unconventional design
avoids trading off
safety for speed.

W hat is an architecture? In com-
puter systems, an architecture
is a specification of an inter-

face. To be dignified by the name architec-
ture, an interface should be designed for a
long lifespan and should connect system
components maintained by different orga-
nizations. Often an architecture is part ofa
product definition and defines character-
istics on which purchasers of that product
rely, but this is not true of everything that
is called an architecture. An architecture is
more formal than an internal interface be-
tween closely-related system components,
and has farther-reaching effects on system
characteristics and performance.
A computer system typically contains

many levels and types of architecture. This
article discusses three architectures de-
fined in Symbolics computers:

(1) System architecture-defines how
the system appears to end users and appli-
cation programmers, including the char-
acteristics of languages, user interface,
and operating system.

(2) Instruction architecture-defines
the instruction set of the machine, the
types of data that can be manipulated by
those instructions, and the environment in
which the instructions operate, for exam-
ple subroutine calling discipline, virtual
memory management, interrupts and ex-
ception traps, etc. This is an interface be-
tween the compilers and the hardware.

(3) Processor architecture-defmes the
overall structure of the implementation of
the instruction architecture. This is an in-
terface between the firmware and the
hardware, and is also an interface between
the parts of the processor hardware.

System architecture
System architecture defines how the sys-

tem looks to the end user and to the pro-
grammer, including the characteristics of

languages, user interface, and operating
system. System architecture defines the
product that people actually use; the other
levels of architecture define the mecha-
nism underneath that implements it. Sys-
tem architecture is implemented by soft-
ware; hardware only sets bounds on what
is possible. System architecture defines the
motivation for most of the design choices
at the other levels of architecture. This sec-
tion is an overview of Symbolics system
architecture.
The Symbolics system presents itself to

the user through a high-resolution bitmap
display. In addition to text and graphics,
the display contains presentations of ob-
jects. The user operates on the objects by
manipulating the presentations with a
mouse. The display includes a continuous-
ly updated reminder of the mouse com-
mands applicable to the current context.
Behind the display is a powerful symbol
processor with specialized hardware and
software. The system is dedicated to one
user at a time and shares such resources as
files, printers, and electronic mail with
other Symbolics and non-Symbolics com-
puters through both local-area and long-
distance networks of several types. The
local-area network is integral to system
operation.
The system is designed for high-

productivity software development both
in symbolic languages, such as Common
Lisp' and Prolog, and in nonsymbolic
languages, such as Ada and Fortran. It is
also designed for efficient execution of
large programs, particularly in symbolic
languages, and delivery of such programs
to end users. The system is intended to be
especially suited to complex, ambitious ap-
plications that go beyond what has been
done before; thus it provides facilities for
exploratory programming, complexity
management, incremental construction of
programs, and so forth. The operating
system is written in Lisp and the architec-

0018-9162/87/0100-0043S01.00 © 1987 IEEE 43January 1987

tural concept originated at the MIT Artifi-
cial Intelligence Laboratory. However, ap-
plications are not limited to Lisp and Al.
Many non-Al applications that are com-
plex enough to be difficult on an ordi-
nary computer have been successfully
implemented.

Meeting these needs requires an extraor-
dinary system architecture-just another
PC or Unix clone won't do. The intended
applications demand a lot of processor
power, main and virtual memory size, and
disk capacity. The system must provide as
much performance as possible without ex-
ceeding practical limits on cost, and com-
puting capacity must not be diluted by
sharing it among multiple users. These
purely hardware aspects are not sufficient,
however. The system must also improve
both the speed ofsoftware production and
the quality of the resulting software by
providing a more complete substrate on
which to erect programs than has been
customary. Programmers should not be
handed just a language and an operating
system and be forced to do everything else
themselves.
At a high level, the Symbolics substrate

provides many facilities that can be incor-
porated into user programs, such as user-
interface management, embedded lan-
guages, object-oriented programming,
and networking. At a low level, the sub-
strate provides full run-time checking of
data types, of array subscript bounds, of
the number ofarguments passed to a func-
tion, and of undefined functions and vari-
ables. Programs can be incrementally
modified, even while they are running,
and information needed for debugging is
not lost by compilation. Thus the edit-
compile-test program development cycle
can be repeated very rapidly. Storage man-
agement, including reclamation of space
occupied by objects that are no longer in
use, is automatic so that the programmer
does not have to worry about it; incre-
mental so that it interferes minimally with
response to the user; and efficient because
it concentrates on ephemeral objects,
which are the best candidates for reclama-
tion. The system never compromises safe-
ty for the sake of speed. (A notorious
exception, the dynamic rather than indef-
inite extent of &rest arguments, is recog-
nized as a holdover from the past that is
not consistent with the system architecture
and will certainly be fixed in the future.)

In an ordinary architecture, such fea-
tures would substantially diminish perfor-
mance, requiring the introduction of
switches to turn off the features and regain

speed. Our system architecture deems this
unacceptable, because complex, ambi-
tious application programs are typically
never finished to the point where it is safe
to declare them bug-free and remove run-
time error-checking. We feel it is essential
for such applications to be robust when
delivered to end users, so that when some-
thing unanticipated by the programmer
happens, the application will fail in an ob-
vious, comprehensible, and controlled
way, rather than just supplying the wrong
answer. To support such applications, a
system must provide speed and safety at
the same time.

Symbolics systems use a combination of
approaches to break the traditional dilem-
ma in which a programmer must choose
either speed or safety and comfortable
software development:

* The hardware performs low-level
checking in parallel with computation and
memory access, so that this checking takes
no extra time.

* Machine instructions are generic. For
example, the Add instruction is capable of
adding any two numbers regardless of
their data types. Programs need not know
ahead of time what type of numbers they
will be adding, and they need no declara-
tions to achieve efficiency when using only
the fastest types of numbers. Automatic
conversion between data types occurs
when the two operands of Add are not of
the same type.

* Function calling is very fast, yet does
not lose information needed for debug-
ging and does not prevent functions from
being redefined.

* Built-in substrate facilities are already
optimized and available for programmers
to incorporate into their programs.

* Application-specific control of
virtual-memory paging is possible. Pre-
paging, postpurging, multipage transfers,
and reordering of objects to improve
locality are supported. 2

These benefits are not without costs:
* Both the cost and the complexity of

system hardware and software are in-
creased by these additional facilities.

* Performance optimization is not
always automatic. Programmers still must
sometimes resort to metering tools. Decla-
rations are available to optimize certain dif-
ficult cases, but their use is much less fre-
quent than in conventional architectures.

Why Lisp machines? This is really three
questions:

(1) Why dedicate a computer to each
user instead of time-sharing?

(2) Why use a symbolic system architec-
ture?

(3) Why build a symbolic system archi-
tecture on unconventional lower-level
architectures?

Why dedicate a computer to each user
instead oftime-sharing? This seemed like
a big issue back in 1974 when Lisp
machines were invented, but perhaps by
now the battle has been won. A report
from that era3 states these reasons for
abandoning time-sharing:

* Time-sharing systems degrade under
heavy load, so work on large, ambitious
programs could only be conducted in off-
peak hours. In contrast, a single-user sys-
tem would perform consistently at any
time of day.

* Performance was limited by the speed
of the disk when running programs too
large to fit in main memory. Dedicating a
disk to each user would give better perfor-
mance.
The underlying argument was that in-

creasing program size and advancing tech-
nology, making capable processors much
less expensive, had eliminated the econo-
my of scale of time-sharing systems. The
original purpose of time-sharing was to
share expensive hardware that was only
lightly used by any individual user. The
serendipitous feature of time-sharing was
interuser communication. Both of these
purposes are now served by local-area net-
working. Expensive hardware units are
still shared, but the processor is no longer
among them.

These arguments apply to all types of
dedicated single-user computers, even
PCs, not only to symbolic architectures.

Why use a symbolic system architec-
ture? Many users who need a platform for
efficient execution of large symbolic
programs, a high-productivity software
development environment, or a system for
exploratory programming and rapid pro-
totyping have found symbolic languages
such as Lisp and symbolic architectures
such as this one very beneficial. Programs
can be built more quickly, and fit more
smoothly into an integrated environment,
by incorporating such built-in substrate
facilities as automatic storage manage-
ment and the flexible display with its
presentation-based user interface. The full
error-checking saves time when devel-
oping new programs. The programmer can
concentrate on the essential aspects of the
program without fussing about minor

COMPUTER44

mistakes, because the machine will catch
them. The ability to change the program in-
crementally greatly speeds up development.
Once the initial exploration phase is

over, it is possible to turn prototypes into
products quickly. Good performance can
be achieved without a lot of programmer
effort and without sacrificing those devel-
opment-oriented features that are also of
value later in the program's life, during
maintenance and enhancement.

Why build a symbolic system archi-
tecture on unconventional lower-level ar-
chitectures? Conventional instruction ar-
chitectures are optimized to implement
system architectures very different from
Symbolics'. For example, they have no
notions of parallel error-checking and
generic instructions; they often obstruct
the implementation of a fast function call,
especially one that retains error-checking,
incremental compilation, and debugging
information; and they usually pay great
attention to complex indexing and mem-
ory addressing modes, which have little
utility for symbolic languages. Implement-
ing Symbolics' system architecture on a
conventional instruction architecture
would force a choice between safety and
performance: we could not have both. The
type of software we are interested in either
could not run at all or would require much
faster hardware to achieve the same per-
formance. Later I will discuss the special
aspects of Symbolics' instruction and pro-
cessor architectures that make them more
suitable to support a symbolic system.
Comparing the performance of ma-

chines with equivalent cycle times and dif-
ferent architectures can sometimes be il-
luminating. The 3640, VAX 11/780, and
10-MHz 68020 all have cycle times of
about 200 ns. (The 68020 takes two clock
cycles to perform a basic operation, so its
100-ns nominal cycle time is equivalent to
the other two machines' 200 ns.) On a For-
tran benchmark (single-precision Whet-
stone), the VAX is 1.8 times the speed of
the 3640 (750 versus 400). With floating-
point accelerators on each machine, the
ratio is 2.1. On the Lisp benchmark
Boyer, 4 the 3640 is 1.75 times the speed of
the VAX running Portable Standard Lisp,
3.9 times the speed of the VAX running
DEC Common Lisp, and 2.1 times the
speed of the 68020 running Lucid Com-
mon Lisp. (The 68020 time at 10MHz was
estimated by multiplying its 16-MHz time
by 1.6, no doubt an inaccurate procedure.)
The VAX and 68020 programs were com-
piled with run-time error checking dis-

abled and safety compromised, while the
3640 was doing full checking as always.
Like any benchmark figures presented
without a compIete explanation of what
was measured, how it was measured, what
full range of cases was tested, and how it
can be reproduced in another laboratory,
these numbers should not be taken very
seriously. However, they give some idea of
the effect of optimizing the instruction ar-
chitecture to fit the system architecture.
One could say that the VAX is three times
better at Fortran than at Lisp and that the
68020 and VAX are similar for Lisp. These
figures also show the effect of different
compiler strategies on identical hardware.

This comparison was scaled to remove
the effect of cycle time and show only the
effect of architecture. This is not com-
pletely fair to the conventional machines,
because in general they can be expected to
have faster cycle times than a symbolic
machine. Running the 68020 at full speed
and using a newer model of the VAX
would have improved their times. Hard-
ware technology of conventional ma-
chines will always be a couple of years
ahead of symbolic hardware, in cycle time
and price/cycle, because of the driving
force of their larger market. It's interest-
ing to note that this hardware advantage
applies only to the processor, which usual-
ly contributes less than 25 percent of sys-
tem cost. Power supplies, sheet metal, and
disk drives don't care whether the archi-
tecture is symbolic; they cost and perform
the same for equivalent configurations of
either type of machine.

This comparison is not completely fair
to the symbolic machine, either. Software
exploiting the full capabilities of the sym-
bolic machine should have been com-
pared, but this software won't run at all on
the conventional machines. Software
technology on symbolic machines will
always be a couple of years ahead of con-
ventional machines, because it is built on a
more powerful substrate using more pro-
ductive tools.

Performance. The best published
analysis of performance of Lisp systems
appears in Gabriel's work.4 The various
3600 models perform quite capably on
these benchmarks, as can be seen from a
perusal of the book. Some of the reasons
for such good performance will become
apparent as we proceed.

However, one must always ask exactly
what a benchmark measures. A problem
with Gabriel's benchmarks is that they are
written in a least common denominator

dialect that represents Lisp as it was in
1970. This makes it easier to benchmark a
broad spectrum of machines, but makes
the benchmarks less valid predictors ofthe
performance of real-world programs.
Since 1970, there have been many ad-
vances in the understanding of symbolic
processing and in the range of its applica-
tions. The basic operations measured by
these benchmarks, such as function call-
ing, small-integer arithmetic, and list pro-
cessing, are still important today, but
many other operations not measured are
of equal importance. These benchmarks
do not use the more modern features of
Common Lisp (such as structures, se-
quences, and multiple values), do not use
object-oriented programming, and are
generally not affected by system-wide
facilities such as paging and garbage col-
lection. As predefined, portable pro-
grams, these benchmarks cannot benefit
from the unusual aspects of Symbolics sys-
tem architecture, such as large program
support, full run-time safety, efficient
storage management, substrate facilities,
support for languages other than Lisp,
and faster development of efficient
programs.

Instruction architecture
Symbolics' philosophy is that different

levels of architecture should be free to
change independently, to satisfy different
goals and constraints. Users see only the
system architecture, leaving the lower
levels, such as the instruction architecture,
free to change to utilize available technol-
ogy, maximize performance, or minimize
cost. Most other computer families allow
users to depend on the instruction archi-
tecture and therefore are not free to change
it. It tends to be optimized for only the first
member of the family. Later implementa-
tions using newer technology, as well as
implementations at the high or low ex-
tremes of the price/performance curve,
are penalized by the need for compatibility
with an unsuitable instruction architecture.

Symbolics system architecture has been
implemented on three different instruc-
tion architectures. The LM-2 machine,
based on the original MIT Lisp Machine, 3
was the first; it was discontinued in 1983.
The 3600 family ofmachines uses a second
instruction architecture and three dif-
ferent processor architectures. A third
instruction architecture, appropriate for
VLSI implementation, is being used in
a line of future products now under
development.

January 1987 45

33 3231 0

Int, | 32-bit IntegerITag
33 32 31 0

FloT 32-bit. Single-Precision floating Point lTag
33 3231 28 2? 0

|Major Minor 28-bit Address
Tag ITag28b Ades

Figure 3. A string containing the seven characters "Exam-
ple" stores each character in a single 8-bit byte. Bytes are
.0j11ZA ;'ntn 1_hit intnour nhahtePUKC XInU OLUt *ltlCgtr UUJM5

'Stored Representation' 3S 34 33 28 27?

Cons Symbol Tag Address - BOB

Figure 1. An object reference is a 34-bit quantity, consisting End List Tag Address
either of a 32-bit data word with a 2-bit data type tag, or of 3S 34 33 28 2?)
a 28-bit address with a 6-bit data type tag. 3$ 34 33 28 2? / o

Cons~Symbol Tag Address-4RAY

End Nil Tag Address- NIL

3s 28 2? 0 3S 34 33 28 2 0

Array HeaderTag Type and Length Figure 4. An ordinary list of two elements requires four

m/X/mbol Tao Address FOOwords of storage. Unlike arrays, lists do not have headers.

Int |259
|Symbol Tag |Address _ AR 33433 28 27 e

Next Symbol Tag Address - BOB3S 34 33 3231 28 2? 0

Figure 2. An array of three elements-FOO, 259, and End Symbol Tag Address - RAY
BAR-consists of a header word defining the type and 3s 34ss 28 27 0
length of the array, followed by an object reference for each Figure 5. A compact list of two elements requires two words
array element. of storage. It uses the cdr code to eliminate two object

references.

(Reprinted from "Architecture of the Symbolics 3600," 12th Int'l Symp. Computer Architecture, © 1985 IEEE.)

The following sections summarize the in-
struction and processor architectures of the
3600 family, discuss some of the design
tradeoffs involved, and show how these ar-
chitectures are especially effective at sup-
porting the desired system architecture.
Further details can be found elsewhere. 5,6

Data are object references. The funda-
mental form of data manipulated by any
Lisp system is an object reference, which
designates a conceptual object. The values
of variables, the arguments to functions,
the results of functions, and the elements
of lists are all object references. There can
be more than one reference to a given ob-
ject. Copying an object reference makes a
new reference to the same object; it does
not make a copy of the object.

Variables in Lisp and variables in con-
ventional languages are fundamentally
different. In Lisp, the value ofa variable is
an object reference, which can refer to an
object ofany type. Variables do not intrin-
sically have types; the type of the object is
encoded in the object reference. In a con-
ventional language, assigning the value of
one variable to another copies the object,
possibly converts its type, and loses its
identity.
A typical object reference contains the

address of the object's representation in
storage. There can be several object refer-
ences to a particular object, but it has only
a single stored representation. Side-effects
to an object, such as changing the contents
of one element of an array, are imple-
mented by modifying the stored represen-

tation. All object references address the
same stored representation, so they all see
the side-effect.

In addition to such object references by
address, it is possible to have an immediate
object reference, which directly contains
the entire representation ofthe object. The'
advantage is that no memory needs to be
allocated when creating such an object.
The disadvantage is that copying an im-
mediate object reference effectively copies
the object. Thus, immediate object refer-
ences can only be used for object types that
are not subject to meaningful side-effects,
have a small representation, and need very
efficient allocation of new objects. Small
integers (traditionally called fixnums) and
single-precision floating-point numbers
are examples of such types.

COMPUTER46

In the 3600 architecture, an object ref-
erence is a 34-bit quantity consisting of a
32-bit data word and a 2-bit major data
type tag. The tag determines the interpre-
tation of the data word. Often the data
word is broken down into a 4-bit minor
data type tag and a 28-bit address (see
Figure 1). This variable-length tagging
scheme accommodates industry-standard
32-bit fixed and floating-point numbers
with a minimum of overhead bits for tag-
ging. Addresses are narrower than num-
bers to make additional tag bits available
for the many types of objects that Lisp
uses.

Addresses are 28 bits wide and designate
36-bit words in a virtual memory with
256-word pages. The address granularity is
a word, rather than a byte as in many other
machines, because the architecture is
object-oriented and objects are always
aligned on a word boundary. This results
in one gigabyte of usable virtual memory.
It is interesting to note that the 3600's
28-bit address can actually access the same
number of usable words as the VAX's
32-bit address, because the VAX expends
two bits on byte addressing and reserves
three-fourths of the remaining address
space for the operating system kernel and
the stack (neither of which is large).

In addition to immediate and by-ad-
dress object references, the 3600 also uses
pointers, a special kind of object reference
that does not designate an object as such.
A pointer designates a particular location
within an object or a particular instruction
within a compiled function. Pointers are
used primarily for system programming. 7

Stored representations of objects. The
stored representation of an object is con-
tained in some number of consecutive
words ofmemory. Each word may contain
an object reference, a header, a special
marker, or a forwarding pointer. The data
type tags distinguish these types of words.
For example, an array is represented as a
header word, containing such information
as the length of the array, followed by one
memory word for each element of the ar-
ray, containing an object reference to the
contents of that element (see Figure 2). An
object reference to the array contains the
address of the first memory word in the
stored representation of the array.
A header is the first word in the stored

representation of most objects. A header
marks the boundary between the stored
representations of two objects. It contains
descriptive information about the object
that it heads, which can be expressed as

either immediate data or an address, as in
an object reference.
A special marker indicates that the

memory location containing it does not
currently contain an object reference. Any
attempt to read that location signals an er-
ror. The address field of a special marker
specifies what kind of error should be sig-
nalled. For example, the value cell of an
uninitialized variable contains a special
marker that addresses the name of the
variable. An attempt to use the value of a
variable that has no value provokes an er-
ror message that includes the variable's
name.
Aforwarding pointer specifies that any

reference to the location containing it
should be redirected to another memory
location, just as in postal forwarding.
These are used for a number of internal
bookkeeping purposes by the storage
management software, including the im-
plementation of extensible arrays.
Some objects include packed data in

their stored representation. For example,
character strings store each character in a
single 8-bit byte (see Figure 3). For unifor-
mity, the stored representation of an ob-
ject containing packed data remains a se-
quence of object references. Each word is
an immediate object reference to an in-
teger, whose 32 bits are broken down into
packed fields as required, such as four
8-bit bytes in the case ofa character string.
A word in memory consists of36 bits, of

which I have already explained 34. When a
memory word contains a header or a
machine instruction, the remaining two
bits serve as an extension of the rest of the
word. When a memory word contains an
object reference, a special marker, or a
forwarding pointer, the remaining two bits
are called the cdr code. The representation
of conses and lists (Steele, p. 26) 1 saves
one word by using the cdr code instead ofa
separate header to delimit the boundaries
ofthese small objects. In addition, lists are
represented compactly by encoding com-
mon values of the cdr in the cdr code in-
stead of using an object reference (see
Figures 4 and 5).

Tagging every word in memory pro-
duces these benefits:

* All data are self-describing and the in-
formation needed for full run-time check-
ing of data types, array subscript bounds,
and undefined functions and variables is
always available.

* Hardware can process the tag in par-
allel with other hardware that processes the
rest of a word. This makes it possible to op-
timize safety and speed simultaneously.

* Generic instructions alter their opera-
tion according to the tags of their
operands.

* Automatic storage management is
simple, efficient, and reliable. It can be
assisted by hardware, since the data struc-
tures it deals with are simple and indepen-
dent of context. The details appear else-
where. 8,5

* Data use less storage due to compact
representations. Programs use less storage
due to generic instructions and because tag
checking is done in hardware, not
software.
The cost of tagging is that more main

memory and disk space are required to
store numerical information. Each main
memory word includes 7 bits for error
detection and correction, so the 4 tag bits
add 10 percent. Each 256-word disk sector
includes about 128 bytes of formatting
overhead, so the 4 tag bits per word add 11
percent. We feel that the benefits amply
justify these costs.

Instruction set. The 3600 architecture
includes an instruction set produced by the
compilers and executed by a combination
of hardware and firmware. All instruc-
tions are 17 bits long, consisting of a 9-bit
operation field and an 8-bit argument
field. Instructions are packed two per
word, which is important for performance
in two ways:

(1) Dense code decreases paging over-
head by making programs occupy fewer
pages and

(2) simplifies the memory system by
decreasing the ratio ofrequired instruction
fetch bandwidth (in words/second) to
processor speed (in instructions/second).

Every instruction is contained in a com-
piled function, which consists of some
fixed overhead, a table of constants, and a
sequence of instructions (see Figure 6).
The table of constants contains object
references to objects used by the instruc-
tions, including locative pointers to defmi-
tion cells of functions called by this func-
tion. Indirection through the definition
cell ensures that if a function is redefined
its callers are automatically linked to the
new defmition.

Instructions operate in a stack machine
model: Many instructions pop their
operands off the stack and push their
results onto the stack. In addition to these
0-address instructions, there are 1-address
instructions, which can address any loca-
tion in the current stack frame. In this way
the slots of the current stack frame serve
the same purpose as registers. The

January 1987 47

l a

SizeHeader Tao

Number of Arguments

Debugger Information

This Function's Definition Cell

Symbol Tag Address - FOO

Locative Tag Address Called Definition Cell

Tag Single-Precision Floating Point
Int Instruction 1 Entry Instruction
Tag (low 16 bits)

Instruction 3
(low 16 bits)

Instruction 2
(low 16 bits)

16 IS

0
v
e
r
h
e
a
d

ChnSa
n

s
I

d
e

SP-

FP-I

Direction of Stack Growth
Callee's Temporary Storage

Callee's Local Variables
Callee's Copy of Arguments

Callee Function
Miscellaneous Status Bits

Caller's Saved PC
Caller's Saved SP
Caller's Saved FP -

Caller's Copy of Arguments

Caller's Frame

I - I - - I lk.- .. .- . %--~~~~~*1

Figure 6. A compiled function consists of four words of Flgure 7. A stack frame consists of the caller's copy of the
overhead, a table of constants and external references, and arguments, five header words, the cailee's copy of the
a sequence of 17-bit instructions, packed two per word. arguments, local variables, and temporary storage. The

frame-pointer (FP) and stack-pointer (SP) registers address
the current stack frame.

(Reprinted from "Architecture of the Symbolics 3600," 12th Int'l Symp. Computer Architecture, © 1985 IEEE.)

1-address instructions include multi-
operand instructions, which pop all of
their operands except the last off the stack
and take their last operand from a location
in the current stack frame.

There are several ways an instruction
can use its argument field. Table 1 lists the
ways to develop the address of an operand
in the stack or in memory by adding argu-
ment to a base address. Table 2 lists non-
address uses of argument. Each individual
opcode only uses argument in a single way;
there are no addressing modes. The moti-
vation for implementing this particular set
of arguments is to provide for constants
(including small integers as a special case),
all types of Lisp variables (local and
nonlocal lexical, special, structure slot, in-
stance), branching, and byte fields. Byte
fields were included because they are
heavily used in system programming.
Many instructions are simply Lisp func-

tions directly implemented by hardware
and firmware, rather than built up from
other Lisp functions and implemented as
compiled instructions. These Lisp-func-
tion instructions are known as built-ins.
They take a fixed number of arguments
from the stack and from their argument
field. They return a fixed number of values
on the stack. Examples of built-ins are eq,
symbolp, logand (with two arguments),
car, cons, member, and aref (with two
arguments). I The criterion for imple-
menting a Lisp function as a built-in in-

struction is that hardware is only used to
optimize key performance areas. When a
Lisp function is not critical to system per-
formance, or hardware implementation of
it cannot achieve a major speedup, it re-
mains in software where it is easier to
change, to debug, and to optimize.

Using an instruction set designed for
Lisp rather than adapting one designed for
Fortran or for a hand-crafted assembly
language enhances safety and speed. 3600
instructions always check for errors and
exceptions, so programs need not execute
extra instructions to do that checking. In-
structions operate on tagged data, so extra
instructions to insert and remove tags are
not needed. Instructions are generic, so
declarations are not needed to tell the com-
piler how to select type-specific instruc-
tions and translate between data formats.
In contrast, Lisp compilers for conven-
tional machines9 must generate extra
shifting or masking instructions to
manipulate tags, must use multi-instruc-
tion sequences for simple arithmetic
operations unless there are declarations,
and are always having to compromise be-
tween safety and speed.

Unlike many machines, the 3600 does
not have indexed and indirect addressing
modes. Instead it has instructions that per-
form structured, object-oriented opera-
tions such as subscripting an array or
fetching the car of a list. This fits the
instruction set more closely to the needs of

Lisp and at the same time simplifies the
hardware by reducing the number of
instruction formats to be decoded.

Function call. Storage whose lifetime is
known to end when a function returns (or
is exited abnormally) is allocated in three
stacks, rather than in the main object
storage heap, to increase efficiency. The
control stack contains function-nesting in-
formation, arguments, local variables,
function return values, and small stack-
allocated temporary objects. The binding
stack records dynamically bound vari-
ables. I The data stack contains stack-
allocated temporary objects. This article
concentrates on the control stack, which is
the most critical to performance.
The protocol for calling a function is to

push the arguments onto the stack, then
execute a Call instruction that specifies the
function to be called, the number of argu-
ments, and what to do with the values
returned by the function. When the func-
tion returns, the arguments have been
popped off the stack and the values (if
wanted) have been pushed on. Note the
similarity in interface between functions
and built-in instructions.

Every time a function is called, a new
stack frame is built on the control stack. A
stack frame consists of the caller's copy of
the arguments, five header words, the
callee's copy of the arguments, local vari-
ables, and temporary storage, including

COMPUTER

I

3s 2s 27 0

I
I
I
I

I
I

48

arguments being prepared for calling the
next function (see Figure 7). The current
stack frame is delimited by the frame-
pointer (FP) and stack-pointer (SP) regis-
ters, which are available as base registers in
instructions that use their argument field
to address locations in the current stack
frame.
A compiled function starts with a se-

quence of one or more instructions known
as the entry vector. The first instruction in
the entry vector, the entry instruction,
describes how many arguments the func-
tion accepts, the layout ofthe entry vector,
and the size of the function's constants
table (see Figure 6), and tells the Call in-
struction where in the entry vector to
transfer control. The Call instruction and
the entry vector cooperate to copy the
arguments to the top of the stack (creating
the callee's copy), convert their arrange-
ment in storage if required, supply default
values for optional arguments that the
caller does not pass, handle the &rest and
Apply features of Common Lisp, and
signal an error if too many or too few
arguments were supplied. The details are
beyond the scope of this article.

Function return. A function returns by
executing a Return instruction whose
operands are the values to be returned.
The value disposition saved in the frame
header by Call controls whether Return
discards the values, returns one value on
the stack, returns multiple values with a
count on the stack, or returns all the values
to the caller's caller.

Return removes the current frame from
the stack and makes the caller's frame cur-
rent, by restoring the saved FP, SP, and
PC registers. If the cleanup bits in the
frame header are nonzero, special action
must be taken before the frame can be
removed. Return takes this action, clears
the bit, and tries again. Cleanup bits are
used to pop corresponding frames from
the binding and data stacks, for unwind-
protect, I for debugging and metering pur-
poses, and for stack buffer housekeeping.

Motivations of the function call disci-
pline. The motivations for this particular
function-calling discipline are

* to implement full Common Lisp
function calling efficiently,

* to be fast, so that programmers will
write clear programs,

* to retain complete information for the
Debugger, and

* to be simple for the compiler.

To implement full Common Lisp func-
tion calling efficiently requires matching
the arguments supplied bythe caller-with
normal function calling or with Apply-
o the normal, &optional, and &rest pa-
ameters of the callee, and generating
default values for unsupplied optional
arguments. The entry vector takes care of
this. Common Lisp's &key parameters are
implemented by accepting an &rest pa-
rameter containing the keywords and
values, then searching that list for each
&key parameter. Multiple values are pass-
ed back to the caller on the stack, with a
count. The caller reconciles the number of
values retumed with the number of values
desired.

Function calling historically has been a
major bottleneck in Lisp implementa-
tions, both on stock hardware and on
specially-designed Lisp machines. It is im-
portant for function calling to be as fast as
possible. If it is not, efficiency-minded
programmers will distort their program-
ming styles to avoid function calling, pro-
ducing code that is hard to maintain, and
will waste a lot of time doing optimization
by hand that should have been done by the
Lisp implementation itself. The 3600's
function call mechanism attains good
speed (fewer than 20clock cycles for a one-
argument function call and return when
no exceptions occur) by using a stack buf-
fer to minimize the number of memory
references required, by optimizing the
stack frame layout to maximize speed
rather than to minimize space, by arrang-
ing for the checks for slower exception

cases to be fast (for example, Retum sim-
ply checks whether the cleanup bits are
nonzero), and by using the entry vector
mechanism to simplify run-time decision-
making.
The information that the debugger can

extract from a stack frame includes the ad-
dress of the previous frame (from the
saved FP in the header), the function run-
ning in that frame (from the header), the
current instruction in that function (from
the PC saved in the next frame), the argu-
ments (from the stack-the header speci-
fies the argument count and arrangement),
the local variables (from the stack), and
the names of the arguments and local
variables (from a table created bythe com-
piler and attached to the function).
The compiler is simple because there is

only a single calling sequence. Any call can
call any function, and the argument pat-
tems are matched up at run time. Every-
thing is in the stack and no register-saving
conventions are required, since there are
no general-purpose registers.
The principal costs of this functioh-

calling discipline are the five-word header
in each frame and the copying of argu-
ments to the top of the stack. The time to
create the header is not a problem, because
it is overlapped with necessarymemory ac-
cesses, but the space occupied by the
header and by the extra copy of the
arguments is a substantial fraction of the
typical frame size. This extra space is not a
major problem because the stack buffer is
large enough (1024 words) that it rarely
overflows.

January 1987 49

Argument copying is necessary because
Common Lisp functions do not take a
fixed number of arguments. In a function
with &optional parameters, some of the
arguments are supplied by the caller while
the others are defaulted by the entry vec-
tor. The location in the stack frame of an
argument must not depend on whether it
was supplied or defaulted, since this varies
from one call to the next, but the compiler
must know the location in order to gener-
ate code to access the argument. The entry
vector could not put default values in the
standard location if the arguments were
not at the top of the stack, because the
frame header would be in the way. In a
function with an &rest parameter, the
caller can supply an arbitrary number of
arguments. If these arguments were at the
top of the stack, they would make it im-
possible for the compiler to know the loca-
tions of the local variables, which are
pushed after the arguments.
Copying the arguments that are not part

of an &rest parameter to the top of the
stack solves both these problems. It gives
the function complete control over the ar-
rangement of its stack frame and makes
the stack depth constant. Argument copy-
ing takes extra time, but typically only one
clock cycle per argument, which is faster
than the run-time decision-making that
would otherwise be necessary to access an
optional argument or a local variable.

Processor architecture
Three processor architectures are used

in three representative models of the 3600
family: 3640, 3675, and 3620. Since they
all implement the same instruction archi-
tecture, there are substantial similarities
among their processor architectures. They
differ due to implementation in different
technologies and choices of different
cost/performance tradeoffs, but this over-
view largely glosses over the differences.
The main goal of each of these proces-

sor architectures is to implement the in-
struction architecture described earlier
with the highest performance achievable
within its particular cost budget. The costs
are generally higher than most worksta-
tions but lower than most minicomputers.
For high performance the number ofclock
cycles required to execute an instruction
must be minimized; the goal is to execute a
new instruction every cycle. Because the
system architecture specifies that safety
and convenience must not be compro-
mised to increase performance, instruc-

tions typically make many checks for er-
rors and exceptions. Minimizing the cycle
count demands that these checks be per-
formed in parallel, not each in a separate
cycle.
Adequate bandwidth for access to

operands is also required. In the 3600 in-
struction architecture, a simple instruction
can read two stack locations and write one
stack location. One ofthese is a location in
the current stack frame specified by an ad-
dress in the instruction, while the other
two are at the top of the stack. Operands
are supplied by the stack buffer, a
1K-word memory that holds up to four
virtual-memory pages of the stack. The
stack buffer contains all of the current
frame plus as many older frames as hap-
pen to fit. When the stack buffer fills up
(during Call), the oldest page spills into
normal memory to make room for the new
frame. When the stack buffer becomes
empty (during Return), pages move from
normal memory back into the stack buffer
until the frame being returned to is entirely
in the buffer. The maximum size of a stack
frame is limited to what will fit in the stack
buffer. A second stack buffer contains an
auxiliary stack for servicing page faults
and interrupts without disturbing the pri-
mary buffer.

Associated with the stack buffer are the
FP and SP registers, which point to the
current frame and to the top of the stack,
and hardware for addressing locations in
the current stack frame via the argument
field of an instruction, which calculates a
read address and a write address every
clock cycle. The third operand access is
provided by a duplicate copy of the top
location in the stack, in a scratchpad
memory, which can be read and written
every clock cycle. The SP register is incre-
mented or decremented by instructions
that push or pop the stack.
The stack buffer provides the same

operand bandwidth, two reads and one
write every clock cycle, as in a typical regis-
ter-oriented architecture. It has the advan-
tage that register saving and restoring
across subroutine calls is not required,
since all registers already reside in the
stack. As in a register-window design,
overhead occurs only when the stack buf-
fer overflows or underflows and requires a
block transfer between stack buffer and
main memory. Another advantage is that
each instruction contains only one address
instead of three, making the instructions
smaller (so that they can be fetched from
main memory more quickly and processed
with less hardware) and allowing more

registers to be addressed. A disadvantage
of a stack architecture is that it requires
address-calculation hardware, including a
10-bit (for a 1K-word buffer) adder. Since
each instruction contains only one address
instead of three, extra instructions are
sometimes required to move data to the
top of the stack so they can be addressed.

Instructions are processed by a four-
stage pipeline (see Figure 8) under the con-
trol ofhorizontal microcode. Microcode is
used as an engineering technique, not to
create a general-purpose emulator that
could implement alternate instruction ar-
chitectures. Knowledge of the instruction
architecture is built into hardware
wherever that achieves a substantial per-
formance improvement.
To achieve full performance, instruc-

tions must be supplied to the processor at
an adequate rate. Each processor model
has a different design, with different
tradeoffs.
The 3640 uses a four-instruction buffer.

When the buffer is exhausted, or a branch
occurs, microcode reads two words from
memory and refills the instruction buffer.
This design uses much less hardware than
the other two, but provides lower perfor-
mance. Refilling the buffer takes five
clock cycles, so in the worst case the per-
formance penalty is about a factor oftwo.
With a typical instruction mix, the ob-
served slowdown is about 35 percent,
because complex instructions such as
function calls and memory references
spend more than one cycle in the execute
stage.
The 3675 uses a 2K-instruction cache.

Program loops that fit in the cache execute
at full speed, with no instruction fetching
overhead. An autonomous instruction
prefetch unit fills the cache with instruc-
tions before they are needed, in parallel
with execution. At the cost ofa substantial
increase in hardware complexity over the
3640, this design ensures that the pipeline
almost never has to wait for an instruction.
The 3620 uses a six-instruction buffer.

An autonomous instruction prefetch unit
fills the buffer in parallel with execution.
The 3620 instruction stage is a compro-
mise between the other two designs.
Straight-line code executes at full speed,
but branches execute at 3640 speed
because they must refill the buffer.
The datapath contains several units that

function in parallel (see Figure 9). Simple
instructions such as data movetnent, arith-
metic, logical, and byte-field instructions
execute in a single clock cycle. For exam-
ple, when executing an Add instruction

COMPUTER50

Fgure 8. The instruction
procsing pipeline, with
variations for three 3600
family models.

FIgure 9. 3640 datapath,
contained in the Execute
and Write stages of the
pipeline. Other 3600 family
models have generally
similar datapaths.

the following activities all take place in
parallel:

* The stack buffer fetches the two
operands, one from a calculated address in
the stack buffer memory and the other
from the duplicate top-of-stack in the
scratchpad memory.

* The fixed-point arithmetic unit com-
putes the 32-bit sum of the operands and
checks for overflow. This result is only
used if both operands are fixnums.

* The optional floating-point ac-
celerator, if present, starts computing the
sum of the operands and checking for
floating-point exceptions. This result is

only used if both operands are single-
floats.

* The tag processor checks the data
types of the operands.

* The stack buffer accepts the result
from the fixed-point arithmetic unit, ad-
justs the stack pointer, and in the write
stage stores the result at the new top of the
stack.

* The decode stage decodes the next in-
struction and produces the microinstruc-
tion that will control its execution. If the
type-checking unit or either arithmetic
unit detects an exception, control is
diverted to a microcode exception handler.

When the operands ofAdd are not both
fixnums, executing the instruction takes
more than one machine cycle and more
than one microinstruction. In the case of
adding two single-floats, the extra time is
only required because the floating-point
arithmetic unit is slower than the fixed-
point arithmetic unit. In other cases, extra
time is required to convert the operands to
a common format, to perform double-
precision floating-point operations, or to
trap to a Lisp function to add numbers of
less common types.

Memory-reference instructions such as
the car and arefLisp operations are limited

January 1987 51

mainly by the speed of the memory. Car,
for example, takes four clock cycles. Com-
plex instructions such as Call, Return, and
the Common Lisp member function in-
voke microcode subroutines. A wide
microinstruction word and fast microcode
branching minimize the number of
microinstructions that need to be exe-

cuted. Simple and memory-reference in-
structions can be discovered to be complex
at run time because of an exceptional con-
dition such as the data type of the
operands.

have described here an unusual sys-
tem architecture and presented an

overview of the underlying ar-

chitectures that implement it. When con-

sidering the type of applications that this
system architecture targets, note how im-
portant to their success it is that we com-

promise neither safety nor speed. With
this in mind, some of the unconventional
design choices in these architectures were

made based on rationales with varied bene-
fits and costs. For example, a close fit be-
tween processor, instruction, and system
architectures improves performance, but
allowing users to depend on details of the
instruction architecture can interfere with

this. The lack ofthis close fit dissipates the
hardware price/performance advantage
of conventional architectures when mea-

suring system-level performance on soft-
ware suited to symbolic architectures. R

References
1. G. L. Steele, Common Lisp, Digital Press,

Burlngton, MA, 1984.
2. D. L. Andre, Paging in Lisp Programs, Master's

thesis, University of Maryland, 1986.
3. R. D. Greenblatt et al., "The LISP Machine,"

Interactive Programming Environments, eds.
D. R. Barstow, H. E. Shrobe, and E. SandewaDl,
McGraw-Hil, Hightstown, NJ, 1984.

4. R. P. Gabriel, Performance and Evaluation of
Lisp Systems, The MIT Press, Cambridge, MA,
1985.

5. D. A. Moon, "Architecture of the Symbolics
3600," 12th Int'Symp. ComputerArchitecture,
1985, pp. 76-83.

6. Symbolics Technical Summary, Symbolcs Inc,
Cambridge, MA, 1985.

7. Symbolics Common Lisp: LanguageDictionary,
Symbolics Inc, Cambridge, MA, 1986.

8. D. A. Moon, "Garbage CoDlection in a Large
Lisp System," Proc. 1984ACMSymp. Lispand
Functional Programming, pp. 235-246.

9. R. A. Brooks et al., "Design of an Optimizing,
Dynamically Retargetable Compiler for
Common Lisp," Proc. 1986ACM Conf. Lisp
and Functional Programming, pp. 67-85.

David A. Moon is a technical director at
Symbolics, Inc. Previously, he was a hardware
designer, microprogrammer, and writer of
manuals at Symbolics. His interests include
advanced software development and architec-
tures for symbolic processing.
Moon received the BS degree in mathematics

from MIT in 1975.
Readers may write to the author at Symbol-

ics, Inc., 11 Cambridge Center, Cambridge,
MA 02142. His e-mail address is Moon@
Stony-Brook. SCRC.Symbolics.COM on the
ARPA Internet.

New in 1987 from Macmillan:
A practical new textbook on database
design and data management!
TheDatabase

MARY E.S. LOOMIS
Book465 pages

* Emphasizes the practical application of principles and
the importance of design in database development.

* Mathematical treatment of concepts has been kept to a
minimum-orientation is toward practical applications
for both business and engineering.

* Covers the 3-scheme approach for implementing and
controlling distributed databases.

* Features chapters on: Logical data modeling
techniques, logical design of network databases, and
data dictionaries.

* Each chapter concludes with discussion questions,
problems, and exercises.

* Techniques presented throughout text will enable
students to work successfully with any commercial/
research database management system.

Look to Macmillan for your textbook needs. Call Toll-Free
1-800-428-3750, or write:

Macmillan Publishing Company
College Division/866 Third Ave/New York, NY 10022

Reader Servke Number 4

RCI IS REACHING NEW PLA TEA US IN PARAMETRIC SOFTWARE
COST ESTIMA TING MODELS WITH

SOFTCOST-R
Utilizing the Revolutonary Efforts of Dr. R. Tausworthe at the renowned

Jet Propulsion Laboratory, RCI has developed a Cost Estimating Package
that encompasses the requirements that up until now were just good
Ideas. Only SOFTCOST-A can provide you with features that Include:

* What-If" Capacity that Enables Rapid Analysis of your projectas
Cost and Schedules

* A Work Breakdown Structure that lets you Tie-In with Automatic
Gantt Schedule and Pert Chart Generation

* A way to bound Risk by Computing the Confidence of your estimate
of Time, Effort and Size through a Series of Submodels

* Ease of Use and Understanding as well as Support Services with
available Training, User's Group Annual Conference, Quarterly
User's Newsletter, Maintenance, Consultations, and now a Tutorial
is in the process of being developed.

* An ability to run on IBM PC and Compatibles, and to be Calibrated
to your Specific Environment

* Generation of Many Useful Reports for Managers and Cost Analysts
such as: Resources Reports, Input Value Summary Reports, Project
Estimate Summary Reports and others

* Uses the 1986 version of the popular COCOMO model as a sanity
check

* Lets you evaluate the implications of ADAtm and Incremental
developement on your workforce allocations decisions

Now Is the time to become one of the Many Successful Organizationswho
hove acquied the beerlt of SOFTCOST.R by mdng thir primary Soft-
war Cost Estimating Package. For fuhr lnformatbn wrHt or cal today:

AKVy
Reifer Consultants, Inc.

25550 Hawthome Boulevard, Suite 208
Torrance, Califomia 90505/(213) 373-8728

Reader Servke Number 5

