
Document Examiner: Delivery
Interface for Hypertext Documents
Janet H. Walker

Symbolics Inc.
11 Cambridge Center
Cambridge, MA 02142

ABSTRACT

This paper describes the user interface strategy of Document Examiner, a delivery interface for

commercial hypertext documents. Unlike many hypertext interfaces, Document Examiner does

not adopt the directed graph as its fundamental user-visible navigation model. Instead it offers

context evaluation and content-based searching capabilities that are based on consideration of
the strategies that people use in interacting with paper documents.

INTRODUCTION

Hypertext documents are linked modules of information, created, distributed, and accessed
electronically 1s 2. This technology has tremendous potential for making more information
more available to more people. The challenge at this time is to make the information ac-

tually accessible to people, not just potentially accessible. That is, the major challenge lies in
defining the user interfaces for the software that will deliver hypertext documents.

Interfaces for most research-oriented hypertext systems have reflected the organizational

structure of the underlying hypertext document. That is, the information base was or-
ganized as a network; the user interface was organized as a network browser3* 4. A solely
network-based interface is not, however, a necessary characteristic of a hypertext document.
It might not even be a desirable characteristic, once the time comes for hypertext to leave the

shelter of academic research environments.

This paper describes the user interface strategy used in Document Examiner, an end-user
interface for commercial hypertext documents 5. Document Examiner is part of Symbolics

GeneraG, the software development environment (operating system) for Symbolics com-

puters.

The examples in this paper show Document Examiner being used to deliver the Symbolics

software product documentation. In printed form, this documentation consists of around

8000 pages. It contains all forms of documentation, from initial tutorial material to reference
material on software internals. This documentation was prepared by technical writers as
part of the Symbolics software product.

In order to set the context, I would like to outline some of the factors for categorizing hyper-
text systems and contrast our system with two typical, widely known hypertext systems,

Xanadu7 and NoteCards4:

November 1987 Hypertext ‘87 Papers 307

l What does it hold? We deliver documentation that is part of a larger software product.

Xanadu was designed to manage a library of prepublished material, Notecards to or-
ganize a set of working notes.

l How is it organized? Our documentation is highly structured. The material in library-

like systems has few inherent interrelationships. The material in Notecards is highly
interrelated but typically not highly structured.

l Who writes it? Our document is prepared by a small group of cooperating writers. The
documents in Xanadu were to be submitted by authors and the annotations by readers;
in Notecards, each user serves as both writer and reader (although recent work8 has

explored using Notecards for collaborative work.

l How much does it change. 3 Our document is under constant maintenance, with revised

versions published with every software release. It has more changes than a library but

is more static or controlled than the information in Notecards.

l How big is it. 3 Our documentation corresponds to 8000 printed pages with about
10,000 nodes and 23,000 links. This is small by “global library” standards but large in

comparison to personal notes.

l Where does it fit in? This work has commercial rather than academic roots and
production rather than research goals.

Many current hypertext systems are research vehicles developed in academic environments
where it is feasible to have individuals assuming both writer and reader roles interchange-
ably. In fact, some hypertext systems offer a common interface for reading and writing. In

the product development world, however, it is more conventional and manageable to
separate these roles: the writers are product developers and the readers are customers. We
have separate interfaces for reading and writing our documentation. This paper addresses
the readers’ interface only, leaving description of the writers’ issues to other papers99 “9 ll.

DOCUMENT STRUCTURE

This section describes the documentation database for which Document Examiner is the

interface.

The documentation is organized as a database of modules. The writers determine the nature
of the modularity, depending on the information needs of the subject they are documenting.
Modules can be any size at all and can contain any kind of subject matter. The decisions are
made by the writer and are not subject to any kind of enforcement. Writers choose the
module boundaries according to their understanding of how readers will need to access the
material.

Modularity

In our implementation, we refer to the modules as records. Each record in the document
database has a unique identifier, assigned at the time of its creation. These identifiers are
used internally by the system to track the location of records. Readers and writers specify a

308 Hypertext ‘87 Papers November 1987

record by its name and type. Names are just that: any words sufficient to name the topic
uniquely (within its type). Because our application is software documentation, the types are
things like “function”, “variable”, or “section”.

Internally, each record is composed of fields, which embody various kinds of information

about the record:

l Content fields for the document (fill description, one-line description and so on).

l Accessory information (keywords, the record type and so on).

l Audit information (the version number and the publication status of the record).

l Database information (the server location of the record, its outward links).

Figure 1 diagrams the kind of information found in a typical record. The content and acces-

sory fields are maintained by the writers; the others are maintained by the editor that the
writers use and by other supporting software.

Field name

Name:
Version-number:
Disk-location:
Source-file:
Contents:
Children:

Tokens:
Keywords:
Oneliner:
Source-topic:
Source-type:
Flags:
Modification-history:

Field contents

DOC:ICONVERSATION COMMANDS1
. I
(#P"Q:>rel-7>sys>doc>conv>convl.sab.l8" 6328 7780)
"SYS:DOC;CONV;CONvl.SAR.36"
#<RECORD-FIELD CONTENTS>
((INCLUDE

#<RECORD-GROUP DOC:JAPPEND CONVERSATION COMMANDJ>
#<RECORD-GROUP DOC: IDELETE CONVERSATION COMMANDI>
#<RECORD-GROUP DOC:IWRITE CONVERSATION COMMAND]>):

(("Converse" "commands"))
#<RECORD-FIELD K~mwoms>
#<RECORD-FIELD ONELINER>
#<RECORD-FIELD SOURCE-TOPIC>
SUBSECTION
Available, Modified, Filled, Installed
((1 "jwalker" 2760810574))

Figure 1: A representation of a record data structure, showing some of its fields and their contents.

One of the fundamental characteristics of a hypertext document is modularity. Another such

characteristic is the ability to indicate the relationships between the modules. The hypertext
literature often describes these relationships as “links”‘.

In our database, the writers use links between records to establish the overall structure of
the documents in the database (see Figure 2). The links are directional, from one record to
another. Links can link whole records or link a point in text to a whole record. In practice,
in the current documentation, all of links are from a point to a whole record.

November 1987 Hypertext ‘87 Papers

Record

’ Name -
Type -
Contents

Link
I
t

Record

Link 4

Name -
Type -
Contents

Keywords
. . .

‘igure 2: Links from a point in one record to another record.

Record

Name -
Type -
Contents

I I

I Keywords I

I . . .

310

In a documentation application, it is necessary to impose some structure on the information
rather than providing simply a large “flat” namespace of interrelated modules. You can
think of a conventional document, containing chapters, sections, subsections, and so on, as

being a predefined path through a hypertext structure. The writers use links from within
the textual content of a record in order to impose structure on the modules and hence create

the document structure.

A taxonomy of different kinds of links has been proposed by Trigg”. At this time, we have
only one kind of link and we support several different kinds of views for it:

l Inclusion. An inclusion link specifies that the content fields of the record referred to
are to be included at that location when a reader is reading the document.

Hypertext ‘87 Papers November 1987

l Precis. A precis link specifies that the title and oneliner fields of the record are to be
included at the location of the link.

l Crossref. The result of a crossreference link is to insert a conventional crossreference
at the location of the link, for example, “See the section Combatting Gnats.”

l Implicit. As writers create the material, they can enclose the names of some topics in
implicit name links.

Conventional document structures are built using these different record views. One record
can “call” any other record using a link. Figure 3 shows the structure imposed by inclusion
and crossreference links on a set of records.

. Mi

Document Database

A

B

C

G D See also D

B See also B E

D F

Figure 3: Paths through the database. The names of the nodes are letters A through G. The links
between the nodes are the arrows, labelled with f to indicate inclusion and r to indicate a crossreference.
The figure diagrams the results of two documentation lookups, for nodes A and G.

November 1987 Hypertext ‘87 Papers 311

Versions

Some hypertext systems incorporate concepts that are usually addressed under the topic of
version control or configuration control in software development systems13. This is primarily
a document structure or management issue as opposed to an interface issue. For configuring
the document, our document database uses the general system configuration tools14 avail-
able with Symbolics Genera. In addition, writers can view either the published version of a

record or the version(s) they are currently working on.

INTERFACE REQUIREMENTS FOR HYPERTEXT DOCUMENT DELIVERY

Hypertext documents, hypertext delivery software, and hypertext authoring software are all
distinct, separable problems. In most cases so far, the people building the delivery interface

are also the people creating the underlying information structure that it is delivering. Hence

it is natural, but not necessary, for these three components to become intertwined in design.
As the concepts in this field mature, this situation will change; standards for information
structures will emerge, companies will emerge to prepare documents in hypertext form and

other companies will develop delivery interfaces to serve different customer bases. (Apple’s

HyperCard product is a preview of the future in information delivery.)

In the near term, the problem facing designers of hypertext delivery interfaces is exactly that
posed by Jeff Conklin in his description of using hypertextl:

“The writer is no longer making all the decisions about the flows of the text. The
reader can and must constantly decide which links to pursue....reading hypertext

. . . tends to present the user with a large number of choices about which links to

follow and which to leave alone. These choices engender a certain overhead of
metalevel decision making...”

This is a description of a very high level of cognitive overhead, much higher than that ex-
perienced by people reading conventional documents. I think we should view this description
as the challenge of hypertext interface design rather than as its solution.

If hypertext documents are to replace paper documents, they must both retain the ad-
vantages of paper delivery and provide the advantages of electronic delivery.

What does a paper manual provide?

In spite of its often-derided rigidity and linearity of structure, paper has had many incidental
good qualities as a delivery medium. In designing a replacement for paper, one needs to
consider these qualities and to devise electronic analogs for them.

What do people do with paper manuals? How do they use them?

l Look up things they know they want. They use the index to locate the relevant pages.
For something they refer to often or something very important that they want to be

able to find again, they put in bookmarks.

l Try to find out what they want. They sometimes use the index or table of contents to
find anything that might be related to what they want. They then travel in ever-

312 Hypertext ‘87 Papers November 1987

widening circles around that area of the book, hoping to stumble on the relevant
material.

l Try to find out the general nature of what is available. They use the table of contents
to see the overall structure or generally flip through pages looking at headings or pic-
tures.

l Annotate the material. They use a highlighter to emphasize relevant portions. They
make notes in margins with ideas, crossreferences, caveats, clarifications, or examples.

l Take “snapshots” for use elsewhere. They sometimes copy pages for either remote use
or very fast reference use.

People also mention the reassuring tangible, physical nature of paper:

l Take it on the bus. Books are portable; you can read them anywhere.

l Leave it open beside the keyboard.

l Find vaguely remembered information by position.

l See at a glance “where” you are (by fractional position within the book). The size, feel,
and design of a book all give information about its likely relevance to any particular

information-finding problem.

In addition, paper is a “low overhead’ medium for readers. If they want, they can simply

read the material in the order that it was supplied by the author, with some degree of con-
fidence that the result was designed to be comprehensible that way. Strategies for using
paper documents are highly overlearned skills for most adult computer users.

Replacements for the good qualities of paper need to be more than imitations that try to
carry the surface features of paper into the electronic world. Instead, they should be func-
tional analogies that provide the same kinds of benefits with an entirely different implemen-

tation.

What can an electronic manual provide?

An online manual can provide benefits that are unimaginable with paper delivery.

l Full indexing. We can analyze the contents of electronic documents in order to provide
much more complete indexing than is feasible for almost any paper document. In

addition to indexing, brute-force full-text searching is also an option for locating

material.

l Quick following for cross-references. When the text of a document instructs its reader
to “See section 9.3”, a document delivery interface can let the user follow that instruc-

tion directly.

l Back referencing. Software that can analyze the structure of a document knows which
other topics have links to a particular topic.

l History. An online delivery interface can keep track of what the reader has already
seen.

November 1987 Hypertext ‘87 Papers 313

c

C

To see other commands. press Shift, Control, Meta-Shift. or Super.
tThu 8 Ott 12:15:19J Kerboerd EL-USER: * Input

As online information bases become more extensive, helping users manage volume, context,

and history will emerge as the most important practical problems with interfaces.

DOCUMENT EXAMINER INTERFACE DESIGN

Document Examiner was designed to preserve beneficial aspects of paper manuals while

adding the power and flexibility of content-based operations.

Document Examiner is a window-based utility that is integrated with the rest of Symbolics
software environment. Figure 4 shows a screen display from Document Examiner.

Predefined Presentation Types

Presentation types form the basis of the typing system for user Input
and program output. A large number of predefined presentation types
exist; relatively few are used for program I/o. This is because every
structure, flavor, and Common Lisp data type is also a presentation
type. Most. however, are of little use in end-user-orienteU application
programs. Consider. for example, the Common Lisp typrs hash-table
and compiled-function; you would not generally encounter these in
end-user-vlslble places.

In thls section, WB list what we regard as the types most likely to be
used by application programmers. Some. like integer, string. and
boolean: are encountered frequently in all kinds of programs. Many
others, llke sys:code-fragment and net:nerwork. are more
speclalired in their uses.

In any case. all of the types Included here are also documented as
indiwdual entries in the Dictionary of Predefined Presentation Types.
Also. many of them are defined in the file

Presentation Inspector
IJsing the Presentstlon Inspector

Invok4ng the Prcrentation Inspector
The Prcocntarlon Inspector’s frene
Strategy for Using the Presentation Ins

ned Prescntatlon Types Section

The documented types are divided Into three groups:

1. Common Lisp Presentation Types

2. Symbol& Common Lisp Presentation Types

3. Other Presentation Types

potentially useful types exported from packages other than Symbolics
Common Lisp: most of them are in the specialized-use category.

The following table lists the useful Common Lisp presentation types:

Corn;2 Llsp Presentation Types

character

Show Candidates
Show Documentation

Show Overview
Show Table of Contents

Help
Select Viewer

Reselect Candidate
Private Oocument

Figure 4: Document Examiner screen display. The viewer contains the first screenful of a section, whose

bookmark is in the bookmarks pane. The candidates pane contains the table of contents for the document

that this section appears in. Several recent commands are visible in the command pane.

The most fundamental decision in the interface was to make the material that a person was
reading look essentially as it would in a paper book. The reason for doing this was “ease of

use”. We saw no reason to have the underlying information structure be reflected in the user
interface model unless that structure was a good model for interacting with information. My
experience in trying to help users with a tree-structured information interface (the INFO
subsystem in EMACS) led me to believe that a book-like interface would be more palatable
for many people.

314 Hypertext ‘87 Papers November 1987

The rest of this section describes the ways in which Document Examiner addresses the re-

quirements of people using it to read documentation.

General description and terminology

Document Examiner is an application that runs in its own window. The window is divided

into panes (subwindows) used for different aspects of managing the user’s interaction with
the document:

l Viewer. The majority of the screen area is used for showing a topic. It gives people the
feeling of reading a section from a book.

l Command pane. The bottom area of the screen contains a fured command menu and a
command interactor area where the user can type commands. Most commands are
available in either mouse or keyboard forms.

l Candidates pane. “Candidates” is the term used for a set of record names that have
been retrieved in answer to some user query. Candidates are mouse-sensitive. (that is,
clicking a mouse button while the mouse cursor is positioned over the name invokes a
command.)

l Bookmarks pane. This area of the screen maintains a chronological record of the topics
that a user has read in the accompanying viewer. The bookmarks are mouse-sensitive.

l Overview window. “Peephole” context for a topic. In a temporary display, the overview
shows both a graph of the inclusion links for a topic and all its outward links.

Topic Lookup

The basic lookup command is Show Documentation, which operates on a record name. This
is the command that users issue to see documentation for some system feature or document
section for which they already know the name (or enough of it to specify the record uniquely).
Figure 4 shows a record partially read into a viewer.

Show Documentation is actually a request for an inclusion view of the record. The system
retrieves the record from the remote server and begins displaying the fields specified for an

inclusion view. As further references are encountered, those records are retrieved and dis-
played according to the view that the writer specified for them. Structurally speaking, the

users are reading the linear structure resulting from tree traversal of a subtree in the docu-

ment structure.

Users can scroll forward through the topic to its end. Repositioning within a topic is handled
with standard system scroll key commands and a mouse-operated scroll bar.

The display is analogous to an editor buffer in which each new record’s display is appended
to previous displays. The user can reselect previously displayed records (using the names in
the bookmarks pane), scroll through earlier text, or use search commands to look for a par-

ticular textual string within the display.

As writers create the material, they enclose the names of topics in implicit name links.
Figure 4 shows a record that contains this kind of link. Every topic name that is visible

November 1987 Hypertext ‘87 Papers

anywhere in the documentation can be an implicit link to another topic. Users can follow

these links because they are mouse-sensitive, either directly or as operands for typed-in com-
mands.

Finding topics of interest

The basic search command is Show Candidates, which operates on a set of words. This
command is Document Examiner’s equivalent to using an index in a paper manual. This is a
happy case where a strategy that people are accustomed to from the paper world (using an

index) can be implemented far more powerfully online than in the paper world.

Show Candidates uses the word or phrase that the user specifies to search for records that

contain those words in their titles or keywords. Figure 5 shows some results from an ex-

ample query.

Command line:

Show Candidates finding help

Candidates offered:

Finding Out About Zmacs Commands with HELP
Finding Out What a Prefix Command Does
Method for Searching for Appropriate Zmacs Commands
More HELP Commands for Finding Out About Zmacs Commands

Keywords for “Method for Searching for Appropriate Zmacs Commands”:

m-X Apropos
Searching for appropriate commands
Finding the right command
Help A Zmacs command

Figure 5: Documentation topics suggested by Show Candidates for the words “finding” and “help”.

The user can control several attributes of the search strategy:

l Kind of matching. The default search strategy uses simple heuristic matching to iden-
tify records of interest. When the words in the query and the words in the keywords

have stems15 in common, then the record is retained for the candidates. For example:

“Deleting files” matches delete-file
File deletion
Deleting multiple file versions

Also available are other modes of searching that involve conventional exact or substr-
ing matching on the query words and keywords.

l Multiple word order. The default is to accept a record as a candidate if it has the query
words in the keyword phrases in any order. Other modes specify that the words have
to be adjacent, in the same order, or nearby (in the same keyword phrase) in order for

the record to qualify.

316 Hypertext ‘87 Papers November 1987

l Word combination. The default searching uses “logical and’ combination for a multiple
word query. All of the words in the query have to be present in the keywords for the

record to be a candidate.

Searching is based on keywords rather than the full text of the documentation for several

reasons. Full-text searching is slower than keyword search by definition because the volume
of material is much greater. In addition, the full text is kept on a server machine (for storage
efficiency) rather than in the user’s local memory; searching would be a performance bot-
tleneck when several users needed to search at once. Furthermore, although we have not
tried a fully inverted index, we expect that it would result in many more false alarms with-
out more hits than keyword indexing does.

The candidates resulting from any query are stored in the candidates pane. Figure 6 shows
the candidates list that results from a search for “deleting files”. Any record in the can-

didates pane can be operated on with a number of mouse commands, including:

Show Documentation
Show Overview
Show Table of Contents

Document Examiner jlrrent Candidates
elete File
l lete F‘lc Connand
ELETE-FILE
l lcting F,les
l letins Multiple file Uerslons In Dlrcd
EP file Properties
S:DELETE-FRILURE
0” LO Interpret Directory Listings
erfovning Dunps
rotecting Flies Fran Bclng Deleted In D4red
wing the Rail File
I:COM-DELETE-FILE
sins FSEdlt Cannands
CI::DELETE-EHCRCHED-FILE-BRAPICH
L:DELEIEF

_Show Candidates Helo

,hou Cend+dstes (word(s) CdeFsvlt ‘~rtaentstion tv~es’l) delel,ng flies
b
louse-l: Show Documentation; Mouse-M: Overview; Mouse-R: Menu.

5how IJocumcnLation
Show Overview

Show Table of Contots

Select Viewer
Reselect Candidate

Privak Document

Figure 6: The candidates pane contains the list of candidates resulting from the search for “deleting files”.

November 1987 Hypertext ‘87 Papers 317

Examining context and structure

After using an index search command, the user next needs to determine which of the items
retrieved are most relevant. Using an index in a paper manual, this can be a very time-
consuming task, depending on the quality of the index and the number of references to check.

In this arena, an online system can shine.

The Show Overview command displays an overview of any record (see Figure 7). An over-

view contains contextual information enabling the user to determine whether or not this
record is relevant and, if it is relevant, whether it or something related to it is more ap-
propriate.

Document Examiner

h?rriew
Section: ‘Using Converse’
It Is included In topics: ‘Converse’, ‘Talking to other Users’
It appears in documents: Communicati~ With Other Users, Usetia Guide

to Symbdics Ccqmters
Keywords:

Sending InteractIve Messages
See also:

‘Customizing Converse’

- .._.._ -- ..-.--.--
ppcnd Conversarton (n-x) Converse Connand
ppend co”“crssLIon by references (n-Xl znai
e1ct.e Conversation (n-X) Converse Ccnnand
elete conversarlon by refcrcncca (n-X) Znai
“trod”crlo” to canuerse

1 c

I c

Show Candidates
Show Documentation

Show Overview
Show Table of Contents

Help
Select Viewer

Reselect Candidate:
Private Document

o see other commands, press Shift. Control, Meta-Shift. or Super.
hu B Ott 12:57:561 jualker CL-USER: &+ Input

Figure 7: An overview for the section “Using Converse” appears in a temporary window overlaying the
Viewer. This section occurs twice in the document set, in two contexts, as shown by the diagram.

One graphic display is shown for each inclusion-type link to the record. In tree structure
terms, the graph shows the parent, siblings, and children for the overviewed record. All of
the record names on the screen are mouse-sensitive so that the user can explore this set of
topics further, perhaps with more overviews, in order to pinpoint the relevant areas of the
document. In fact, users employ the overview heavily to explore “the neighborhood” for a
record and thus to zero in quickly on the most relevant area to read. This graphic display is
primarily a decision-making aid and only secondarily a navigation aid.

Hypertext ‘87 Papers November 1987

This kind of display has significant advantages over either a conventional table of contents

or a full display of the graph, It constrains the amount of information that the user has to
process while still giving enough relevant information with which to make decisions. (In this
sense, it is similar to the powerful “fisheye view” concept16.)

Users starting out to investigate a new system or new topic area need an equivalent to the
paper-based strategy of flipping pages to see what’s there. To address this need, Document
Examiner can provide a table of contents for the subtree under any record. Figure 4 has a
table of contents display in the candidates pane.

The initial screen display (Figure 8) has the names of all the documents in the document set

so that the reader can use those as a basis for commands to see either an overview or their
table of contents.

ynbol‘cs Connon Lisp: LanSuaSc Concepts
ynbolics Connon Lisa: LanSuaSe Dictionar,~
ext Edltlng and Processing
rogron Devclopncnr Wtlltiea
l ference Guide to Screans, Files, and I/C
onn”nlcat‘“g “iLh Other Users
rep-annins the User Interface, Volune A
roeranning the User Interface, Uolune B
nternals, Processes, and StoroSe Hanagenent

enera ?.B Rcleasc Not.3
enera 7.1 Patch Flotes
enera 7.2 Release liot,es
oovcrtlns~ to Genera 7.8
ynbolics IP4CP Softuare Package
mbollts Dlgltal Network Rrchitecturc (DNR) So

To see other commands. press Shift, Control. Meta-Shift. or Super.
Klhu 8 Ott 12:58:51J Keyboard CL-USER: * Input

Figure 8: Initial screen configuration of Document Examiner, showing the “top level” directory of docu-
ments.

Saving the results of an investigation

Users shouldn’t have to remember the history or state of their interaction with a document.
Document Examiner addresses the issues of convenience and memory load with both short-
term and long-term strategies.

November 1987 Hypertext ‘87 Papers 319

,-

For assistance with an ongoing investigative session, Document Examiner maintains several

kinds of context:

l Input history. Using a standard system feature in Symbolics Genera, the user can
recapture and edit any command entered earlier in a session.

l Query result history. In addition to reactivating earlier commands, a user can select
the results of earlier commands. For example, the results of earlier queries can be
reinstated in the candidates pane, saving some time but more importantly, eliminating
the need for users to remember their exact queries.

l Lookup history. When a user asks to see a record, Document Examiner creates a
bookmark for it. The set of bookmarks in the bookmarks pane constitutes a chronologi-
cal record of a user’s interactive session. The bookmarks are active, of course, so that a
user can reselect a topic by clicking the mouse over the topic’s bookmark.

l Reading context. Users follow crossreference links freely, suspending reading one topic
in order to look at another. Document Examiner saves the user’s reading position
within a topic so that when they reselect that topic, it is positioned as they left it.

l Preserving lookup history. When substantial effort has gone into finding a set of
relevant topics, it is useful to be able to save the results of this effort for a future
session, The user can save a set of bookmarks in a file called a “private document”.

The set of topics represented by the bookmarks can then be read in automatically in a
subsequent session. This is our approach to the need addressed by Bush’s “associative
trails” in Memexl’.

EVALUATION

Document Examiner attempted to provide users with familiar and functional strategies for
finding and using information in a large document set. How well did it succeed?

l Look up things you know you want. Show Documentation displays exactly and only the
topic that the user requests.

l Try to find out what you want. Show Candidates functions like a powerful index.

Show Overview displays local context and acts as a decision-making aid for whether to

read a topic.

320

l Try to find out the general nature of what is available. Show Overview and Show Table
of Contents display local or complete structural information for a document.

l Annotate the material. We have not yet attempted to address this issue.

l Take snapshots. Several commands serve to hardcopy a record or collection of records.
Save Private Document lets the user save a collection of bookmarks for future use.
Users can copy areas of the viewer (for example, code fragments) to editor buffers for
further manipulation.

l Tangible aspects of paper. Document Examiner has a full-screen window whose parts
are stabIe and always visible. Although this by no means models the physical at-
tributes of paper, subjectively it has some similar reassuring properties.

Hypertext ‘87 Papers November 1987

Document Examiner was first shipped as part of Symbolics software product in April of 1985.

In our experience, it is both usable and used. In a year-long usage survey, we found users at
all levels of experience used Document Examiner about equally often. Both groups of users
looked up large “conceptual” topics as well as short reference ones; Show Overview and Show

Candidates commands were used heavily for locating material to read18.

New employees of Symbolics are introduced to Document Examiner as part of their early
experience with the machine. We have sofiware engineers who know little about the or-
ganization of the paper manuals as they do most of their reading using the online form of the
manual. In fact, a recent survey of the engineering staff found about half of the 24 people
who answered either did not have a paper document set or had not removed the shrink wrap
from their books (five months after receiving them).

Several people expressed strong preference for online lookup over paper. One person men-
tioned using paper occasionally when they didn’t understand something reading it online

(but commented that “the documentation was as impenetrable on paper as it was [online].“)
A few people remained opposed to online information delivery in principle, independent of
the interface. For these people, the subjective value of the tangibility of paper outweighs all
current benefits of electronic delivery.

The major complaints concerning Document Examiner, from both customers and inhouse
users concern performance. Many commands, including overviews, large tables of contents,
long lists retrieved by index searching, and remote lookup of long topics, take more than 10
seconds to complete. This amount of delay is unacceptable to everybody, including the im-
plementors. The fact that people do continue to use this facility heavily in spite of the delays
is probably a testimony to the usefulness of the online features over paper.

ISSUES FOR FURTHER WORK

We have identified a number of areas in our implementation that need further investigation:

l Locators. As the documentation being delivered by this kind of interface becomes

larger, the index searching capabilities become correspondingly more important. Some
of the work now underway in information science in automatic indexing is relevant to
hypertext document delivery (for examplelg).

@Annotation. As in other hypertext implementations, users do need the capability to
make notes “on” our documentation. We have approached this problem cautiously,
however, since the design issues include helping users maintain their notes across

different releases of the system documentation.

l Context. Readers often have some need to constrain the set of topics under considera-
tion in searching tasks. Several kinds of constraints:

l Structural. Consider only one particular document (that is, the records in a

particular subtree).

l Content. Consider only records that have anything to do with some general topic
area (for example, only records related to I/O).

This issue has been addressed by Inter-media with the concept of webs20.

November 1987 Hypertext ‘87 Papers 321

l Naming. Our topics are designated externally by topic/type identifiers. This naming

strategy requires that topic names be unique within their type. At present, “section” is
the record type used for all conceptual material in documents. As a result, the writers
often feel that their freedom to name things appropriately is hampered by the im-
plementation.

CONCLUSION

Document Examiner meets its goals of delivering information from a large, complex docu-

ment set to users. As an interface to information, it is flexible and powerful. By building the
interface around the information-finding knowledge and strategies that people bring from
their experience with paper documents, it is simple to operate.

ACKNOWLEDGMENTS

Many people have contributed to the design, implementation, and refinement of this system.
Particular thanks are due to Richard L. Bryan for implementation prowess.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

322

Conklin, J., “Hypertext: An Introduction and Survey”, IEEE Computer, Vol. 20, No. 9,
September 1987, pp. 17-41.

Engelbart, D. E., “Authorship Provisions in AUGMENT”, Intellectual Leverage: The
Driving Technologies, IEEE Spring Compcon84,1984, pp. 465-472.

Robertson, G., McCracken, D. & Newell, A., “The ZOG Approach to Man-Machine
Communication”, International Journal of Man-Machine Studies, Vol. 14, 1981, pp.
461-488.

Halasz, F. G., Moran, T. P., & Trigg, R. H., “NoteCards in a Nutshell”, Proc. CHI+GI
‘87 Human Factors in Computing Systems and Graphics Interface, SIGCHI Bulletin,
April 1987, pp. 45-52.

Walker, J. H., “Symbolics Document Examiner”, SIGGRAPH Video Review, Vol. 19.

Walker, J. H., Moon, D. A, Weinreb, D. L., & McMahon, M., “Symbolics Genera Pro-
gramming Environment”, IEEE Computer, Vol. 20, 1987, In press

Nelson, T. H., “Literary machines”, Published privately by the author, 1981.

Trigg, R. H., Suchman, L. A, & Halasz, F. G., “Supporting collaboration in
NoteCards”, Proceedings of the Conference on Computer-Supported Cooperative Work,
1986, pp. 153-162.

Walker, J. H., “Symbolics Sage: A Documentation Support System”, Intellectual
Leverage: The Driving Technologies, IEEE Spring Compcon84,1984, pp. 478-483.

Walker, J. H., “Supporting Document Development with Concordia”, IEEE Computer,
In press.

Walker, J. H., & Bryan, R. L., “An editor for structured technical documents”, Paper
accepted for Protext IV conference.

Trigg, R. H. & Weiser, M., “TEXTNET: A Network-Based Approach to Text

Hypertext ‘87 Papers November 1987

Handling’, ACM Transactions on Ofice Information Systems, Vol. 4, No. 1, 1936, pp.
l-23.

13. Delisle, N. & Schwartz, M., “Contexts--A partitioning concept for hypertext”,
Proceedings of the Conference on Computer-Supported Cooperative Work, 1986, pp.
147-152.

14. Symbolics Inc., Volume 4. Program Development Utilities, Release 7.0 ed., 11
Cambridge Center, Cambridge, MA 02142,1986.

15. Salton, G., The SMART retrieval system--Experiments in automatic document
processing, McGraw-Hill, New York, 1968.

16. Furnas, G. W., “Generalized Fisheye Views”, Proc. CHI ‘86 Human Factors in Com-
puting Systems, SIGCHI Bulletin, April 1986, pp. 16-23.

17. Bush, V., *‘As we may think”, At&tic Monthly, Vol. July, No. 176, 1945, pp. 101-108.

18. Young, E., & Walker, J. H., “A case study of using a manual online”, Paper in
preparation for CHI ‘88.

19. Fagan, J. L., “Automatic phrase indexing for document retrieval: An examination of
syntactic and non-syntactic methods”, Proceedings of the Tenth Annual International
ACMSIGIR Conference on Research & Development in Information Retrieval, ACM
SIGIR, 1987, pp. 91-101.

20. Yankelovich, N., Meyrowitz, N, & van Dam, A., “Reading and Writing the Electronic
Book”, IEEE Computer, Vol. 18, No. 10, October, 1985, pp. 15-30.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 08979 1-340-X/89/001 l/O323 $1.50

November 1987 Hypertext ‘87 Papers 323

