
Software Fault Prevention by Language 
Choice: Why C is Not My Favorite 
Language 

RICHARD FATEMAN 

Computer Science Division 
Electrical Engineering and Computer Sciences Department 
University of California—Berkeley 
Berkeley, California 94720-1776 
USA 

fateman@cs.berkeley.edu 

Abstract 

How much does the choice of a programming language influence the preva­

lence of bugs in the resulting code? It seems obvious that at the level at which 

individuals write new programs, a change of language can eliminate whole 

classes of errors, or make them possible. With few exceptions, recent liter­

ature on the engineering of large software systems seems to neglect language 

choice as a factor in overall quality metrics. As a point of comparison we 

review some interesting recent work which implicitly assumes a program 

must be written in C. We speculate on how reliability might be affected by 

changing the language, in particular if we were to use ANSI Common Lisp. 

1. Introduction and Background 168 

2. Why Use C? 169 

3. Why Does Lisp Differ from C? 171 

4. Root Causes of Flaws: A Lisp Perspective 173 

4.1 Logic Flaws 173 

4.2 Interface Flaws 178 

4.3 Maintainability Flaws 179 

5. Arguments against Lisp, and Responses 179 

6. But Why is C Used by Lisp Implementors? 185 

7. Conclusion 185 

Appendix 1: Cost of Garbage Collection 186 

Appendix 2: Isn't C free? 187 

Acknowledgments and Disclaimers 187 

References 188 

ADVANCES IN COMPUTERS, VOL. 56 1 67 Copyright 2002 Elsevier Science Ltd 
ISBN 0-12-012156-5 All rights of reproduction in any form reserved. 



168 RICHARD FATEMAN 

1. Introduction and Background 

In a recent paper, Yu [1] describes the kinds of errors committed by coders 

working on Lucent Technologies advanced 5ESS switching system. This system's 

reliability is now dependent on the correct functioning of several million lines of 

source code. ^ 

Yu not only categorizes the errors, but enumerates within some categories the 

technical guidelines developed to overcome problems. 

Yu's paper's advice mirrors, in some respects, the recommendations in Magu-

ire's Writing Solid Code [2], a book brought to my attention several years ago 

for source material in a software engineering undergraduate course. This genial 

book explains techniques for avoiding pitfalls in programming in C, and contains 

valuable advice for intermediate or advanced C language programmers. It is 

reminiscent of (and acknowledges a debt to) Kernighan and Plauger's Elements 

of Programming Style [3]. Maguire's excellent lessons were gleaned from Micro­

soft's experience developing "bug-free C programs" and are provided as anecdotes 

and condensed into pithy good rules. 

The key emphasis in Yu's paper as well as Maguire's book is that many program 

problems are preventable by individual programmers or "development engineers" 

and that strengthening their design and programming capabilities will prevent 

errors in the first place. 

Yet the important question that Yu and his team, as well as Maguire, never 

address is this simple one: "Is the C programming language appropriate for the 

task at hand?" 

We, perhaps naively, assume that the task is not merely "write a program that 

does X." It should be something along the lines of 

Write a correct, robust, readable, documented program to do X. The program 
should be written so that it that can be modified, extended, or re-used in 
the future by the original author or others. It is good (and in some cases 
vital) that it demonstrate efficiency at run-time in time and space, machine 
independence, ease of debugging, etc. 

The task might also include incidental constraints like "Complete the program 

by Tuesday." For obvious reasons, for purposes of this paper we are assuming 

that the task constraints do not include "You have no choice: it must be written 

in C." It is unfortunate that this constraint is implicit in much of what has been 

' It would be foolhardy to rely on the perfection of such a large and changing body of code. In fact, 

the code probably does not function correctly. A strategy to keep it running is to interrupt it perhaps 

50 times a second. During these interruptions checks and repairs are made on the consistency of data 

structures before allowing the resumption of normal processing. Without such checks it is estimated 

that these systems would crash in a matter of hours. 



SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 169 

written, and that for many programmers and writers about programming it is 

nearly subconscious: so much so that problems that appear only in C are appar­

ently thought to be inherent in programming. 

While the C programming language has many virtues, it seems that the forced 

selection of this language directly causes many of the problems cited by Yu, 

specifically when the goal is to produce reliable programs in a natural way. 

Many of us are well aware that the Department of Defense made the deter­

mination that for building reliable real-time embedded programs, C was not a 

suitable language. The resulting engineering process gave birth to the language 

Ada.^ Ada has not caught on in civilian programming for a variety of reasons. 

Rather than examining the C/Ada relationship, here we will look primarily at a 

comparison of C to Common Lisp, a language we think has many lessons for 

how to support software engineering in the large. While Common Lisp is widely 

used and highly regarded in certain niches, it is not a mainstream programming 

language. 

2. Why Use C? 

C evolved out of the expressed need to write programs to implement in a 

moderately high-level language the vast majority of operating systems function­

ality for the UNIX operating system for the 16-bit PDP-11 computer. It was in 

turn based on the language "B" used for UNIX on the PDP-7 computer. The 

intent, at least after the initial implementation, was expanded to try to make this 

code nearly machine independent, despite the numerous PDP idioms that show 

through. 

UNIX and C together have evolved and spread to many different computer 

architectures. C in particular has also generated successor languages in which one 

usually sees many of the original choices that were incorporated in C, combining 

ideas of data structuring (object oriented), economy of expression, and program 

control flow, with a particular syntactic style. 

The human/computer design balance in which C and UNIX originated prob­

ably made good sense in the early 1970s on many computers. C even looked 

avant garde in 1978 when Digital Equipment Corp's VAX 11/780 computer 

became a popular successor to the PDP-11. The manufacturer's operating system 

was written in a mixture of lower-level languages (Assembler, BLISS) and so C 

seemed "high level." In fact, DEC (now Compaq)'s Alpha OPEN-VMS software 

continues to include substantial BLISS source code. 

^How much better would the situation be if 5ESS were written in Ada? That would be another 

paper, I think. 
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C worked well when computers were far more expensive than today: a standard 

configuration VAX of that time would be a 256-kB, 1-MIPS machine with optional 

(extra cost) floating-point arithmetic. In 1978 such a machine supported teams of 

programmers, a screen-oriented editor was a novelty, and at UC—Berkeley, much 

of the Computer Science research program was supported on just one machine. 

C has certainly endured, and this is a tribute to the positive qualities of the 

design: it continues to occupy a certain balance between programming effort and 

efficiency, portability versus substantial access to the underlying machine mecha­

nisms. Even its strongest advocates must acknowledge that C is not "optimal": 

certainly smaller code could be provided with byte codes, and faster code by 

programming in assembler. 

A strong practical support for C is the fact that it is nearly universally imple­

mented on computing platforms, being available on many of them in a refined 

development environment. Add to these rationales those provided by employers 

in choosing C: There is a relative abundance of C programmers coming from 

school. There is an expectation that established programmers will know C. In 

fact this contributed to the design of Java, whose syntax is based in part on the 

assumption that programmers would find a C-like syntax comfortable. 

However, times have changed. Today we expect a single programmer to com­

mand a machine 400 times larger in memory, and 400 times faster than that in 

1978. Why should we expect a language design oriented to relatively small code 

size, oriented toward an environment in which simplicity of design dominates 

robustness, to continue to be an appropriate choice? 

Why is it used at Berkeley? Many faculty know C fairly well. We often use 

UNIX in some form, and even Microsoft Windows or Macintosh systems provide 

C. C is "good enough" for many student projects. It is at a low-enough level 

that the transition from C to assembler can be used easily in a tutorial fashion to 

demonstrate the relationship of higher-level language notions to their implemen­

tation at the level of machine architecture. By being the implementation language 

for the UNIX operating system, additional programming in C provides access 

to nearly every feature short of those few machine-dependent concepts available 

only to the assembly-language programmer. 

Unfortunately, class projects lead students to believe that this is the way it 

should be, even though nearly all aspects of the project violate real-world pro­

gramming task requirements. How many real projects have perfectly defined 

and idealized requirements specified in "the assignment"? How many projects 

would be deemed complete and given a passing grade when they show first signs 

of producing a correct answer? A probable typical student project is unreliable, 

under-designed, under-documented "demoware." It's also written in C. While the 

real world leaves behind so many aspects of the student project, why should the 

programming language still be the same? 
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While C++ as well as Java and class libraries have changed the outlook of 

programmers in dealing with complexity through object orientation (and Java 

has taken a major positive step in automatic storage allocation), there are still 

areas of concern: these languages seem to be major sources of inefficiency in 

programming effort, ultimately reflected in the difficulty of using them in building 

correct large systems. 

3. Why Does Lisp Differ from C? 

Any sufficiently complicated C or Fortran program contains an ad-hoc, infor­

mally-specified bug-ridden implementation of half of Common Lisp. 

— Philip Greenspun, 10th rule of programming 

Today's Common Lisp is descended from Lisp 1.5 of 1960, one of the oldest 

languages in use today,^ and yet Common Lisp is in some respects one of the 

newest languages. Today it is defined as a 1994 ANSI standard (X3J13). 

Most of the evolution since 1960 was driven by programmers optimizing their 

own productivity environment. Compared to commercial installations of the time, 

little emphasis was placed on efficient batch processing. Instead, memory and 

computation resources were deployed specifically for programmer support. This 

meant time-sharing when others were using batch. This meant single-user work­

stations when others were using time-sharing. This meant graphical interfaces 

when others were using text-line interfaces. In a typical development artificial 

intelligence project, one or a few programmers would set to the task of building 

a fast prototype to try out ideas. Often this required the building of a kind of 

new application-specific "language" on top of the Lisp foundation."^ The notion 

of reliability was rarely a goal, typically being less important than flexibility,^ but 

tools for debugging were always a very high priority. In academia and in industrial 

research laboratories, often the most advanced programming environments were 

developed on Lisp systems, including those at Xerox, BBN, Symbolics, MIT, 

Stanford, Carnegie-Mellon, and here at UC—Berkeley. 

^Only the Fortran heritage is longer. 

"^The tradition of bottom-up programming in functional languages means that the components tend 

to be testable in relative isolation, they are more likely to be reusable, and this leads to a greater level of 

flexibility when the higher-level functionality is implemented. Often this is combined with a top-down 

design philosophy. 

^The ease of prototyping in a language is key: in "Accelerating Hindsight, Lisp as a Vehicle for 

Rapid Prototyping" Lisp Pointers, 7, 1-2, Jan-Jun 1997, Kent Pitman articulates the reasons. In brief, 

early review and discovery of problems lead to a rapid realization of what needs to be fixed. Since 

hindsight is "20-20" this early feedback leads to better results. In the traditional, but now usually 

disregarded model of software development (the waterfall model) critical problems are discovered 

rather late in the development cycle. 
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In my opinion this evolution has matured to support the tasks of design and 

programming addressed professionally.^ In our experience, a C programmer first 

writing in Lisp will use only that subset of tools already existing in C, and thus 

may initially write rather poor (nonidiomatic) Lisp. A fair comparison of pro­

gramming languages requires somewhat more than finding the common subset of 

them. We believe that reaching a given level of productivity and proficiency can 

be aided by today's Lisp language design. 

This problem of writing in a familiar form can be observed more generally. 

In a Web-based tutorial on Lisp Robert Strandh of the University of Bordeaux^ 

expands upon the common observation that students (and indeed others) are often 

inefficient in their work. Instead of learning how to use tools properly, they flail 

ineffectively with what they already know. He suggests that people can be divided 

into perfection-oriented Siud performance-oriented groups: 

The people in the category perfection-oriented have a natural intellectual 

curiosity. They are constantly searching for better ways of doing things, new 

methods, new tools. They search for perfection, but they take pleasure in 

the search itself, knowing perfectly well that perfection can not be accom­

plished. To the people in this category, failure is a normal part of the strive 

for perfection. In fact, failure gives a deeper understanding of why a parti­

cular path was unsuccessful, making it possible to avoid similar paths in the 

future. 

The people in the category performance-oriented, on the contrary, do not 

at all strive for perfection. Instead they have a need to achieve performance 

immediately. Such performance leaves no time for intellectual curiosity. 

Instead, techniques already known to them must be applied to solve problems. 

To these people, failure is a disaster whose sole feature is to harm instant 

performance. Similarly, learning represents the possibility of failure and 

must thus be avoided if possible. To the people in this category, knowledge in 

other people also represents a threat. As long as everybody around them use 

tools, techniques, and methods that they themselves know, they can count 

on outperforming these other people. But when the people around them 

start learning different, perhaps better, ways, they must defend themselves. 

Other people having other knowledge might require learning to keep up with 

performance, and learning, as we pointed out, increases the risk of failure. 

One possibility for these people is to discredit other people's knowledge. If 

done well, it would eliminate the need for the extra effort to learn, which 

would fit very well with their objectives. 

^Lisp can also be used to great advantage by novices: for example, a simplified version of Lisp 

(Scheme) is a popular pedagogical language. This is not our concern here. 

^Available at http: //dept-inf o. labri . u-bordeaux. f r/~strandh/Teaching/MTP/Com 

mon/Strandh-Tutorial/Dir-symbolic.html. 
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Of course this is a simplification, and individuals normally contain aspects of 

each category; as an example, a perfectionist mathematician may be performance-

oriented when it comes to computing. 

4. Root Causes of Flaws: A Lisp Perspective 

Our thesis is that the C programming language itself contributes to the perva­

siveness and subtlety of programming flaws, and that the use of Common Lisp 

would benefit the program implementation and maintenance effort. 

Yu's paper [1] on problems in the 5ESS system indicates 10 major coding fault 

areas (and an extra "other" category) and gives proposed countermeasures. Not 

all the countermeasures are easily applied, regardless of language. In particular, 

how is one to achieve "better thinking" or "more time" or "better education"? 

Such sections we will not address here. 

We will look at the other coding fault areas given in each of the remaining major 

sections. We emphasize, along with Yu, three of these that account for more than 

50% of the total. We spend most of our space on the first of these, partly to keep 

this paper from ballooning out of reasonable length. 

4.1 Logic Flaws 

The largest area was logic flaws, accounting for 19.8% of the faults encoun­

tered. These are errors that occur when the control logic causes a branch to an 

incorrect part of the program or logically computes an incorrect value. 

How many of these are easily (we are tempted to say, automatically) corrected 

by using a language better adapted than C to writing more usually correct pro­

grams? (We give examples in Lisp when appropriate.) 

4.7.7 L 7. Initialize All Variables before Use 

This is done automatically by Lisp for ordinary scalar local variables when 

created. Initial default values can be specified for every array. Declarations 

and initializations of global variables can be done viadefvar, defconstant, 

defparameter depending on how "constant" they are. Arrays can be initial­

ized as well. 

4.7.2 L2. Control Flow of Break and Continue Statements 

Conditional control flow with if, case, and cond is clearly indicated in 

correctly indented code, and Lisp code is correctly indented in the normal 
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development environment. The traditional complaint of non-Lisp programmers 

that there are too many parentheses is simply not an issue: A programmer types as 

many parentheses as necessary, watching a suitable editor "flashing" the balancing 

parenthesis of a construct, and indenting as necessary. Errors in structure are 

easily detected. Beyond this, one can do far better with proactive editor assistance, 

as suggested by Fry [4], in making sure that coding reflects the expected control 

flow. 

Presumably one of the C problems being cited by Yu is that break and con­

tinue statements can occur in expressions deeply nested inside the s w i t c h or 

for statements to which they refer. Thus you end up with what amounts to a 

goto statement but one whose target is not apparent. Worse yet someone editing 

the code may not see your break or continue statement and surround it with 

another switch or for statement, thus inadvertently changing the target. 

Lisp has a similar problem with the return form statement, which can appear 

inside various constructions (officially those that have a "block" body: let, let*, 

prog, do, do* dotimes, do I ist among others). With a deeply nested 

return you may not be able to tell which form it's returning from (especially 

with user-defined macros surrounding the form). It's good Lisp practice in any 

situation in which it is not entirely obvious what the target of a return is to use the 

named block statement and convert the r e t u r n to an explicit return-from 

with the label of the block. 

With C if you want to be sure of getting to some place you must use the goto 

statement, with all the baggage that that might entail. 

4.1.3 L3. Check C operator associativity and precedence 

The first example given in Yu's paper (simplified here) was if (x->y.z & 

r = = s) ..., which should have been if ((x->y.z & r) = = s) .... This would be 

expressed in Lisp approximately as 

(if (equal (logand (slot-value (slot-value x y) z) 

r) 

s) ...) 

where we assume a corresponding encoding of structures in C and Lisp, and that x 

is an object of type y. There are neater ways of encoding structures and accessors 

that would look different from the use of s I o t - v a I u e, so this is only an approx­

imation. 

Other examples in Yu's paper include bugs based on a programmer's misun­

derstanding of the order of various operations with respect to incrementation 

(and of course the implicit agreement of other programmers who have walked 
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through the code as to the misinterpretation): * n + + which should have been 

{*n) + +. 

Of course much of this is (he argues) bad practice in C coding: even if the 

programmer had gotten it right the first time, the next human reader of the code 

might misunderstand it. In fact, one could argue that in all possible places a pair 

of parentheses, even those that are unnecessary, should be inserted in properly 

engineered code. 

This is a particularly irksome language issue. Note that the K&R C pro­

gramming language has 15 precedence levels, of which 3 classes of operator 

are right-to-left associative. The symbol * occurs in TWO levels, the characters 

-I- and > in various combinations each occur in THREE distinct levels, and the 

character - occurs in FOUR levels. 

By contrast, all operators in Lisp are delimited prefix operators with no associa­

tivity or precedence. Even C's a ^ b + c which might not involve much mystery is 

arguably clearer as Lisp's (+ (* a b) c). If you doubt such clarity helps, ask a 

C programmer to explain: a**b + + + c. How sure? 

4.7.4 L4. Ensure Loop Boundaries Are Correct and L5. Do 

Not Overindex Arrays 

Lisp has no perfect solution because off-by-one errors cannot be removed syn­

tactically in general. However, it is possible via standard looping constructs to 

make it clear that the number of iterations corresponds to the number of elements 

in a set or elements in an array (Common Lisp has the notion of a sequence 

that includes lists and arrays. Some constructs are available that work on either 

data structure.): (dotimes (i 5)(f i)) computes (f 0) through (f 4). If A 

is any sequence (list, array), then (dotimes (i (length A)) ..(elt A i)..) 

will refer to each element in A. 

For sets represented as lists, there are alternative forms of iteration such as 

(delist (i '("hello" "goodbye")) (g i)). 

There is also the more recently introduced modem functional mapping con­

struct (map) which takes one argument to specify the result type, a function / of 

« arguments to be applied, and « sequences. Thus (m a p 'array #'+ #(1 2 3) 

#(4 5 6)) produces #(5 7 9). 

Numerous functions are provided to search, select, sort, and operate on se­

quences. The meaning of the operation does not require the decoding of a 

potentially unfamiliar and possibly erroneous C idiom. Instead it relies on the 

understanding of a function on sequences such as remove-duplicates. 

While we are talking about sequences, we should observe that other storage 

types are available in the language: there is a hash-table primitive data type. 
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Other kinds of logical termination conditions can be imposed by additional 

iteration constructs. There are several common macro packages that seek to make 

looping "easier" by interspersing key words like until or unless with accumu­

lation operations like sum or collect. 

4.7.5 L6. Ensure Value of Variables Is Not Truncated 

In C if a wide value (say 16 bits) is assigned to a narrow storage spot, some 

bits are lost, apparendy without being noticed. This cannot happen in Lisp in 

assigning values to variables since variables will ordinarily take on "any" values. 

That is, (setf x y) does not ever change or truncate y. If one stores a value in an 

object defined using CLOS,^ then one has rather substantial freedom in checking 

any attributes of the value being deposited by the setf method, and if it matters, 

this should certainly be checked. In properly engineered code it is likely that 

one would not be sadsfied with a type check, but plausible ranges or other asser­

tions might be checked as well. This could be done (as they say, "transparently") 

because the process of setting values can be overloaded. Although setf can be 

compiled down to a single instruction in the simplest case, it is not confined to be 

such a simpHsdc implementation as "=" in C. 

At one time I would have felt compelled to defend some level of overhead 

in CLOS as being a reasonable price to pay for full-fledged object orientation. 

Given the advent of C-l-l- and Java, it seems the battle has been fought elsewhere 

and apparently won.^ 

4.7.6 L7, Reference Pointer Variables Correctly, L8. Check 
Pointer Arithmetic, and L9. Ensure Logical OR and 
AND Tests are Correct 

Yu does not give an example, but many C programs have such bugs when first 

written, and detecting them is painful. Lisp does not have "pointer variables," and 

it does not do pointer arithmetic, so incorrectly incremendng pointers does not 

happen. Dereferencing pointers cannot be done incorrecdy because it is not done 

at all. 

^The Common Lisp object system. 

^The object system in Common Lisp is more general than that in Java, C++, Smalltalk, and Simula. 

Among other features, CLOS has multiple dispatch, meaning that the operation being invoked can be 

selected using the types of all of its arguments. It also supports multiple inheritance, available in C++ 

but in Java only via interfaces. Some features of CLOS are surprising: dynamic class definition allows 

one to (for example) add slots and methods to a class after instantiating some elements! Common Lisp 

also has its meta object protocol (MOP), which can be used to build both more targeted and efficient 

or more elaborate and general object systems. 
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Logical operations on bitstrings are done using logand, logic r, and I o g -

X o r, and Lisp provides a full selection of logical bit operations. Truth-valued 

decisions can be made with and and o r as well as not. These are all delimited 

prefix operators. It is unlikely to be confused with the masking operations, since 

they have substantially different names, not formed by stuttering one character. 

C's use of any nonzero value as a Boolean true appeals has limited appeal if you 

are concerned with readability. In Lisp the value NIL is the only false value. 

4.7.7 L10. Assignment and Equal Operators 

C uses the easily confused = and = = syntax. Lisp uses the rather distinct s etf 

and equal operations. In fact there are some alternatives to equal depending 

upon what is being compared. The nuances of e q and e q n are relevant for 

optimization, but probably not of concern here. 

4.1.8 L11. Ensure Bit Field Data Types Are Unsigned or 
Enum 

Lisp has bit strings; an enumerated data type can be defined, but would pro­

bably be handled via abstraction. Small sets are often represented by lists, but 

could be stored in hash tables or trees or other structures, depending on efficiency 

criteria. 

4.1.9 L12. Use Logical AND and Mask Operators as 
Intended 

This probably refers to the confusing syntactic notation for masking operations 

in C. In Lisp this is done by the usual parenthesized prefix. While this does not 

entirely prevent misunderstanding, prefix and and logand are more distinct 

than C's infix & and &&. 

4.1.10 L13. Check Preprocessor Conditionals 

There is no example of preprocessor conditional errors in Yu's paper, but we can 

imagine that this is partly an extension of C's confusing conditionals applied to 

the preprocessing stage. Conditional code expansion based on the environments at 

compile-time and source-file-read-time is provided in Lisp through various macro 

capabilities. The potential confusion of multiple configurations can be a source 

of errors in any case, and we're not sure Lisp has a lock on a fix here. 
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4.7.7 7 L14. Check Comment Delimiters 

Lisp has several kinds. Since my comments are displayed in the editor in a 

color different from that of program text, it is hard to confuse them on the screen. 

I do not understand why this elementary tool has somehow been lost in the 5ESS 

programmers' environment. Perhaps monochromatic hardcopy is the primary 

source code repository, and comments are not displayed in a distinct manner. One 

might think that the use of a particularly dull editor, one unable to tell that it was 

displaying comments or program, could be to blame. In any case, in C it's hard 

to see where a comment ends in large comments, and the comments in C don't 

nest—you can't easily comment out a function that itself contains a comment. 

Lisp has comments "to the end of the line" as well as bracketing comments. 

4.7.12 L15. Ctiecking the Sign of Unsigned Variables 

There are none in Lisp. Variables don't have signs. Numeric values have signs, 

but asking for the sign of a bitstring or some other encoding that is not a number 

is an error. 

4.7.13 L16. Uses BESS Switch Defined Variables Properly 

There would likely be some variation of this issue in any implementation lan­

guage. 

4.1.14 LI7. Use Cast Cautiously 

Yu's paper describes bugs caused by number conversion/truncation using casts. 

Why use cast at all? Are we saving bits? Presumably the storage of data in records 

would be done by an assignment, or perhaps a write into a file. Basic data types 

in Lisp are manifest. One can ask of a value "are you an integer?" and then 

use it appropriately. One can also produce a new value by coercion: say of an 

integer to a character. One cannot refer to a primitive value of one type through 

storage equivalence as though it were another in legal code. If cast in C (to support 

untagged union types) is used to squeeze the most out of storage, it should make 

any programmer think twice: it's not a great idea in the first place, but at least one 

would hope that proper support of data abstractions as well as the use of explicit 

tags would reduce this source of error. 

4.2 Interface Flaws 

This class of flaws consists of apparent disagreements between function defini­

tions and their uses. The caller assumes an argument is a pointer, but the function 
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disagrees. A consequence of some such disagreements can be that an erroneously 

passed copy of a large structure may overflow a stack. Many of these errors 

would not occur in Lisp, although there is still the possibility of using arguments 

in the wrong order, or simply calling the wrong function. Rather than insisting 

that functions with no return values be declared of return type void, it has been 

historically convenient in Lisp to decide that every function returns a value; if 

nothing else comes to mind, perhaps a condition code. Common Lisp allows 

multiple returned values (any number including 0 values), which removes the 

necessity for "in/out" or "output parameters" in argument lists. We discuss this 

"functional" orientation again when we provide arguments against Lisp, but for 

now, let us say that Lisp allows interfaces that are rather more versatile, allowing 

optional, keyword, and default arguments. Argument-count checking can be done 

at compile time and also enforced at runtime. 

4.3 Maintainability Flaws 

Major flaws in maintainability seem to include insistence on extra parentheses 

and bracketing to guard against the case of insertion of statements breaking control 

flow. That is, in C one should write if a {b;} just in case a statement is later 

inserted before or after the statement b. The otherwise correct if a b; is not as 

easily maintained. The Lisp c o n d has no such problem. 

5. Arguments against Lisp, and Responses 

We have heard the argument that Lisp is slow because it is interpreted, or is 

bad because it uses a garbage collector (GC) for storage reallocation. This is 

hardly tenable when Java is being promoted as a substitute for C, or when heuristic 

garbage collectors are promoted for C or C++.^^ 

The pauses that plagued old Lisp systems during GC are no longer likely: a 

commercial Lisp garbage collector is likely to be based on a quite efficient "gener­

ational" scavenger. In an interactive environment, time-sharing delays, network 

transmission delays, and computation time are likely to be of the same general 

time scale as pauses for GC. Real-time collectors (say, restricted to 10-ms time 

slices) are perfectly feasible.^^ In long-running "batch" jobs, GC delays are not 

of concern in any case. 

Lisp is now smaller than some net browsers or editors, and fits in memory 

that costs a few dollars at your comer computer store. Some Lisp systems can 

produce run-time executable code packages trimmed to exclude most development 

^^Available at http: //www. hpl. hp. com/personal/Hans-Boehm/gc/. 

' ^ See Appendix 1. 
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features, most particularly the compiler and debugging tools; further trimming can 

be done if it is possible to detect at "dump" time that e v a I and its friends cannot 

be used, and that the only functions used are those invoked explicitly or implicitly 

by user code. 

It is not always possible to eliminate every bit of code not needed in an appli­

cation, and so these run-time systems are rarely as small as the "minimal C code" 

needed to perform a simple task. (One could eliminate the garbage collector if 

one knew that only a small amount of store was ever needed. Deducing this 

automatically would be rather difficult.) As one mark, the minimal run-time-only 

binary from a commercial Lisp vendor, Franz Inc., is about 750 kB. For typical 

commercially supported Lisp systems one may need to pay a license fee to redis­

tribute run-time-only binaries. This is sometimes cited as a factor in academic 

software projects' decisions to avoid Lisp, although the rationale does not bear 

close scrutiny. ^^ 

A license fee for redistribution of binaries is apparently not an issue in serious 

commercial Lisp-based software development where manpower and other costs 

dwarf the cost of buying such rights.'^ In fact if Lisp is properly considered not 

as a language, but as an "enabling technology," similar to say, a real-time OS 

(Wind River), or CORBA (Visibroker, etc.), or an object-oriented database (Poet 

or ODI), then fees or royalties are treated as an accepted norm related to the 

value added by the system. The reality is that availability and support on mission-

critical issues (including updates as hardware and operating systems change) may 

simply be worth the price in the real world: the alternatives are limited or just 

as costly (i.e., building and maintaining a "free" implementation or purchasing 

from another vendor). While we may be used to a C compiler being free, it 

may actually be simply one that someone else nearby purchased. We address this 

further in Appendix 2. 

One might be concerned about error conditions—"What if the garbage collec­

tion procedure cannot find more memory?"—except that one must face (and in a 

bullet-proof program, solve) similar challenges about "What if m a 11 o c returns 

0?" or for that matter "What if the run-time stack overflows?" 

Recovery from such situations inevitably is going to depend on features of 

the environment external to the language definition. Lisp as a system provides 

error-handling standards, and particular implementations may provide additional 

debugging or recovery tools. A system that has a simple description has just 

one advantage—namely simplicity—compared to a more sympathetic but more 

'^For fans of free software there is a GNU common lisp (GCL) as well as a CMU Common Lisp. 

Furthermore, the Lisp tradition is such that major vendors have "lite" Lisp packages free for the 

downloading. 

^^I am grateful for information on this topic from Franz Inc., J. Foderaro and Samantha Cichon, 

March 15, 1999. 
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complex system. This simplicity advantage rapidly disappears when the error 

handling must be written from scratch: simply crashing with "bus error" is not 

usually an adequate emergency action. 

While Lisp can be implemented interpretively, directly, or via a byte-code 

system, as can Java or C, today's Common Lisps are usually oriented to producing 

compiled machine code from user programs. Lisp speed in critical programs 

can be further optimized by advisory declarations. There is some evidence that 

execution time is comparable to compiled C [5]. Additionally, early compi­

lation also provides extra checking on syntax, argument counts, semantic program 

analysis, etc. 

Functional programming is a perplexity in efficiency. In particular, the func­

tional paradigm is favored by many Lisp programmers. While this leads to a 

kind of modularity that is helpful in debugging (in particular, tracing functions 

completely reveals the sequence of operations and operands), it can be wasteful. 

While programmers in C or other languages can use the same functional style, 

such a choice is somewhat less typical. 

Let us explain the situation. Assume that you have one instance of a compli­

cated data structure denoted A. You write a loop that repeatedly updates A to be a 

new combination of the old A and the value of a variable i: say (d o t i m e s {i n) 

(setf A (combine A i))). The ordinary interpretation of this would be to 

have Lisp construct a new object C where the value of C is (combine A i). 

Then A is set to "point to" the same structure as C. The old value of A then 

becomes garbage and is eventually reclaimed from memory. This happens n 

times, and so n versions of C are produced with « - 1 of them being discarded. 

By contrast, a state-oriented (not functional) style of programming would be to 

alter or update "in place" all the components of A, typically by "passing in A by 

reference." In this model there is never a "new" or an "old" A: just the single A. 

This appears to be economical in storage, and indeed unless the functional loop 

above is cleverly optimized or somehow finessed algorithmically, the functional 

applicative style of programming loses in terms of efficiency. 

There are three possible remedies in Lisp. The first is rarely useful: to declare 

that A is a dynamic-extent variable, and hope that the system will be clever 

enough to stack-allocate A. This is pretty hard to set up unless A is initialized 

to a constant: otherwise, it is not obvious that its initial value is unshared. The 

dynamic-extent declaration support seems to be most likely used for the 

processing of & r e s t arguments. More likely is that the compiler would not be 

able to make an effective optimization of such a declaration because the result of 

combine would be difficult to compute on the stack (unless it were perhaps a 

constant list). 

The second remedy, appropriate for management of a set of large objects, is to 

implement a kind of subset storage allocation method. For example, if one were 
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inclined to explicitly manage a collection of input-output buffers, one can set up a 

resource initialized to some number of fixed-length byte arrays, and use them 

one or more at a time via explicit allocation and deallocation. The payoff comes 

when a deallocated buffer is reallocated without being garbage collected. The 

mechanism can be implemented in standard Lisp in 18 lines of code in an example 

given by Norvig [6], and in another 10 lines, a with-resources macro is 

defined, regulating return of resources on exit from a dynamic scope. 

The final remedy is the most well-known historically among Lisp program­

mers, requiring attention to the concrete data-structure level. It lends itself to 

abuse and can contribute to debugging mysteries: using in-place alteration or so-

called destructive operations. ^"^ Historically this was done by functions r p I a c a 

and rplacd but in Common Lisp these are more easily specified via the setf 

mechanism. Consider changing the second element of the Hst x = (R S T)to 

V. Here's how: 

(setf X '(R S T)) = = > (R S T) ;; initialize 

(setf (second x) 'V) = = > V ;; 

X = = > (R V T) 

A functional program would create and return a NEW list (R V T) and leave 

the value of x alone. Any one of the lines below would do the job, returning as 

the value of y, the new list. The briefest is cryptic but no faster. 

(setf y (cons (first x)(cons 'v (rest (rest x))))) 

(setf y (cons (car x)(cons 'v (cddr x)))) 

(setf y '(,(car x) v ,@(cddr x))) 

Why use the functional version then? Changing the arguments to a function by 

a "side effect" is considered bad taste. It makes debugging more difficult: you 

can't fix a bug in function f and try out (f x) if x is broken by a bug in f. Thus, 

side effects are used by most Lisp programmers cautiously. Since C programmers 

may not be able to retry f so easily, this is really an indictment of the C (or 

any batch) programming environment. The C process includes "remaking" the 

world by recompiling f and perhaps other programs, reloading and reexecuting 

the whole test framework up to the point of the error. The Lisp programmer 

would edit f or make some other change, and type (f x). 

What about data types? Isn't it wasteful to store data in Lisp's finked lists? 

This depends on the alternatives, and how tight one is for space. Modern Lisp 

is not only about lists, but has arrays of small-numbers, single- or double-floats, 

bit-strings, 2-d bitmaps, character-strings, file handles, and a vast collection of 

^"^This may sound dangerous, and it is. That is one reason that C is so error prone, because that is 

how virtually all C language programs with pointers are composed (that is, dangerously). 
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"objects" (including methods), etc. While C has some primitive raw objects, it 

is certainly possible that Lisp has the right mix of features at the right cost, and 

using its built-in data types can unleash a vast armamentum of program tools. 

Many Common Lisp implementations allow the definition, allocation, and manip­

ulation of C structures directly, but this is used almost exclusively for commu­

nication with C libraries requiring such stuff, and rarely, if ever, for its own 

sake. With a sufficiently low-level approach one can build specialized data-

structures that are more space-efficient than any higher-level language's normal 

structures, whether this is C or Lisp. We generally don't make much of such 

issues in comparisons: implementations of C typically waste some number of 

bits in each 32-bit pointer for machines that have an actual address space less 

than 4 GB.^^ The implementations also use 8-bit bytes for characters, when 7 

or fewer bits^^ might be adequate. In almost all cases, the argument for space 

efficiency, even though proffered as a reason for using C, is rarely taken entirely 

seriously. If it were believed that a 10% improvement in speed or size were 

critical in competitive markets (say, in embedded systems where the vendor has 

control of all parameters: choice of CPU, etc.), then a strong argument exists in 

favor of assembly language, not C. In fact, critical components in Lisp imple­

mentations may be provided in assembly language, and the prospect exists for 

a programmer to write in assembly language within Lisp: after all, a typical 

commercial Lisp system has a compiler and assembler available even at run­

time. The argument for assembly language programs where speed and size are 

truly critical still exists. We suspect that some C programmers, even though they 

will claim that C is "fast," fail to use the compiler's optimizer, and are therefore 

substantially slower than they could be! In such circumstances, any argument for 

speed is questionable. 

Norvig [6] attacks the common myth that Lisp is a "special purpose" language 

for artificial intelligence, whereas languages like Pascal [7] and C are "general 

purpose": 

Actually, just the reverse is true. Pascal and C are special-purpose languages 
The majority of their syntax is devoted to arithmetic and Boolean expres­

sions, and while they provide some facilities for forming data structures, 
they have poor mechanisms for procedural abstraction or control abstraction. 
In addition, they are designed for the state-oriented style of programming: 
computing a result by changing the value of variables through assignment 
statements. [6, p. ix] 

^^Even today, almost no programming systems have 2^^ bytes of RAM installed. Why do we not 

use 24-bit pointers, or even 16-bit "word-aligned" pointers? 

^^If you can make do with upper-case letters and numbers you have 64 different values in a mere 6 

bits. 
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Another point sometimes raised in justifying the use of C is its obvious compat­

ibility with external libraries and programming interfaces supplied with an operat­

ing system. Since virtually all Lisps allow for the calling of "foreign" functions 

that may be in libraries (or in extremis, written in assembler or C), this is not 

a serious barrier. Some Lisp systems come packaged with rather complete API 

setups, which are in effect the provision of the appropriately declared linkages 

from Lisp to the library. Programs requiring call-backs can also be handled. A 

more significant issue may be the fact that the compilers directly supported by 

hardware manufacturers may evolve along with advances in the hardware, and 

these are likely to be compilers for C or (for scientific computing) Fortran. Thus, 

MMX extensions in C are provided from Intel. Since those portions of the Lisp 

run-time system and library that need access to the hardware tend to be written in 

C, some of these improvements are incorporated in Lisp. We concede that user 

programs intended to direcdy access new hardware features as soon as they are 

released may need to be written in assembler or a language that has been extended 

in an appropriate way. That language today is likely to be C and/or Fortran. 

A final issue is familiarity with languages. This has had entirely too much 

influence in language selection. All else being equal, it is sensible to use a 

programming language when there is a large market of relatively skilled program­

mers familiar with it. 

Are there Lisp programmers out there? All computer science graduates at 

UC—Berkeley (as well as many nonmajors), about 900 per year, are introduced 

to the Lisp dialect of Scheme. Many also learn C-h-h or Java. The most productive 

programmers may very well be those who find Lisp most attractive. We see 

companies that hire primarily on the basis of "experience in C programming" 

and quiz prospective hires on C-language obscurities. Such a strategy may fail 

to identify candidates with the key traits that eliminate the other causes of flaws: 

one would hope that companies wish to hire the candidates of high intelligence, 

and capable of creative problem solving. Indeed, the strategy of quizzing on C 

obscurities may repel the very best and the brightest. 

As a variation on this theme of "we are writing in C because that is what more 

people know" we have heard anecdotally that it is difficult to assemble a high-

quality team that can handle a mix of languages: given that if Lisp is introduced 

late into a project, or must interface to an existing library, then some percentage 

of the preexisting code (in C) must be "sucked in," requiring understanding of 

two languages. It is scary to think that some software producers view the key to 

productivity as targeting their development system as well as their hiring practices 

for lower-quality programmers. While in some areas it may be advantageous to 

be able to hire in quantity, it has seemed fairly evident that overall programmer 

productivity favors quality. 
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6. But Why is C Used by Lisp Implementors? 

Some poking around shows that most, if not all, recent Lisp systems are imple­

mented partly in C\ Why? Because virtually all general-purpose hardware/ 

operating system combinations offer C compilers and a way to interface to their 

operating system through C. Since one must "bootstrap" from something, C is 

more convenient and more easily portable than assembly code. Assembly lan­

guage coding is, however, sometimes required to incorporate low-level machine 

descriptions when no other satisfactory method can be found, and usually a good 

compiler will need to know about the assembly-level operation codes of the ma­

chine it is compiling for. Above that minimal level, (95-1- %) of Lisp is imple­

mented in Lisp (or a Lisp subset) language. For example, we know of no instance 

in which a Lisp compiler is written in a language other than Lisp. 

In fact we feel reasonably comfortable with the view that the C programming 

language, subject to the constraints of today's world, is a good vehicle for imple­

menting that small kernel of a (presumably different and better!) programming 

language. The question we have addressed here can be reemphasized: once you 

or someone else has implemented that better language, why should you continue 

to write in C? 

7. Conclusion 

It is unfortunate that so much commercial programming has fallen into the trap 

of using an essentially low-productivity language, and addressing shortcomings 

by a combination of advice, exhortations, and maxims. While tools like version 

control and interactive development frameworks help to some extent, they do not 

correct language flaws. 

Would you consider undergoing surgery knowing that the tools in the operation 

included = and ==, and that the use of the wrong one would result in your death? 

Significant complex applications have been programmed in Lisp, including 

Web-based commerce (stores and business-to-business), computer-aided design, 

document analysis, control and simulation systems, visual interfaces, and the 

traditional application areas including artificial intelligence, expert-system build­

ing, and programming language experimentation. 

While we are not aware of controlled experiments that demonstrate the cost-

effectiveness of Lisp vs Java vs C, we are forced to rely primarily on anecdotal 

evidence, personal experience, and most heavily, common sense. 

We expect that programming in Lisp will continue to be especially appropriate 

for time-critical delivery of reliable complex software. We also expect that when 

there is a full accounting of all costs for a project, it will be seen as cost-effective 

as well. 
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Appendix 1: Cost of Garbage Collection 

For purposes of argument, let us make the hypothesis that a programmer could 

otherwise keep storage straight and do foolproof allocation and return of storage, 

without any programming overhead recordkeeping (such as reference counts). It 

is certainly possible to do this with small programs where we can get away with 

deferring all deallocations until the end of the run, and let the operating system 

free the storage, at "no cost." You do this right, you win. 

Winning is highly unlikely in the case of large, continuously running systems. 

In fact, such systems tend to be written with their own allocation programs (per­

haps to keep a stock of particular sizes on hand and avoid running out when 

m a 11 o c fails), may use more storage, have more bugs, and be slower than a 

carefully crafted system. There is some evidence that rolling your own code will 

not be better than good implementations of "conservative garbage collectors" that 

heuristically guess at what might be collected: an attempt to partially mitigate the 

probability of storage leaks in C or C-h-h. There are even Java GCs based on this 

idea. 

A comparison of these to the run-time cost of doing garbage collection properly 

requires a detailed analysis on particular benchmarks, quite beyond the scope of 

this paper. However, we will try to give some plausibility arguments to support 

our contention that the cost in all but highly unlikely scenarios will be quite small. 

We could even make an argument that GC will, for many realistic scenarios, be 

faster than direct use of malice. 

We will, by hypothesis, assert that the GC algorithm is correct. The more 

sophisticated algorithms are not trivial, but these programs are reasonably mature, 

and have been beaten on mercilessly by many users for many years. Let us discuss 

briefly the efficiency issues. 

There are two places to notice the cost. 

The historically obvious lumped cost of doing the garbage collection has al­

ready been mentioned, and is highly satisfactory. 

The generation-scavenging ideas that make possible a rather unobtrusive execu­

tion require that the system perform some recordkeeping so that the information 

needed for garbage collection is maintained in a consistent state. The technical 

requirement in modern generation-scavenging garbage-collection Lisp systems is 

that the programs must keep track of s e t f or other destructive changes in pointers 

in old space. In the case that a pointer from an old generation to new space is 

created, the system must make note of this garbage collection "root" that would 

otherwise not be known except by expensive scanning of old generations. No 

marking need be done for creating or modifying a pointer from new space. 

An important optimization is that no marking and therefore no checking is 

needed for the large percentage of variables that are stack allocated, local within 
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a function, and are naturally going to be used for marking, if they are still on the 

stack when a GC is prompted. 

The added cost for a s e t f (from new space) is usually four instructions, most 

likely overlapped: A call,^^ a load of the new-space border, a compare, and 

a conditional jump back. The less likely route is about 35 instructions (on a 

Pentium), when a pointer from old space must be renewed. 

Appendix 2: Isn't C free? 

It's not always the case that the free G-l-l- (GNU C) compiler is the one you 

should use, but even so, an alternative C compiler is likely to have already been 

paid for. We have already mentioned the availability of open source or GNU-

licensed versions of Common Lisp system (see the Association of Lisp Users 

home page for descriptions: www. elwood. com/alu/table/systems. htm). 

Does it make sense nevertheless to buy Lisp (and even buy new versions year 

after year)? 

We quote from a Lisp user (3/17/99) on the c o m p. I a n g. I i s p newsgroup, 

L. Hunter, Ph.D. of the National Library of Medicine (Bethesda, MD, USA): 

I'd like to point out that it is equally important (or perhaps even more so) 

that someone be paid, and paid well, to make "industrial strength" versions 

of the language. Top notch programming language people are expensive, 

and I want as many as we can collectively afford to be working on LISP. 

Moving the language into the future, and even just keeping up with the 

onslaught of new platforms, standards, functions, etc., that we hardcore users 

need is not something that is likely to happen for free. Lisp is NOT Linux 

- there isn't nearly the motivation nor the broad need driving Lisp devel­

opment. 
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