
Software Fault Prevention by Language
Choice: Why C is Not My Favorite
Language

RICHARD FATEMAN

Computer Science Division
Electrical Engineering and Computer Sciences Department
University of California—Berkeley
Berkeley, California 94720-1776
USA

fateman@cs.berkeley.edu

Abstract

How much does the choice of a programming language influence the preva­

lence of bugs in the resulting code? It seems obvious that at the level at which

individuals write new programs, a change of language can eliminate whole

classes of errors, or make them possible. With few exceptions, recent liter­

ature on the engineering of large software systems seems to neglect language

choice as a factor in overall quality metrics. As a point of comparison we

review some interesting recent work which implicitly assumes a program

must be written in C. We speculate on how reliability might be affected by

changing the language, in particular if we were to use ANSI Common Lisp.

1. Introduction and Background 168

2. Why Use C? 169

3. Why Does Lisp Differ from C? 171

4. Root Causes of Flaws: A Lisp Perspective 173

4.1 Logic Flaws 173

4.2 Interface Flaws 178

4.3 Maintainability Flaws 179

5. Arguments against Lisp, and Responses 179

6. But Why is C Used by Lisp Implementors? 185

7. Conclusion 185

Appendix 1: Cost of Garbage Collection 186

Appendix 2: Isn't C free? 187

Acknowledgments and Disclaimers 187

References 188

ADVANCES IN COMPUTERS, VOL. 56 1 67 Copyright 2002 Elsevier Science Ltd
ISBN 0-12-012156-5 All rights of reproduction in any form reserved.

168 RICHARD FATEMAN

1. Introduction and Background

In a recent paper, Yu [1] describes the kinds of errors committed by coders

working on Lucent Technologies advanced 5ESS switching system. This system's

reliability is now dependent on the correct functioning of several million lines of

source code. ^

Yu not only categorizes the errors, but enumerates within some categories the

technical guidelines developed to overcome problems.

Yu's paper's advice mirrors, in some respects, the recommendations in Magu-

ire's Writing Solid Code [2], a book brought to my attention several years ago

for source material in a software engineering undergraduate course. This genial

book explains techniques for avoiding pitfalls in programming in C, and contains

valuable advice for intermediate or advanced C language programmers. It is

reminiscent of (and acknowledges a debt to) Kernighan and Plauger's Elements

of Programming Style [3]. Maguire's excellent lessons were gleaned from Micro­

soft's experience developing "bug-free C programs" and are provided as anecdotes

and condensed into pithy good rules.

The key emphasis in Yu's paper as well as Maguire's book is that many program

problems are preventable by individual programmers or "development engineers"

and that strengthening their design and programming capabilities will prevent

errors in the first place.

Yet the important question that Yu and his team, as well as Maguire, never

address is this simple one: "Is the C programming language appropriate for the

task at hand?"

We, perhaps naively, assume that the task is not merely "write a program that

does X." It should be something along the lines of

Write a correct, robust, readable, documented program to do X. The program
should be written so that it that can be modified, extended, or re-used in
the future by the original author or others. It is good (and in some cases
vital) that it demonstrate efficiency at run-time in time and space, machine
independence, ease of debugging, etc.

The task might also include incidental constraints like "Complete the program

by Tuesday." For obvious reasons, for purposes of this paper we are assuming

that the task constraints do not include "You have no choice: it must be written

in C." It is unfortunate that this constraint is implicit in much of what has been

' It would be foolhardy to rely on the perfection of such a large and changing body of code. In fact,

the code probably does not function correctly. A strategy to keep it running is to interrupt it perhaps

50 times a second. During these interruptions checks and repairs are made on the consistency of data

structures before allowing the resumption of normal processing. Without such checks it is estimated

that these systems would crash in a matter of hours.

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 169

written, and that for many programmers and writers about programming it is

nearly subconscious: so much so that problems that appear only in C are appar­

ently thought to be inherent in programming.

While the C programming language has many virtues, it seems that the forced

selection of this language directly causes many of the problems cited by Yu,

specifically when the goal is to produce reliable programs in a natural way.

Many of us are well aware that the Department of Defense made the deter­

mination that for building reliable real-time embedded programs, C was not a

suitable language. The resulting engineering process gave birth to the language

Ada.^ Ada has not caught on in civilian programming for a variety of reasons.

Rather than examining the C/Ada relationship, here we will look primarily at a

comparison of C to Common Lisp, a language we think has many lessons for

how to support software engineering in the large. While Common Lisp is widely

used and highly regarded in certain niches, it is not a mainstream programming

language.

2. Why Use C?

C evolved out of the expressed need to write programs to implement in a

moderately high-level language the vast majority of operating systems function­

ality for the UNIX operating system for the 16-bit PDP-11 computer. It was in

turn based on the language "B" used for UNIX on the PDP-7 computer. The

intent, at least after the initial implementation, was expanded to try to make this

code nearly machine independent, despite the numerous PDP idioms that show

through.

UNIX and C together have evolved and spread to many different computer

architectures. C in particular has also generated successor languages in which one

usually sees many of the original choices that were incorporated in C, combining

ideas of data structuring (object oriented), economy of expression, and program

control flow, with a particular syntactic style.

The human/computer design balance in which C and UNIX originated prob­

ably made good sense in the early 1970s on many computers. C even looked

avant garde in 1978 when Digital Equipment Corp's VAX 11/780 computer

became a popular successor to the PDP-11. The manufacturer's operating system

was written in a mixture of lower-level languages (Assembler, BLISS) and so C

seemed "high level." In fact, DEC (now Compaq)'s Alpha OPEN-VMS software

continues to include substantial BLISS source code.

^How much better would the situation be if 5ESS were written in Ada? That would be another

paper, I think.

170 RICHARD FATEMAN

C worked well when computers were far more expensive than today: a standard

configuration VAX of that time would be a 256-kB, 1-MIPS machine with optional

(extra cost) floating-point arithmetic. In 1978 such a machine supported teams of

programmers, a screen-oriented editor was a novelty, and at UC—Berkeley, much

of the Computer Science research program was supported on just one machine.

C has certainly endured, and this is a tribute to the positive qualities of the

design: it continues to occupy a certain balance between programming effort and

efficiency, portability versus substantial access to the underlying machine mecha­

nisms. Even its strongest advocates must acknowledge that C is not "optimal":

certainly smaller code could be provided with byte codes, and faster code by

programming in assembler.

A strong practical support for C is the fact that it is nearly universally imple­

mented on computing platforms, being available on many of them in a refined

development environment. Add to these rationales those provided by employers

in choosing C: There is a relative abundance of C programmers coming from

school. There is an expectation that established programmers will know C. In

fact this contributed to the design of Java, whose syntax is based in part on the

assumption that programmers would find a C-like syntax comfortable.

However, times have changed. Today we expect a single programmer to com­

mand a machine 400 times larger in memory, and 400 times faster than that in

1978. Why should we expect a language design oriented to relatively small code

size, oriented toward an environment in which simplicity of design dominates

robustness, to continue to be an appropriate choice?

Why is it used at Berkeley? Many faculty know C fairly well. We often use

UNIX in some form, and even Microsoft Windows or Macintosh systems provide

C. C is "good enough" for many student projects. It is at a low-enough level

that the transition from C to assembler can be used easily in a tutorial fashion to

demonstrate the relationship of higher-level language notions to their implemen­

tation at the level of machine architecture. By being the implementation language

for the UNIX operating system, additional programming in C provides access

to nearly every feature short of those few machine-dependent concepts available

only to the assembly-language programmer.

Unfortunately, class projects lead students to believe that this is the way it

should be, even though nearly all aspects of the project violate real-world pro­

gramming task requirements. How many real projects have perfectly defined

and idealized requirements specified in "the assignment"? How many projects

would be deemed complete and given a passing grade when they show first signs

of producing a correct answer? A probable typical student project is unreliable,

under-designed, under-documented "demoware." It's also written in C. While the

real world leaves behind so many aspects of the student project, why should the

programming language still be the same?

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 171

While C++ as well as Java and class libraries have changed the outlook of

programmers in dealing with complexity through object orientation (and Java

has taken a major positive step in automatic storage allocation), there are still

areas of concern: these languages seem to be major sources of inefficiency in

programming effort, ultimately reflected in the difficulty of using them in building

correct large systems.

3. Why Does Lisp Differ from C?

Any sufficiently complicated C or Fortran program contains an ad-hoc, infor­

mally-specified bug-ridden implementation of half of Common Lisp.

— Philip Greenspun, 10th rule of programming

Today's Common Lisp is descended from Lisp 1.5 of 1960, one of the oldest

languages in use today,^ and yet Common Lisp is in some respects one of the

newest languages. Today it is defined as a 1994 ANSI standard (X3J13).

Most of the evolution since 1960 was driven by programmers optimizing their

own productivity environment. Compared to commercial installations of the time,

little emphasis was placed on efficient batch processing. Instead, memory and

computation resources were deployed specifically for programmer support. This

meant time-sharing when others were using batch. This meant single-user work­

stations when others were using time-sharing. This meant graphical interfaces

when others were using text-line interfaces. In a typical development artificial

intelligence project, one or a few programmers would set to the task of building

a fast prototype to try out ideas. Often this required the building of a kind of

new application-specific "language" on top of the Lisp foundation."^ The notion

of reliability was rarely a goal, typically being less important than flexibility,^ but

tools for debugging were always a very high priority. In academia and in industrial

research laboratories, often the most advanced programming environments were

developed on Lisp systems, including those at Xerox, BBN, Symbolics, MIT,

Stanford, Carnegie-Mellon, and here at UC—Berkeley.

^Only the Fortran heritage is longer.

"^The tradition of bottom-up programming in functional languages means that the components tend

to be testable in relative isolation, they are more likely to be reusable, and this leads to a greater level of

flexibility when the higher-level functionality is implemented. Often this is combined with a top-down

design philosophy.

^The ease of prototyping in a language is key: in "Accelerating Hindsight, Lisp as a Vehicle for

Rapid Prototyping" Lisp Pointers, 7, 1-2, Jan-Jun 1997, Kent Pitman articulates the reasons. In brief,

early review and discovery of problems lead to a rapid realization of what needs to be fixed. Since

hindsight is "20-20" this early feedback leads to better results. In the traditional, but now usually

disregarded model of software development (the waterfall model) critical problems are discovered

rather late in the development cycle.

172 RICHARD FATEMAN

In my opinion this evolution has matured to support the tasks of design and

programming addressed professionally.^ In our experience, a C programmer first

writing in Lisp will use only that subset of tools already existing in C, and thus

may initially write rather poor (nonidiomatic) Lisp. A fair comparison of pro­

gramming languages requires somewhat more than finding the common subset of

them. We believe that reaching a given level of productivity and proficiency can

be aided by today's Lisp language design.

This problem of writing in a familiar form can be observed more generally.

In a Web-based tutorial on Lisp Robert Strandh of the University of Bordeaux^

expands upon the common observation that students (and indeed others) are often

inefficient in their work. Instead of learning how to use tools properly, they flail

ineffectively with what they already know. He suggests that people can be divided

into perfection-oriented Siud performance-oriented groups:

The people in the category perfection-oriented have a natural intellectual

curiosity. They are constantly searching for better ways of doing things, new

methods, new tools. They search for perfection, but they take pleasure in

the search itself, knowing perfectly well that perfection can not be accom­

plished. To the people in this category, failure is a normal part of the strive

for perfection. In fact, failure gives a deeper understanding of why a parti­

cular path was unsuccessful, making it possible to avoid similar paths in the

future.

The people in the category performance-oriented, on the contrary, do not

at all strive for perfection. Instead they have a need to achieve performance

immediately. Such performance leaves no time for intellectual curiosity.

Instead, techniques already known to them must be applied to solve problems.

To these people, failure is a disaster whose sole feature is to harm instant

performance. Similarly, learning represents the possibility of failure and

must thus be avoided if possible. To the people in this category, knowledge in

other people also represents a threat. As long as everybody around them use

tools, techniques, and methods that they themselves know, they can count

on outperforming these other people. But when the people around them

start learning different, perhaps better, ways, they must defend themselves.

Other people having other knowledge might require learning to keep up with

performance, and learning, as we pointed out, increases the risk of failure.

One possibility for these people is to discredit other people's knowledge. If

done well, it would eliminate the need for the extra effort to learn, which

would fit very well with their objectives.

^Lisp can also be used to great advantage by novices: for example, a simplified version of Lisp

(Scheme) is a popular pedagogical language. This is not our concern here.

^Available at http: //dept-inf o. labri . u-bordeaux. f r/~strandh/Teaching/MTP/Com

mon/Strandh-Tutorial/Dir-symbolic.html.

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 173

Of course this is a simplification, and individuals normally contain aspects of

each category; as an example, a perfectionist mathematician may be performance-

oriented when it comes to computing.

4. Root Causes of Flaws: A Lisp Perspective

Our thesis is that the C programming language itself contributes to the perva­

siveness and subtlety of programming flaws, and that the use of Common Lisp

would benefit the program implementation and maintenance effort.

Yu's paper [1] on problems in the 5ESS system indicates 10 major coding fault

areas (and an extra "other" category) and gives proposed countermeasures. Not

all the countermeasures are easily applied, regardless of language. In particular,

how is one to achieve "better thinking" or "more time" or "better education"?

Such sections we will not address here.

We will look at the other coding fault areas given in each of the remaining major

sections. We emphasize, along with Yu, three of these that account for more than

50% of the total. We spend most of our space on the first of these, partly to keep

this paper from ballooning out of reasonable length.

4.1 Logic Flaws

The largest area was logic flaws, accounting for 19.8% of the faults encoun­

tered. These are errors that occur when the control logic causes a branch to an

incorrect part of the program or logically computes an incorrect value.

How many of these are easily (we are tempted to say, automatically) corrected

by using a language better adapted than C to writing more usually correct pro­

grams? (We give examples in Lisp when appropriate.)

4.7.7 L 7. Initialize All Variables before Use

This is done automatically by Lisp for ordinary scalar local variables when

created. Initial default values can be specified for every array. Declarations

and initializations of global variables can be done viadefvar, defconstant,

defparameter depending on how "constant" they are. Arrays can be initial­

ized as well.

4.7.2 L2. Control Flow of Break and Continue Statements

Conditional control flow with if, case, and cond is clearly indicated in

correctly indented code, and Lisp code is correctly indented in the normal

174 RICHARD FATEMAN

development environment. The traditional complaint of non-Lisp programmers

that there are too many parentheses is simply not an issue: A programmer types as

many parentheses as necessary, watching a suitable editor "flashing" the balancing

parenthesis of a construct, and indenting as necessary. Errors in structure are

easily detected. Beyond this, one can do far better with proactive editor assistance,

as suggested by Fry [4], in making sure that coding reflects the expected control

flow.

Presumably one of the C problems being cited by Yu is that break and con­

tinue statements can occur in expressions deeply nested inside the s w i t c h or

for statements to which they refer. Thus you end up with what amounts to a

goto statement but one whose target is not apparent. Worse yet someone editing

the code may not see your break or continue statement and surround it with

another switch or for statement, thus inadvertently changing the target.

Lisp has a similar problem with the return form statement, which can appear

inside various constructions (officially those that have a "block" body: let, let*,

prog, do, do* dotimes, do I ist among others). With a deeply nested

return you may not be able to tell which form it's returning from (especially

with user-defined macros surrounding the form). It's good Lisp practice in any

situation in which it is not entirely obvious what the target of a return is to use the

named block statement and convert the r e t u r n to an explicit return-from

with the label of the block.

With C if you want to be sure of getting to some place you must use the goto

statement, with all the baggage that that might entail.

4.1.3 L3. Check C operator associativity and precedence

The first example given in Yu's paper (simplified here) was if (x->y.z &

r = = s) ..., which should have been if ((x->y.z & r) = = s) This would be

expressed in Lisp approximately as

(if (equal (logand (slot-value (slot-value x y) z)

r)

s) ...)

where we assume a corresponding encoding of structures in C and Lisp, and that x

is an object of type y. There are neater ways of encoding structures and accessors

that would look different from the use of s I o t - v a I u e, so this is only an approx­

imation.

Other examples in Yu's paper include bugs based on a programmer's misun­

derstanding of the order of various operations with respect to incrementation

(and of course the implicit agreement of other programmers who have walked

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 175

through the code as to the misinterpretation): * n + + which should have been

{*n) + +.

Of course much of this is (he argues) bad practice in C coding: even if the

programmer had gotten it right the first time, the next human reader of the code

might misunderstand it. In fact, one could argue that in all possible places a pair

of parentheses, even those that are unnecessary, should be inserted in properly

engineered code.

This is a particularly irksome language issue. Note that the K&R C pro­

gramming language has 15 precedence levels, of which 3 classes of operator

are right-to-left associative. The symbol * occurs in TWO levels, the characters

-I- and > in various combinations each occur in THREE distinct levels, and the

character - occurs in FOUR levels.

By contrast, all operators in Lisp are delimited prefix operators with no associa­

tivity or precedence. Even C's a ^ b + c which might not involve much mystery is

arguably clearer as Lisp's (+ (* a b) c). If you doubt such clarity helps, ask a

C programmer to explain: a**b + + + c. How sure?

4.7.4 L4. Ensure Loop Boundaries Are Correct and L5. Do

Not Overindex Arrays

Lisp has no perfect solution because off-by-one errors cannot be removed syn­

tactically in general. However, it is possible via standard looping constructs to

make it clear that the number of iterations corresponds to the number of elements

in a set or elements in an array (Common Lisp has the notion of a sequence

that includes lists and arrays. Some constructs are available that work on either

data structure.): (dotimes (i 5)(f i)) computes (f 0) through (f 4). If A

is any sequence (list, array), then (dotimes (i (length A)) ..(elt A i)..)

will refer to each element in A.

For sets represented as lists, there are alternative forms of iteration such as

(delist (i '("hello" "goodbye")) (g i)).

There is also the more recently introduced modem functional mapping con­

struct (map) which takes one argument to specify the result type, a function / of

« arguments to be applied, and « sequences. Thus (m a p 'array #'+ #(1 2 3)

#(4 5 6)) produces #(5 7 9).

Numerous functions are provided to search, select, sort, and operate on se­

quences. The meaning of the operation does not require the decoding of a

potentially unfamiliar and possibly erroneous C idiom. Instead it relies on the

understanding of a function on sequences such as remove-duplicates.

While we are talking about sequences, we should observe that other storage

types are available in the language: there is a hash-table primitive data type.

176 RICHARD FATEMAN

Other kinds of logical termination conditions can be imposed by additional

iteration constructs. There are several common macro packages that seek to make

looping "easier" by interspersing key words like until or unless with accumu­

lation operations like sum or collect.

4.7.5 L6. Ensure Value of Variables Is Not Truncated

In C if a wide value (say 16 bits) is assigned to a narrow storage spot, some

bits are lost, apparendy without being noticed. This cannot happen in Lisp in

assigning values to variables since variables will ordinarily take on "any" values.

That is, (setf x y) does not ever change or truncate y. If one stores a value in an

object defined using CLOS,^ then one has rather substantial freedom in checking

any attributes of the value being deposited by the setf method, and if it matters,

this should certainly be checked. In properly engineered code it is likely that

one would not be sadsfied with a type check, but plausible ranges or other asser­

tions might be checked as well. This could be done (as they say, "transparently")

because the process of setting values can be overloaded. Although setf can be

compiled down to a single instruction in the simplest case, it is not confined to be

such a simpHsdc implementation as "=" in C.

At one time I would have felt compelled to defend some level of overhead

in CLOS as being a reasonable price to pay for full-fledged object orientation.

Given the advent of C-l-l- and Java, it seems the battle has been fought elsewhere

and apparently won.^

4.7.6 L7, Reference Pointer Variables Correctly, L8. Check
Pointer Arithmetic, and L9. Ensure Logical OR and
AND Tests are Correct

Yu does not give an example, but many C programs have such bugs when first

written, and detecting them is painful. Lisp does not have "pointer variables," and

it does not do pointer arithmetic, so incorrectly incremendng pointers does not

happen. Dereferencing pointers cannot be done incorrecdy because it is not done

at all.

^The Common Lisp object system.

^The object system in Common Lisp is more general than that in Java, C++, Smalltalk, and Simula.

Among other features, CLOS has multiple dispatch, meaning that the operation being invoked can be

selected using the types of all of its arguments. It also supports multiple inheritance, available in C++

but in Java only via interfaces. Some features of CLOS are surprising: dynamic class definition allows

one to (for example) add slots and methods to a class after instantiating some elements! Common Lisp

also has its meta object protocol (MOP), which can be used to build both more targeted and efficient

or more elaborate and general object systems.

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 177

Logical operations on bitstrings are done using logand, logic r, and I o g -

X o r, and Lisp provides a full selection of logical bit operations. Truth-valued

decisions can be made with and and o r as well as not. These are all delimited

prefix operators. It is unlikely to be confused with the masking operations, since

they have substantially different names, not formed by stuttering one character.

C's use of any nonzero value as a Boolean true appeals has limited appeal if you

are concerned with readability. In Lisp the value NIL is the only false value.

4.7.7 L10. Assignment and Equal Operators

C uses the easily confused = and = = syntax. Lisp uses the rather distinct s etf

and equal operations. In fact there are some alternatives to equal depending

upon what is being compared. The nuances of e q and e q n are relevant for

optimization, but probably not of concern here.

4.1.8 L11. Ensure Bit Field Data Types Are Unsigned or
Enum

Lisp has bit strings; an enumerated data type can be defined, but would pro­

bably be handled via abstraction. Small sets are often represented by lists, but

could be stored in hash tables or trees or other structures, depending on efficiency

criteria.

4.1.9 L12. Use Logical AND and Mask Operators as
Intended

This probably refers to the confusing syntactic notation for masking operations

in C. In Lisp this is done by the usual parenthesized prefix. While this does not

entirely prevent misunderstanding, prefix and and logand are more distinct

than C's infix & and &&.

4.1.10 L13. Check Preprocessor Conditionals

There is no example of preprocessor conditional errors in Yu's paper, but we can

imagine that this is partly an extension of C's confusing conditionals applied to

the preprocessing stage. Conditional code expansion based on the environments at

compile-time and source-file-read-time is provided in Lisp through various macro

capabilities. The potential confusion of multiple configurations can be a source

of errors in any case, and we're not sure Lisp has a lock on a fix here.

178 RICHARD FATEMAN

4.7.7 7 L14. Check Comment Delimiters

Lisp has several kinds. Since my comments are displayed in the editor in a

color different from that of program text, it is hard to confuse them on the screen.

I do not understand why this elementary tool has somehow been lost in the 5ESS

programmers' environment. Perhaps monochromatic hardcopy is the primary

source code repository, and comments are not displayed in a distinct manner. One

might think that the use of a particularly dull editor, one unable to tell that it was

displaying comments or program, could be to blame. In any case, in C it's hard

to see where a comment ends in large comments, and the comments in C don't

nest—you can't easily comment out a function that itself contains a comment.

Lisp has comments "to the end of the line" as well as bracketing comments.

4.7.12 L15. Ctiecking the Sign of Unsigned Variables

There are none in Lisp. Variables don't have signs. Numeric values have signs,

but asking for the sign of a bitstring or some other encoding that is not a number

is an error.

4.7.13 L16. Uses BESS Switch Defined Variables Properly

There would likely be some variation of this issue in any implementation lan­

guage.

4.1.14 LI7. Use Cast Cautiously

Yu's paper describes bugs caused by number conversion/truncation using casts.

Why use cast at all? Are we saving bits? Presumably the storage of data in records

would be done by an assignment, or perhaps a write into a file. Basic data types

in Lisp are manifest. One can ask of a value "are you an integer?" and then

use it appropriately. One can also produce a new value by coercion: say of an

integer to a character. One cannot refer to a primitive value of one type through

storage equivalence as though it were another in legal code. If cast in C (to support

untagged union types) is used to squeeze the most out of storage, it should make

any programmer think twice: it's not a great idea in the first place, but at least one

would hope that proper support of data abstractions as well as the use of explicit

tags would reduce this source of error.

4.2 Interface Flaws

This class of flaws consists of apparent disagreements between function defini­

tions and their uses. The caller assumes an argument is a pointer, but the function

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 179

disagrees. A consequence of some such disagreements can be that an erroneously

passed copy of a large structure may overflow a stack. Many of these errors

would not occur in Lisp, although there is still the possibility of using arguments

in the wrong order, or simply calling the wrong function. Rather than insisting

that functions with no return values be declared of return type void, it has been

historically convenient in Lisp to decide that every function returns a value; if

nothing else comes to mind, perhaps a condition code. Common Lisp allows

multiple returned values (any number including 0 values), which removes the

necessity for "in/out" or "output parameters" in argument lists. We discuss this

"functional" orientation again when we provide arguments against Lisp, but for

now, let us say that Lisp allows interfaces that are rather more versatile, allowing

optional, keyword, and default arguments. Argument-count checking can be done

at compile time and also enforced at runtime.

4.3 Maintainability Flaws

Major flaws in maintainability seem to include insistence on extra parentheses

and bracketing to guard against the case of insertion of statements breaking control

flow. That is, in C one should write if a {b;} just in case a statement is later

inserted before or after the statement b. The otherwise correct if a b; is not as

easily maintained. The Lisp c o n d has no such problem.

5. Arguments against Lisp, and Responses

We have heard the argument that Lisp is slow because it is interpreted, or is

bad because it uses a garbage collector (GC) for storage reallocation. This is

hardly tenable when Java is being promoted as a substitute for C, or when heuristic

garbage collectors are promoted for C or C++.^^

The pauses that plagued old Lisp systems during GC are no longer likely: a

commercial Lisp garbage collector is likely to be based on a quite efficient "gener­

ational" scavenger. In an interactive environment, time-sharing delays, network

transmission delays, and computation time are likely to be of the same general

time scale as pauses for GC. Real-time collectors (say, restricted to 10-ms time

slices) are perfectly feasible.^^ In long-running "batch" jobs, GC delays are not

of concern in any case.

Lisp is now smaller than some net browsers or editors, and fits in memory

that costs a few dollars at your comer computer store. Some Lisp systems can

produce run-time executable code packages trimmed to exclude most development

^^Available at http: //www. hpl. hp. com/personal/Hans-Boehm/gc/.

' ^ See Appendix 1.

180 RICHARD FATEMAN

features, most particularly the compiler and debugging tools; further trimming can

be done if it is possible to detect at "dump" time that e v a I and its friends cannot

be used, and that the only functions used are those invoked explicitly or implicitly

by user code.

It is not always possible to eliminate every bit of code not needed in an appli­

cation, and so these run-time systems are rarely as small as the "minimal C code"

needed to perform a simple task. (One could eliminate the garbage collector if

one knew that only a small amount of store was ever needed. Deducing this

automatically would be rather difficult.) As one mark, the minimal run-time-only

binary from a commercial Lisp vendor, Franz Inc., is about 750 kB. For typical

commercially supported Lisp systems one may need to pay a license fee to redis­

tribute run-time-only binaries. This is sometimes cited as a factor in academic

software projects' decisions to avoid Lisp, although the rationale does not bear

close scrutiny. ^^

A license fee for redistribution of binaries is apparently not an issue in serious

commercial Lisp-based software development where manpower and other costs

dwarf the cost of buying such rights.'^ In fact if Lisp is properly considered not

as a language, but as an "enabling technology," similar to say, a real-time OS

(Wind River), or CORBA (Visibroker, etc.), or an object-oriented database (Poet

or ODI), then fees or royalties are treated as an accepted norm related to the

value added by the system. The reality is that availability and support on mission-

critical issues (including updates as hardware and operating systems change) may

simply be worth the price in the real world: the alternatives are limited or just

as costly (i.e., building and maintaining a "free" implementation or purchasing

from another vendor). While we may be used to a C compiler being free, it

may actually be simply one that someone else nearby purchased. We address this

further in Appendix 2.

One might be concerned about error conditions—"What if the garbage collec­

tion procedure cannot find more memory?"—except that one must face (and in a

bullet-proof program, solve) similar challenges about "What if m a 11 o c returns

0?" or for that matter "What if the run-time stack overflows?"

Recovery from such situations inevitably is going to depend on features of

the environment external to the language definition. Lisp as a system provides

error-handling standards, and particular implementations may provide additional

debugging or recovery tools. A system that has a simple description has just

one advantage—namely simplicity—compared to a more sympathetic but more

'^For fans of free software there is a GNU common lisp (GCL) as well as a CMU Common Lisp.

Furthermore, the Lisp tradition is such that major vendors have "lite" Lisp packages free for the

downloading.

^^I am grateful for information on this topic from Franz Inc., J. Foderaro and Samantha Cichon,

March 15, 1999.

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 181

complex system. This simplicity advantage rapidly disappears when the error

handling must be written from scratch: simply crashing with "bus error" is not

usually an adequate emergency action.

While Lisp can be implemented interpretively, directly, or via a byte-code

system, as can Java or C, today's Common Lisps are usually oriented to producing

compiled machine code from user programs. Lisp speed in critical programs

can be further optimized by advisory declarations. There is some evidence that

execution time is comparable to compiled C [5]. Additionally, early compi­

lation also provides extra checking on syntax, argument counts, semantic program

analysis, etc.

Functional programming is a perplexity in efficiency. In particular, the func­

tional paradigm is favored by many Lisp programmers. While this leads to a

kind of modularity that is helpful in debugging (in particular, tracing functions

completely reveals the sequence of operations and operands), it can be wasteful.

While programmers in C or other languages can use the same functional style,

such a choice is somewhat less typical.

Let us explain the situation. Assume that you have one instance of a compli­

cated data structure denoted A. You write a loop that repeatedly updates A to be a

new combination of the old A and the value of a variable i: say (d o t i m e s {i n)

(setf A (combine A i))). The ordinary interpretation of this would be to

have Lisp construct a new object C where the value of C is (combine A i).

Then A is set to "point to" the same structure as C. The old value of A then

becomes garbage and is eventually reclaimed from memory. This happens n

times, and so n versions of C are produced with « - 1 of them being discarded.

By contrast, a state-oriented (not functional) style of programming would be to

alter or update "in place" all the components of A, typically by "passing in A by

reference." In this model there is never a "new" or an "old" A: just the single A.

This appears to be economical in storage, and indeed unless the functional loop

above is cleverly optimized or somehow finessed algorithmically, the functional

applicative style of programming loses in terms of efficiency.

There are three possible remedies in Lisp. The first is rarely useful: to declare

that A is a dynamic-extent variable, and hope that the system will be clever

enough to stack-allocate A. This is pretty hard to set up unless A is initialized

to a constant: otherwise, it is not obvious that its initial value is unshared. The

dynamic-extent declaration support seems to be most likely used for the

processing of & r e s t arguments. More likely is that the compiler would not be

able to make an effective optimization of such a declaration because the result of

combine would be difficult to compute on the stack (unless it were perhaps a

constant list).

The second remedy, appropriate for management of a set of large objects, is to

implement a kind of subset storage allocation method. For example, if one were

182 RICHARD FATEMAN

inclined to explicitly manage a collection of input-output buffers, one can set up a

resource initialized to some number of fixed-length byte arrays, and use them

one or more at a time via explicit allocation and deallocation. The payoff comes

when a deallocated buffer is reallocated without being garbage collected. The

mechanism can be implemented in standard Lisp in 18 lines of code in an example

given by Norvig [6], and in another 10 lines, a with-resources macro is

defined, regulating return of resources on exit from a dynamic scope.

The final remedy is the most well-known historically among Lisp program­

mers, requiring attention to the concrete data-structure level. It lends itself to

abuse and can contribute to debugging mysteries: using in-place alteration or so-

called destructive operations. ^"^ Historically this was done by functions r p I a c a

and rplacd but in Common Lisp these are more easily specified via the setf

mechanism. Consider changing the second element of the Hst x = (R S T)to

V. Here's how:

(setf X '(R S T)) = = > (R S T) ;; initialize

(setf (second x) 'V) = = > V ;;

X = = > (R V T)

A functional program would create and return a NEW list (R V T) and leave

the value of x alone. Any one of the lines below would do the job, returning as

the value of y, the new list. The briefest is cryptic but no faster.

(setf y (cons (first x)(cons 'v (rest (rest x)))))

(setf y (cons (car x)(cons 'v (cddr x))))

(setf y '(,(car x) v ,@(cddr x)))

Why use the functional version then? Changing the arguments to a function by

a "side effect" is considered bad taste. It makes debugging more difficult: you

can't fix a bug in function f and try out (f x) if x is broken by a bug in f. Thus,

side effects are used by most Lisp programmers cautiously. Since C programmers

may not be able to retry f so easily, this is really an indictment of the C (or

any batch) programming environment. The C process includes "remaking" the

world by recompiling f and perhaps other programs, reloading and reexecuting

the whole test framework up to the point of the error. The Lisp programmer

would edit f or make some other change, and type (f x).

What about data types? Isn't it wasteful to store data in Lisp's finked lists?

This depends on the alternatives, and how tight one is for space. Modern Lisp

is not only about lists, but has arrays of small-numbers, single- or double-floats,

bit-strings, 2-d bitmaps, character-strings, file handles, and a vast collection of

^"^This may sound dangerous, and it is. That is one reason that C is so error prone, because that is

how virtually all C language programs with pointers are composed (that is, dangerously).

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 183

"objects" (including methods), etc. While C has some primitive raw objects, it

is certainly possible that Lisp has the right mix of features at the right cost, and

using its built-in data types can unleash a vast armamentum of program tools.

Many Common Lisp implementations allow the definition, allocation, and manip­

ulation of C structures directly, but this is used almost exclusively for commu­

nication with C libraries requiring such stuff, and rarely, if ever, for its own

sake. With a sufficiently low-level approach one can build specialized data-

structures that are more space-efficient than any higher-level language's normal

structures, whether this is C or Lisp. We generally don't make much of such

issues in comparisons: implementations of C typically waste some number of

bits in each 32-bit pointer for machines that have an actual address space less

than 4 GB.^^ The implementations also use 8-bit bytes for characters, when 7

or fewer bits^^ might be adequate. In almost all cases, the argument for space

efficiency, even though proffered as a reason for using C, is rarely taken entirely

seriously. If it were believed that a 10% improvement in speed or size were

critical in competitive markets (say, in embedded systems where the vendor has

control of all parameters: choice of CPU, etc.), then a strong argument exists in

favor of assembly language, not C. In fact, critical components in Lisp imple­

mentations may be provided in assembly language, and the prospect exists for

a programmer to write in assembly language within Lisp: after all, a typical

commercial Lisp system has a compiler and assembler available even at run­

time. The argument for assembly language programs where speed and size are

truly critical still exists. We suspect that some C programmers, even though they

will claim that C is "fast," fail to use the compiler's optimizer, and are therefore

substantially slower than they could be! In such circumstances, any argument for

speed is questionable.

Norvig [6] attacks the common myth that Lisp is a "special purpose" language

for artificial intelligence, whereas languages like Pascal [7] and C are "general

purpose":

Actually, just the reverse is true. Pascal and C are special-purpose languages
The majority of their syntax is devoted to arithmetic and Boolean expres­

sions, and while they provide some facilities for forming data structures,
they have poor mechanisms for procedural abstraction or control abstraction.
In addition, they are designed for the state-oriented style of programming:
computing a result by changing the value of variables through assignment
statements. [6, p. ix]

^^Even today, almost no programming systems have 2^^ bytes of RAM installed. Why do we not

use 24-bit pointers, or even 16-bit "word-aligned" pointers?

^^If you can make do with upper-case letters and numbers you have 64 different values in a mere 6

bits.

184 RICHARD FATEMAN

Another point sometimes raised in justifying the use of C is its obvious compat­

ibility with external libraries and programming interfaces supplied with an operat­

ing system. Since virtually all Lisps allow for the calling of "foreign" functions

that may be in libraries (or in extremis, written in assembler or C), this is not

a serious barrier. Some Lisp systems come packaged with rather complete API

setups, which are in effect the provision of the appropriately declared linkages

from Lisp to the library. Programs requiring call-backs can also be handled. A

more significant issue may be the fact that the compilers directly supported by

hardware manufacturers may evolve along with advances in the hardware, and

these are likely to be compilers for C or (for scientific computing) Fortran. Thus,

MMX extensions in C are provided from Intel. Since those portions of the Lisp

run-time system and library that need access to the hardware tend to be written in

C, some of these improvements are incorporated in Lisp. We concede that user

programs intended to direcdy access new hardware features as soon as they are

released may need to be written in assembler or a language that has been extended

in an appropriate way. That language today is likely to be C and/or Fortran.

A final issue is familiarity with languages. This has had entirely too much

influence in language selection. All else being equal, it is sensible to use a

programming language when there is a large market of relatively skilled program­

mers familiar with it.

Are there Lisp programmers out there? All computer science graduates at

UC—Berkeley (as well as many nonmajors), about 900 per year, are introduced

to the Lisp dialect of Scheme. Many also learn C-h-h or Java. The most productive

programmers may very well be those who find Lisp most attractive. We see

companies that hire primarily on the basis of "experience in C programming"

and quiz prospective hires on C-language obscurities. Such a strategy may fail

to identify candidates with the key traits that eliminate the other causes of flaws:

one would hope that companies wish to hire the candidates of high intelligence,

and capable of creative problem solving. Indeed, the strategy of quizzing on C

obscurities may repel the very best and the brightest.

As a variation on this theme of "we are writing in C because that is what more

people know" we have heard anecdotally that it is difficult to assemble a high-

quality team that can handle a mix of languages: given that if Lisp is introduced

late into a project, or must interface to an existing library, then some percentage

of the preexisting code (in C) must be "sucked in," requiring understanding of

two languages. It is scary to think that some software producers view the key to

productivity as targeting their development system as well as their hiring practices

for lower-quality programmers. While in some areas it may be advantageous to

be able to hire in quantity, it has seemed fairly evident that overall programmer

productivity favors quality.

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 185

6. But Why is C Used by Lisp Implementors?

Some poking around shows that most, if not all, recent Lisp systems are imple­

mented partly in C\ Why? Because virtually all general-purpose hardware/

operating system combinations offer C compilers and a way to interface to their

operating system through C. Since one must "bootstrap" from something, C is

more convenient and more easily portable than assembly code. Assembly lan­

guage coding is, however, sometimes required to incorporate low-level machine

descriptions when no other satisfactory method can be found, and usually a good

compiler will need to know about the assembly-level operation codes of the ma­

chine it is compiling for. Above that minimal level, (95-1- %) of Lisp is imple­

mented in Lisp (or a Lisp subset) language. For example, we know of no instance

in which a Lisp compiler is written in a language other than Lisp.

In fact we feel reasonably comfortable with the view that the C programming

language, subject to the constraints of today's world, is a good vehicle for imple­

menting that small kernel of a (presumably different and better!) programming

language. The question we have addressed here can be reemphasized: once you

or someone else has implemented that better language, why should you continue

to write in C?

7. Conclusion

It is unfortunate that so much commercial programming has fallen into the trap

of using an essentially low-productivity language, and addressing shortcomings

by a combination of advice, exhortations, and maxims. While tools like version

control and interactive development frameworks help to some extent, they do not

correct language flaws.

Would you consider undergoing surgery knowing that the tools in the operation

included = and ==, and that the use of the wrong one would result in your death?

Significant complex applications have been programmed in Lisp, including

Web-based commerce (stores and business-to-business), computer-aided design,

document analysis, control and simulation systems, visual interfaces, and the

traditional application areas including artificial intelligence, expert-system build­

ing, and programming language experimentation.

While we are not aware of controlled experiments that demonstrate the cost-

effectiveness of Lisp vs Java vs C, we are forced to rely primarily on anecdotal

evidence, personal experience, and most heavily, common sense.

We expect that programming in Lisp will continue to be especially appropriate

for time-critical delivery of reliable complex software. We also expect that when

there is a full accounting of all costs for a project, it will be seen as cost-effective

as well.

186 RICHARD FATEMAN

Appendix 1: Cost of Garbage Collection

For purposes of argument, let us make the hypothesis that a programmer could

otherwise keep storage straight and do foolproof allocation and return of storage,

without any programming overhead recordkeeping (such as reference counts). It

is certainly possible to do this with small programs where we can get away with

deferring all deallocations until the end of the run, and let the operating system

free the storage, at "no cost." You do this right, you win.

Winning is highly unlikely in the case of large, continuously running systems.

In fact, such systems tend to be written with their own allocation programs (per­

haps to keep a stock of particular sizes on hand and avoid running out when

m a 11 o c fails), may use more storage, have more bugs, and be slower than a

carefully crafted system. There is some evidence that rolling your own code will

not be better than good implementations of "conservative garbage collectors" that

heuristically guess at what might be collected: an attempt to partially mitigate the

probability of storage leaks in C or C-h-h. There are even Java GCs based on this

idea.

A comparison of these to the run-time cost of doing garbage collection properly

requires a detailed analysis on particular benchmarks, quite beyond the scope of

this paper. However, we will try to give some plausibility arguments to support

our contention that the cost in all but highly unlikely scenarios will be quite small.

We could even make an argument that GC will, for many realistic scenarios, be

faster than direct use of malice.

We will, by hypothesis, assert that the GC algorithm is correct. The more

sophisticated algorithms are not trivial, but these programs are reasonably mature,

and have been beaten on mercilessly by many users for many years. Let us discuss

briefly the efficiency issues.

There are two places to notice the cost.

The historically obvious lumped cost of doing the garbage collection has al­

ready been mentioned, and is highly satisfactory.

The generation-scavenging ideas that make possible a rather unobtrusive execu­

tion require that the system perform some recordkeeping so that the information

needed for garbage collection is maintained in a consistent state. The technical

requirement in modern generation-scavenging garbage-collection Lisp systems is

that the programs must keep track of s e t f or other destructive changes in pointers

in old space. In the case that a pointer from an old generation to new space is

created, the system must make note of this garbage collection "root" that would

otherwise not be known except by expensive scanning of old generations. No

marking need be done for creating or modifying a pointer from new space.

An important optimization is that no marking and therefore no checking is

needed for the large percentage of variables that are stack allocated, local within

SOFTWARE FAULT PREVENTION BY LANGUAGE CHOICE 187

a function, and are naturally going to be used for marking, if they are still on the

stack when a GC is prompted.

The added cost for a s e t f (from new space) is usually four instructions, most

likely overlapped: A call,^^ a load of the new-space border, a compare, and

a conditional jump back. The less likely route is about 35 instructions (on a

Pentium), when a pointer from old space must be renewed.

Appendix 2: Isn't C free?

It's not always the case that the free G-l-l- (GNU C) compiler is the one you

should use, but even so, an alternative C compiler is likely to have already been

paid for. We have already mentioned the availability of open source or GNU-

licensed versions of Common Lisp system (see the Association of Lisp Users

home page for descriptions: www. elwood. com/alu/table/systems. htm).

Does it make sense nevertheless to buy Lisp (and even buy new versions year

after year)?

We quote from a Lisp user (3/17/99) on the c o m p. I a n g. I i s p newsgroup,

L. Hunter, Ph.D. of the National Library of Medicine (Bethesda, MD, USA):

I'd like to point out that it is equally important (or perhaps even more so)

that someone be paid, and paid well, to make "industrial strength" versions

of the language. Top notch programming language people are expensive,

and I want as many as we can collectively afford to be working on LISP.

Moving the language into the future, and even just keeping up with the

onslaught of new platforms, standards, functions, etc., that we hardcore users

need is not something that is likely to happen for free. Lisp is NOT Linux

- there isn't nearly the motivation nor the broad need driving Lisp devel­

opment.

ACKNOWLEDGMENTS AND DISCLAIMERS

Thanks for comments from John Foderaro and Duane Rettig of Franz Inc., as well

as George Necula of UC—Berkeley. Remaining errors of omission and commission are

the author's own. The author also admits to not only liking Lisp, but to being one of

the founders of Franz Inc., a vendor of Lisp systems and applications (www.franz.com).

Although he has a potential to profit personally from the more widespread adoption of

Common Lisp, he obviously thinks others have a potential to profit from using Lisp as

well!

^^Why not an inline expansion? It appears that adding to the bulk of the the code weighs more
heavily against performance than the call. I am grateful to Duane Rettig of Franz Inc. for information
on this matter.

188 RICHARD FATEMAN

REFERENCES

[1] Yu, W. D. (1998). "A software fault prevention approach in coding and root cause

analysis." Bell Labs Technical Journal, 3, 2, 3-21. Available at http://www.

Iucent.com/minds/techjournal/apr-junl998/pdf/paper01.pdf. See also

Yu, W. D., Barshefsky, A., and Huang, S. T. (1997). 'An empirical study of

software faults preventable at a personal level in a very large software devel­

opment environment." Bell Labs Technical Journal, 2, 3, 221-32. Available at

http: //\j\j\j. lucent. com/minds/techj ournal/summer_97/pdf/paperl5. pdf.

[2] Maguire, S. (1993). Writing Solid Code. Microsoft Press, Seattle, WA.

[3] Kemighan, B. W., and Plauger, P. J. (1974). The Elements of Programming Style.

McGraw-Hill, New York.

[4] Fry, C. (1997). "Programming on an already full brain," Communications of the ACM,

40, 4, 55-64.

[5] Fateman, R., Broughan, K. A., Willcock, D. K., and Rettig, D. (1995). "Fast floating­

point processing in common Lisp." ACM Transactions on Mathematics Software, 21,

1,26-62.

[6] Norvig, P. (1992). Paradigms of Artificial Intelligence Programming: Case Studies in

Common Lisp. Morgan Kaufmann, San Mateo, CA.

[7] Kemighan, B. W. (1981). "Why Pascal is not my favorite programming lan­

guage." ATT Bell Labs, Murray Hill, NJ. Available at http://www.lysator.

liu.se/c/bwk-on-pascal.html.

