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1. Introduction 

A "virus" may be loosely defined as a sequence of symbols which, upon interpretation in a given environment, causes 
other sequences of symbols in that environment to be modified so as to contain (possibly evolved) viruses. If we consider 
programs as sequences of symbols and computer systems as environments, viruses are programs that may attach 
themselves to other programs and cause them to become viruses as well. If we consider strands of proteins as sequences of 
symbols and the biochemistry of cell nuclei as environments, viruses are protein strands that may attach themselves to 
other protein strands and cause them to become viruses as well. If we consider thought patterns as sequences of symbols 
and brains as environments, viruses are thought patterns that may attach themselves to other thought patterns and cause 
them to become viruses as well. 

Consider the case where two similar information areas (call them cells), are able to communicate sequences of symbols. 
If one cell (A) contains a virus (V), and if.  communication results in the transmission of V to the other cell (B), and if B 
then interprets V, sequences of symbols stored in B may be modified. If appropriate communication paths are available, a 
virus may spread from cell to cell. Consider the case where two similar groups of cells (call them organisms), are able to 
communicate sequences of symbols. If one organism (A) contains a virus (V), and if communication results in the 
transmission of V to the other organism (B), and if B then interprets V, sequences of symbols stored in cells of B may be 
modified. If appropriate communication paths are available, a virus may spread from organism to organism. We can 
extend this sequence of analogous events indefinitely, and thus form a hierarchy of organisms and an associated hierarchy 
of viral communication paths. 

There are many properties of viruses that are interesting at many different levels within many different domains. We 
will extend our discussion in the domain of computer viruses; viruses within computer systems. In our discussion, we use 
as general a model of environments and symbol sequences as we reasonably can in the hopes that the extensions to other 
domains and levels will be straight forward and obvious. The reader who is so inclined, may consider /our discussion of 
computer viruses as merely a vehicle for expressing our understanding in the more general sense. 

1.1 Extended Abstract 

In this thesis, we open the new topics of viruses and protection from viruses in computer systems. We define a class of 
computing mechanisms called "viruses",1  and explore many of their properties, particularly in regard to the threat they 
pose to the integrity of information in information systems. 

The present work concentrates, at the surface level, on integrity problems in computer systems, but strong analogies 
may be drawn to biological systems and other systems with the information characteristics necessary to support viruses. 
Where possible, analogies to other systems will be drawn at a philosophical level, but no attempt will be made to 
demonstrate these analogies with mathematical rigor. 

We begin our discussion by briefly reviewing the relevant literature in "computer security", and conclude that no 
serious previous work has been found in the open literature on the problem of computer viruses. It thus appears that the 
concept of computer viruses is a novelty in scientific literature at this point, and that little effective protection against 
viruses is currently available. 

We begin the discussion of viruses with an informal discussion based on an English language definition. We give 
"pseudo-program" examples of viruses as they might appear in modern computer systems, and use these examples to 
demonstrate some of the potential damage that could result from their use in attacking systems. It is because of this 
potential damage that we give our examples in pseudo-code rather than an actual computer language for an actual 
computer system. 

illere are two spellings for the plural of virus; 'virusses', and 'viruses'. We use the one found in Webster's 3rd International Unabridged Dictionary. 
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We formally define viruses for "Turing machines", and explore some of their properties. We define a Turing machine 

and a set of (machine,tape-set) pairs which comprise "viral sets" (VS). We show that the union of VSs is also a VS, and 

that therefor a "largest" VS (INS) exists for any machine with a viral set. We define a "smallest" VS (SVS), as a VS of 

which no subset is a VS, and show that for any finite integer "i", there is an SVS with exactly i elements. 

We show that any self replicating tape sequence is a one element SVS, that there are countably infinite VSs and non 
VSs, that machines exist for which all tape sequence are viruses and for which no tape sequences are viruses, and that any 
finite sequence of tape symbols is a virus with respect to some machine. 

We show that determining whether a given (machine,tape-set) pair is a VS is undecidable (by reduction from the 
halting problem), that it is undecidable whether or not a given "virus" evolves into another virus, that any number that 
can be "computed" by a TM can be "evolved" by a virus, and that therefor, viruses are at least as powerful as Turing 
machines as a means for computation. 

We then move into a discussion of the relevance of viruses to modern computer protection techniques. We modify the 
"subject object" protection model [32] to allow computation to be modeled along with protection, by defining a new class 
of protection machines called "Universal Protection Machines" (UPMs). We show several examples of UPM viruses, and 
prove that a virus can spread to the transitive closure of information paths from any given source. 

The paths of sharing, transitivity of information flow, and generality of information interpretation are identified as the 
key properties in the spread of computer viruses, and a case by case analysis of these properties is shown. We show that 
the only systems with potential for limiting viral spreading are systems with limited transitivity and limited sharing, 
systems with no sharing, and systems without general interpretation of information (Turing capability). Only the first case 
appears to be of practical interest to current computer systems. Several protection techniques are explored for their effect 
on limiting viral spread in computer systems, and some previously unexposed properties of the combination of the 
"security" and "integrity" models are shown. Difficulties with "imprecise" protection schemes are presented, the most 
injurious being their tendency to move towards isolationism. 

These results are extended to the design of secure computer networks which implement distributed isolationism, and 
which allow the connection of trusted and untrusted computers to form trusted computer networks. Simple design rules 
are derived which allow the configuration of secure networks from pictures. Two classes of attacks against these types of 
computer networks are examined, and an example network is shown under various attack assumptions. 

We examine the generalization and combination of security and integrity lattices to partial orderings, and show that a 
partial ordering is as general a classification scheme as is necessary to model protection in a transitive information 
network. We extend the previous results to include the effects of modifications of a protection system over time, show 
techniques for generalized evaluation of the effects of collusions, and demonstrate a method by which a provably correct 
information management system for automating administration of protection in information networks may be 
implemented. 

We explore viral detection and removal methods which don't depend on the prevention of sharing, limitations on 
transitivity of information flow, or restricted functionality. Undecidability issues presented earlier are presented in a 
different form to demonstrate the potential difficulties with detection and cure of computer viruses. Although certain 
classes of viruses, predominantly those with trivial or simplistic evolutionary characteristics, appear to be defensible 
through detection and removal, more complex or highly evolutionary viruses appear to present unscalable barriers. The 
biological analogy to rapidly mutating viruses such as those which comprise the common cold appears to be very strong 
here. 

We examine a complexity based integrity maintenance method with the possibility of detecting corruption through 
built in self test. A method is shown whereby copyright notices and other aspects of programs and data may be 
maintained even in a system with no built in defenses. Integrity corruption in such a system is show to be extremely 
complex, and the technique appears to present a costly but viable defense. 
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The results of several experiments with computer viruses are used to demonstrate that viruses arc a formidable threat in 

both normal and high security operating systems. Detailed descriptions of experiments arc given for three examples, an 

example of a \,ery short virus for an actual operating system is given, and summary tables are presented. 

We explore the use of the results in computer viruses in biological and other domains, and consider the use of the 
fundamental viral definition as a definition of life. Living systems are considered as a combination of an environment and 
information within that environment which reproduces and evolves, and several philosophical questions are explored. 

It is concluded that the study of computer viruses is an important research area with potential applications to other 
fields, that current systems offer little or no protection from viral attack, and that the only perfectly 'safe' policy as of this 
time is isolationism. Extensions of this work are suggested, and several conjectures are presented. 

1.2 Related Work 

Given the wide spread use of sharing in current computer systems, the threat of a virus carrying a Trojan horse [1] [41] 
is significant. Although a considerable amount of work has been done in implementing policies to protect from 
undesirable dissemination of information [3] [19], and many systems have been implemented to provide protection from 
this sort of effect [42] [45] [30] [40], little work has been done in the area of keeping information entering an area from 
causing integrity corruption. [39] [5] 

There are many types of information paths possible in computer systems, some legitimate and authorized, and others 
that may be covert [39], the most commonly ignored one being through the user. We will ignore covert information paths 
throughout this work, and concentrate only on the effects of viruses as transmitted through the normal authorized 
information paths available in.computer systems. 

The general facilities exist for providing provably correct protection schemes [24], but they depend on a consistent and 
complete security policy that is effective against the types of attacks being carried out. Even some quite simple protection 
systems cannot be proven safe. [32] Protection from denial of services requires the solution to the halting problem which 
is well known to be undecidable. [53] The problem of precisely marking information flow within a system has been shown 
NP-complete. [27] The use of guards for passing untrustworthy information between users has been examined [56], but in 
general depends on the ability to prove program correctness which is well known to be NP-complete. [28] 

The Xerox worm program [50] has demonstrated the ability to propagate through a network, and has even accidentally 
caused denial of services. In a later variation, the game of 'core wars' [21] was invented to allow two programs to do battle 
with one another. Other variations on this theme have been reported by many unpublished authors, mostly in the context 
of night time games played between programmers. The term virus has also been used in conjunction with an 
augmentation to APL in which the author places a generic call at the beginning of each function which in turn invokes a 
preprocessor to augment the default APL interpreter. [31] 

The poiential threat of a widespread security problem has been examined [33] and the potential damage to government, 
financial, business, and academic institutions is extreme. In addition, these institutions tend to use ad hoc protection 
mechanisms in response to specific threats rather than theoretically sound techniques. [36] Current military protection 
systems depend to a large degree on isolationism, however new systems are being developed to allow 'multilevel' 
usage. [37] None of the published proposed systems defines or implements a policy which could completely prevent viral 
attack. 

More detailed literature reviews on particular areas of interest are presented throughout the text as required. 
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2. Computational Aspects of Computer Viruses 

We begin our presentation of the computational aspects of viruses with an informal discussion of viruses within modern 
computer systems. We then move into more formal definitions using Turing machines [53], and formally show 
mathematical properties of viruses. 

2.1 Informal Discussion 

We informally define a computer 'virus' as a program that can 'infect' other programs by modifying them to include a, 
possibly evolved, copy of itself. With the infection property, a virus can spread throughout a computer system or network 
using the authorizations of every user using it to infect their programs. Every program that gets infected may also act as a 
virus and thus the infection spreads. 

The following pseudo-program shows how a virus might be written in a pseudo-computer language. The ": =" symbol 
is used for definition, the ":" symbol labels a statement, the ";" separates statements, the " = " symbol is used for 
assignment or comparison, the "—" symbol stands for not, the "{" and "}" symbols group sequences of statements 
together, and the "..." symbol is used to indicate that an irrelevant portion of code has been left implicit. 

program virus:. 
(1234567; 

subroutine infect-executable:. 
{loop:file • get-random-executable-file; 
if first-line-of-file • 1234667 then goto loop; 
prepend virus to file; 
} 

subroutine do-damage:. 
{whatever damage is to be done} 

subroutine trigger-pulled:. 
{return true if some condition holds} 

main-program:- 
{infect-executable; 
if trigger-pulled then do-damage; 
goto next;} 

next:) 	

Figure 2.1 - A Simple Virus 'V' 

This example virus (V) searches for an uninfected executable file (E) by looking for executable files without the 
"1234567" in the beginning, and prepends V to E, turning it into an infected file (I). V then checks to see if some 
triggering condition is true, and does damage. Finally, V executes the rest of the program it was prepended to. When the 
user attempts to execute E, I is executed in its place; it infects another file and then executes as if it were E. With the 
exception of a slight delay for infection, I appears to be E until the triggering condition causes damage. 

A common misconception of a virus relates it to programs that simply propagate through networks. The worm program, 
'core wars', and other similar programs have done this, but none of them actually involve infection. The key property of a 
virus here, is its ability to infect other programs, thus reaching the transitive closure of sharing between users. As an 
example, if V infected one of user A's executables (E), and user B then ran E, V could spread to user B's files as well. 

It should be pointed out that a virus need not be used for destructive purposes or be a Trojan horse. As an example, a 
compression virus could be written to find uninfected executables, compress them upon the user's permission, and 
prepend itself to them. Upon execution, the infected program decompresses itself and executes normally. Since it always 
asks permission before performing services, it is not a Trojan horse, but since it has the infection property, it is still a virus. 
Studies indicate that such a virus could save over 50% of the space taken up by executable files in an average system. The 
performance of infected programs decreases slightly as they are decompressed, and thus the compression virus 
irnnlnrrorntc a nartienlar time enure tradeoff A samnle comnression virus could he written as follows: 
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program compression-virus:. 
(01234667; 

subroutine infect-executable:. 
(loop:file 	get-random-executable-file; 
if first-line-of-file • 01234667 then goto loop; 
compress file; 
prepend compression-virus to file; 

main-program:. 
(if ask-permission then infect-executable; 
decompress the-rest-of-this-file into tmpfile; 
run tmpfile;) 

Figure 2.2 - A Compression Virus ''CV" 

This program (C) finds an uninfected executable (E), compresses it, and prepends C to form an infected executable (I). 
It then decompresses the rest of itself into a temporary file and executes normally. When I is run, it will seek out and 
compress another executable before decompressing E into a temporary file and executing it. The effect is to spread 
through the system compressing executable files, and decompress them as they are to be executed. An implementation of 
this virus has been tested under the UNIX operating system, and is quite slow, predominantly because of the time 
required for decompression. 

As a more threatening example, let us suppose that we modify the program V by specifying "trigger-pulled" as true 
after a given date and time, and specifying "do-damage" as an infinite loop. With the level of sharing in most modern 
computer systems, the entire system would likely become unusable as of the specified date and time. A great deal of work 
might be required to undo the damage of such a virus. This modification is shown here: 

subroutine do-damage:. 
(loop: goto loop;) 

subroutine trigger-pulled:. 
(if year>1984 then true otherwise false* 

0.4 

Figure 2.3 - A Denial of Services Virus 

As an analogy to this virus, consider a biological disease that is 100% infectious, spreads whenever animals 
communicate, kills all infected animals instantly at a given moment, and has no detectable side effects until that moment. 
If a delay of even one week were used between the introduction of the disease and its effect, it would be very likely to 
leave only the people in a few remote villages alive, and would certainly wipe out the vast majority of modern society. If a 
computer virus of this type could spread throughout the computers of the world, it would likely stop most computer 
usage for a significant period of time, and wreak havoc on modern government, financial, business, and academic 
institutions. 

A better understanding of the events which might comprise an actual viral attack may be facilitated with the following 
time line, which shows a simplified scenario of a viral attack on a computer system. 

initial 

in! ection 	takeover 	triggering 

la 	 S. 

spreading 	delay 
	

damage 

Figure 24 - A Scenario of a Viral Attack 

A viral attack on a computer system begins with an initial infection. This infection may be created internally or 
communicated to the system from outside, perhaps as the result of importing infected vendor software. 

Once implanted, every time a virus is interpreted, other programs may become infected. Each replication of a virus is 
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called an infection, and the period over which infection takes place is called the spread time. A typical virus spreads from 
program to program, and from user. to user, eventually embedding its replicants in every program in the system. 

Once a virus spreads to the transitive closure of information flow within the system, the infectious period is ended. In 
most current operating systems, the resulting infection can spread to all programs, so we call the end of the infectious 
period the takeover time. In systems with special users that have all rights, we consider the system taken over when a 
special user's program becomes infected. 

At this point, an attacker wishing to do severe damage might choose to simply wait. By delaying the damage in a viral 
attack, an attacker can cause backup tapes to store infected copies of programs, and thus to become of little value once 
damage is done. A particularly nasty attacker might even infect the backup program and encrypt all information on 
backup tapes, decrypting information upon retrieval until such time as,desired. The period over which an attacking virus 
waits before performing damage is called the delay time. 

The condition used to cause the damaging effects of a virus to begin is called the triggering condition, and the time at 
which triggering takes place is called the triggering time. Once triggering occurs, every time an infected program is 
executed, damage is done. 

In the case of the encrypting virus mentioned above, the damage might be for each program to enter an infinite loop. 
Even if we were to restore the backup tapes using a different system, we would find only encrypted information, and thus 
a great deal of work might be lost. 

2.2 Symbols Used in Computability Proofs 

Throughout the remainder of this thesis, we will be using logical symbols to define and prove theorems about "viruses" 
and "machines". We begin by detailing these symbols and their intended interpretation. 

We denote sets by enclosing them in curly brackets "{" and "}" [e.g. {a,b}]. We normally use lower case letters [e.g. 
a,b,...] to denote elements of sets, and upper case letters [e.g. A,B,...] to denote sets themselves. The exception to this rule 
is the case where sets are elements of other sets, in which case we use the form most convenient for the situation. 

The set theory symbols E, C, U, and, or, V, iff, and 3 will be used in their normal manner, and the symbol IN will be 
used to denote the set of the natural numbers [e.g.{0,1,...}]. The notation {x s.t. P(x)} where P is a predicate will be used 
to indicate all x s.t. P(x) is true. Square brackets "[" and "]" will be used to group together statements where their 
grouping is not entirely obvious, and will take the place of normal language parens. The "(" and ")" parens will be used to 
denote sequences [e.g. (1,2,...)]. The "..." notation will be used to indicate an indefinite number of elements of a set, 
members of a sequence, or states of a machine wherein the indicated elements are too numerous to fill in or can be 
generated by some given procedure. 

When speaking of sets, we may use the symbol "+" to indicate the union of two sets [e.g. {a} + {b} ={a,b}], the symbol 
U to indicate the union of any number of sets, and the symbol "-" to indicate the set which contains all elements of the 
first set not in the second set [e.g. {a,b}-{a}={b}1. We may also use the "=" sign to indicate set equality. In all other 
cases, we use these operators in their normal arithmetic sense. The 1...1 operator will be used to indicate the cardinality of a 
set or the number of elements in a sequence as appropriate to the situation at hand [e.g. 1{a,b,c}I =3, 1(a,b,...,01= 6], and 
the symbol I when standing alone will indicate the "mod" function [e.g. 12110=2]. 

2.3 Computing Machines 

We begin our formal discussion with a definition of a computing machine [53] which will serve as our basic 
computational model for the duration of the discussion. We will be discussing the class of machines which consist of a 
finite state machine (FSM) with a "tape head" and a semi-infinite tape [see figure below]. The tape head is pointing at one 
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tape "cell" at any given instant of time, and is capable of reading or writing any of a finite number of symbols from or to 
the tape, and of moving the tape one cell to the left (-I) or right (+ ) on any given "move". The FSM takes input from 
the tape, sets its next state, and produces output on the tape as functions of its internal state and maps. 

Figure 2.5 - A Computing Machine 

A set of Computing Machines "TM" is defined as follows: 
V M [M E TM] iff 

M: (Sm,Im,0m:Sm  X IM  -+ IM ,NM:SM  X IM 	Sm,0m:Sm  X IM 	d) 

where the state of the FSM is one of n +1 possible states, 
Se[so 	sn) 	n E 

the set of tape symbols is one ofj + 1 possible symbols, and 
im-{10 	ii) 	j E IN 

the set of tape motions is one of three possibilities 
cl.{-1,0,41), 

We now define three functions of "time" which describe the behavior of TM programs. Time in our discussion 
expresses the number of times the TM has performed its basic operation (called a "move" by Turing). 

The "state(time)" function is a map from the move number to the state of the machine after that move, 
sM  • IN 	SM 	 ;state(time) • 

the "tape-contents(time,cell#)" function is a map from the move number and the cell number on the semi-infinite tape, 
to the tape symbol on that cell after that move, 

Om  : IN X IN 14 	;tape-contants(timccallO) 

and the "cell(time)" function is a map from the move number to the number of the cell in front of the tape head after that 
move. 

PM: IN 	IN 	;cell(time) 

We call the 3-tuple (Sm, Om, PM), the "history" (HM) of the machine, and the HM  for a particular move number (or 
instant in time if you prefer) the "situation" at that time. We describe the operation of the machine as a series of "moves" 
that go from a given situation to the next situation. The initial situation of the machine is described by: 

(sm(0)4140 . 	 Pm(0)40 ) 	1 E IN 

All subsequent situations of the machine can be determined from the initial situation and the functions "N", "0", and 
"D" which map the current state of the machine and the symbol in front of the tape head before a move to the "next 
state", "output", and "tape position" after that move. We show the situation here as a function of time: 

V t EN 
pm(t+1)01(1314(t).00,Pm(t)))) and 

[Dm(t+1,Pm(t))•0(814(t),;(t,Pm(t)))) and 

Pm(t), ON(t+1.,1).00,j)3 and 

[Pm(t+1)-Sup(0,Pm(t)+D(Sm(t),;(t,Pm(t))))3 

These machines have no explicit "halt" state which guarantees that from the time such a state is entered, the situation of 
the machine will never change We thus define what we mean by "halt" as any situation which does not chance with 
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We will say that "M Halts at time t" iff 
[V t' > t 

[SM(t)-SM(t')] and 

[V i E N [121 m(t,i).0m(ts,i)]] and 

[PM(t)-PM(t')]] 

and that "M Halts" iff 
[3t E IN [M Halts at time t]] 

We say that "x runs at time t" if 
[[x E Imi  where i E [11+1]] and 

[P(t) 	j] and [S(t)■80] and 

[0:1(t,P(t)) 	 Ell(t,P(t)+Ix1)).x]] 

and that "x rune iff 
t E N [x runs at time t]] 

As a matter of convenience, we define two structures which will occur often throughout the rest of the discussion. The 
first structure "TP" is intended to describe a "Turing machine Program". We may think of such a program as a finite 
sequence of symbols such that each symbol is a member of the legal tape symbols for the machine under consideration. 
We define TP as follows: 

[V m E TM [V v [V i E [11.+1] 

[v E TPM] iff [v E Imi]]n 

The second structure "TS" is intended to describe a non-empty set of Turing machine programs (Turing machine 
program Set) and is defined as: 

[V m E TM [V V [V E TS] iff 

1) [3 v E V] and 

ii) [V v E V [v E TPM]]]] 

The use of the subscript M (e.g. TPM) is unnecessary in those cases where only a single machine is under consideration 
and no ambiguity is present. We will therefor abbreviate throughout this paper by removing the subscript when it is 
unnecessary. 

2.4 Formal Definition of Viruses 

We now define the central concept under study, the "viral set". In earlier statements, we informally defined a "virus" 
as a "program" that modifies other "programs" so as to include a (possibly "evolved") version of itself. In the 
mathematical embodiment of this definition for TMs, given below, we attempt to maintain the generality of this 
definition. We note that in the sense of a TM, there is no fundamental difference between data and program. We thus 
speak only of sequences in our TM discussion. 

Several previous attempts at definition have failed because the idea of a singleton "virus" makes the understanding of 
"evolution" of viruses very difficult, and as we will hopefully make clear, this is a central theme in the results presented 
herein. The "viral set" embodies evolution by allowing elements of such a set to produce other elements of that set as a 
result of computation. So long as each "virus" in a "viral set" produces some element of that "viral set" on some part of 
the tape outside of the original "virus", the set is considered "viral". Thus "evolution" may be described as the production 
of one element of a "viral set" from another element of that set. 

The sequence of tape symbols we call "viruses" is a function of the machine on which they are to be interpreted. In 
particular, we may expect that a given sequence of symbols may be a "virus" when interpreted by one TM and not a 
"virus" when interpreted by another TM. Thus, we define the following pair "VS" as follows: 
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[1]VMVV 

[2] (M,V) E VS iff 

[3] [V E TS] and [M E TM] and 

[4] [Vv E V [VHm  

[5] [Vt Vj 

[6] [ 	1) PM(t)=j and 

[7] 2) Sm(t)=Smo  and 

[8] 3) (DM(t,j),...,❑M(t,j+Ivl-1)) iv  
[9] ] 
[10] [ 	3 vs E V [3ts>t [3j' 

[11] [ 	1) [(r+lv, 1)_<j] or [(j+IvI)<Js] and 

[12] 2) (❑M(t',j'),...,❑M(t',j'+Iv'I-1))=v and 

[13] 3) [3f" s.t. [t<t"<ts] and 

[14] [Pm(t")E(j',...,p+Ivs1-1)]] 

[15] ]]] ] 

We will now review this definition line by line: 

[1] for all "M" and "V", 

[2] the pair (M,V) is a "viral set" if and only if: 

[3] V is a non-empty set of TM sequences and M is a TM and 

[4] for each virus "v" in V, for all histories of machine M, 

[6] 	For all times. t and cells j 

[6] if 	1) the tape head is in front of cell j at time t and 

[7] 2) TM is in its initial state at time t and 

[8] 3) the tape cells starting at j hold the virus v 

[9] then 

[10] there is a virus vs in V, a time t'>t, and place j' 

[11] 1) at place j' far enough away from v 

[12] 2) the tape cells starting at j' hold virus vs 

[13] 3) and at some time t" between t and t' 

[14] v' is written by M 

For convenience of space, we will use the expression 

a 	c 

to abbreviate part of the previous definition starting at line [4] where a, B, and C are specific instances of v, M, and V 
respectively as follows: 

EV (V c 

[(M.c) E VS] iff 
[[C E TS] and [M E TM] and 
[V a E C [a 	C]]]]] 

Before continuing, we should note some of the features of this definition and their motivation. We define the predicate 
VS over all Turing Machines. We have also stated our definition so that a given element of a viral set may generate any 
number of other dements of that set depending on the rest of the tape. This affords additional generality without undue 
complexity or restriction. Finally, we have no so called "conditional viruses" in that EVERY element of a viral set must 
ALWAYS generate another element of that set. If a "conditional virus" is desired, we may add conditionals that either 
cause or prevent a virus from being executed as a function of the rest of the tape, without modifying this definition. 
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We may also say that V is a "viral set" w.r.t. M 

iff [(M,V) C VS] 

and define the term "virus" w.r.t. M as 

{[v C v] s.t. [(M,v) E vs]) 

We say that "v evolves into v' for M" iff 

um,v) E vs 
[[v C V] and [v1  E V] and [v ‘{v.}]] 

that "v' is evolved from v for M" iff 

"v evolves into v' for M" 

and that "v' is an evolution of v for M" iff 
[(M,V) E VS 

[3 E IN [3 v. E vi  

[v E V] and 	E V] and 

[V vk E V' [vk 	vk+1]] and 

[3 1 E N 

[3 m E N 

< m] and [vl■v] and [vm.v . ]]]]]]] 

In other words, the transitive closure of M staring from v, contains v'. 

2.5 Basic Theorems 

At this point, we are ready to begin proving various properties of viral sets. Our most basic theorem states that any 
union of viral sets is also a viral set: 

Theorem 1: 
V M V U* 

[V V E U* (M,V) E VS] 

[(M,U U*) E VS] 

Proof: 
Define U2 U U* 
by definition of U 

1) [Vv E U [3 V E U* s.t. v E V]] 
2) [V V E U* [V v E V [v E U]]] 

Also by definition, 
[(M,U) E VS] iff 

[[V E TS] and [M E TM] and 

[V v E U [v 	U]]] 
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by assumption, 

[V V E 

[V v E V [v 	V]]] 

thus since 

[V v E U [3 V E U• [v 1,‘ V]]] 

and 	[VV E 	[V C U]] 

[Vv EU [3 V C U [v 11* V]]] 

hence 	[V v E U [v /-4 U]] 

thus by definition, (M,U) E VS 

Q.E.D. 

Knowing this, we prove that there is a "la;gest" viral set with respect to any machine, that set being the union of all viral 
sets w.r.t. that machine. 

Lemma 1.1: 

[V M E TM 

[[3 V [(M,V) E VS]] .* 

[3 U 

i) [(M,U) E VS] and 

ii) [V V [[(M,V) E VS] 

[V v E V [v E U]]]]]]] 

We call U the "largest viral set" (LVS) w.r.t. M, and define 

(M,U) E LVS iff [i and ii] 

Proof: 

assume [3 V [(M,V) E VS]] 

choose U = U {V s.t. [(M,V) E VS]) 

now prove i and li 

Proof of 1: 	(by Theorem 1) 

(M,[li{V s.t. [(M,V)EVS])) EVS 

thus 	(M,U) E VS 
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Proof of ii by contradiction: 

assume ii) is false: 

thus 	[3 V s.t. 

1) [(M,V) E VS] and 

2) [3 v E V s.t. [v f U]]] 

but 	[V V s.t. (M,V) E VS 

[V v E V [v E U]]] 

thus 	[v E U] and [v E U] 

thus ii) is true 

Q.E.D. 

(definition of union) 

(contradiction) 

Having defined the largest viral set w.r.t. a machine, we would now like to define a "smallest viral set" as a viral set of 
which no proper subset is a viral set w.r.t. the given machine. There may be many such sets for a given machine. 

We define SVS as follows: 

[V M [V V 

[(M,V) E SVS] iff 

1) [(M,V) E VS] and 

2) [A U s.t 

[U C V] (proper subset) and 
[(M,U) E VS]]]] 

We now prove that there is a machine for which the SVS is a singleton set, and that the minimal viral set is therefore 
singleton. 

Theorem 2: 

[3 M [3 V 

i) [(M,V) E SVS] and 

ii) (11/1°11]] 

Proof: 	by demonstration 

M: 	Sqs0,s1}, 	I={0,1}, 

SxI M 0 

30,0 30 0 0 
s0,1 Si 1 +1 
81,0 30 1 0 
31,1 31 1 +1 

I{(1)}1=1 (by definition of the operator) 

[(M,{(1)}) E SVS] 1ff 

1) [(M,{(1)}) E VS] and 

2) [(M,{}) f VS] 

f VS (by definition since {} f TS) 
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as can be verified by the reader: 
(1) 61* ((1)} 	(t'=t+2, t"=t+1, j'=j+1) 

thus 	(M,{(1)}) E VS 
Q.E.D. 

A simulation of this TM is provided in the appendices to demonstrate that its operation is as claimed. 

With the knowledge that the above sequence is a singleton viral set and that it duplicates itself, we suspect that any 
sequence which duplicates itself is a virus w.r.t. the machine on which it is self duplicating. 

Lemma 2.1: 
[V M E TM [V u E TP 

[[u 	(0] 	[(M,(0) E VS]]]] 

Proof: 
by substitution into the definition of viruses: 
[V M E TM [V {0 

[[(M,(0) E VS] iff 
E TS] and [u IA* (0]]]] 

since 	[[u E TP] 	[(0 E TS]] (definition of TS) 
and by assumption, 

[u (0] 
[(M,(0) E VS] 
Q.E.D. 

The existence of a singleton SVS spurns interest in whether or not there are other sizes of SVSs. We show that for any 
finite integer i, there is a machine such that there is a viral set with i elements. Thus, SVSs come in all sizes. We prove 
this fact by demonstrating a machine that generates the "(x mod i) + 1"th element of a viral set from the xth element of 
that set. In order to guarantee that it is an SVS, we force the machine to halt as soon as the next "evolution" is generated 
so that no other element of the viral set is generated in the interim. Removing any subset of the viral set guarantees that 
some element of the resulting set cannot be generated by another element of the set. If we remove all the elements from 
the set, we have an empty set, which by definition is not a viral set. 

Theorem 3: 
[V i E [11+1] 

[3 M E TM [3 V 
1) [(M,V) E SVS] and 

2) [ 11/1•1]]]] 

Proof: By demonstration 
M: 	 Im(0,1,...,i), V x E {1 ..... i} 

SxI N 0 

s0,0 sO 0 0 
80,x sx x +1 

sx,* sx (xli)+1 0 

if PO, halt 
if Iv*, goto state x, move +1 
other states generalized as: 
write (xli)+1, halt 
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proof of i) 

define V={(1),(2),...,(1)) 

IVI=i (by definition of operator) 

proof of ii) 

[(M,V) E SVS] iff 

1) [(M,V) E VS] and 

2) [A U [[U C V] and [(M,U) E VS]]] 

proof of "1) (M,V) E VS" 

(1) 4* {(2)} 	(t'=t+2, t"=t+1, p=j+1) 

([1-1]) 4* ((i)) (ts=tt2, t"=t+1, j'=j+1) 
(i) 4* {(1)} 	(t'=t+2, t"=t+1, j'=j+1) 

and (1) E V, ..., and (i) E V 

as can be verified by simulation 

thus, 	[V v E V [v 4* V]] 

so 	(M,V) E VS 

proof of "2) [A U HU C V] and [(M,U) E VS]]" 

given 	[3t,J E IN [3 v E V 

HID(t,j) 	v] and 

[15(t)=80] and 

[P(t)°i]] 

[[M halts at time t+2] and 

[vIi]+1 is written at j+1 at t+1]]] 

(as may be verified by simulation) 

and 	[Vx E(1,...,i) [(x) EV]] (by definition of V) 

and 	[Vx E{1,...,i} [x 4* {[x11+1)]] 

we conclude that: 

[xli]+1 is the ONLY symbol written outside of (x) 
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thus 	[A x' # [xli]+1 [x 4* (x')]] 

now 	[V (x) E V 

[([xii1+1) E V 	[(x) E V]]] 

assume [3 U C V [(M,U) E VS]] 
[U={}] 	[(M,U) f VS] thus U * 

by definition of proper subset 
[U C V] 	[3 v E V [v E U]] 

but 	[3 v E V [v f U]] 
[3 v' E U [[vli1+1=v] 

and [v f U] 

and [3 v" E V [v' 4* v"]]] 

thus 	[3 v E U [v' 	V]] 

and [v' E U] 

thus 	[(M,U) E VS] which is a contradiction 
Q.E.D. 

Again, a demonstration of this TM is provided in the appendices for independent verification of its operation. 

2.6 Abbreviated Table Theorems 

We will now move into a series of proofs that demonstrate the existence of various types of viruses. In order to simplify 
the presentation, we have adopted the technique of writing "abbreviated tables" in place of complete state tables. The 
basic principal of the abbreviated table (or macro) is to allow a large set of states, inputs, outputs, next states, and tape 
movements to be abbreviated in a single statement. We do not wish to give the impression that these macros are anything 
but abbreviations, and thus we display the means by which our abbreviations can be expanded into state tables. This 
technique is essentially the same as that used in [53], and we refer the reader to that manuscript for further details on the 
use of abbreviated tables. 

In order to make effective use of macros, we will use a convenient notation for describing large state tables with a small 
number of symbols. When we define states in these state tables, we will often refer to a state as Sn  or Sn+k  to indicate that 
the actual state number is not of import, but rather that the given macro can be used at any point in a larger table by 
simply substituting the actual state numbers for the variable state numbers used in the definition of the macro. For inputs 
and outputs, where we do not wish to enumerate all possible input and output combinations, we will use variables as well. 
In many cases, we may describe entire ranges of values with a single variable. We will attempt to make these substitutions 
clear as we describe the following set of macros. 

The "halt" macro allows us to halt the machine in any given state Sn. We use the "*" to indicate that for any input the 
machine will do the rest of the specified function. The next state entry (N) is Sn so that the next state will always be Sn. 
The output (0) is * which is intended to indicate that this state will output to the tape whatever was input from the tape. 
The tape movement (D) is 0 to indicate the tape cell in front of the tape head will not change. The reader may verify that 
this meets the conditions of a "halt" state as defined earlier. 

name 	S,I 	N 	0 

halt 	Sn,' 	Sn • 0 	(halt the machine) 
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The "right till x" macro describes a machine which increments the tape position (NO) until such position is reached that 
the symbol x is in front of the tape head. At this point, it will cause the next state to be the state after Sn so that it may be 
followed by other state table entries. Notice the use of "else" to indicate that for all inputs other than x, the machine will 
output whatever was input (thus leaving the tape unchanged) and move to the right one square. 

name 	S,I 	N 	0 

R(x) 	Sn,x 	Sn+1 	x 	0 	(right till x) 
Sn,else Sn 	else 	+1 

The "left till x" macro is just like the R(x) macro except that the tape is moved left (-1) rather than right (+1). 
name 	S,I 	N 	0 

L(x) 	Sn,x 	Sn+1 	x 	0 	(left till x) 
Sn,else Sn 	else 	-1 

The "change x to y until z" macro moves from left to right over the tape until the symbol z is in front of the tape head, 
replacing every occurrence of x with y, and leaving all other tape symbols as they were. 

name 	S,I 	N 	0 

C(x,y,z)Sn.z 	Sn+1 	z 	0 	(change X to Y till Z) 
Sn,x 	Sn 	y 	+1 
Sn,else Sn 	else 	+1 

The above macros are demonstrated in the appendices in a sample program to demonstrate that they do indeed perform 
as described. 

The "copy from x till y to after z" macro is a bit more complex than the previous macros because its size depends on the 
number of input symbols for the machine under consideration. The basic principal is to define a set of states for each 
symbol of interest so that that set of states replaces the symbol of interest with the "left of tape marker", moves right until 
the "current right of tape marker", replaces that marker with the desired symbol, moves right one more, places the marker 
at the "new right of tape", and then moves left till the "left of tape marker", replaces it with the original symbol, moves 
right one tape square, and continues from there. The loop just described requires some initialization to arrange for the 
"right of tape marker" and a test to detect the y on the tape and thus determine when to complete its operation. At 
completion, the macro goes onto the state following the last state taken up by the macro, and it can thus be used as the 
above macros. 

name 	S,I 	N 	0 

CPY(X,Y,Z) 	 (copy from X till Y to after Z) 
Sn 	R(X) 	 ;right till X 
Sn+1 	Sn+2 	"N" 	0 	;write "N" 
Sn+2 	R(Y) 	 ;right till Y 
Sn+3 	R(Z) 	 ;right till Z 
Sn+4 	Sn+5 	Z 	+1 	;right one more 
Sn+5 	Sn+8 	"M" 	0 	;write "M" 
Sn+8 	L("N") 	 ;left till "N" 
Sn+7 	Sn+8 	X 	0 	;replace the initial X 
Sn+8,Y Sn+9 	Y 	+1 	;if Y, done 
Sn+8,• Sk+6• 	"N" 	+1 	:else write "N" an 

;goto sn+5 times input 
;symbol number 

Sn+9 	R(M) 	 ;right till "M" 
Sn+10 Sn+11 	Y 	0 	;copy completed 
Sk+6• 	R("M") 	 ;goto the "M" 
Sk+6•+1 Sk+6•+2 • 	+1 	;write the copied symbol 
Sk+6•+2 Sk+6•+3 "M" 	0 	;write the trailing "M" 
Sk+6•+3 L("N") 	 ;left till "N" 
Sk+6•+4 Sn+8 	• 	+1 	;rewrite • and go on 

As a note, we should observe that for each of the above macros (except "halt"), the "arguments" must be specified 
ahead of time, and if the tape is not in such a configuration that all of the required symbols are present in their proper 
order, the macros may cause the machine to loop indefinitely in the macro rather than leaving upon completion. 
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We now show that there is a viral set which is the size of the natural numbers (countably infinite), by demonstrating a 
viral set of which each clement generates an element with one additional symbol. Since, given any element of the set, a 
new clement is generated with every execution, and no previously generated element is ever regenerated, we have a set 
generated in the same inductive manner as the natural numbers, and there is thus a one to one mapping to the natural 
numbers from the generated set. 

Theorem 4: 
[3 M E TM 3 V E TS s.t. 

1) [(M,V) C VS] and 

2) [IVI=INI] 

Proof by demonstration: 

S,I 	k 	0 

14: 
	

SO,L 	Si 	L 	+1 	;start with L 
SO,else SO 	X 	0 	;or halt 
S1,0 	C(0,X,R) 	 ;change Os to Xs till R 
S2,R 	S3 	R 	+I 	;write R 
S3 	S4 	L 	+1 	;write L 
S4 	S6 	X 	0 	;write X 
S6 	L(R) 	 Move left till R 
S6 	L(X or L) 	 ;move left till X or L 
S7,1 	S11 	L 	0 	;if L goto sll 
S7,X 	S8 	0 	+I 	;if X replace with 0 
S8 	R(X) 	 ;move right till X 
S9,X 	S10 	0 	+1 	;change to 0, move right 
S10 	S6 	X 	0 	;write X and goto S6 
S11 	R(X) 	 010Ve right till X 
S12 	S13 	0 	+1 	;add one 0 
S13 	S13 	R 	0 	;halt with R on tape 

V={(LOR),(LOOR),...,(LO...OR),...) 

proof of 1) (M,V) C VS 

definition: 

[V M C TM [V V 

[(M,V) C VS] iff 

[[V C TS] and [V v C V [v 6-6 V]]]]]] 

by inspection, 

[V C TS] 

now 	[V (LO...OR) [3 (LO...00R) E V 
[(LO...OR) 1-6 {(LO...00R))]]] 
(may be verified by simulation) 

thus 	[(M,V) E VS] 
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proof of 2) IVI=IINI 
[V vn  E V [3 vn+1  E V 

[V k < n 
[A vk  E V [vk=vn+i]]]] 

this is the same form as the definition of IN, hence IVI=INI 
Q.E.D 

This program is also demonstrated in the appendices to demonstrate its operation and correctness. 

As a side issue, we show the same machine has a countably infinite number of sequences that are not viral sequences, 
thus proving that no finite state machine can be given to determine whether or not a given (M,V) pair is "viral" by simply 
enumerating all viruses (from Thm 4) or by simply enumerating all non viruses (by Lem 4.1). 

Lemma 4.1: 
[3 M E TM [3 W E TS 

1) [IWI = IINI] and 
2) [V w E W [A W' C W 

W']]]]] 

Proof: 
using M from Theorem 4, we choose 

W={(X),(XX),...,(X,...X),...) 
clearly [M E TM] and [W E TS] and [IWI=IINI] 
since (from the state table) 

[V w E W [w runs at time t] 	[w halts at time t]] 
[A t'>t [Pm(t') # Pm(t)]] 

thus 	[V w E W [A W' CW [w 	W' ]]] 
Q.E.D. 

It turns out that the above case is an example of a viral set that has no SVS. This is because no matter how many 
elements of V are removed from the front of V, the set can always have another element removed without making it 
non viral. 

We also wish to show that there are machines for which no sequences are viruses, and do this trivially below by defining 
a machine which always halts without moving the tape head. 

Lemma 4.2: 
[3 M E TM [A V E TS [(M,V) E VS]]] 

Proof by demonstration: 

S,I 	N 	0 
M: 	sO,all sO 	0 	0 

(trivially verified that [V t [Pm(t)=P0]]) 
Q.E.D. 

We now show that for ANY finite sequence of tape symbols "v", it is possible to construct a machine for which that 
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sequence is a virus. As a side issue. this particular machine is such that I.VS=SVS, and thus no sequence other than "v" 
is a virus w.r.t. this machine. We form this machine by generating a finite "recognizer" that examines successive cells of 
the tape, and halts unless each cell in order is the appropriate element of v. If each cell is appropriate we replicate v and 
subsequently halt. 

Theorem 6: 
[V v E TP [3 M E TM [(M,{v}) E VS]]] 

Proof by demonstration: 
v={v0,v2,...,vk} where [k E IN] and [v E Ii] 

(definition of TP) 

S,I 	N 	0 

M: 	sO,v0 	si 	vo 	+1 	(recognize 1st element of v) 
s0,else sO 	0 	0 	(or halt) 

• •• 	 (etc till) 
sk+1 	vk 	+1 	(recognize kth element of v) 

sk,else sO 	0 	0 	(or halt) 
sk+i 	sk+2 	v0 	+i 	(output 1st element of v) 

•• • 	 (etc till) 
sk+k 	sk+k 	vk 	+0 	(output kth element of v) 

it is trivially verified that [v 	{v}] 
and hence (by Lemma 2.1) [(M,(v)) E VS] 
Q.E.D. 

With this knowledge, we can easily generate a machine which recognizes any of a finite number of finite sequences and 
generates either a copy of that sequence (if we wish each to be an SVS), another element of that set (if we wish to have a 
complex dependency between subsequent viruses), a given sequence in that set (if we wish to have only one SVS), or each 
of the elements of that set in sequence (if we wish to have LVS = SVS). 

We will again define a set of macros to simplify our task. This time, our macros will be the "recognize" macro, the 
"generate" macro, the "if-then-else" macro, and the "pair" macro. 

The "recognize" macro simply recognizes a finite sequence and leaves the machine in one of two states depending on 
the result of recognition. It leaves the tape at its initial point if the sequence is not recognized so that successive recognize 
macros may be used to recognize any of a set of sequences starting at a given place on the tape without additional 
difficulties. It leaves the tape at the cell one past the end of the sequence if recognition succeeds, so that another sequence 
can be added outside of the recognized sequence without additional difficulty. 

S ti 

recegnize(v) 

N 

for v of size z 

0 

sn,v0 sn+1 v0 +1 	(recognize 0th element) 
sn.• sn+z+z-1 • 0 	(or rewind 0) 
... (etc till) 
sn+k,vk sn+k+1 vk +1 	(recognize kth element) 
sn+k,* sn+z+z-k • -1 	(or rewind tape) 
... (etc till) 
Sn+z-1,vz Sn+z+z vz +1 	(recognize the last one) 
Sn+z-1,* Sn+z vz +1 	(er rewind tape) 
Sn+z,* Sn+z+i  • -1 	(rewind tape ens square) 
... (for each of k states) 
Sn+z+z-1 ("didn't recognize" state) 
Sn+z+z ("did recognize" state) 

The "generate" macro simply generates a given sequence starting at the current tape location: 
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S,I 	N 	0 

generate(v) where v is of length k 
Sn 	Sn+1 	v0 	+1 

Sn+k Sn+k+1 vk 	+0 

The "iflhen-else" macro consists of a "recognize" macro on a given sequence, and goes to a next state corresponding to 
the initial state of the "then" result if the recognize macro succeeds, and to the next state corresponding to the initial state 
ofdie"else" result if the recognize macro fails: 

S,I 

if (v) (then-state) else (else-state) 
Sn 	recognize(v) 
Sn+21v1-1,* 	else-state 
Sn+21v1,* 	then-state 

• 
• 

0 
0 

The "pair" macro simply appends one sequence of states to another, and thus forms a combination of two sequences 
into a single sequence. The resulting state table is just the concatenation of the state tables: 

S,I 	N 	0 

pair(a,b) 
Sn 	a 
Sm 

We may now write the previous machine "M" as: 

if (v) (pair(generate(v),halt)) else (halt) 

We can also form a machine which recognizes any of a finite number of sequences and generates copies, 
if (v0) (pair(generate(v0),halt)) else 

if (vi) (pair(generate(v1),ha1t)) else 

if (vk) (pair(generate(vk),halt)) else (halt) 

a machine which generates the "next" virus in a finite "ring" of viruses from the "previous" virus, 
if (v0) (pair(generate(v1),halt)) else 

if (vi) (pair(generate(v2),halt)) else 

if (vk) (pair(generate(v0),ha1t)) else (halt) 

and a machine which generates any desired dependency. 
if (v0) (pair(generate(vx),halt)) else 

if (vi) (pair(generate(vy),halt)) else 
• • • 
if (vk) (pair(generate(vz),halt)) else (halt) 

where vx, vy, ...,vz E (vi 	vk) 

We provide a demonstration of a simple "recognize generate" virus of the above sort in the appendices. 

We now show a machine for which every sequence is a virus, as is shown in the following simple lemma. 

Lemma 6.1: 
[3 M E TM 

[V v E TP [3 V 
[[v E V] and [(M T V) E LVS]]]]] 

Proof by demonstration: 

Se(s0) 
S,I 	N 	0 

M: 	sO,X 	sO 	X 	+1 
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trivially seen from state table: 
[V time t [V S [VP [not M halts]]]] 

and 	[V n E N [V v E In 

[[v 	{(X)}] and [(M,{(X),v).) E LVS]]]] 
hence 	[V v E TP [0,(v,(X))) E VS]] 
and by Theorem 1, [3 V [[v E V] and [(M,V) E LVS]]] 
Q.E.D. 

2.7 Computability Aspects of Viruses and Viral Detection 

We can clearly generate a wide variety of viral sets, and the use of macros is quite helpful in pointing this out. Rather 
than follow this line through the enumeration of any number of other examples of viral sets, we would like to determine 
the power of viruses in a more general manner. In particular, we will explore three issues. 

The "decidability" issue addresses the question of whether or not we can write a TM program capable of determining, 
in a finite time, whether or not a given sequence for a given TM is a virus. The "evolution" issue addresses the question of 
whether we can write a TM program capable of determining, in a finite time, whether or not a given sequence for a given 
TM "generates" another given sequence for that machine. The "computability" issue addresses the question of 
determining the class of sequences that can be "evolved" by viruses. 

We now show that it is undecidable whether or not a given (M,V) pair is a viral set. This is done by reduction from the 
halting problem in the following manner. We take an arbitrary machine M' and tape sequence V', and generate a machine 
M and tape sequence V such that M copies V' from inside of V, simulates the execution of M' on V', and if V' halts on M', 
replicates V. Thus, V replicates itself if and only if V' would halt on machine M'. We know that the "halting problem" is 
undecidable [53], that any program that replicates itself is a virus [Lemma 2.1], and thus that [(M,V) E VS] is undecidable. 

Theorem 6: 
[2 D E TM [3 sl E SD  

[V M E TM [V V E TS 
1) [D halts] and 
2) [So(t) = s1] iff [(M,V) E VS]]]]] 

Proof by reduction from the Halting Problem: 
[V M E TM [3 M' E TM 

["L" f IM,] and ["R" f 	and and 
["1" f Im,] and ["r" f Im,] and 
[V Sm, [IM, = "rm] =4 

([1414 ,=Sm,] and [0m,="r1 and [Dm,=+1]]] 
and [VSM  

([1414=Sm] and [0m=Im] and [Dm=0]] 
alieSx] and [0M, ■IM] and Dm,=0]]] 

33 

We must take some care in defining the machine M' to assure that it CANNOT write a viral sequence, and that it 
CANNOT overwrite the critical portion of V which will cause V to replicate if M' halts. Thus, we restrict the "simulated" 
(M',V') pair by requiring that the symbols L,R,1,r not be used by them. This restriction is without loss of generality, since 
we can systematically replace any occurrences of these symbols in M' without changing the computation performed or its 
halting characteristics. We have again taken special care to assure that (M',V') cannot interfere with the sequence V by 
restricting M' so that in ANY state, if the symbol "1" is encountered, the state remains unchanged, and the tape moves 
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right by one square. This effectively simulates the "semi-infinite" end of the tape, and forces M' to remain in an area 
outside of V. Finally, we have restricted M' such that for all states such that "M halts", M' goes to state S. 

now by [63] 

[3 D E TM 

[V M' E TM [V V' E TS 
1) [D halts] and 

2) [SD (t) = 51] iff [(M',V') halts]]]] 

We now construct (M,V) s.t. 
[(M,V) E VS] iff [(M',V') Halts] 

as follows: 

S,I 	N 	0 

M: 	sO,L 	Si 	L 	0 	;if "L" then continue 
s0,else SO 	X 	0 	:else halt 
Si 	CPY("1","r","R") 	;Copy from 1 till r after R 
s2 	L("L") 	 ;left till "L" 
s3 	R("R") 	 ;right till "R" 
s4 	s6 	1 	+1 	;move to start of (M',V') 
s6 	M' 	 ;the program M' goes here 
sx 	L("L") 	 ;move left till "L" 
sx+1 	CPY("L","R","R") 	;Copy from L till R after R 

V={(L,1,v 1 ,r,R)} 

Since the machine M requires the symbol "L" to be under the tape head in state sO in order for any program to not halt 
immediately upon execution, and since we have restricted the simulation of M' to not allow the symbol "L" to be written 
or contained in v', M' CANNOT generate a virus. 

V t E IN [V Sm  < SX 

[3  Pm(t) [[I # "L"] and [0="L"]]]]] 

This restricts the ability to generate members of VS such that V only produces symbols containing the symbol "L" in 
state sO and sx + 1, and thus these are the ONLY states in which replication can take place. Since sO can only write 'L' if it 
is already present; it cannot be used to write a virus that was not previously present. 

[V t E V [Vs (s6 < s < sx) 
[not [M' halts at time t]] and [Pm(t+1) not within V]]] 

If the execution of M' on V' never halts, then sx+ 1 is never reached, and thus (M,V) can not be a virus. 

[V Z E TP s.t. Zo 	"V] 
[M run on Z at time t] 	[M halts at time t+1] 

[(M',V') Halts] iff 
[3 t E IN s,t. Sesx+1] 

thus 	[not (M',V') Halts] 	[(M.V) € VS] 

	

Since sx +1 replicates v after the final "R" in v, M' halts 	that V is a viral set w.r.t. M 

[3 t E IN s. t Stcsx+1] 
[Vv E V s.t, [v 	{V}]] 

and from Lemma 2.1 

[V vEVv‘ V] = [(M,V) E VS] 

thus 	[(M.V) E VS] iff [(M',V') Halts] 
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and by [53] 
[A D E TM 

[V M' E TM [V V' E TS 
1) [D halts] and 
2) [SD(t) = Si] iff [(M',V') halts]]]] 

thus 
(A D E TM 

[V M E TM [V V E TS 
1) [D halts] and 
2) [SD(t) = si] iff [(M,V) E VS]]]] 

Q• E.D • 

We now answer the question of viral "evolution" quite easily by changing the above example so that it replicates (state 
0') before running V' on M', and generates v' iff (M',V') halts. The initial self replication forces [(M,V)EVS], while the 
generation of v' iff (M',V') halts, makes the question of whether v' can be "evolved" from v undecidable. v' can be any 
desired sequence a, and if it is a virus and not v, it is an evolution of v iff (M',V') halts. As an example, v' could be v with a 
slightly different sequence V" in place of V'. 

Lemma 6.1: 
(A D E TM 

[V (M,V) E VS 
[Vv E V [Vv' 

1) [D halts] and 
2) [S(t) • si] iff [v 	(1.0)]]]]] 

sketch of proof by demonstration: 
modify machine M above s.t.: 

M: 	sO,L 	SO' 	L 
	

"L" then continue 
sO,else SO 
	

;else halt 
sO' 	CPY("L","R","R") 
	

;replicate initial virus 
sO" 	L("L") 
	

;return to replicated "L" 
sl 	CPY("1","r"."R") 
	

;Copy from 1 till r after R 
s2 	L("L") 
	

;left till "L" 
s3 	R("r") 
	

;right till "R" 
s4 	s5 	r 	+1 
	

;move to start of (M',V.) 
s5 	M' 
	

;the program M' goes here 
sx 	L("L") 
	

;move left till "L" 
sx+1 	R("R") 
	

;move right till "R" 
sx+2 	sfo+k 	"R" 	+1 
	

;get into available space 
sx+3 	generate(v') 
	

;and generate v' 

UMW [v' 1s a virus w.r.t. M] 
since 
	

[sx+3 is reached] iff [(M',V') halts] 
thus 
	

[v' is generated] iff [(M',V') halts] 
Q.E.D. 

We are now ready to determine just how powerful viral evolution is as a means of computation. Since we have shown 
that an arbitrary machine can be embedded within a virus (Theorem 6), we will now choose a particular class of machines 
to embed to get a class of viruses with the property that the successive members of the viral set generated from any 
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particular member of the set, contain subsequences which arc (in Turing's notation) the of successive iterations of the 
"Universal Computing Machine." [53] The successive members arc called "evolutions" of the previous members, and 
thus any number that can be "computed" by a 'I'M. can be "evolved" by a virus. We therefore conclude that "viruses" 
are at least as powerful a class of computing machines as TMs, and that there is a "Universal Viral Machine" which can 
evolve any "computable" number. 

Theorem 7: 
[V M' E TM [3 (M,V) E VS 

[V i E IN  

[V x E {0,1}i  [x E MM,] 
[3 v E V [3 v° E V 

[[v "evolves" into v'] and [x C v']] 

Proof by demonstration: 
by [63]: 
[V M' E TM [3 UTM E TM [3 "D.N" E TS 

[V i E IN 

[V x E {0,W [x E ROM] 

Using the original description of the "Universal Computing Machine" [53], we modify the UTM so that each successive 
iteration of the UTM interpretation of an "D.N" is done with a new copy of the "D.N" which is created by replicating the 
modified version resulting from the previous iteration into an area of the tape beyond that used by the previous iteration. 
We will not write down the entire description of the UTM, but rather just the relevant portions. 

SxI 	N 	0 

b: 	f(b1,b1,"::") 	 ;initial states of UTM print out 
b1: 	R,R,P:,R,R,PD,R,R,PA anf;:DA on the f-squares after :: 
anf: 	 ;this is where UTM loops 

;the interpretation states follow 
ov: 	anf 	 ;end the machine loops to anf 

We modify the machine as in the case of Theorem 6 except that: 
we replace: 

ov: 	anf 	 ;goto "anf" 
with: 	ov: 	g(ov',"r") 	;write en "r" 

ov': 	L("L") 	;go left till "L" 
ov": 	CPY("L","R","R");replicate virus 
ov"': L("L") 	;left till start of the evolution 
ov"": R("r") 	;right till marked "r" 
ov 	 :anf 	 ;goto "anf" 

and 	[V SUTM  [TuTms"R"] 
<move right 1, write "R". move left 1, continue as before> 

The modification of the "anf' state breaks the normal interpretation loop of the UTM, and replaces it with a replication 
into which we then position the tape head so that upon return to "anf' the machine will operate as before over a different 
portion of the tape. The second modification assures that from any state that reaches the right end of the virus "R", the R 
will be moved right one tape square, the tape will be repositioned as it was before this movement, and the operation will 
proceed as before. Thus, tape expansion does not eliminate the right side marker of the virus. We now specify a class of 
viruses as: 

("L","D.N","R") 

and M as: 
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SxI 	N 0 0 

sO,L 	si L +1 ;start with "L" 
s0,else sO 
si 	... 

else 0 or halt 
;states from modified UTM 
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3. The Modified Subject Object Model 

We now examine computer vinises in terms of the subject object protection model. [32] We define a "universal 
protection machine" (UPM) which generalizes the subject object model by combining it with the Turing machine 
definition. [53] The resultant structure appears to be a good model of a computer with an operating system. We then show 
that a virus can infect an object e if some subject can both read an infected object i and write e. We show that the 
transitivity property holds for infection, and that a virus can therefor spread to the transitive closure of information paths 
from an initial source. We discuss an extension of the UPM to model computer networks, and comment further on the 
model. 

3.1 A Protection Model 

A protection syston is defined in terms of the rights of subjects to objects. [32] We are primarily concerned here with the 
"read" and "write" rights rand w, in a static configuration of a protection system. A protection system is defined by a triple 
(S, 0, P) where; S is a set of subjects; 0 is a set of objects, and P is an access matrix, with a row for every subject in S, and 
a column for every object in 0. 

It is common in modern computer systems to have a set of "users" with access to a set of "files", and the subjects and 
objects in this model may be thought of as corresponding respectively to users and files, with access rights being "read" 
and "write". In general, the model is not limited to this view. Another perspective might be that each "subject" is a robot, 
and each "object" is a physical world object, with access rights being the ability of robots to touch, move, tool, and restrict 
access to objects. 

00 01 02 03 

SO 

s 

Figure 3.1 - An Accesa Matrix 

The above example of an access matrix shows a protection system with two subjects (s0 and sl), and four objects (00, ol, 
o2, o3). Each element of the access matrix contains an 'r' if the corresponding subject can read the corresponding object, 
and a 'w' if the corresponding subject can write the corresponding object. Thus, subject sO can read objects o0, and ol, 
and can write o0 and o3; while sl can read o0, ol, o2, and o3, and write ol and o2. 

In our analysis, we will assume that all objects are finite sequences of symbols representing either the D.N of a UTM 
program [53], or data for interpretation by such a program, and that two rights are of primary interest; the generic read 
right which enables a subject to examine the symbol sequence of an object; and the generic write right which enables a 
subject to set the symbol sequence of an object. 

Although we will be primarily discussing the case where the access matrix is in a static configuration, dynamic 
configurations are also of considerable interest. We note that in Harrison, Ruzzo and Ullman [32], it has been proven that 
"It is undecidable whether a given configuration of a given protection system is 'safe' for a generic right", where safety 
implies that no right to an object can be "leaked" to a subject without the permission of the "owner" of that object. 

3.2 A Universal Protection Machine 

In order to model the mutual effects of computation and protection, we specify a model which allows the features of the 
Turing machine to be combined with the features of a protection system. We specify a "Universal Protection Machine" 
(UPM) wherein any finite number of subjects and objects may coexist. The UPM simulates the interpretation of objects 
by subjects and uses some decidable scheduling algorithm to determine which subject is simulated on each successive 
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The UPM maintains a subject object matrix, the current sequences representing all objects, the sequence of objects 
remaining to be interpreted by each user,, current tape sequences, states, and tape positions of each sequence under 
interpretation: and mediates the rights of subjects to objects, the scheduling process which determines after each subject's 
move which subject is allocated the next move, and the effects of subjects and objects on each other. 

We show here the manner in which information may be stored in such a machine so that an appropriate TM would be 
able to perform all necessary operations using finite time and space. We then describe procedures which a UPM might 
use in performing the required operations. We note that in order to strictly prove that such a machine is possible, we 
would have to construct a state table which would actually carry out these operations, or prove that such a state table 
exists. Although this would likely he of some interest, the space that a formal proof would require would be quite more 
than we wish to dedicate to this problem. We will instead, make an informal but accurate case for the existence of such a 
state table, and move on to the ramifications of the existence of such a machine. 

We begin by specifying the sequence stored on the semi-infinite tape of the UPM. The UPM maintains information in 
much the same manner as a Universal Computing Machine [531, wherein a finite set of special purpose symbols are used 
to preface each type of information. We first give a generic description of a UPM tape contents, and then detail the 
symbols used in the description. 

The tape consists of eight distinct sections, all but the last consisting of a finite number of symbols, and each 
representing a different aspect of the UPM. These sections are as follows: 

The left of the tape 

The Subject/Object Matrix 

The remaining objects to be "run" by each subject 

The sequences representing the current objects 

The current tape sequences and markings under interpretation 

The temporary use area 

The right of tape 

The rest of the tape 

As in the Universal Computing Machine, we will use every other square for the storage of most of the information of 
use to us, and use the intervening squares for the operation of the machine itself. We now specify each of the above listed 
sections of the tape in further detail. 

The left of tape is signified by the symbol "L": 
left of tape 

The Subject/Object matrix is bracketed by "S/O" and "0/S", with each row of the matrix representing a given subject 
initiated by "S" followed by the appropriate number of s's to indicate the subject number. Within each row, each column 
indicating a given object is indicated by an "0" followed by an appropriate number of o's to indicate the object number. 
Within each subject object pair, each generic right is indicated by an "R" followed by an appropriate number of is 
indicating a given right number. 
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S/O 	subject/object matrix 

S 	the start of a subject 

ss...s the subject number indicated by the number of s's 

0 	the start of an object 

oo...o the object number indicated by the number of o's 

R 	the generic right 

rr...r the right number indicated by the number of r's 

R 

rr..r 	as many rights as needed 

0 

oo..o 	the next object 

0 

oo.o 	the last object for that subject 

S 

ss..s 	the next subject 

0/S 	the end of the subject object matrix 

The sequence of object numbers of objects awaiting interpretation for each subject are maintained in the "run list" 
which is bracketed on the left by "R/L" and on the rightby'L/It". Each subject with objects awaiting interpretation is 
indicated by an entry "S" followed by an appropriate number of s's to indicate the subject number. Each object awaiting 
interpretation by that subject is indicated following the subject indicator by an "0" followed by an appropriate number of 
o's. We note that each subject may only have a finite sequence of objects in its run list. 
R/L 	The start of the run list 

S 	A new subject 

ss...s The subject number 

0 	The next object to be interpreted 

oo...o The object number 

0 	The last object to be interpreted for that subject 

oo..o 	Its object number 

S 	The next subject 

ss..s 	The subject number 

etc. 

L/R 	The end of the run list 

Each of the current objects is itself the D.N of a Universal Computing Machine tape, and as such is described in the 
same manner as tapes are described in Turing's original paper [53] and we will not describe them further here. Each D.N 
is denoted by the object number, and the set of objects are bracketed by "B/O" and "0/B": 
8/0 	Beginning of objects 

0 	Object start 

oe...0 Dbject number 

D.N 	D.N of object 

0 	Last object start 

oe..e 	Object number 

D.N 	D.N of object 

0/8 	End of objects 
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Each sequence interpretable at any given instant (a "process" in descriptions of operating systems), has a representative 
tape sequence which is generated by the sequence of the object being interpreted at the initial invocation of 
interpretation, the moves which have been made in that interpretation by the UPM. and any effects of read or written 
sequences. The state of a process at any given instant is completely described by the D.N and markings of that process as 
it appears on the tape at the end of its last move. [53] The set of D.Ns currently being interpreted arc bracketed by "C/P" 
and "P/C", and each sequence is prefaced by an "S" followed by an appropriate number of s's to indicate the subject 
number for which that D.N is operating. We note that since the D.N and marking include the marking of the current state 
of the program and the current position of the tape head within that program, these need not be stored independently. 

C/P 	Current sequences beginning 

S 	Start of a subject 

ss...s Subject number 

D.N+M 	D.N and Marking of a tape sequence 

S 	Start of a last subject 

ss..s 	Subject number 

D.N+M 	D.N and Marking of a tape sequence 

P/C 	End of current sequences 

The temporary use area is used by the UPM to store the sequence being interpreted at any given instant, and for other 
temporary use as required, and may contain any required sequence. The right of tape is used to keep track of the right 
most place on the tape at any given moment, and is denoted by the symbol "R". 

R 	The right of the taps 

We note that for finite subjects, objects, and other sequences, the tape contents are finite, and are representable in a 
finite number of symbols, and that we can thus place this information on the tape of a TM. 

3.3 Operation of the Universal Protection Machine 

We now briefly summarize the operation of the UPM by description without formally specifying its operation. Perhaps 
the most important aspect of our description is that all operations and information stored as a result of these operations 
are finite, and can thus be performed in a finite number of moves of a TM. If all of these operations are possible for a 
TM, and if they can all be performed in finite time, then we can be certain that a D.N of a TM exists for implementing 
the UPM, even if we cannot easily generate it herein. The existence of a D.N for this purpose is sufficient for almost any 
demonstrations that an actual description would be useful for, and thus we do not attempt to generate an actual 
description. 

• Initial State: the UPM invokes a finite run time algorithm for determining the "next subject" (S) to be 
interpreted as a function of the contents of the tape between "left of tape" and "right of tape" without 
changing that contents. Goto One Move. 

The Initial State of this machine is essentially a scheduler to determine the next subject to be granted a move. We have 
allowed the greatest possible flexibility in this scheduler, and only require that the next subject be determined in a finite 
amount of time without effecting the rest of the relevant UPM tape. In practice, we may only be interested in certain 
classes of schedulers (e.g. "fair schedulers") in any given application, and we note that in our later discussion, we may 
demonstrate the existence of particular schedules that allow a given activity to occur. 

• One Move: Once S has been determined, the UPM moves to the "C/P" area of the tape and seeks out a 
"current program" sequence for S. If no such sequence exists, goto Next Run, otherwise goto Run On. 

The One Move submachine arranges to make a single move for a given subject by locating the current program (C/P) 
for that subject or arranging to load a new program if none is current. 
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• Run On: Copy the subject number and "current program" sequence to the temporary area, and shift all 

information to the right of the copied area left so as to cover the copied area. Now move to the temporary 

area, and perform one move for the program stored there. If the program in the temporary area halts on this 

move, move to the beginning of the temporary area, enter "R". and goto Initial State. If the move causes a 
"special state" to be entered. goto Special State. Otherwise, append "P/C" and "R" to the temporary area, 
and shift the temporary area one square left, thus overwriting the previous P/C marker, and extending the 
C/P area to include the temporary area used by the "current program". Goto Initial State. 

The Run On submachine actually makes a single move for the current subject by copying the C/P for that subject to the 
temporary area at the end of the tape, overwriting its old copy with the rest of the C/P area, simulating a single move, and 
if the program didn't halt, appending the resulting sequence to the C/P area. The particular manner in which this is done 
assures that the old state of the C/P is overwritten so that subsequent searches of the C/P area will only find the new C/P. 
We are also assured that the tape does not grow without cause by leaving no excess areas in the middle of the tape. 

By moving the C/P to the end of the tape, we assure that if the current move extends the tape of the C/P, we do not 
have to move additional information (except the "R" marker) to the right to deal with this event. Finally we note that a 
simple "fair scheduler" could be generated by always appending the "next run" object of any user not in the C/P area to 
the C/P area, and always running the first entry in the C/P area. Since each program is moved to the end of the C/P area 
with every move, this implements a "round robin" scheduler which is fair. [8] 

In the case that the sequence halts, the Run On submachine does not add the temporary area to the C/P area, and thus 
the program automatically leaves the C/P area upon termination. The only other possibility is that the move causes the 
C/P to enter a Special State which will be described a little later. 

• Next Run: The UPM moves to the "run list" section of the tape, and seeks out an entry for S. If no such entry 
exists, goto Initial State, otherwise determine the object number (0) of the next object to be interpreted for 
subject S, and overwrite the marking for that object in the run list by shifting the remainder of the tape left. 
Goto Load Object. 

The Next Run submachine is used in the case that there is no C/P sequence for the scheduled subject in the C/P area. 
In this case, the object number of the next object to be run for that subject is sought in the "run list". If no such object if 
found, the scheduler is again called upon to determine the next subject to be scheduled. Otherwise, the object to be 
scheduled next is loaded via the Load Object submachine. We note here that a scheduler that selects a subject which has 
no run list entry or C/P sequence for execution may result in an infinite loop with no further moves being interpreted. 
Finally, we note that the Next Run submachine overwrites the marking for each object to be run as soon as it is 
determined, so that subsequent run list searches will not find the marking again, and space is not wasted. 

• Load Object: If the entry in 8/0 for (S,O) does not include the "read" right, or if no such object exists, goto 
Initial State. Append "S" and the proper number of s's to the C/P area to indicate the beginning of the 
current running program for subject S. Move to the B/O area and seek out the beginning of object 0. Copy 
the sequence stored for the object 0 to the end of the C/P area so that it is appended to the marker for subject 
S, and append the P/C and R markers to properly end the tape. Goto One Move. 

The Load Object submachine uses the result of the Next Run submachine to determine the object from the object list to 
be interpreted on behalf of the requesting subject. If there is no such object or if the object to be interpreted is not 
"readable" by the requesting subject, the object is treated as if it did not exist, and the requested run is simply ignored. If 
the object exists and is accessible by the subject, it is copied to the temporary area with the subject marker prepended to 
its description, and one move is made for the program in the normal fashion. We are thus guaranteed at least one move 
for each program loaded. 

We note here that the stringency in this submachine is often not required of actual protection systems because the 
"run" right is often considered different from the "read" right, and strictly speaking we should base the running of a 
program on a generic "run" right. In fact, many would claim that allowing the "run" of a program has no effect on 
security or integrity of information as long as "read" and "write" checks are made on all information accessed by that 
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program. The above check is necessary if we consider that information about an object may be leaked if it produces any 

output that is readable by a subject that could not read the object itself. Even the knowledge that the given object exists 

leaks one bit of information about the object, and thus we must treat the object as if it doesn't exist unless the subject 

requesting its use has read access to the object. 

Special State: Perform the appropriate operations for a special state operation. 

Finally, we come to the Special State submachine which is a generic submachine that invokes all operations not 
exclusively limited to the moves of a TM as described by the D.N of a single object. The Special State is like a "monitor 
call" in an operating system that allows an object acting as a surrogate for a subject to request services on behalf of that 
subject from the underlying UPM. A typical example of such a special state would be a state which is predefined by the 
UPM to request the reading of an object into tape squares of the current program. We will be discussing special cases of 
this Special State in later sections, and note here that since the Special State has access to the entire UPM tape, all 
Special State cases must maintain protection restrictions for the UPM to operate correctly. 

At this point we argue that the above specifications, with the exception of the Special State submachine, specify TM 
programs which are implementable with finite time algorithms and which take finite space on the UPM tape for all finite 
initial states and finite numbers of moves. We thus conclude and postulate that such a machine exists, even if we have not 
explicitly specified it. We further postulate that as long as all Special States of such a machine fit the above criteria, the 
resulting machine exists. 

3.4 A Model of Computers 

Rather than work with this complex description of the UPM, we abstract out the details of UPM operation in favor of 
an operational model. We thus define a computer as: 

(1) an interpretation unit that: 

i) fetches initial process states for subjects from objects 

ii) schedules processes for interpretation 

iii) interprets moves for processes 

iv) manages information on the computer's tape 

( 2 ) a set of subjects (si,...,sm ) and objects (ol,...,on ) 
and an "access matrix" which specifies a protection configuration: 

r in (spy for 0<i<m+1, 0<j<n+1, 

w in (spoj) for 0<i<m+1, 0<j<n+1 

(3) a "run sequence" of objects to be interpreted for each subject. 

In operation, the scheduling mechanism selects the subject whose move is interpreted at each interpretation step. When 
and if a process halts, the next move for that subject is interpreted from a process initialized by reading the next object in 
that subject's run list. If there exists no such object or if r is not in that object for that subject, the next object in that 
subject's run list is chosen, while if there are no further objects in that subject's run list, no process is invoked. 

At least three Special State cases exist for the particular computer that we will be considering herein, the "read" state, 
the "write state, and the "interpret" state. We describe here the events for these cases. 

Upon entry into the "read" Special State, the symbol under the tape head must be one of {0,1,...m} where the integer 
corresponds to an object number in the access matrix, or the process will halt. If the object number corresponds to an 
invalid access matrix entry, or the S/O entry does not contain the "read" privilege for the (subject,object) pair under 
consideration, the process enters the "read failed" (RF) state. If the integer corresponds to a valid access matrix entry and 
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the user has the "read" privilege for that entry, then the sequence of tape symbols corresponding to that entry is placed on 

the tape starting from the current tape position with each subsequent symbol being placed on a subsequent tape square. 

When the "read" operation is completed, the normal next state of the process is entered, with the tape head over the left 
most cell of the sequence read in. 

Upon entry into the "write" Special State, the symbol under the tape head must be "BO", and the symbol directly to its 
right must be one of {0,1,...m} where the integer corresponds to an object number in the access matrix, or the object will 
halt. If the integer corresponds to a valid access matrix entry, and that entry does not contain the "write" privilege for the 
subject under consideration, the object enters the "write failed" (WI.) state. If the integer corresponds to a valid access 
matrix entry and the user has the "write" privilege for that entry, then the sequence of tape symbols on the tape up until 
the first "EO" symbol, starting from the current tape position with each subsequent symbol being taken from a 
subsequent tape square, replace the stored object corresponding to that integer. When the "write" operation is completed, 
the normal next state of the process is entered, with the tape head over the left most cell of the written sequence. 

Each tape sequence stored or retrieved from the object memory must be in the following format, or the process may 
never halt, and the stored sequence will not be effected: 

Tape square 	Tape symbol 

"80" (Beginning of Object) 

1 	 object number 

1st symbol 

n 	 last symbol 

n+1 	 "E0" (End of Object) 

The "interpret" Special State causes the UPM to begin interpretation of a sequence at the current tape square as the 
D.N of a UPM program. We note that this is not a necessary state in the sense that any program being interpreted could 
itself interpret the other program by simulating a UPM operating on that machine [53], but that it is a convenient state in 
that it saves a great deal of difficulty in further examples. 

3.5 A Simple Virus 

We now demonstrate a self replicating object oc  which, if interpreted by a subject su  with r in (su,oc) and w in some 
(su,oz), can copy its own contents into o7,  , and thus modify o to include a copy of itself. We note that any object that 
replicates itself outside of itself is a virus (Lemma 2.1), and that thus the following object is a virus. 

0 

s0,80 	s01 	BO 	0 	;check for start of object 

s0,elst sO 	else 	0 	;or halt 

s0',' 	CPY(BD,E0,E0) 	 ;copy abject to after self 

$0" 	1(80) 	 ;get to beginning of object 
sow ,. 31 	80 	+1 	;move ever object number 

slot 	write 	[x+1]in -1 	;replace object number 

s2,* 	81 	80 	+1 	;loop to next object 0 

WF,' 	al 	80 	+1 	;even if write failed 

If we examine this program, we see that it simply copies itself, changes the object number, and writes the next object as 
a copy of itself with a different object number. We note that regardless of the length of the object required to indicate this 
machine to the UPM interpreting it, the write will duplicate the entire sequence, and that for any finite n, this constitutes 
an SVS of size n. If there exists some subject su  with r in (su,oc) and w in some (su,oz) where z > n, then as ou  is 
interpreted, the object oz  will come to contain a virus. 
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Although state s0', s0", and s0—  help fulfill the Turing machine definition of a virus given earlier, the storage system 
maintaining the objects of the UPM constitute sequences of symbols that may be subject to interpretation. In order for a 
sequence to he a virus, it must merely cause a (possibly evolved) version of itself to he created outside of itself in the 
storage system. Thus, we have the following simplified version of a virus called "OV" for the computer under 

consideration. 

SxI 	N 0 

sO,B0 	sl BO +1 ;check for start of object 

sO,else sO else 0 ;or halt 

sl,x 	write [x+1]In -1 ;change object number and write 

s2,B0 	s1 BO +1 ;loop to next object # 

WF," 	s1 BO +1 ;even 	if write failed 

UPM Virus "OV" 

3.6 Viral Transitivity 

We feel compelled here to discuss the "run list" and "scheduling algorithm" which we have purposely left nebulous 
until this point. In order to prove that a protection system is "safe", we generally wish to prove that a particular set of 
states or sequence of events CANNOT occur. We therefor wish to consider the "possibility" of the existence of a 
sequence of events which result in particular effects on the state of the UPM. 

Our modeling problem is one of determining which aspects of machine operation should be fixed, and which should be 
allowed to vary. We justify our choice of arbitrary run lists and scheduling by explaining that in an actual computer 
system, the run list and sequence of object interpretation are not in fact determined a-priori, but rather result from the 
relatively unpredictable use of the system by users. In particular, we may rest assured that any specific sequence of 
interpretations of objects by subjects is possible. 

As an example of the utility of the choice of arbitrary scheduling and run lists, let us suppose that there exist objects or  

02, and 03  and subjects sa  and sb  such that: 

✓ in (sa ,01), 

w in (sa,02), 
✓ in (sb,02), 

w in (sb,03) 

From the example above, we know that: 

if 01  starts with OV AND 

01  is interpreted by sa  at time t 
then 	02  contains OV at some time t' < t 

We also know that: 

it o2 starts with OV AND 

02  is interpreted by sb  at time t" > t' 

then 	o3 contains OV at some time t"' < t" 
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We thus know that: 
if o1  is in sa  's run list and 
if o2  is in sb 's run list and 

if the scheduler schedules: 

o1  for sa  at time t and 
o2  for sb at time t" 

and if of  completes OV at time t'<t" 
then OV spreads transitively from 01  to 03 . 

We say that ox  can infect oy  iff 

[3  a set of run lists [3 a scheduling of moves 

[3 v E V 
[(UPM,V) E VS and 
v 	V and 
[V oy  at time t [3 v' E V 

[3 t' E IN 
[v C ox  at time t and ts > t 

and v runs at time t 
v' C o at time t'] 

DM] 

In other words, an object X "can infect" another object Y if and only if there is a set of run lists, a scheduling of runs, 
and some virus v which, if it is in X and is interpreted at time t, causes some virus v' to appear in Y at some later time t'. 
We say that Y is "infectable" by X iff X can infect Y. 

We may now easily show that if X can infect Y and Y can infect Z, then X can infect Z. In other words infectability is 
transitive. We show transitivity by noting that: 

if X can infect Y then 
there is a sequence of events Si 

which causes infection of Y by X 

and if Y can infect Z then 

there is a sequence of events S2 

which causes infection of Z by Y 

We now note that if there exist sequences Si and S2 then there exists a sequence S3 which consists of S2 appended to Sl, 
which causes infection of Z by X. Thus infectability is transitive. 

We note also that it is fairly straight forward to show that "sharing" is also transitive, although this is not of particular 
interest to our discussion at this point. 
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3.7 A More Advanced Virus 

We now demonstrate a virus that is more advanced in that it is considerably harder to detect than the above examples. 
In particular, this virus modifies programs so as to leave their functionality unchanged. The basic principal is. to prepend a 
virus to the program being modified so that upon completion of the infection of other programs, the infected program 
executes normally. Thus, the final configuration of the infected program should look something like this: 

tape square 	contents 

"BO" 

n+1 	 object number 

virus code 

n+k 	 "BO" 

n+k+1 	 object number 

original object 

n+m 	 "EO" 

The virus is described as follows: 

SxI 	N 	0 	0 

$0,80 	31 	BO 	0 	;verify BO 

s0,else halt 	 ;or halt 

si,• 	CPY(410","E0","E0") 	;replicate 

s2,• 	L("BO") 	 ;move left till original program 

33,80 	s4 	BO 	+1 	;move to object number 

s4,x 	read 	(x+1]In -1 	;read next object 

s6,• 	L("BO") 	 ;get to virus copy BO 

s7 	BO 	+1 	;move to object number 

s7,x 	write 	(x+1]In -1 	;write infected object 

sB,• 	L("BO") 	 ;left till original program 

s9,B0 	interpret BO 	0 	;run that program 

The reader may verify that this machine generates the arrangement above, and we will not do this here. What is most 
worthy of note here is that the virus is able to infect another program and then execute its host as if there were no virus 
present. This example ignores issues such as the access rights to the [x+ ljin numbered object, but is intended only to 
demonstrate the concept, not to be the ultimate virus. We note for the more rigorous reader that even if infection of 
another program cannot be carried out, this program is a virus since it replicates itself on the tape before attempting to 
effect an object in the subject object memory. 

Further extensions of this program would be the inclusion of a detection mechanism that would not infect other 
programs if they were previously infected, a pseudo-random number generator using the object number as a seed to 
overwrite the prepended virus prior to execution of the infected program so that it would be difficult to determine 
whether the program being executed was infected from within itself, additional evolutionary capabilities, more specific 
targets for infection, detection of the contents of an object to verify that it is the D.N of a TM program rather than 
another type of data, the ability to infect data formats intended for interpretation by specific TMs (such as language 
interpreters), and any number of other advances. 

3.8 Model Extensions and Comments 

In order to extend the UPM model to networks of computers, we may choose to simply add special states which 
transmit or receive sequences of symbols to or from other UPMs through a well defined communications protocol. Access 
rights to the network are determined by the access matrix, and some set of rights to access the network are encoded in 
access matrix entries. 
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A similar mechanism can be used to embody functions commonly associated with an operating system, by allowing 
special suites to act as an inter-process communications method, and granting some special process access to relevant 
portions of the UPM tape. As examples of the power of this mechanism, we can implement the "fork" and "join" 
operation by simply introducing and removing multiple objects into and from the C/P area of the tape, we can provide 
inter-process communications by providing read and write access for each of a set of objects used for communication, and 
we can provide synchronization mechanisms by moving sequences in and out of the C/P area in much the same manner 
as swapping moves processes in and out of the main store in many operating systems. [8] 

This special state mechanism is quite general, and the most general manner in which it can be used is by allowing some 
special process full access to the UPM tape. Since the UPM has Turing capability, and the special states allow an arbitrary 
computable function to be evaluated with the results left on the UPM tape, any. more general mechanism would require a 
machine of greater computing power than a TM. 

The problem with this sort of mechanism is that the special process may be too powerful. As an example, this 
mechanism is powerful enough to make the "safety" of the protection system undecidable since it is undecidable whether 
or not the special process modifies a given access matrix entry. [32] In essence, we must prove properties of the special 
process program in order to be able to prove the safety of the protection system. This is what we mean when we speak of a 
provably secure system. [37] 

In the network analogy, we must prove that our system is "secure" given some set of constraints on the rest of the 
network. If we assume the most general case of the rest of the network, we must assume that no real protection is provided 
outside of our UPM, and we are left in a very restrictive case. As we shall see in later sections, the restrictions on UPMs 
and networks containing them may be quite severe, depending on our requirements. 
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4. Prevention of Computer Viruses 

Having planted the seeds of a potentially devastating attack, it is appropriate to examine protection mechanisms that 
might help defend against it. We examine here "absolute" prevention of computer viruses, whercin viral spreading is 
made mathematically impossible. 

4.1 Basic Limitations 

In order for subjects in a system to be able to share information, there must be a path through which information can 
flow from one subject to another. We make no differentiation between a subject and a program acting as a surrogate for 
that subject since a program always acts as a surrogate for a subject in any computer usage. In order to use a Turing 
machine model for computation, we must consider that if information can be read by a subject with Turing capability, 
then it can be treated as symbols on a Turing machine tape. 

Given a general purpose system in which subjects are capable of using information in their possession as they wish and 
passing such information, as they see fit, to others, we have established that the ability to share information is transitive. 
That is, if there is a path from subject A to subject B, and there is a path from subject B to subject C, then there is a path 
from subject A to subject C with the witting or unwitting cooperation of subject B. 

Finally, there is no fundamental distinction between information that can be used as data, and information that can be 
used as program. This can be clearly seen in the case of an interpreter that takes information edited as data, and interprets 
it as a program. In effect, information only has meaning in that it is subject to interpretation. 

In a system where information can be interpreted as a program by its recipient, that interpretation can result in 
infection as shown previously. If there is sharing, infection can spread through the interpretation of shared information. If 
there is no restriction on transitivity or information flow, then information can reach the transitive closure of information 
flow starting at any source. Sharing, transitivity of information flow, and generality of interpretation thus allow a virus to 
spread to the transitive closure of information flow. 

Clearly, if there is no sharing, there can be no dissemination of information across subject boundaries, and thus no 
shared information can be interpreted, and a virus cannot spread outside a single subject. This is called "isolationism". 
Just as clearly, a system in which no program can be altered and information cannot be used to make decisions, cannot be 
infected, since infection requires the modification of interpretable information. We call this a 'fixed first order 
functionality' system. We should note that virtually any system with real usefulness in a scientific or development 
environment will require generality of interpretation, and that isolationism is unacceptable if we wish to benefit from the 
work of others. Nevertheless, these are solutions to the problem of viruses which may be applicable in limited situations. 

4.2 Partition Models 

Two limits on the paths of information flow can be distinguished, those that partition systems into closed proper subsets 
under transitivity, and those that don't. Flow restrictions that result in closed subsets can be viewed as partitions of a 
system into isolated subsystems, and thus they limit each infection to one partition. This is a viable means of preventing 
complete viral takeover at the expense of limited isolationism, and is equivalent to giving each partition its own computer. 

The combination of the Bell-LaPadula security model [3] with the Biba integrity model [5] is an example of a policy that 
can partition systems into closed subsets under transitivity. Mathematically, the security model is defined over a set of 
"security levels". Each "user" of a system is assigned to a given security level, and all activity of that user occurs at that 
level. Sharing is limited by two properties; the "simple security property", and the "*-property". The "simple security 
property" states that a user at some level (x) may not read information from a security level exceeding x. This is often 
referred to as "no read up". The "*-property" states that a user at some level (x) may not write information to a security 
level lower than x. This is often referred to as "no write down". A simple generalization [19] has resulted in the 
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mathematical use of a lattice structure to describe these two properties. The integrity policy is just like the security policy 

except that the rules are reversed. and the word "integrity" substituted for "security". Thus, we have the dual of the 

security policy in the integrity policy. The integrity policy is often stated as consisting of the rules "no read down", and 

"no write up", but we must not forget that integrity levels might not he partitioned in the same manner as security levels. 

Examples of these two policies are shown graphically below. 

If the integrity model and the security model coexist, a form of limited isolationism results which divides the space into 
closed subsets under transitivity. If the same divisions arc used for both mechanisms (higher integrity corresponds to 
higher security), isolationism results as is demonstrated graphically below. When the integrity model has boundaries 
within the security model boundaries, infection can only spread from the higher integrity levels to lower ones within a 
given security level. Finally, when the security boundaries are within the integrity boundaries, infection can only spread 
from lower security levels to higher security levels within a given integrity level. There are actually 9 cases corresponding 
to all pairings of lower boundaries with upper boundaries, but the three cases shown graphically below are sufficient for 
understanding. 

Biba B-L Result 
	

Biba B-L Result 
	

Biba B-L Result 

    

I • • 
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+ • = 

   

     

        

Figure 4.1 - Combining Security and Integrity 

Biba's work also included two other integrity policies, the 'low water mark' policy which makes output the lowest 
integrity of any input, and the 'ring' policy in which users cannot invoke everything they can read. The former policy 
tends to move all information towards lower integrity levels, while the latter attempts to make a distinction that cannot be 
made with generalized information interpretation, and these policies will not be considered further here. 

Just as systems based on the security model tend to cause all information to move towards higher levels of security by 
always increasing the level to meet the highest level user 1191 the integrity model tends to move all information towards 
lower integrity levels by always reducing the integrity of results to that of the lowest incoming integrity. We also know 
that a precise system for integrity is NP-complete (by duality). [19) 

The most trusted user is (de-facto) the user that can write information accessible by the most users. In order to maintain 
the security policy, high level users cannot write programs used by lower level users. This means that the most trusted 
users must be those at the lowest security level. This seems contradictory. When we mix the security and integrity models, 
we find that the resulting isolationism secures us from viruses, but doesn't, of course, permit any user to write programs 
that can be used throughout the system. 

Another commonly used policy that partitions systems into closed subsets, is the compartment policy used in typical 
military applications. This policy partitions users into compartments, with each user only able to access compartments 
required for their duties. If every user in a strict compartment system has access to only one compartment at a time, the 
system is secure from viral attack across compartment boundaries because compartments are isolated. Unfortunately, in 
current systems, users may have simultaneous access to multiple compartments. In this case, infection can spread across 
compartment boundaries to the transitive closure of information flow. 
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4.3 Flow Models 

i n policies that don't partition systems into closed proper subsets under transitivity, it is also possible to limit the extent 

over which a virus can spread. The "flow distance" policy implements a distance metric by keeping track of the number of 

sharings over which data flows. The rules arc; the distance of output information is the maximum of the distances of 

input information, and the distance of shared information is one more than the distance of the same information before 

sharing. Protection is provided by enforcing a threshold above which information becomes unusable. Thus, a file with 

distance 8 shared into a process with distance 2, increases the process to distance 9, and any further output is at least 

distance 9. 

As an example, we show the flow allowed to information in a distance metric system with the threshold set at 1 and each 

user (A-E) able to communicate with only the 2 nearest neighbors. Notice that information starting at C can only flow to 
user B or user D, but cannot transit to A or E even with the cooperation of B and D. Information starting at B can, 
however, transit to A, so long as it is not mixed with information from C 

Rules: 

D(output) ■ max(D(input)) 

D(shared input)■1+D(unshared input) 

Information is accessible iff D < const (2 in this case) 

ABCDE 

Figure 1.2 - A D stance Metric with s Threshold of I 

The 'flow list' policy maintains a list of all users who may have had an effect on each object. The rule for maintaining 
this list is; the flow list of output is the union of the flow lists of all inputs (including the user who causes interpretation). 
Protection takes the form of an arbitrary boolean expression on flow lists which determines accessibility. This is a very 
general policy, and can be used to represent any of the above policies by selecting proper boolean expressions. 

In general, very complex conditionals can be used to determine accessibility. As an example, user A could only be 
allowed to access information written by users (B and C) or (B and D), but not information written by B, C, or D alone. 
This can be used to enforce certification of information by B before C or D can pass it to A. The flow list system can also 
be used to implement the Bell LaPadula, the Biba, and the distance models. 

In a system with unlimited information paths, limited transitivity may have an effect if users don't use all available 
paths, but since there is always a direct path between any two users, there is always the possibility of infection. As a note, 
in a system with transitivity limited to a distance of 1, it is "safe" to share information with any user you "trust" without 
having to worry about whether that user has incorrectly trusted another user. 

4.4 Limited Interpretation 

With limits on the generality of interpretation less restrictive than fixed first order interpretation, the ability to infect is 
an open question, because infection depends on the functions permitted. Certain functions are required for infection. The 
ability to write is required, but any useful program must have output. It is possible to design a set of operations that don't 
allow infection in even the most general case of sharing and transitivity, but it is not known whether any such set includes 
non fixed first order functions. 

In fixed database or mail systems, this may have practical applications, but certainly not in a development environment. 
In many cases, computer mail is a sufficient means of communications. So long as the computer mail system is partitioned 
from other applications so that no information can flow between them, and is of sufficiently limited functionality as to 
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Although no fixed interpretation scheme can itself be infected. a high order fixed interpretation scheme can he used to-
infect programs written to he interpreted by it. As an example, the microcode of a computer may he fixed, but code in the 
machine language it interprets can still he infected. LISP, APL, COBOL, Fortran, and Basic are all examples of fixed 
interpretation schemes that can interpret information in general ways. Since their ability to interpret is general, it is 
presumably possible to write a program in any of these languages that infects programs in any or all of these languages. 

In limited interpretation systems. infections cannot spread any further than in general interpretation systems, because 
every function in a limited system must also be able to be performed in a general system. The previous results therefor 
provide upper bounds on the spread of a virus in systems with limited interpretation. 

4.5 Precision Problems 

Although isolationism and limited transitivity offer solutions to the infection problem, they are not ideal in the sense 
that widespread sharing is generally considered a valuable tool in computing. Of these policies, only isolationism can be 
precisely implemented in practice because tracing precise information flow is NP-complete, and maintaining precise 
markings requires large amounts of space. [19J As a simple example of the complexity of precisely maintaining the sources 
of information, consider the problem of determining the source of the result of an OR of two bits. Suppose bit A is from 
user U, and bit B is from user V. If we OR these bits together, we get either a 1 or a 0, but the question arises of which 
user's information we are getting. We summarize the answer to this question in the following table: 

Figure 4.3 - Precision Problems 

In two cases, we get only the information from one user, and know which one. In the 0 case, we have information from 
both users, while in the fourth case, we have information from either user or both. If many users are involved and 
information is manipulated to any large extent, the complexity of maintaining these markings will become very high. 
Imagine the case where user W may only access information from U. Only the case where A is 1 is available since all other 
cases reveal information from V. 

A more general, and more severe caseis that where W may only access information from U or V, but not both. Clearly. 
if we tell W that the result "of an OR is unavailable, it indicates that both A and B must be 0! Thus by telling W the 
information is unavailable, we give the information away. The OR operation in this case must be dissallowed, even 
though certain cases of the OR should legitimately be available. Thus, in the general case, precision is impossible. 

This leaves us with imprecise techniques. The problem with imprecise techniques is that they tend to move systems 
towards isolationism. This is because they use conservative estimates of effects in order to prevent potential damage. The 
philosophy behind this is that it is better to be safe than sorry. 

The source of the problem is that, when information has been unjustly deemed unreadable for some user, the system 
becomes less usable for that user. This is a form of denial of services in that access to information that should be accessible 
is denied. Such a system always tends to make itself less and less usable until it either becomes completely isolationist or 
reaches a stability point where all estimates are precise. if such a stability point exists, we have a precise system for that 
stability point. Since we know that any precise stability point except isolationism requires the solution to an NP-complete 
problem, we know that any non NP-complete solution, must tend towards isolationism. In the most general case, we have 
shown that even NP-complete solutions may not be sufficient. We refer the interested reader to [19j for a more complete 
discussion. 
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4.6 Summary 

The following table summarizes the liMits placed on viral spreading by the preventive protection just examined. 

Unknown is used to indicate that the specifics of specific systems are known, but that no general theory has been shown 

to predict limitations in these categories. 
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Figure 4.4 - Limits of Viral Infection 
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5. A Secure Network Based on Distributed Domains 

Given the extreme openness and communications level of current computer networks, the threat of attack is severe. [33] 
In most current computer networks, sets of heterogeneous computer systems are connected through heterogeneous 
communications networks using a wide variety of communications devices, protocols, and programs. [25] [6] [9] [13] One 
fact that is not widely publicized is that these networks are not intended to be secure in any way. [25] Both the 
communications lines and intermediate computers used for data transfer are open to widespread observation and/or 
modification. 

Legal protection is provided in most states against unauthorized wire tapping and wire fraud, but proof of the intruder's 
guilt is often difficult, and the damage done may not be cured simply by arresting an attacker. The most predominant 
networks have open memberships, allow computer mail and file transfer between nearly any pair of computers with 
arrival times ranging from seconds to hours after requests, and connect to major computer manufacturing and software 
houses. 

5.1 Background and Overview 

Protection Policies and Models 

In order to make any system secure, we must first consider what we mean by the word secure. A "security policy" is a 
formalization of the desired security goals. Implementation of a policy is usually done with the use of a formal model of 
desired behavior. This section of the thesis examines a security policy in which both illicit dissemination and 
modification of information are impossible. The design of secure computer systems has been studied by many authors 
[39] [24] [32] [27] [40] [19], and as we saw earlier, for the protection of information from illicit disclosure and modification 
in a general purpose system, a design with both a security policy [3] [19] and an integrity policy [5] affords limited 
protection. 

We will assume that the security and integrity models reviewed earlier are the basis for protection policies, that both are 
always in effect, and that they are identically partitioned. This combination leads to distributed isolationism, a policy 
wherein "subjects" [32] with a given access "level" [3] cannot communicate with subjects at any other access level. In 
essence, we are using a network to allow spatial distribution of isolated domains, so that the functionality of many 
different facilities in different physical locations may be treated as an isolated system. We use the term "distributed 
domains" to describe such a system. 

Where sufficient, a (security, integrity) level pair will be referred to simply as a "level". The term "subject" in this text 
refers to a single "identity" as perceived from the point of view of the policy. In actual implementations, a person may be 
identified with many subjects, but in the formal model, we assume that subjects are independent of each other. We 
always assume that all communications of concern to our implementation are those that go through the computer systems 
and networks we are designing. We will also assume that all systems in the network are general purpose. 

Implementation Problems 

Once a desired policy has been specified, an implementation of it must be used in order to result in a secure computer 
system or network. In order to guarantee that an implementation correctly implements the policy, we must be able to 
prove it mathematically. Provably secure operating systems capable of enforcing an isolationist policy have been 
designed and implemented [4], but secure network design has only recently been investigated. [54] None of the proposed 
systems perfectly solve the "covert channel" problem [39], although identification and measurement of covert channels is 
possible. 

The covert channel problem comes from the fact that when subjects share a resource, the manner in which one subject 
uses the resource may be detectable by another subject with access to that resource. By examining the statistical behavior 



45 

of programs which use shared resources, it is possible to extract information regardless of the degree of noise in this 
statistic. [48] The bandwidth of covert channels is limited by the amount of noise in the channel, and the quantity of 
information that can pass through a channel as a function of time can he determined and measured. A related problem is 
the problem of "traffic analysis" in which information is obtained by detecting the patterns of traffic in a network. The 
traffic analysis problem can be addressed in the same manner as the covert channel problem through the use of 
information theory. We will not discuss the covert channel problem further in this work, although it is both interesting 
and important to modern secure networks. 

Two basic types of computer systems can be distinguished, systems based on a trusted computing base (TCB) in which 
operation is proven to meet a security policy [24] [32], and systems based on an untrusted computing base (UCB) in which 
there may be policy, design, and/or implementation flaws. [37] [41] As we will see, fundamental limitations must be 
placed on allowable information flows between these systems if there is to be any hope of controlling the dissemination 
and modification of information. 

Communications Between Computers 

Whenever computers are connected td form a computer network, there are some physical links over which 
communication between these computers takes place. Two basic types of communication links can be distinguished, links 
in which communication is physically secured from external intrusion and observation, and links in which illicit 
observation and/or modification of data is possible. In the case of trusted communication links, we assume that illicit 
modification or observation of information is impossible. With untrusted communication links, protection of 
communicated information from illicit dissemination requires that the information be transformed into a form which will 
not reveal its content, while protection from acceptance of illicit or illicitly modified information requires some form of 
authentication. These two goals can be accomplished through the use of cryptography. [7] [44] 

Shannon's information theory [48] and work on secrecy systems [49] form the mathematical foundation for most 
modern analysis of cryptosysterns, and are the basis for the designs of many modern "one key" systems like the DES. [16] 
[23] The introduction of "public key" cryptography [22] brought about drastic changes in the research perspective 
towards cryptography, with complexity based protection becoming a prevalent area of mathematical analysis. In public 
key systems there are two keys; the "public key" which may be revealed to the public and used either for encryption of 
messages sent to the key creator or for public authentication of messages signed by the key creator; and the "private key" 
which is kept confidential by its creator and may be used either for decrypting incoming messages or signing outgoing 
messages. It is not necessary that the "public key" be revealed to the public, and any public key system can be used as a 
private "two key" system. The RSA cryptosystem [46], a system based on the complexity of factoring very large primes 
[55], is the most well known and most studied of the public key cryptosystems, is currently thought to be very secure and 
practical, and has been implemented in several hardware and software systems. 

The existence of a high quality cryptosystems alone, is insufficient to provide for secure use of a network; security 
depends on the proper use of encryption. The manner in which cryptosystems are used is specified by a "cryptographic 
protocol". A cryptographic protocol may be thought of as a well specified and systematic means for applying a 
cryptosystem to a specific problem. In the case of a provably secure network, protocols must be. formally shown to meet 
the formal specifications of the security policy. 

In conventional one key systems, protocols are fairly straight forward [26], but functionality is quite limited. The 
concept of public key cryptography has led to many papers on cryptographic protocols for increasing the utility of a 
cryptosystem. [15] [18] [43] Public key based network file servers have been investigated [29], and practical designs are 
emerging. Threshold based systems [47] can be combined with public key systems to allow a secure key distribution 
system [11] even in the presence of tappers and illicit distributors. Secure key exchange protocols have been developed 
[43] so that two subjects that have never met can obtain a secure communications path in an untrusted environment. 
Authentication protocols for allowing legal document signatures have been examined [46] [43], and usable systems have 
been proposed. Among the most advanced current uses of an RSA based cryptographic protocol, is the system used for 
verification of the nuclear test ban treaty. [51] 
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Overview of Results 

We first examine networks in which communication lines arc considered trusted paths and connections may be made at 
any security and integrity level. We show that bidirectional communication between UClis is only acceptable when they 
have identical integrity and security levels, and that a UCB cannot safely send information to a TCI3 unless the UCB is at 
a single security and integrity level. This analysis is then expanded to untested communications networks where 
connections can only be made at the lowest level. We show that UCBs can only be linked directly to the network at the 
lOwest integrity level, while TCBs can be used at all levels with the use of a "good enough" cryptosystem. These cases 
combine to form a set of easily applied design rules for the connection of computers to form secure computer networks. 

Protocols that do not violate security or integrity conditions are shown, and a "good enough" cryptosystcm [46] is 
shown to fulfill all of the network security and protocol requirements. Analysis of attacks based on the compromise of 
one subject or facility are then shown to be potentially devastating unless further protection is provided. The use of 
compartment based protection with each site accessing only a restricted subset of the totality of compartments is shown to 
limit the potential damage of such attacks, but may not be ample protection for many applications. 

5.2 Network Communications 

'The fundamental goal of the network security policy considered here is that information not be able to move down 
security levels or up integrity levels. The assumption that integrity and security levels are aligned implies that information 
may only move about at its creation level. Unfortunately, in UCBs operating at multiple levels, strict alignment is 
unenforceable, and thus special provisions must be made. We first consider the formation of networks in environments 
with trusted communication paths and derive a set of easily followed design rules. 

Networks with Secure Communications Paths 

In a secure network with trusted communications paths, communications are allowed from place 1(P1) to place 2 (P2) if 
and only if the security level of Pi  (Si) doesn't exceed that of P2  (S2), and the integrity level of P2  (I2) doesn't exceed that 
of P1 (Il)* This is because communication from P1 to P2 with S1>S2 violates the simple security rule [3] and would allow 
illicit dissemination of information, and communication from P1  to P2  with 1102  allows viral spreading up integrity levels, 
which allows illicit modification of information. 

Connecting UCBs with UCBs 

If we consider that a UCB is a computer that cannot be trusted to maintain security or integrity levels within itself, we 
can regard it from an external point of view as having the security level of the most secure information processed in it 
(system high security) and the integrity level of the lowest integrity information processed in it (system low integrity): 

in a UCB: I = min(I in UCB), S=max(S in UCB) 

This is a direct result of the fact that any information at a high security level could be declgsified by a UCB, and thus if 
we allow output from a UCB at lower than the highest level of information processed within it, information could be 
moved from a higher security level to a lower security level and thus be illicitly disseminated. Similarly, low integrity 
information within a UCB could be output at a higher integrity level because the UCB cannot be trusted to maintain 
integrity levels. This would allow a virus to spread to higher integrity levels and thus allow illicit modification of 
information. We then obtain the rules for safe information flow given in figure 1.2  

2Unidirectional communication of information from system "1" to system "2" will be written as "1--)2" or as "2<--1", and bidirectional 
communications between systems "1" and "2" will be written as "1<-->2". 
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S 1 )S2 

Figure 5.1 - Safe Information Flow Rules 

By using a simple set of examples, we can display these equations in terms of pictures. In order to determine whether a 
connection can be made, a designer can then use these pictures to make decisions rather than having to solve equations. 
Figure 2 shows the equations from figure 1 in pictorial form. The 4 parts of figure 2 represent the four cases from figure 
1. Each system is represented by a set of connected boxes and is labeled by the number of the system as used in the 
equations. The "high", "medium", and "low" designations indicate different levels in the system, and the arrows between 
systems show permissible connections and the allowable direction of information flow. An 'X' is used in the case where 
no communications between the systems is permitted. Notice that communication links are never allowed to cross level 
boundaries, and that bidirectional communication is only possible when S1= S2  and 11=12.3  

12-11 	51 >S2 	1012 	S1 >92  

Figure 5.2 - Safe Communications Paths Between UCBs 

Since the equations in figure 1 follow the rules that no information can ever flow from a higher security level to a lower 
security level or from a lower integrity level to a higher integrity level, and since the <, >, and = relationships used in 
these equations are transitive (e.g. A<B and B<C => A<C), these security relations hold over the transitive closure of 
information flow. We conclude that any network of UCBs in which the rules from figure 1 are followed locally for each 
connection between computers, will globally meet the network security and integrity requirements. In other words, if 
every connection looks like the pictures in figure 2, the network will meet the security requirements as stated. This 
"cookbook" approach to designing secure computer networks made up of UCBs with secure communications links will 
now be extended to networks with mixed UCBs and TCBs and networks with untrusted communications links. 

Connecting UCBs with TCBs 

Pe-, 2 1 —) 2 

2-5 1 none 

3
1n fact, with UCBs communication links can cross level boundaries so long as all levels with communication exist in both systems because the UCB 

cannot be trusted to maintain these levels anyway. 
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In a network containing both UCIls and TClis. we must consider that although a TCII can he trusted to maintain both 
security and integrity levels, a UCI3 can he trusted to do neither. Consider a network consisting of a single IC13 (1) and a 
single UCH (2), both operating at two levels (high and low). Since the UCII cannot be trusted to maintain these levels, we 
must consider it externally as a computer with: 

S2 = max(high,low)= high 
and 12 = min(high,low)= low. 

Under the Bell-LaPadula model (B-L), we conclude that no information can flow from the UCII to the TCB at any 
security level below S2  (high) without violating the *-property and thus allowing illicit dissemination of information. 
Under the Biba model. we conclude that no information can flow from the UCB to the TCB at any integrity level above 12  
(low) without allowing illicit modification of information. We conclude that the only communication that can be allowed 
is unidirectional from the TCB to the UCB. This derivation is shown graphically in figure 3 below, and is trivially 
extended to systems with an arbitrary number of levels. 

 

Bibs 
TCB 	UCB 

Both 
TCB 	ILL 

  

airatmEm• 

Figure 5.3 - Combining B-I. and Biba Between UCB and TCB 

The unidirectional communication problem seems to imply that reliable communication is impossible without leaking 
information through a covert channel formed by the UCBs responses to protocols. This is easily seen in the case where a 
subject in a UCB sends a bit to a subject in a TCB by; filling the UCB's disk so that a transfer cannot be successfully 
completed from TCB to UCB to indicate a 0; and freeing up this space so that a transfer from TCB to UCB can be 
successfully completed to indicate a 1. As an alternative to allowing this channel, it may be possible to design a portion of 
the TCB with limited functionality such that transfer protocols can be done reliably without end to end confirmation. 
This limited confirmation with the TCB will not reliably indicate the success or failure of the transmission to the 
transmitting subject, but it is secure from this covert channel, while allowing reliable communication after an unknown 
delay. 

The only case where a UCB and TCB can communicate bidirectionally is the case where the UCB operates at a single 
level equal to that of the communicating TCB level. This type of connection doesn't violate security or integrity because 
SUCB =IUCB =STCB =ITar Finally, we assert that two TCBs can communicate bidirectionally over a trusted 
communications link at any level at which both exist, since they can both be trusted to maintain security and integrity 
constraints on all information. The acceptable communications links between UCBs and TCBs and between pairs of 
TCBs are shown in figure 4. 
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Figure 5.4 - Communications Between UCB5 and TCBs 
As with UCBs, the relations of security and integrity models hold over the transitive closure of information flow and 

thus networks can safely be formed using the rules for connections shown in figure 4. With the above results, we can 
straight forwardly connect UCBs and TCBs into trusted computer networks in any environment where communication 
links between systems are trusted, without fear of either security or integrity violations, so long as each system maintains 
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its specified properties. An example of such a network is shown in figure 5. Verification that it meets the above 

connection criteria can easily he done by observing that only connections of the forms shown in figure 4 are used. This 

network therefore meets the security requirements specified by the policy under consideration for trusted communication 

environments. 

UCE) TC8 TC8 UCE) TC8 

Figure 5.5 - A Secure Net va Trusted Communications 

Networks with Untrusted Communications Paths 

In spatially distributed networks or networks operating within untrusted environments, untrusted communications 
paths must be used. In general, an untrusted communications path can not be relied upon to either maintain the secrecy 
of information flowing through it, or to prevent an attacker from introducing false information to it. Both authentication 
and secrecy are clearly required if secure communication is to take place. 

Network Level Communications 

In an untrusted communication path, we must consider all data as being at the lowest integrity level since it could have 
been manufactured or modified by an attacker, and at the lowest security level since a tapper could observe information 
in transit. Thus: 

Snetwork = min(security-levels) 

and Inetwork--min(integrity-levels) 

From the previous analysis, UCBs may output to a network if 

S <S UCB— network' 
and it may input information from a network iff 

I <I UCB— network' 
Since 

Snetwork =min(security-levels) 
and Inetwork=  min(integrity-levels), 

bidirectional communication requires that 

SUCB = Snetwork and IUCB= Inetwork' 
while reception of information from a network by a UCB requires only that 

IUCB = Inetwork' 

Since TCBs enforce levels, communication with levels in TCBs where 

STCB Snetwork and ITCB=Inetwork 
is safe. Thus we can connect any TCB with a level at Snetwork to an insecure network, without violating the system or 
network security and integrity policies. These cases are shown pictorially in figure 6, and as before the results extend 
transitively so that these pictures can be used to design a secure computer network. 
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Figure 5.6 - Safe Communications with Untrusted Nets 

High Level Communications 

The problem remaining is that only data at Snetwotk  and  !network can be placed on the network, and it may be desirable 
to communicate higher level information. If typical network performance levels are desired, a means of automatically 
reducing and increasing the level of information at a reasonable speed on a demand basis seems necessary. This can be 
provided if we have a "good enough" cryptographic function "E" with built in authentication such that: 

SE(data)=Snetwork and IE(data)= 'network 
and a "good enough" inverse function "D" such that: 

SD(E(data))=Sdata and D(Rdata))
=I

data* 

Assuming that an appropriate cryptographic function is available, we can communicate any desired information over 
the network by transforming it to the network level. Since all information in the network is at the same level, the network 
meets the policy requirement. Since all computers in the network communicate at the same level, there is no covert 
channel due to bidirectional communication protocols between processes at different levels. A simple example of this 
type of system is shown in figure 7 where "E/D" is used to indicate an encryption/decryption link which allows 
information at one level to be sent to another level through appropriate encryption or decryption. 

3 

2 

1 

not 

Figure 5.7 - Simple Encryption/Decryption 

As before, transitivity of the "=" relation allows any desired connectivity between computers at the network level 
without violating policy requirements. We also note that the addition of UCBs to the network under the previous rules 
has no detrimental effect and maintains the transitivity property because the only UCBs that can pass information out are 
single level UCBs at the network level, and single level UCBs connected to appropriate TCB levels, and thus the rules 
given in figure 6 still apply. 

End to end protocols can be implemented for data sent between identical levels since there is a means of transforming 
the data to and from the network level. Since encryption and decryption guarantees that no communication is permitted 
between nonidentical TCB levels, this is sufficient to assure maintenance of these levels. Note that the encryption and 
authentication functions E and D must be built into the TCB so that it can be proven that there is no possible manner in 
which levels can communicate except through the proper transformation of information. Also note that there may be 
covert channels available through the use of traffic analysis unless further precautions are taken. This will not be 
discussed further here. 
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A final problem that must be addressed in an untrusted network involves communication between computers where 
there is no direct path at the network level. This is illustrated in figure 8 in the case of communication from A to B. 

TCBx 
	

TCBy 
	

TCBz 
	

TCBw 

Figure 5.8 - A Multihop Communications Problem 

Since data at A cannot be sent to TCB-Y except at level N, it must be transformed into E(data) for transmission. Once 
inside TCB-Y, it cannot be decrypted into D(E(data)) since this would leave the data at level U, a violation of the security 
condition. It also cannot be kept in the E(data) form since this is at too low an integrity level for transmission over 2. If 
decryption in the cryptosystem used were as secure as encryption, we could decrypt the information to level U with the 
hope of later encrypting back to level N and then decrypting back to level C. Unfortunately, there is no other place in this 
network where such a transition can be made. Sending the data over link 3 presents the same sort of problem because the 
integrity must be increased to level S in TCB-Z in order for it to be sent over 3, and then decreased to C in order to reach 
B. We are faced with a potential problem which we call the "level shifting" problem. 

5.3 A Proposed Network Protocol 

There are several potential solutions to the level shifting problem seen in figure 8. The simplest and perhaps most 
reasonable technique is to require that each level of declassification require independent encryption and authentication, 
and that each level of reclassification require independent decryption and authentication. In other words, we require a 
cryptosystem and communications protocol where: 

S 	=S -1 I 	=I 	1, E(data) data E(data) data 
S 	ta = S ta  +I and I 	ta =I ta +1. 
D(da) da ' D(da) da 

This type of system is shown- in figure 9. 

3 

2 

1 

net 

Figure 5.9 — Stepwise Encryption for Level Changing 

With the technique in figure 9, the problem in figure 8 is easily solved. Data is encrypted twice in moving from A to 1, 
decrypted once for transmission over 2, decrypted twice more for transmission over 3, and encrypted one last time to 
reach B. A similar path is required in the reverse order for transmission from B to A. This stepwise encryption solution of 
floorn R k ehnwn in figure  1(1 where F and 1) label each information oath by its function. 
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TCBx 
	T C By 
	TCBz 
	TCBw 

Figure 5.10 - A Multihop Communications Solution 

This protocol has cases where information has been decrypted more times than it has been encrypted, and allows 
plaintext to be found in intermediate network locations. This is not a violation of the security or integrity policy because 
it is at the same level as the source data. The protocol requires the use of a cryptographic algorithm in which encryption 
inverts decryption and decryption is as cryptographically strong as encryption. In other words, 

E(D(data))= data and 

D(data) is "good enough". 

If end to end security is also desired, the initial data can be encrypted with a key known only to A and B so that 
intermediate places in the network at the same level as A and B cannot access the plaintext of the message. Alternatively, 
intermediate places in the network can use limited functionality to pass information on without allowing it to be read 
even though it is in the plaintext form, as was noted earlier in our discussion. Limited functionality can only be assured in 
TCBs, and end to end encryption is still a good idea in cases where intermediate nodes may be taken over. This is 
examined in a later section, and will not be discussed further here. 

This multiple encryption scheme has a potential benefit in that the more encryptions are performed, the more sure we 
might be of the security and integrity of the information. In some cryptosystems this is not necessarily the case. As an 
example, the DES cryptosystem has several keys that are self inverting or have an inverting dual, and even has at least one 
key that doesn't transform data at all. [16] This may not be bad since even the provably perfect "one time pad" [49] has 
such keys (with probability 1/2" for an n bit message), but it's not encouraging either. A possibly desirable property of 
the cryptosystem for this application is that double encryption not reveal the data: 

E(E(data))* data, 

and more generally, that nary encryption for n>0 not reveal the data: 

En(data)*data. 

In conjunction with the previous equations, this implies also that 

Dn(data)*data, 

and in general can only be fulfilled in a cryptosystem in which 

n < number of unique ciphertext blocks 

since there can only be n unique representations when there are n unique ciphertext blocks. As a practical matter, the 
number of embedded encryptions required is unlikely to exceed 232  for any contemporary or projected system, and the 
cryptosystem we will examine (the RSA [46]) can have sufficient numbers of unique ciphertext blocks (>2500  for a 
typical implementation) so that this is not a problem. 
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5.4 A "Good Enough" Cryptosystem 

The major deficit of the stepwise encryption scheme is that it takes time for each cryptographic operation and may have 
severe key distribution and maintenance problems in some implementations. The major advantage is that it offers 
extremely good security even under fairly severe fault assumptions if a "good enough" cryptosystem can be found. 
Fortunately, there is at least one cryptosystem that fits enough of the requirements to make it usable in such a network. 

Feasibility of the RSA 

The RSA cryptosystem [46] encrypts and decrypts information by exponentiation in a modulus "M". Although there is 
no proof yet that it is, in general, difficult to determine plaintext from ciphertext, it is proven that determining either the 
enciphering or deciphering key from the other is as hard as factoring the product of two very large prime numbers. Even 
with (plaintext, ciphertext) pairs available to the cryptanalyst, determining keys is this difficult. Factoring primes has 
been studied for a very long time by many famous mathematicians, and no polynomial time algorithm has ever been 
found for it. This does not rule out the possibility that a fast enough factoring algorithm might be found in the future. 
The time taken for breaking the RSA system can be made arbitrarily long by using appropriately long keys. The use of 
longer keys doesn't change any aspect of protocols or other procedures except that it reduces the performance of the 
algorithms. Without going into mathematical details, we will outline the reasons that the RSA system meets all of the 
requirements for a "good enough" cryptosystem stated earlier. 

Encryption and decryption under RSA are identical except in that they use different keys. The choice of which key is 
private and which is public is entirely arbitrary, and as such the RSA constitutes a "double" public key cryptosystem. 
Thus, if the RSA is "good enough", and every message is both encrypted with a public key and authenticated with a 
private key, then 

Sa 	= S 	1 I 	=I -1 data) 	data ' Kdata) data ' 
SD(data =Sda +1 andID(data =Ida +1 ) 	ta 	' 	) 	ta 

and if E(data) is "good enough", then D(data) is "good enough". 

Because the product of the 2 keys used in RSA must be congruent to 1 in the modulus M in order to produce the 
plaintext from the ciphertext by double exponentiation, and since both must also be prime with respect to M, repeated 
exponentiation with either key must produce M-1 unique elements of the ciphertext space before repetition. This has 
been exploited in the generation of pseudorandom numbers [10] through repetitious exponentiation of an initial seed, but 
more importantly it shows that as long as n<(M-1), 

En(data)*data and Dn(data)*data. 

Since all of the protocols based on public key systems will work with any "good enough" public key system, and since 
RSA is a public key system, it can be used to implement any of the public key protocols. We conclude that RSA is "good 
enough" for the security requirements of a network if it is secure enough for the application under consideration. 

Some Simple Network Protocols 

There are also other advantages of public key systems that can be exploited in secure networks. A public key system 
requires only n key pairs for secure communications between n subjects (as opposed to n2  keys for private key systems). 
This offers significant space savings over private key systems. Key pairs can easily be generated locally for spatial 
distribution of security. This limits the effectiveness of local attacks, and allows individuals to generate their own keys. 
Limited functionality systems that can not be infected or broken into without physical attack can be used for local key 
generation. In addition, the RSA can be used as a key distribution system for distributing keys of other cryptosystems 
with higher bandwidth or other advantages. 

In order to obtain an end to end secure encryption channel between any two subjects (A and B) in a network where no 
previous secure channel existed, protocol 1 may be used: 
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SubjectA 	 Subjects  

create an RSA key pair (E1,D1) 

send E
1 

key to 8 

create an RSA key pair (E2,D2) 

encrypt E2  with E1  .> C1  

send C1 to A 

decrypt C1  with Di  .> E2  

create an RSA key pair (E3,D3) 

encrypt E3  with E2 	C2  

send C
2  to 8 

decrypt C2  with D2  •> E3  

Protocol 1 - Secure Key Exchange in an Open Channel 

After this exchange, only A and B can know E2  because it was encoded with the public key to which only A has the 
private key. Similarly, only A and B can know E3  because it was encoded with key E2  to which only B has the private key. 
Therefore, no other subject can forge either A or B and no other subject can observe the plaintext data being sent between 
them. Thus we have both secrecy and authentication in both directions. The only problem is that the actual identities of 
A and B were never verified to each other. This problem may be solved with a sufficient authentication procedure, and 
will not be discussed further here. 

This protocol needn't be used exclusively for end to end encryption, as it can be just as effective for exchanging keys of 
intermediate store and forward stations in the network without a centralized secure key distribution system. Indeed, the 
same concept can be used for introducing new sites and subjects into the system. Since each subject only needs to 
maintain the keys of the end to end subjects with which communication is desired, the space required for keys can be kept 
quite low. If a new subject is to be communicated with, the public key of that subject can be exchanged with all 
communicating subjects' public keys with only an addition of one key per subject. The number of keys maintained by 
each subject is thus linear in the number of subjects being communicated with. 

The only problems with the RSA ciyptosystem in this context are that it operates at a fairly low bandwidth (under 2000 
bits/sec), and after a "long enough... time, any given key can be broken. The bandwidth problem is a fundamental 
limitation of the algorithm used to encipher and decipher information, and currently can only be improved upon through 
the parallel ciphering and deciphering of multiple blocks of data, and improved hardware technologies. This has limited 
application in centralized facilities. but is less likely to be useful for individual users. A realistic design could be 
implemented in a hand held device with 10 RSA chips that would allow communications at an effective baud rate of 
20Kbaud with a .2 second delay between transmission and reception. Technological changes predicted for the next 10 
years would allow such a system to be implemented using a single chip with a delay time under .01 seconds, and 20K 
baud bandwidth. This would seem adequate for a hand held or wristwatch mounted single user device. 

The "eventual" breaking of the RSA appears to pose little or no threat to its practicality. The number of bits of key 
used for the RSA can be increased for a longer attack time, so if more security is desired, it can be attained at the cost of 
performance. Current estimates for attacking a 200 digit key using the best known algorithm on a special purpose 
computer are that, for the next 10 years, there will be no algorithm that will break a 200 digit RSA in under 101°°  
years. [10] 10100  years is much longer than the expected lifetime of the Universe, and appears to be an insignificant threat. 
In addition, new keys can be generated at frequent intervals to limit the damage of breaking a given key. With the use of 
a truly random number generator in each hand held device [10], a practically unbreakable key could be generated from a 
truly random seed as often as once every few minutes. 

5.5 Fault Tolerant Network Security 

The analysis to this point has been based on the assumption that every TCB within a secure network is perfectly 
trustworthy. Severe problems may arise when this assumption is dropped, and there is considerable reason to believe that 
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this assumption is not a reasonable one. As an example, if a single user were not trustworthy, if a single site in the 
network were secretly taken over by an attacker, or if a combination of errors or hardware failures were to occur, the 
security of the entire network might he compromised unless we considered the possibilities in our design. We examine 
the ramifications of such failures on the class of networks derived above, and explore techniques which could increase the 
fault tolerance of such a network and further secure it from attacks. 

Fault Models 

Our analysis of failures in a trusted computer network is based on two fault models. The first fault model assumes that 
some user in the network decides to launch an attack against the entire network and do as much damage as possible. A 
well placed traitor or terrorist might launch such an attack as might a disgruntled employee. We will see that without 
further restrictions on the network, such an attacker might cause fairly severe damage. This fault model will be called the 
"Lone Ranger Attack" (LR) throughout the remainder of this paper. 

The second fault model considers the complete takeover of a computer or site in the network. We will use the word 
"node" from this point forward to designate a taken over portion of the network. This is a fairly severe typc of fault since 
it allows all information including locally stored keys to cryptosystems to be attained and used by the attacker without the 
knowledge of the rest of the network. It is assumed that all access codes and access rights in the node are granted to the 
attacker, and that any activity that would normally be allowed in the node is allowed to the attacker. Examples of such a 
scenario are the case where a systems administrator at a site becomes untrusted or a successful physical attack is carried 
out without detection. This attack will be called the "Massive Takeover Attack" (MI) throughout the remainder of this 
paper. 

Since we don't know enough about the topology of the particular network under consideration or the types of 
computers or protocols to be used in a particular case, we will assume that the network is designed to prevent such a 
failure from dominating communications. We will ignore all issues unrelated to the effects of the security model under 
consideration. We will also assume that in the MT attack, the node may introduce false messages, intercept messages 
passing through it, and allow information to cross security and integrity boundaries. 

The LR Attack 

In the LR attack, we consider the case where a single user at a given level launches a viral attack. Since a virus is, in 
general, able to reach the transitive closure of information flow, it could in theory spread throughout the network starting 
at its initial subject and infect all other subjects at the same level. This attack could eventually cause severe damage and 
widespread denial of services. This assumes that the transitive closure of information flow encompasses the vast majority 
of the other subjects in the network at the same level, and that no other isolation is in effect. 

In the case of a UCB, we can see from the previous analysis that only a "one level" system is able to communicate 
information to the network. Thus, a multilevel UCB cannot be used to infect the network. In the case of an attack 
launched from a TCB or a single level UCB, information is allowed to flow to any other subject at the same level, and 
thus the attacker may launch a widespread viral attack. In practice, users are often granted access as more than one 
subject. In this case, a single user may be able to launch viral attacks at many or all levels and place a significant portion 
of the network under attack. 

We know from our previous analysis that in order to further limit viral attack, we must either reduce functionality by 
limiting the interpretation of information, or further limit the sharing and transitivity of information flow. This applies to 
networks in the same way as it applies to a single system. Additional partitioning of the network into "compartments" can 
limit the sharing and transitivity of information flow and thus limit the subset of the network that could become infected 
in an LR attack. 

Unfortunately, many systems currently implementing compartment based protection allow information flow across 
boundaries for subjects with access to multiple compartments. From the standpoint of viral attack, this is ill advised since 
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a virus could then cross compartment boundaries and spread to all subjects within the level at which the attack was 
launched regardless of its initial compartment. A rational solution is to enforce compartment boundaries to the same 
extent as levels are enforced, and thus limit a viral attack to all subjects in the same compartment, security level, and 
integrity level as the attacker. We find that this solution is unacceptable within a UCI3 since a UCB can't be relied on to 
protect compartments from one another, and we must further limit single level UCBs to one compartment if we are to 
accept outgoing communications from them. 

In the same way as security and integrity levels became a problem in the transmission of data through intermediate 
computers in a network, the use of compartments presents a problem. Since the information allowed in an intermediate 
site cannot be in a compartment not permitted within that site, communications may be restricted from passing through 
intermediate nodes unless all nodes have all compartments. This also defeats the protection offered by compartments 
against MT attack soon to be explored. 

Without extensive analysis, we can see that the use of cryptography for moving information between compartments 
works just as in moving information between security levels. The use of a special network compartment "N" allows us to 
transmit information through intermediate sites by giving all sites access to N. In order to avoid wide spread infection of 
N, we limit N's functionality to the built in functions required for implementing the transport mechanism of the network. 
If we can prove that this limited functionality doesn't permit viruses, then we may have an acceptable solution to this 
communication problem. 

The MT Attack 

In the MT attack, the security of the node is violated. All information in and capabilities of the node are then available 
to the attacker. With no compartment protection, infection can spread to any other place in the network at any level 
present within the node. If the node has access to all levels, then the entire network can be infected, and all information 
in the network can be extracted. This is certainly a severe attack, and is equivalent to having a set of LR attackers in each 
of the levels in the node. 

Using the same analysis as was used for the LR attack, we see that with compartment protection, all (security, integrity, 
compartment) triples within the node can be taken over. Consider the MT attack's ramifications in terms of revealing 
keys to cryptosystems. The advantage of a public key system becomes quite apparent, since the node would only be able 
to access public keys of other sites. In a one key system like the DES, such an attack allows the attacker to forge messages 
of other sites unless n2  keys are used for an "n" subject network. Security in the private key case requires severe 
overhead, especially when there are large numbers of subjects in the network. 

5.6 Analysis of an Example Network 

Figure 11 shows an example of a network operating with only level and compartment protection with many important 
network properties. The rows in this diagram indicate levels in the system, while the letters in each column represent the 
allowable compartments. The compartment 'N' is the "network" compartment realized through a TCB. Information can 
only be passed between levels through 'N', and a mandatory encryption and authentication is performed by the TCB. We 
may also allow a limited functionality computer mail system between 'N' compartments and grant every subject an 
account in an appropriate 'N' compartment for sending and receiving mail. For notational purposes, we will describe 
places in this network as triples consisting of the (TCB number, level number, compartment). Thus, (1,3,a) exists, but 
(1,3,c) does not. 
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Figure 5.11 - A Sample TCB Network 

Communication Restrictions 

All connections in this network meet the requirements of our cookbook designs for connection of TCBs. Since 
communication links are at a variety of levels, there must be a variety of security measures taken to assure that links above 
the network level (1) are physically secured and only allowed to operate in trusted environments. Link X and Y are above 
the network level, and must be independently secured from the environment and each other. Thus we must require that 
TCB1 and TCB2 are in a site with trusted communication links. TCB3 can be in a remote site since its only connection is 
at the network level. 

We shall use the term "channel" to indicate a logical communications link between two places in the network. Since no 
communications are allowed between subjects in different levels or compartments, the only channels required are: 

channel from to 

(1,3,a)<--)(2,3,a) 
2 	(1,2,0<--)(3.2.0 

3 	(1.1,a)<-->(3,1,a) 

We will use a fixed slot routing technique with channels assigned to links in the following manner: 

channel 1 uses 100% of X's time and 100% of Y's time. 
channel 2 uses 60% of Z's time. 
channel 3 uses 60% of Z's time. 

In general, the channel assignment problem for optimizing communications relative to a performance measure in this 
type of system is NP-complete, and has very strong analogies to the routing problems encountered in the design of digital 
integrated circuits. 

Communication Protocols 

We will initiate each channel with a channel wide key exchange as specified in protocol 1 every hour. Both encryption 
and authentication of all messages over each channel will be required for each transmission. In order to prove identity of 
end to end subjects, each TCB will provide independent verification of identities of all senders on each transmission, and 
legitimate communication partners will be given to each TCB so that illicit attempts at initiating protocols may be 
detected. 

Information will be transmitted as a continuous stream of bits at the link's optimal communication rate, with a 
synchronization signal sent once every minute to maintain network wide timing and synchronization. When higher 
communications bandwidth than can be provided with RSA is desired, systems will be able to agree via messages sent 
subsequent to protocol 1 to use a DES encryption system for the duration of the period of communication. The external 
appearance of the protocol will not change when the DES is in use as this could lead to a covert channel. DES keys will be 
exchanged using the current RSA keys, and will be randomly generated by the TCBs as part of their system services. 
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Fault Tolerance Under Attacks 

The only network lit attacks arc by subjects with channels to other network sites. liach of these can only attack 1/6 of 
the places in the network. With the exception of restricted computer mail facilities, no communication is permitted from 
any subject to more than 1/6 of the other subjects in the network. This network also provides limited protection from the 
MT attack in that TC131 can only effect subjects in compartment 'a' at levels 1 and 3, and subjects in compartment 'b' at 
level 2, which is only 1/2 of the network. By similar analysis, TCB2 can only effect 1/3 of the network, and TCB3 can only 
effect 2/3 of the network. Note that the only untrusted communications line allowable in this system is the one from 
TCB1 to TCB3 since all others are at higher levels than the "network-level". 

We finally note that in a network with a large number of UCBs and a small number of TCBs, we can attain distributed 
isolationism by using the TCBs as "hubs" for UCBs within a given facility, and routing all interfacility communications 
through these hubs. Limited functionality TCB hubs may be practical to this end. 

5.7 Summary 

The basic design criterion for a secure multilevel computer network have been examined, and a set of proven 
connectivity constraints have been developed that allow the systematic "cook book" design of secure computer networks 
in both trusted and untrusted communications environments. Untrusted computing bases have been shown to be of very 
limited utility in these systems, while trusted computing bases have been shown to be sufficient to allow useful 
communications. 

Automatic declassification and reclassification of information in such a network was examined, and the desired 
properties of a cryptosystem for this purpose are now specified. A "good enough" cryptosystem has been shown to be 
available in the form of the RSA "public key" cryptosystem, and protocols are available for its proper use in such a 
computer network. 

Attacks against secure computer networks of the sort specified here have been examined, and their effectiveness has 
been shown to be drastically reduced through the use of compartments as well as security and integrity levels. 

The expansion of this work to encompass systems without aligned security and integrity levels involveg about 9 times as 
many cases as the analysis presented here, but uses the same principals and mathematics, and is a straight forward 
extension of this work. A further extension of this work to the more general lattice structure is quite straight forward. 

As an extension of the concepts of security levels, integrity levels, and compartments, there is no fundamental reason 
that an arbitrary dimensional space of security can not be used. The lattice structure goes a long way in this regard and 
allows a very flexible structure for restricting information flow. The idea of allowing users access to multiple places in the 
security lattice is a logical extension of allowing them access to multiple places in the more structured models. For 
extremely large networks, the management of this sort of policy might require significant software advances. As a first 
step, the automation of determining the worst case effects of the LR and MT attacks would seem straight forward, and 
would allow a very rough risk assessment as a precursor to administrative decision making. 

Further work is required to derive actual designs of such a network, to finalize protocols for practical use, and to reduce 
this design to practice. With current cryptosystems, many secure network designs can be developed, but there may be 
some applications which require further cryptographic advances. Cryptography and cryptographic protocol analysis is 
being studied in the cryptographic community. 

The use of a limited functionality network communications processor has been suggested, and implementations of are 
underway. [121 It is important that the results of this work be incorporated into the designs of networks using these 
processors, and that the designers of these processors consider the effects of the attacks examined herein. 

It appears that the design of secure computer networks is feasible, and that with a significant development effort, 
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prototypes of the concepts derived here could he developed and tested. It is likely that within a few years secure 

multilevel networks will he operational and eventually will gain widespread acceptance in those communities with deep 

concerns for integrity and security. 
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6. Protection and Admin 
Orderings 

ration of Information 
Networks with Partial rderings 

We now extend the previous results in secure computer networks to a more general model, examine the effects of time 
on the protection and administration of information networks, and explore the implementation of provably secure 
automated administrative assitants for such networks. 

6.1 Introduction 

The "security" model of protection in a computer system was the first sound mathematical model of information flow 
that allowed proofs of mathematical properties to be used for establishing the security of a computer system. [3] The basic 
structure of this model is a linear relation on a set of "security levels" that is used to prove that information can only flow 
in one direction through levels, and thus to prove that information entering a "higher" security level cannot "leak" to a 
"lower" security level. 

A generalization of the security model to a lattice structure was first introduced by Denning [20], who noted that the 
linear relation could be generalized to a lattice structure in which "higher" and "lower" in the security model are mapped 
into supremum (SUP) and infemum (INF') respectively in the lattice. This affords the same degree of assurance and 
mathematical soundness as the security model, and allows more general information flow structures to be used. The 
lattice facilitates more accurate modeling of many real world situations, most notably the situation where many different 
"compartments" may exist at the same security level without information flowing between them. 

A very sound basis for limiting this generalization to a lattice structure is that, in any single processor, hardware has 
access to all information, and thus there is a SUP whether we like it or not. Although this policy seems suitable for a single 
processor where there is necessarily a SUP, in a more general network, there is no such physical restriction. We should be 
able to exploit this physical generality with a corresponding mathematical generalization. 

At about the same time as the lattice model was produced, it was shown that the dual of the security model could be 
used to model the "integrity" of information in an information system. [5] The basic structure of this model is a linear 
relation on a set of "integrity levels" that is used to prove that information can only flow in one direction through those 
levels, and thus to prove that information in a "lower" integrity level cannot "corrupt" information in a "higher" integrity 
level. 

In implementation, policies are most often modeled by the "subject/object" model in which each of a set of "subjects" 
has or does not have each of a set of "rights" to each of a set of "objects." [32] The "configuration" of the rights at any 
given moment are maintained in an "access matrix", and thus the rights of subjects to objects may be modified by 
modifying this matrix. By properly restricting the configurations to only those which fulfill a desired policy, we 
implement a provably secure system to meet the specified policy. 

Figure 1 shows examples of the security and integrity models of information flow. In the security model, a subject at 
level "n" cannot read information from a level "i" s.t. i>n, or write information to a level "1" s.t. Kn. The former rule is 
called the "security-property", and the latter rule is called the "-property". The security-property prevents a user from 
reading higher level information, and is commonly called "no read up". The *-property prevents a user from declassifying 
information, and is commonly called "no write down". The integrity model is simply the dual of the security model. 
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Figure 6.1 - The Security and Integrity Models 

In figure 2, we show an example of a lattice based system and a corresponding access matrix. The generic rights in the 
access matrix for this example are read "r" and write "w", while subjects and objects correspond to places in the security 
lattice. We note in passing that the integrity model has not previously been extended to an integrity lattice (although this 
extension is immediately evident from the security lattice because of the duality of the integrity and security models). We 
may denote the relation "A can read B" by "A r B" and the relation "A can write B" by "A w B". 

a 
b 

Figure 6.2 - A Security Lattice and its Access Matrix 

The formal rule for the security lattice policy is that a subject "S" may read an object "0" only if S is a security SUP of 
0, and S may write 0 only if S is a security INF of O. The formal rule for the integrity lattice is just the dual; S may read 
0 only if S is an integrity INF of 0, and S may write 0 only if S is an integrity SUP of O. 

We note that because of the definitions given for the security model and the lattice model, there is no mechanism 
provided to prevent writing of higher level objects by lower level subjects. The lack of integrity restriction in the security 
model and the corresponding lack of security restriction in the integrity model, is often countered by the use of a 
"discretionary" access control policy which allows subjects control over rights not explicitly restricted by the security or 
integrity policy. [19] Although this may be of practical value in many cases, the only administratively enforceable 
restrictions on the flow of information are embodied in mandatory policies. 

A next logical step might be to incorporate the integrity model restriction of "no write up" in the security model to 
allow information to be read from below, but not written to above. The problem with this policy is that an effective "write 
up" can be performed if there is ever a "read down", since the "read down" might allow a Trojan horse [27] to be placed 
at the higher level. The Trojan horse might read a particular low level object that describes objects to be read down, and 
thus effectively written up. In effect, we can generalize the "read" and "write" rights "r" and "w" to a single "flow" right 
"f" where: 

a bcde f gh 

(a t b) itt [(a w b) or (b r s)]. 
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Preventing illicit dissemination and modification of information clearly calls for a policy that combines security and 
integrity. The combination of security and integrity policies of the sorts given abo‘c, results in the partitioning of a system 
into closed subsets under transith ity as we saw earlier. This partitioning is necessary in order to prevent global 
information flows. 

6.2 Some Simple Demonstrations 

We will now use access matrices to graphically demonstrate properties of interest to our studies. Although the solutions 
we show are for specific cases, they reveal general properties that are not necessarily self evident. 

We begin with the matrix for the security and integrity models whose access conditions were stated earlier, and their 
combination in the case where security and integrity levels are identically divided. This is shown graphically in figure 3: 

Figure 6.3 - Combining Security an Integrity Models 

Another way to present this information may be used interchangeably when applicable, and the case from figure 3 is 
represented in figure 4. The property made clear by this example is that the combinations of the security and integrity 
models leads to a system that is closed under transitivity, and at best limits the spread of integrity corruption and/or 
security leaks to a closed subset of the system. 

n. I 

n-1 
+ 

Figure 6.4 - Combined Security and Integrity Models 

A similar analysis can be used to demonstrate that, if a security lattice is combined with an integrity lattice such that 
security and integrity relations are identically aligned, isolationism results. We show this for an example in figure 5 (the 
previous lattice example with subjects a, b, and d removed): 

Security Lattice Integrity Lattice Resulting Matrix 

ce f gh c e f gh 

Figure 6.5 - Combined Security and Integrity Lattices 
Cases where security and integrity levels are not aligned also tend towards isolationism as is shown in figure 6. 

e 
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Figure 6.6 - Subject Combination 

The "combination" of subjects, is a case where distinct subjects are combined from the point of view of the security or 
integrity policy as if they were a single subject. Thus any right given to one subject in a given model is automatically 
granted to the other. If we allow alignments to vary by combining sublattices of otherwise identical security and/or 
integrity structures, we achieve systems in which dissemination and corruption are limited to subsets of the system that 
are closed under transitivity. We show examples using the lattice from figure 5 above in figure 7 below, where c and f are 
combined in the integrity lattice, and where g and h are combined in the security lattice. 

Security Lattice Integrity Lattice Resulting Matrix 

Figure 6.7 - Other Combined Lattices 

Notice that in the former case, since e and f are incomparable in the security domain and have identical SUPs, no effect 
is achieved by combining their integrity. In the latter case, g is given flow access to h. The resultant structure may be 
shown as a directed graph as in figure 8. 

 

U 

 

Figure 6.8 - The Resulting Network 

We stated earlier that information can be communicated to the transitive closure of information flow starting at its 
initial source. Given an access matrix of the type shown above, we can compute an effective access matrix which tells us 
the potential information effects of subjects on other subjects under transitivity. A simple example is given in figure 9. 
This result is not likely to be predicted by a typical security administrator, and automated tools for evaluating access 
matrices to generate equivalent effective matrices may be quite useful. Efficient algorithms for this evaluation are not 
hard to find. 
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abcde f gh  -b-bcde I q h 
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Figure 6.9 - An Access Matrix and Effective Equivalent 

To see the above conclusion more clearly, we follow a simple series of steps as follows: 
(a f a) and (a f e) and (a f t) and (a t h) 	;given 

(h f b) and (h f c) and (f f d) and (b t g) 	;given 

(a t h) and (h f b) 0 (a f b) 	 ;conclusion 

(a f h) and (h f c) 	(a f c) 	 ;conclusion 

(a f f) and (f f d) 	(a f d) 	 ;conclusion 

(a f b) and (b t g) 0 (a f g) 	 ;conclusion 

thus (a f I) 	 ;a flows to all 

(a f a) and (b f a) and (d f a) and (e f a) 	;given 

(g f a) and (h f a) and (c f b) and (f f d) 	;given 

(c f b) and (b f a) 	(c f a) 	 ;conclusion 

(f f d) and (d f a) 0 (f f a) 	 ;conclusion 

thus Co f a) 	 ;all flows to a 

(o f a) and (a f ®) 0 (o f s) 	 ;global communication 

We conclude from these demonstrations that the access matrix is a useful tool for evaluating the effect of 
simultaneously using a security and integrity policy, that the combination of these policies tends to partition systems into 
closed subsets under transitivity, and that the transitive nature of information flow has far ranging effects on the security 
and integrity provided by a protection system. 

6.3 More General Mathematical Structures 

We have just seen that the most general form of flow control allows so much freedom to an administrator that 
seemingly sensible policy decisions may have unexpected, and potentially catastrophic, effects on the actual protection 
provided. The mathematical structure of the security and integrity lattices guarantees that information flow is limited, and 
thus that inauspicious administration cannot cause global access as in the last example. Unfortunately, this combination 
tends to produce situations where isolationism results, and this may be too severe a restriction for desired levels of 
communication. Furthermore, within a given place in the lattice, we may desire additional flow limitation. 

There are three basic remedies to the above situation. One remedy is to limit the functionality of the system so that 
information may not be used in a sufficiently general manner as to have transitive effects. This solution is infeasible for 
any general purpose machine, and little is known about the degree of limitation necessary to prevent transitive 
information effects. A second remedy is to limit the transitivity of information flow by keeping track of all subjects that 
have effects on objects and restricting certain sets of subjects from effecting certain sets of objects. This solution is difficult 
to implement, tends to move a system towards isolationism if imprecise implementations are used, and in order to be 
precise, requires an NP-complete implementation. The final remedy, and the one we will now consider, is to find a 
mathematical structure that is more general than lattices, and yet which maintains sufficient limitations on information 
flow to prevent the all consuming transitivity that arises in the most general case. 

a 
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We begin by specifying the information flow relation "1". We assume transitivity of the flow relation, and thus that 
pairs (and sets) of subjects with mutual flow are equivalent. We collapse each equivalence class into a single subject, and 
get an antisymetric transitive binar∎  algebra. 

(S,01): 

(a t b) and (b f c) •> (a t c) ;transitive 

(a t b) and (b t a) •> (a 	b) ;antisymetric 

We note that in a structure where equivalence classes collapse, information in two non identical equivalence classes A 
and B can not be related so that ((A f B) and (B f A)) since this would make A and B identical by antisymetry. 
Furthermore, there can be no structure in which information flowing from A to B can reenter A since this would mean 
that (A f B) and (B f A) (by transitivity), and thus that A and B (and all other elements of this ring) are equivalent. Thus, 
we have a relation "<" such that A < B iff (A != B) and (A f B). We note that if there is a subject "b" so that not(b f b), 
then in all cases where there is a subject "a" so that a<b and a subject "c" so that b<c, we may eliminate subject b, and use 
instead, a<c. Thus we can systematically eliminate any such subject from the structure without changing the effective 
information flow behavior. We conclude that the structure of interest is a reflexive, transitive, antisymetric, binary 
relation, commonly called a partial ordering, and that this seems the most general structure we can use to guarantee 
restricted information flow. We will use the term "POset" to indicate a set whose elements are related by a partial 
ordering. 

fer all a.b.c in St  

[(a f a) 	 ;reflexive 

and (a f b) and (b f c) 	(a f c) 	;transitive 

and (a f b) and (b f a) ■> (a 	b)] 	:antisymetric 

Figure 10 exemplifies this structure graphically where flow is directed from left to right. Notice that the difference 
between this and previous structures is in the lack of a SUP or INF for each pair of subjects. For example; a and b have 
no INF, so no subject can effect both; j and k have no SUP, so they cannot both effect any other subject; g and c have no 
SUP and no INF, so no single subject can either effect both or be effected by both; and i and j have both a SUP and an 
INF, so that subjects a, b, e, d, and f can effect both i and j, and subjects p and q can be effected by both i and j. 

Figure 6.10 - An Exemple POset 

We note here some of the results that can easily be attained from a POset by using figure 10 as an example. The 
effective POset under transitivity is formed by applying transitivity to information flow, and is more easily displayed in a 
matrix form. This answers the question of reachability immediately without undue complexity to the observer. We call 
the effective POset under transitivity a "Flow Control POset" (FCP). The FCP corresponding to a portion of figure 10 is 
given in figure 11 below. Subjects can always be labeled so as to produce an upper triangular FCP matrix since, if there is 
no reordering of a non upper triangular matrix to an upper triangular matrix, there must be two equivalent entries under 
our transitivity assumption. Every upper triangular boolean matrix maps into a unique POset, but not all upper triangular 
matrices map into a unique FCP. Finally, we note that completely independent subsets of a system can exist within a 
partial ordering as in figure 10, and that many distinct yet equivalent FCPs can thus exist. 
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Figure 6.11 — An FCP Example 

The corruptive effects of subject collusion can be easily determined by ORing rows of any set of colluding subjects to 
find their effective joint flow. As examples, the effects of; c, d, and g colluding; and of a and b colluding; are given in 
figure 12. We quickly see that a and b can collude to effect the entire example; while c, d, and g only have limited 
collusive effect. Similarly, the information accessible to a set of colluding parties can be derived by ORing the respective 
columns of the FCP matrix. We see that c, d, and g may collude to leak the vast majority of information in the system, 
while a and b only have trivial collusive effects in information leakage. This indicates a general and fairly obvious fact 
about systems of this sort; flow sources have corrupting power, while flow recipients have leakage power. 
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Figure 6.12 - Effects of Two Collusions 

We note that the POset in this context is really a "classification scheme", just as the Bell-Lapadula and Biba models are 
classification schemes. We may, in practice, have equivalent subjects in an actual system, but we must be aware of the 
fact that they are in the same equivalence class from a flow standpoint, in order to understand the ramifications of the 
configuration. 

6.4 The Effects of Time on Flow Control 

We now consider the effects of time on the flow of information in the case where the configuration of a protection 
system may change through administrative action. We call an indivisible modification of a protection system a "move", 
and define a move as "valid" iff the resulting configuration passes some set of tests on configurations. Our analysis of 
moves begins with restrictions on tests for determining valid configurations. We examine three different time analyses of 
a system designed to enforce a flow policy, The "quasi-static case" is the case where only the configuration that results 
from a proposed move is of interest, and effects of previous configurations are unimportant. The "universal time case" is 
the case where effects of all past configurations are of interest to the validity of the proposed move. In this case, we are 
concerned with the lingering effects of corrupt information and/or the eventual dissemination of information. As a 
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compromise, the "window of time case" is the case where effects of a limited span of time are of interest to the validity of 
proposed moves. 

We may implement our set of tests in any number of ways, but if we are to trust the system of tests as part of a trusted 
computing base, we should take care to design it in such a manner as to allow simple and straight forward proof of 
correctness. We choose a rule based system (RBS) which consists of a rule analysis method, an information base, and a set 
of rules which specify the desired tests. The basic algorithm we use for the RBS is; assume the proposed move; verify the 
validity of the resulting configuration by evaluating the rules; and accept or reject the move iff the rule evaluations are 
acceptable. Acceptable moves which are desired by the administrator may then be reflected in the access matrix. 

We must be careful here, for there are several traps that the designer of such a system may fall into. For example, 
certain rule sets may tend towards specific. states of the protection system, while others may prevent certain valid states 
from being reached from other valid states. In order for a set of rules to be of practical utility, we must restrict them in at 
least some basic ways. If the set of rules are inconsistent, we may never find all rules in agreement, and thus no 
modification will be acceptable. If the rules are incomplete, we may have cases where rules cannot produce a result, and 
this is clearly unacceptable. We restrict ourselves to a finite set of rules since an infinite set of rules cannot be evaluated in 
finite time. Similarly, each rule must be decidable so that decisions are made in finite time. Finally, we require that the 
rules reflect the desired policy of the protection system, for if they do not, they are of little use. We note that many 
desirable policies are in practice unattainable, and that we must restrict ourselves to attainable goals if we wish to attain 
them. 

Since the validation process consists of testing the resulting configuration against the set of rules in force, any move that 
violates no rule will be accepted, and any move that violates any rule will be rejected. Since an RBS can be quite simple in 
design and implementation, it should be relatively easy to prove its correctness using automated theorem proof 
techniques already used for proving correctness of secure operating systems. Once a basic RBS has been proven correct, 
we need only prove that rules are correct for a given policy in order to prove a given implementation correct. Security, 
integrity, and other properties of results are proven by proving that evaluations performed by rules in the RBS are 
mathematically consistent with the specified policy. Since the rules for these policies and the rules for the RBS are just 
mathematical conditions, this mapping should be quite simple. 

Given that we have a provably correct RBS, we must select rules and analytical techniques. We now examine the effects 
of particular choices of rules on the accuracy of our results. 

Consider the quasi-static case, wherein we simply use a set of rules which test the state of the access matrix resulting 
from the proposed move. The problem with this case is that there is a sequence of independently valid moves, which 
inadvertently allow information to flow where it should not. As an example, with the rules (C —f B) and (B f C), users B 
and C may communicate as follows: 

(B f A) 	;information may flow from B to A 

;and does as time passes 

(B -f A) 	;B may no longer flow to A 

(A f C) 	;information may now flow from A to C 

..• 	 ;B's information transits to C 

We can see that if (B f A) and (A f C) were simultaneously true, an FCP computation would determine (B f C) from 
transitivity, and thus a move that created this situation would be dissallowed because of the rule (B —f C). If we only 
examine the static configuration, there is no move that causes (B f C) to be instantaneously present in the FCP, and thus 
the sequence will be wrongly considered valid. This problem comes from the effect of time on information flow. 

As an attempted solution, we can simply ignore the removal of flows in the evaluation process. This scheme, in effect, 
remembers all previous flows, and only permits flow if there is no historical flow that, when combined with the proposed 
flow, results in illicit flow. Unfortunately, this solution is imprecise, in that there are legitimate moves, even in light of 
historical information, that will be considered invalid if we simply ignore all flow cancellations. An example is a sequence 
of moves as follows: 



68 

(A f C) 

600 

(A -f C) 

f A) 

;information may flow from A to C 

;and does as time passes 

;A may no longer flow to C 

;information may now flow from B to A 

;and does as time passes 

In this example, even though (A f C) and (B f A) are illegal together, there is no sequence of events whereby 
information can ever flow from B to C or from C to B, and thus neither flow rule- is violated. 

We see that the actual sequence of moves must be considered if we are to precisely prevent illicit flows over time. To 
precisely track the time transitivity of information flow, we must precisely track all effects of information from subject to 
object, and this has been proven NP-complete for both the security and integrity cases. We can, however, obtain a precise 
solution, if we assume that any flow that can happen will happen (a conservative assumption in the flavor of Murphy's 
law). 

In order to precisely determine the largest set of subjects which can effect a given object, we assume an initial 
configuration of the protection system, and maintain_a precise configuration that reflects the maximum set of subjects that 
could have effected each object after each move. We call this configuration a "time flow configuration" (TFC), and 
calculate it by remembering all transitive flows into each object for all moves as follows: 
TFC at move 0 ■ FCP 

for N>0, TFC at move N "(A f B)" ■ 

1 	for all X,Y s.t. TFC(X,Y) at move N-1 ■> TFC(X,Y) at move N 

2 	for all X s.t. TFC(X,A) at move N-1 ■> TFC(X,B) at move N 

3 	TFC(A,B) at move N 

4 	for all X s.t. FCP(B,X) at move N, 

for all Y s.t. TFC(Y,B) at move M 	TFC(Y,X) at move N 

We may recall that an FCP is a one directional flow relation on a (subject,object) pair. A TFC is the same sort of 
relation. Our initial TFC is just the FCP of the initial configuration, since this indicates all potential flows into each object 
from each subject under transitivity. From this point forward, every move "(A f B)", introduces the possibility that a 
previous information flow to A transits to B and all objects in the transitive closure of B's information flow. Rule 1 states 
that previous flows remain after a move. Rule 2 states that all previous flows into A are added to B. Rule 3 states that A is 
added to the flows into B. Rule 4 states that all resulting flows into B are added to all objects in the transitive closure of 
flow from B. Rule 3 is implied by TFC(X,A) _> TFC(X,B) if we assume (A f A). 

Except for the FCP, this maintenance of the TFC takes at most Nt2 time and space in the number of subjects, and is 
linear in the number of moves considered. The FCP computation takes at most Nt2 time and space in the number of 
subjects, and is performed only once per TFC calculation. It is thus quite feasible maintain the TFC throughout the 
lifetime of a typical network. 

One problem with using the TFC for limiting moves is that it may become unduly restrictive as time goes on. 
Information aging, for example, is commonly used to justify automatic declassification of information, and a 
corresponding policy might be used to justify automatic removal of TFC flow restrictions. A "window of time" version of 
a TFC can be generated by assuming that the initial configuration of the system is the FCP configuration at the beginning 
of the window of time, and computing the TFC using all subsequent moves. We must of course remember all historical 
moves over the window of time, and must keep either historical configurations or a complete sequence of historical moves 
from which we can recompute the FCP for the beginning of the window. 

Additional uses arise if we wish to maintain a precise accounting of the potential effects of collusions over a given time 
span. As an example, suppose we know that a given collusion was in effect over a given span of time, and wish to 
compute the maximum integrity corruption and security leakage that could have resulted from that collusion. We may 
compute these effects by the following procedure: 
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get the FCP at the time of first collusion 

compute the TFC till the end of the collusion 

maximal corruption ® all X s.t. for any Y in collusion, TFC(Y,X) 

maximal leakage ® all X s.t. for any Y in collusion, TFC(X,Y) 

6.5 Automatic Administrative Assistance 

By using the above mathematical basis, we can automatically evaluate the FCP, TFC, equivalencies of subjects, and 
effects of collusions under a given configuration of a protection system with a flow relation. We may augment this basic 
capability with a set of rules that determine whether a given configuration is allowable given installation dependent 
parameters, to form a configuration evaluator tailored for a given system. We may form a dynamic analysis system by 
performing evaluations on configurations resulting from proposed moves, and reporting on the effects. Finally, we may 
augment this capability with a set of inductive rules for proposing moves that are likely to be acceptable to the protection 
system while fulfilling desired information flow requests. Figure 13 shows the architecture of such an RBS. 

Figure 6.13 - Architecture of an Automated Assistant 

In a network where classical protection models are required, we may form an assistant based on the security and 
integrity models. We use the mathematical restrictions on communications under these models as the rules for evaluation 
of configurations. A configuration is acceptable only if these rules are not violated. Rules for evaluation of collusions, 
limiting FCPs and TFCs, and limiting equivalencies of subjects can be used to form more restrictive systems while still 
maintaining security and integrity constraints. We assure that- added rules do not allow violation of previous rules by 
using the union of rule evaluations for evaluating proposed moves. Since rules themselves may contain complex 
conditionals, we lose no generality in this forced union. 

Since inductive decision making is submitted to the RBS for acceptance, we need not trust the induction method, nor 
prove its correctness in order to be certain that we make no illicit moves. Indeed, we can design high level structures to 
generate a multitude of suggestions, have these suggestions submitted to the RBS, and use the results of evaluation to 
determine the utility of inductive paths and filter out invalid administrative suggestions. 

A simple implementation of an assistant that maintains security, integrity, and compartments, while allowing arbitrary 
information flow controls within those restrictions, may be formed by implementing the following moves and using the 
previously explored techniques to validate resulting configurations: 

To add an individual, we require that the minimum and maximum security and integrity levels, and the set of 
compartments are within system limits. 
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Add-individual A (min-sec.max-sec,min-int,max-int,effect,comp t comp....): 

Min Sec A >■ Min Sec System 

Max Sec A <■ Max Sec System 

Min Int A >® Min Int System 

Max Int A <® Max Int System 

Comp A SUBSET Comp System 

To add a given ID for individual A, we need to know the individual, the compartment, the security level, and the 
integrity level for the given ID, and must verify that these don't cause the configuration to go beyond the allowable 
constraints on the individual. 

Add-ID Ax (sec;int.comp): 

Min Sec A <- Sec Ax <■ Max Sec A 

Min Int A <'. Int Ax <■ Max Int A 

Comp Ax ELEMENT Comp A 

To add an information flow from Ill Ax to ID By, we must verify that the flow doesn't violate security, integrity, or 
compartment constraints: 

Add-flow (Ax f By): 

Sec Ax 	Sec By 

Int By <■ Int Ax 

Comp Ax ■ Comp By 

In order to remove flows, IDs, or individuals, we must verify that these removals don't cause other rules to be violated. 
In terms of the ability to produce valid configurations, removal has an immediate benefit. With only security, integrity, 
and compartment constraints, a sequence of moves is valid iff each move in the sequence is valid. We are also guaranteed 
that any valid configuration of the protection system can be reached from any other valid configuration with only these 
moves. 

Note that an ID or individual should really never be removed as it is sufficient to remove all relevant information flows. 
A good reason for not allowing individual names or Ills to be reused, lies in the information aging problem. The reuse of 
an old ID by another individual, might cause a naming conflict that would introduce uncertainty in the decision making 
process. Removal, subsequent reuse by another individual, removal, and reuse by the original individual might cause a 
condition where traces of the original flow effects are lost while the actual informational effects allow illicit flows. A 
rational use of the window of time analysis is for allowing reuse of old IDs. 

Although considerable mathematical work is still required to investigate underlying policy issues for static and dynamic 
configurations of protection systems, a simple automated administrative assistant of the sort shown above is a significant 
step towards eliminating errors in the administration and configuration of information networks. An assistant of this sort 
has been prototyped, and further developments along these lines are expected to include hierarchical protection systems 
and administration. 

6.6 Summary, Conclusions, and Further Work 

We have shown by a series of arguments that the structure of preference for describing and the analyzing flow 
properties of information networks is the POset. We have demonstrated a difficulty with more general structures in that 
they obscure the ramifications of administrative decisions, and an inadequacy of less general structures for describing 
many desired situations. A design for a provably correct automated administrative assistant has been shown, and a set of 
moves for maintaining traditional policies have been given. 

The effects of transitivity, collusions, and time on the protection provided by flow control have been examined, and a 
variety of analytical techniques have been introduced for implementing accurate flow control protection in the presence 
of various time variant assumptions. 
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lixtensions of these techniques can be used to consider the effects of .collusions that change over time and sets of 
independent collusions. Similar analysis may also have implications to other domains such as game theory and its many 
related fields. 

One particular extension allows us to measure the effects of discretionary access control. In order to include this in our 
analysis of the TFC, we need merely include discretionary moves in our TFC computation. This grants us a more 
accurate model of the actual behavior of a network, and assuming that discretionary access control operates correctly, 
yields provably valid results. 

A logical extension of this work is the analysis of systems where a hierarchy of administrators exist. In this extension, 
the discretionary controls of a SUP administrator are mandatory controls of an INF administrator. The analysis of valid 
moves over time for each level in the hierarchy enforces mandatory policies at that level. Information on actual 
configurations may be used by SUP administrators to allow more accurate configuration control at the global level, while 
local controls allow better distribution of responsibility. It is likely that this work will be extended to include special 
purpose security and integrity transforms which allow distributed decision making. 

Another extension of these ideas is in the case where we assume that information flow is not instantaneous or that 
transitivity is limited in some manner by the operating system. In the case where information flow takes time, we can 
associate a "flow speed" constraint that tells us how quickly flows may occur. The effect on our previous analysis is simply 
to limit the transitivity of information flow as a function of the time over which information is available and the flow 
speed. Although the analysis in this case is somewhat complex, the mathematics follows directly from what we seen 
herein, and the TFC computation is not significantly complicated. In the case of limited transitivity, we must simply 
restrict our transitive closure assumption to a finite rather than infinite number of flow steps. The basic mathematical 
structure changes slightly because we no longer have the ability to equivacate subjects with mutual flow, even after a 
delay as we can in the limited flow speed case. 

There are many applications of this work in a wide variety of domains. In the design and analysis of secure computer 
systems, this work is a logical extension of the works cited in the introduction. In the domain of industrial and 
international espionage, analysis of this sort is likely to provide insight into the potential effects of leaks and 
misinformation, and the effectiveness of techniques which attempt to limit, detect, or compensate for these activities. 
Extensions to limited flow speed systems will likely yield results of interest to those who spread and attempt to quell 
rumors, to those who attempt to analyze the effects of infectious diseases, and to those who examine the effects of 
information on the society. 

The techniques presented here allow improved analysis of exposures to informational losses, which is critical to both 
protection and insurance of informational assets. This sort of flow analysis may also be helpful for optimizing behavior of 
information networks for communication with privacy and integrity. 

In the broader sense, we feel compelled to consider the relation of this work to similar work in protection of materials in 
process control and materials handling. At the most fundamental level, there is a difference between information and 
physical materials, in that physical material falls under a conservation law, while information does not. In essence, when 
we "leak" physical entities, there is a corresponding reduction in mass from the source of the leak. Similarly, when we 
"corrupt" physical entities by introducing foreign substances, there is a corresponding increase in mass. When 
information moves through an information system, we have no such conservative metric with which to measure the effect. 
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7. Detection and Cure of Computer Viruses 

Since prevention of computer viruses may be infeasible if widespread sharing is desired, and since sharing is often 
considered a necessity in modern computer systems, the biological analogy leads us to the possibility of detection and 
cure as a means of viral defense. We now examine the potential for detection and removal of viruses. 

7.1 Detection of Viruses 

In order to determine that a given program "P" is a virus, it must be determined that P infects other programs. This is 
undecidable since for any decision procedure "D", P could invoke D and infect other programs if and only if D 
determines that P is not a virus. We conclude that a program that precisely discerns a virus from any other program by 
examining its appearance is infeasible. In the following modification to program V, we use the hypothetical decision 
procedure D which returns "true" iff its argument is a virus, to exemplify the contradiction of D. 

program contradictory-virus:• 

main-program:■ 
(if -D(contradictory-virus) then 

{infect-executable; 
if trigger-pulled then do-damage; 
} 

goto next; 

} 

Contradiction of the Decidability of a Virus "CV" 

By modifying the main-program of V, we have assured that if the decision procedure D determines CV to be a virus, 
CV will not infect other programs, and thus will not act as a virus. If D determines that CV is not a virus, CV will infect 
other programs, and thus be a virus. Therefore, the hypothetical decision procedure D is self contradictory, and precise 
determination of a virus by its appearance is undecidable. We note that this proof differs slightly in presentation from the 
previous proof (Thm 6) of this fact, and refer the skeptical reader to that proof for self assurance. 

7.2 Evolutions of a Virus 

As we pointed out in our earlier discussions, we can create evolutionary viruses by fonning viral sets such that each 
virus evolves into another element of the set. In this example of an evolutionary virus EV, we augment V by allowing it to 
add random statements between any two necessary statements. 

program evolutionary-virus:. 

{••• 
subroutine print-random-statement:• 

{print random-variable-name, " 	", random-variable-name; 
loop:if random-bit ■ 0 then 

(print random-operator, random-variable-name; 
goto loop;) 

print semicolon; 

subroutine copy-virus-with-random-insertions:■ 
{loop: copy evolutionary-virus to virus till semicolon-found; 
if random-bit 	1 then print-random-statement; 
if -end-of-input-file goto loop; 

main-programs 
(copy-virus-with-random-insertions; 
infect-executable; 
if trigger-pulled do-damage; 
goto next;) 

next* 

An Evolutionary Virus "EV" 
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in general, determination of the equivalence of two evolutions of a program "P" ("P1" and "P2") is undecidable 
because any decision procedure "I)" capable of finding their equivalence could be invoked by P1 and P2. If found 
equivalent they perform different operations, and if found different they act the same, and arc thus equivalent. This is 
exemplified by the following modification to program EV in which the decision procedure I) returns "true" iff two input 
programs are equivalent. 

program undecidable-evolutionary-virus:■ 

subroutine copy-with-undecidable-assertion:■ 
(copy undecidable-evolutionary-virus to file 

till line-starts-with-zzz; 
if file • P1 then print "if D(P1,P2) then print 14"; 
if file • P2 then print "if D(P1,P2) then print 0;"; 
copy undecidable-evolutionary-virus to file 

till end-of-input-file; 
} 

main-program:■ 
(if random-bit 	0 then file • Pi otherwise file • P2; 
copy-with-undecidable-assertion; 
zzz: 
infect-executable; 
if trigger-pulled do-damage; 
goto next;} 

next!) 
Undecidable Equivalence of Evolutions of a Virus "UEV" 

The program UEV evolves into one of two types of programs P1 or P2. If the program type is P1, the statement labeled 
"zzz" will become: 

if D(P1,P2) then print 1; 

while if the program type is P2, the statement labeled "zzz" will become: 

if D(P1,P2) then print 0; 

The two evolutions each call decision procedure D to decide whether they are equivalent. If D indicates that they are 
equivalent, then P1 will print a 1 while P2 will print a 0, and D will be contradicted. If D indicates that they are different, 
neither prints anything. Since they are otherwise equal, D is again contradicted. Therefore, the hypothetical decision 
procedure D is self contradictory, and the precise determination of the equivalence of these two programs by their 
appearance is undecidable. Again the skeptical reader may refer to Lemma 6.1 for further assurance of these facts. 

Since both P1 and P2 are evolutions of the same program, the equivalence of evolutions of a program is undecidable, 
and since they are both viruses, the equivalence of evolutions of a virus is undecidable. Program UEV also demonstrates 
that two unequivalent evolutions can both be viruses. The evolutions are equivalent in terms of their viral effects, but may 
have slightly different side effects. 

An alternative to detection by appearance, is detection by behavior. A virus, just as any other program, acts as a 
surrogate for the user in requesting services, and the services used by a virus are legitimate in legitimate uses. The 
behavioral detection question then becomes one of defining what is and is not a legitimate use of a system service, and 
finding a means of detecting the difference. 

As an example of a legitimate virus, a compiler that compiles a new version of itself is a virus. It is a program that 
'infects' another program by modifying it to include an evolved version of itself. Since the viral capability is in all general 
purpose compilers, every use of a compiler is a potential viral attack. The viral activity of a compiler is only triggered by 
particular inputs, and thus being able to decide whether or not a compiler is a virus by its behavior leads directly to the 
determination of whether or not the input describes a virus, and thus whether it is a virus by virtue of its appearance. 
Since precise detection by behavior in this case leads to precise detection by appearance, and since we have already shown 
that precise detection by appearance is undecidable, it follows that precise detection by behavior is also undecidable. 
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7.3 Limited Viral Protection 

A limited form of virus has been designed [52) in the form of a special version of the C compiler that can detect the 
compilation of the UNIX login program and add a Trojan horse that lets the author login. Thus the author could access 
any Unix system with this compiler. The compiler contains a virus that can detect compilations of new versions of itself 
and infect them with the same Trojan horse. Whether or not this has actually been implemented is unknown (although 
many say the NSA has a working version of it). 

As a countermeasure, we can devise a new C compiler sufficiently different from the original as to make their 
equivalence very difficult to determine. If the "best program of the day" would be incapable of detecting their 
equivalence in a given amount of time, and the compiler performs its task in less than that much time, it could be 
reasonably assumed that the virus could not have detected the equivalence, and therefor would not have propagated 
itself. If the exact nature of the detection were known, it would likely be quite simple to work around without going to 
this extreme. Once a "clean" version of the C compiler exists, the login program can be recompiled for renewed security, 
and a "clean" version of the original C compiler can also be recompiled if desired. 

Although we have shown that, in general, it is impossible to detect viruses, any particular virus can be detected by a 
particular detection scheme. For example, virus V could easily be detected by looking for V at the beginning of an 
executable. If the executable were found to be infected, it would not be run, and would therefore not be able to spread. 
The following program is used in place of the normal "run" command, and refuses to execute programs infected by virus 
V: 

program new-run-command:■ 
(file • name-of-program-to-be-executed; 
if first-line-of-file ■ 1234667 then 

(print "the program has a virus"; 
exit;) 

otherwise run file; 

Protection from Virus V "PV" 

Any particular detection scheme can be circumvented by a particular virus. As an example, if an attacker knew that a 
user was using the program PV as protection from viral attack, the virus V could easily be replaced with a virus V' where 
the first line was 123456 instead of 1234567. Much more complex defense schemes and viruses can be examined. What 
becomes quite evident is analogous to the old western saying: "ain't a horse that can't be rode, ain't a man that can't be 
throwed". No infection can exist that can't be detected, and no defensive mechanism can exist that can't be infected. 

This result leads to the idea that a balance of coexistent viruses and defenses could exist, such that a given virus could 
only do damage to a given subset of the programs within a system, while a given protection scheme could only protect 
against a given subset of the viruses. If each user and attacker uses identical defenses and viruses, there might be an 
ultimate virus or defense. It makes sense from both the attacker's point of view and the defender's point of view to have a 
set of (perhaps incompatible) viruses and defenses. 

In the case where viruses and protection schemes don't evolve, this would likely lead to some set of fixed survivors, but 
since programs can be written to evolve, the program that evolved into a difficult to attack program would more likely 
survive as would a virus that was more difficult to detect. As evolution takes place, balances tend to change, with the 
eventual result being unclear in all but the simplest circumstances. This has very strong analogies to biological theories of 
evolution [17], and the spread of viruses through systems might well be analyzed by using mathematical models used in 
the study of infectious diseases. [2] We note here that although "survival of the fittest" may not be the desired mode of 
operation in modern computers, it appears inevitable in biological systems, and may also be inevitable as computer 
systems advance. 
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7.4 Imprecise Behavioral Detection 

Since we cannot precisely detect a virus, we are left with the problem of defining potentially illegitimate use in a 
decidable and computable way. We might be willing to detect many programs that are not viruses and even not detect 
some viruses in order to detect a large number of viruses. If an event is relatively rare in 'normal' use, it has high 
information content when it occurs, and we can define a threshold at which reporting is done. As an example, if sufficient 
instrumentation is available, flow lists can be kept which track all users who have effected any given file. Users that 
appear in many incoming flow lists could be considered suspicious. The rate at which users enter incoming flow lists 
might also be a good indicator of a virus. 

This type of measure could be of value if the services used by viruses are rarely used by other programs, but presents 
several problems. If the threshold is known to the attacker, the virus can be made to work within it. A thresholding 
scheme could adapt so the threshold could not be easily determined by the attacker. This "game" can clearly be played 
back and forth. We note that.  as the threshold for detection is lowered, larger and larger percentages of legitimate 
programs will be detected as potential viruses. Since each potential virus must be examined for legitimacy, and since the 
threshold potentially becomes lower and lower as more detection is desired, in the end we reach the situation where 
virtually every program in the system must be verified. If we are to verify every program in the system before use, we 
might as well forget the thresholding scheme altogether. 

Several systems were examined for their abilities to detect viral attacks. Surprisingly, none of these systems even include 
traces of the owner of a program run by other users. Marking of this sort must almost certainly be used if even the 
simplest of viral attacks are to be detected. 

7.5 Removal 

Once a virus is implanted, it may not be easy to fully remove. If the system is kept running during removal, a 
disinfected program could be reinfected. This presents the potential for infinite tail chasing. Without some denial of 
services, removal is likely to be impossible unless the program performing removal is faster at spreading than the virus 
being removed. Even in cases where the removal is slower than the virus, it may be possible to allow most activities to 
continue during removal without having the removal process be very fast. For example, one could isolate a subset of the 
subjects and cure them without denying independent services to other subjects. 

In general, precise removal depends on precise detection, because without precise detection, it is impossible to know 
precisely whether or not to remove a given object. In special cases, it may be possible to perform removal with an inexact 
algorithm. As an example, every file written after a given date could be removed in order to remove any virus started after 
that date. 

We note that at least one large class of viruses is, in practice, easily detected and removed. This is the class of 
nonevolutionary viruses. If we have a static virus which is spreading throughout a system, we can clearly detect it by 
looking for identical sequences in many programs in the system. If we detect a large number of identical sequences of 
sufficient length as to make them highly unlikely through accidental modification, and if we can verify that these 
sequences are not normally generated by legitimate programs (such as compilers), we have strong grounds for suspecting 
the presence of a virus. Once the identification as a virus has been established, it can be systematically hunted down, and 
infected programs removed. We note that even a static virus may not be easily detected and removed, and that this 
method is by no means foolproof. 

7.6 Spontaneously Generated Viruses 

One concern that has been expressed and is easily laid to rest is the chance that a dangerous virus could be 
spontaneously generated on a real system. This is strongly related to the question of how long it will take N monkeys at N 
keyboards to create a virus, and is thus laid to rest without further attention except to note that the presence of such a 
virus, likely indicates a purposeful source rather than an accidental one. 
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8. A Complexity Based Integrity Maintenance 
mechanism 

In a system with multiple users, shared information, and general purpose functionality, integrity corruption by viruses 
and other integrity corrupting mechanisms is possible. Since this sort of functionality is generally considered useful, it is 
desirable to find a means by which the integrity of information may be maintained when these properties arc not 
restricted. 

We now examine a method of "self defense" in which each program attempts to protect itself (and perhaps other 
information) by using self knowledge to detect illicit modification. It is likely that if timely detection is possible, 
redundancy (e.g. backup tapes) may be used to correct corruption. 

8.1 The General Method 

The basic idea is to cause the complexity of finding a systematic way to create undetected corruption to be very high, 
and the probability of causing such a corruption to be very low. 

Our general method is to use a large set of self test techniques, which can be placed in a large number of ways 
throughout a system, and which rely on a difficult to forge cryptographic checksum for detecting illicit modification, 
while still allowing legitimate modification. The argument for this general method is as follows: 

• If there are a large enough class of such tests, then the complexity of determining whether or not a given 
portion of information is such a test may be very difficult, perhaps even undecidable. 

• If these tests can be placed throughout the system in a sufficiently variable number of ways then it may be 
very hard to determine where or how they have been placed, and thus a very large number of places may have 
to be searched in order to locate them. When this is used in conjunction with making the tests difficult to 
recognize, preventing the tests from acting may be made quite difficult. 

• Even if the tests are active, there is no guarantee that the information they test cannot be illicitly modified in 
such a manner as to be undetected by these tests. To prevent such undetected modification, an appropriate 
cryptographic checksum may be used to cause the probability of a modification resulting in a valid checksum 
to be arbitrarily small. 

• In order to have a useful system of storing and retrieving information, we must allow legitimate modification. 
We do this by allowing legitimate modification only by self testing programs. This results in a partial ordering 
of integrity testing interdependency. 

The remaining problem is to find a mathematically justifiable technique that fits all of these criterion. 

8.2 Fundamental Limitations 

Before suggesting a specific method, we wish to consider the fundamental limitations inherent to the suggested general 
method. In the cases of finding classes of tests and adequate cryptosystems, the problems are not uncircumventable, as we 
will see later in this chapter. In the case of test placement, there seem to be some rather severe problems. The problem of 
self test in a system that allows legitimate modification appears to be difficult as well. 

The Class of Tests 

Commonalities in tests might be exploited to try to detect the presence of a test in a given location. We want a 
sufficiently large set of tests which can be stored in a sufficiently large number of forms to make detection sufficiently 
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hard. A technique that makes test detection undecidable would be very nice, but we might be willing to settle for less. 
Note that nearly any commonality may be used for detection since the probability of a given sequence being found in a 
random other program decreases very rapidly with the length of the sequence. This is clear from information analysis of 
software in both source and compiled form, but need not be the case. 

The Placement of Tests 

Tests can be placed anywhere in the system where they will: 

1. be executed often enough to reduce the probability of a corruption spreading transitively to an acceptable 
level. 

2. not corrupt the integrity of the system by their presence. 

If we place these tests in areas that arc not interpreted as program, but rather as data, they will likely never be executed 
and result in the corruption of data. It is therefor important that they be placed in interpreted information and that they 
act independently from the state information used in normal activities. 

Unless we partition the information being used as data from that being used as program, we cannot guarantee that a 
program will not examine its own contents and or modify itself in the course of its legitimate behavior. If we try to 
partition data from program, we cannot be guaranteed that we will be successful unless we restrict the system's 
functionality, for with general purpose functionality, there is no distinction between information used as program and 
information used as data except in its interpretation. This is most clearly seen in the case of an interpreter (such as Basic) 
which allows information modified as data by an editor to be used as program when interpreted by the Basic interpreter. 

This would seem to imply that placement depends upon knowledge of the intended use of information, and that 
general purpose programs cannot be perfectly protected. Since any general purpose program "P" can be made to act like 
a Turing machine, any data "D" entered by the user can be interpreted by P as a program. Since we cannot rely on "D" to 
preserve the integrity of its own data, we probably cannot do any better than to protect programs and data which 
cooperate with the scheme. 

We may require that data which is to be modified with integrity must be modified by one of a given set of programs. 
We may be able to design a compiler that forces checks on the integrity of data files as well as the set of programs able to 
legitimately access them. The only remaining problem is the placement of these checks within programs. 

If we place tests in the beginning of programs, or at any standard place, they may be easily circumvented by appropriate 
modification of the code which tests for integrity. An alternative is placement at an arbitrary place, or perhaps more 
appropriately at one or many of a large set of places within a program. Since determining which section of code is the test 
may be made arbitrarily difficult, this offers some hope, but we must also consider that the placement of this code such 
that it is not executed in every use of the program, reduces the probability of detecting a corruption before it spreads 
transitively, to that of executing the detection algorithm. 

The placement of the code in each branch of a program may be quite cumbersome, and it guarantees an attacker that 
some test is placed in every branch. This may or may not be of aide to the attacker, and may or may not be so burdensome 
as to make the system impractical. Another alternative is to evolve the program so as to include the test, or to evolve the 
test so as to include the program. In any case, the evolution of programs in this way has received little attention in the 
literature, but it appears from our previous discussion that this technique is both feasible and difficult to disentangle. 

The Cryptographic Checksum 

The best we can do in a system which protects itself with complexity is make the probability of forgery and the 
difficulty of breaking the code in a given amount of time arbitrarily low. We do this by using a "one way" function which 
allows us to transform into the cryptographic checksum in order to test the program for modifications, but which doesn't 
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allow us to generate a program that produccs a valid checksum. We must he careful that thc function is not only one way, 
but that thcrc arc a sufficiently large numhcr of keys available, and that the key used for generating thc checksum cannot 
be used to invert the function. 

We suggest a "public kcy" cryptosystem in which the private key is destroyed unrecovcrably at the creation of the 
checksum. This prevents the possibility of finding that key and using it to generate a new and valid checksum for an 
invalid program. It also allows us to leave thc key publicly acccssible (although hidden along with the rest of the self test 
code) without fear of its eventual discovery and exploitation. 

Modifiability 

Let us now suppose that a legitimate program legitimately modifies information in a data file associated with one other 
legitimate program. In order for this change to be considered legitimate by other programs, each must be convinced of the 
legitimacy of the program making the modification and of their own legitimacy. If other programs are to access the data, 
each must modify its self to reflect changes in data files. Since each has now been modified, each must verify that the 
others' modification was legitimate, and must again modify its self to reflect the new modification of each other. Since 
they test each other, this procedure must be repeated until either a stability point is reached or indefinitely. 

If a stability point is reached, this means that a modification in one of the programs does not require a change to its 
cryptographic checksum, and thus the checksum for both the legitimate and illegitimate versions are identical. If it is 
extremely unlikely for this to happen, this will only happen after a vcry long time if at all, and if it is likely, than it is also 
likely that an attacker's change would be thought legitimate. What this seems to indicate is that a strict limitation of the 
testing of programs and data by each other must be enforced in that we must not form a loop of interprogram tests. 

In other words, W all programs are modifiable, at least one program must have sole responsibility for testing itself, and 
all other related programs must only perform tests on each other in a semi-lattice form with the self testing program at the 
"sup". This can be relaxed if we limit the legitimately modifiable portions of the system so that their modification is 
supervised by legitimately unmodifiable programs. Unmodifiable programs can test each other with mutual testing loops. 

In cases where programs do not share modifiable data with other programs, data may also be tested. For cases where 
sharing of data is important, we can use a single data access program which is tested by all sharing parties, and which has 
complete control over the modification of all shared data. This program can then use internal tests on all stored data, and 
thus shared data can be tested without the looping problem. The resulting mathematical structure is a partial ordering 
with shared data residing only in semi-lattice substructures. For high assurance, increased mutual testing may be used. 

8.3 A Specific Method 

A specific method specifies a class of tests, a means by which they may be placed throughout the system, a 
checksumming method, and a modification method, all satisfying the above criteria. 

The Class of Tests 

An arbitrarily large number of programs can be written to generate and compare a given set of data with a stored value 
by starting with a fairly simple evolutionary program, and creating a large number of evolutions. It is in general 
undecidable to determine whether or not two evolutions are equivalent. This seems a promising leaping off point for 
automatically developing a set of tests from a single test. If additional safety is desired, a large number of versions of the 
self test algorithm may be used in conjunction with evolution to guarantee that even if a given case were thoroughly 
broken, othcr cases would exist. 

An intriguing variation on this theme for use with the RSA [46] cryptosystem, is the generation of a special purpose 
exponentiation algorithm for each of a large number of RSA keys. Since each exponentiation produces a slightly different 
algorithm [38], each test program will be different. This can of course be augmented by the use of evolutionary techniques 



79 

to make each version of the test very difficult to detect. In addition, this prevents attacks in which the checksum for a 
given set of information is performed by the attacker, is searched for in the machine state, and is modified to fit the 
desired checksum for corrupt information. Since an attacker cannot easily determine what information belongs to the test 
program, and the key itself isn't even stored (only an algorithm for computing the effect of its use is actually kept), there is 
no known way to tell which key is being used. 

The Placement of Tests 

We suggest a lattice structure of testability in which all programs test themselves, and some programs test each other. 
When information must be modified or shared, we suggest an independent program through which all modification must 
be performed, and which is an 'inf to all programs with access to the shared data, and a 'sup' to all data shared by them. 
This allows each program to independently verify the propriety of the modification program. 

One placement of tests is done by a special purpose compiler which has sufficient knowledge about the programs to 
allow a relatively small number of tests to be placed at any of a relatively large combination of places within the program. 
Programs will likely have to be restricted in some ways (e.g. no self modification), and all data files used by programs and 
all sharing behavior will have to be specified at compile time. 

A second test placement strategy is the generation of a test algorithm, and the incorporation of the program to be tested 
along with a number of irrelevant sequences of instructions within it. The value of the resulting checksum is computed 
based on all but the final checksum value, and this value is placed in a location determined at test generation time. Since 
each test algorithm is different (below), each program will have a differently placed checksum. Additional code strands 
may make it difficult to disentangle independent subsequences of the resulting code into test procedure and program. 

Although specific algorithms are not yet available for this purpose, their development appears straight forward from 
previous work in evolutionary programs. 

The Cryptographic Checksum 

The following cryptographic protocol for creating difficult to forge checksums appears to be sufficient for the desired 
conditions. 

1. Generate a key pair for the RSA cryptosystem, and destroy the private key. 

2. Use the public key to encrypt each block of information to be checksummed along with the block number. 

3. XOR all of the encrypted blocks to form a cryptographic checksum of the desired information. 

Note that since the inverse function is not available, it is infeasible to attempt to generate blocks of plaintext which 
correctly checksum to any given value. This prevents the attack where a forger forms any desired number of blocks of 
arbitrary information, encrypts each with the known public key, determines what the last block must checksum to in 
order to make the final checksum come out right, and then generates a block which checksums to the appropriate value to 
compensate for the forged blocks' incorrect values. 

8.4 A Simple Variation for Software Protection 

The above technique is quite complex, may suffer from poor performance, and may leave a lot to be desired in the 
general case. In the domain of software protection, a major difficulty is preventing modification of a program for resale 
under a different name. This simplified variation resolves much of the complexity of test placement within a program by 
distributing the integrity protection throughout the program so that each routine protects itself from both analysis and 
modification. 
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The basic idea is to encode each subroutine so that only it knows how to decode itself into a standard memory area. 
Since each routine can be made sequential and all execution strands can be kept track of for small enough program 
segments, the placement of tests within a routine may be made reasonable, and tests may be interleaved with program. 
When a subroutine is called, it decodes itself into a standard memory area, thus overwriting the previously decoded 
subroutine in that area. Data shared by subroutines may be decoded once at initialization, and stored in a common area 
for manipulation. 

Since only a small portion of the program is in plaintext at any given moment, many "snapshots" must be taken in 
order to expose a significant amount of the program. Since each routine is designed to run in the same memory locations, 
absolute addressing is possible, and relocation of the program thus causes operation to fail. A trace of execution would be 
needed to determine relative calling sequences, and the problem of determining when decryption ends and execution 
begins may be quite difficult. 

Each routine can be designed to test other routines in their stored form before calling them for execution (in a 
semi-lattice structure), so that the replacement of a routine is detected by other routines. Since stored routines are 
unchanging, mutual testing loops may be incorporated where desired. Each routine can also be evolved so as to test itself. 

Although this technique does not appear to be as strong as the more complex method, it may prove sufficient for many 
applications, and further improvement may allow it to be of widespread utility. 

8.5 Conclusion 

The first self defense method appears to be ample for the intended purpose, but it suffers from slow performance in 
practical use, a very limited domain of applicability, and very difficult self test placement problems. The complexity of 
detecting and locating a given test appears to be very high. The probability of finding a systematic forgery technique in a 
given amount of time is at least as low as the probability of breaking the RSA cryptosystem in that amount of time. The 
probability of creating undetected information corruption can be made arbitrarily small by using sufficiently long keys. It 
thus appears that this technique is sufficient for some purposes, and that a compiler that produces 'self defending' code 
may be practical. 

The use of the second self defense method in preventing illicit modification and resale of copyrighted software may be 
practical, although it does not prevent reuse in the original form. This allows the copyright notice to be forcibly 
maintained as long as the program operates, and may aide in the detection and prevention of copyright violations. 

Both methods offer hope for preventing illicit modification of information, and thus of improving the integrity of 
software and data stored in computer systems. It is hoped that further work will lead to the practical maintenance of 
integrity in future systems. 

We note that a sufficient amount of corruption can always prevent the detection of the corruption by self test 
techniques. With these techniques. it is expected that such corruption would prevent operation of programs, and thus the 
corruption would be trivially detected by the user as denial of services. These techniques only prevent corruption from 
going undetected. 

8.6 Further Work 

Improvements to the techniques above may afford a more reasonable means of protecting information from 
modification, and may allow a run time implementation of self test for data files. 

The use of semantic information in conjunction with syntactic information in the storage and retrieval of information 
may make this possible. This is (in essence) the effect of having a limited set of programs able to modify data. The 
modification programs comprise the semantics associated with the data 
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Evolutionary algorithms for interleaving programs arc only in their infancy, and much work in this area is expected. 
Close ties are seen here to biological systems, and a mathematical theory of evolution would be an intriguing work in both 
domains. 

Error detection is sufficient for detection of integrity corruption, but does not allow the correction of errors. Coding 
theory indicates that error correction should be possible if enough redundancy is used, and little enough corruption is 
performed to allow this redundancy to act properly. 

The second technique for integrity maintenance touched on an interesting area called generative program protection. 
This area is based on the idea that programs can be designed so as to generate code which actually performs the desired 
function. This is very similar to the genetic code with which DNA produces living beings. It is thought that the 
complexity of determining a valid genetic modification to a complex organism is extremely difficult. This is the reason 
that genetic engineering is yet unable to design a human being to specifications. 

Hardware assisted program protection is also possible. If we back away from our assumption that everything is subject 
to illicit modification, and assume rather that only a very limited amount of the system is protected from corruption, we 
may be able to apply these techniques in such a manner as to remove all of the remaining problems. 
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9. Experiments with Computer Viruses 

To demonstrate the feasibility of viral attack and the degree to which it is a threat to real systems, several experiments 
were performed. In each case, experiments were performed with the knowledge and consent of systems administrators. 
In the process of performing experiments, implementation flaws were meticulously avoided. It is critical to understand 
that these experiments were not based on implementation lapses, but only on fundamental flaws in security policies, and 
that other systems with similar policies are thus likely to experience similar effects. 

9.1 The First Virus 

On November 3, 1983, the first virus was conceived as an experiment to be presented at a weekly seminar on computer 
security. The concept was first introduced in this seminar by the author, and the name 'virus' was thought of by Len 
Adleman. After 8 hours of expert work-  on a heavily loaded VAX 11/750 system running Unix, the first virus was 
completed and ready for demonstration. Within a week, permission was obtained to perform experiments, and 5 
experiments were performed. On November 10, the virus was demonstrated to the security seminar. 

The initial infection was implanted in a program called 'vd', a program that displays Unix file structures graphically, 
and introduced to users via the system bulletin board. Since vd was a new program on the system, no performance 
characteristics or other details of its operation were known. The virus was implanted at the beginning of the program so 
that it was performed before any other processing. 

In order to keep the attack under control, several precautions were taken. All infections were manually OKed by the 
attacker in a process whereby the virus attained access privileges and determined the program to be infected, and the 
attacker gave explicit approval for the infection. No illicit dissemination or modification of information was done other 
than that required for the experiment. Traces were included to assure that the virus would not spread without detection, 
access controls were used for the infection process, and the code required for the attack was kept in segments, each 
encrypted and protected to prevent illicit use. 

The particular virus invoked used considerable sophistication in determining what programs to infect in various 
situations. By using normally available system log information, the frequency with which various programs were run was 
extracted. Further programs were used to determine the users with write access to these programs, and special code was 
added to the virus so that upon execution by a given user, the most frequently shared program that was not previously 
infected, could be written by that user, and was executable by other users, was chosen for infection. All of this 
"intelligence" was precomputed and only the results were encoded in the virus. In this way, the virus was designed to 
move as quickly as possible from user to user. 

To allow for safe and simple disinfection, before infecting any given program, the virus copied the virgin version to a 
temporary storage area. After each attack, the originals were copied back over the infected versions to "disinfect" them. 
We should note that an attacker with a specific objective might use this technique to cover the tracks of a virus so that 
once moving into a desired area, previously infected programs would be automatically disinfected. We also note that 
although these complications were introduced to the experimental virus in this case, they need not be present for a viral 
attack to succeed, and that their implementation was not very difficult or time consuming, so that they are not beyond the 
scope of an average users ability to use a system. 

In each of five attacks, all system rights were granted to the attacker in under an hour. The shortest time was under 5 
minutes, and the average under 30 minutes. Even those who knew the attack was taking place were infected. In each 
case, files were "disinfected" after experimentation. It was expected that the attack would be successful, but the very 
short takeover times were quite surprising. In addition, the virus was fast enough (under 1/2 second) that the delay to 
infected programs went unnoticed. 

We now trace the approximate sequence of events that led to the two fastest of these system takeovers. We include here 
only the events which are relevant to the takeover, and note the following features of the UNIX operating system. The 
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"system user" (root) has all rights on the system, and can thus read or write anything including the operating system itself. 
Once this user is infected, the system is considered "taken over". The " Iffloard" is a bulletin hoard which allows any user 
to communicate with the whole community, and is thus a very rapid means for publishing the existence of a new 
program: The root is often acted for by programs which are automatically run when appropriate to a required task such 
as handling the printer, allowing users to login, etc. More often than not, these programs are run by the root, while a 
policy of "least privilege" [19] would probably be more-sensible. 

Takeover 1: 

Elapsed Time 	Event 	 Effect 

0 
	

Program announced on BBoard 
	

existence published 

3 min 
	

Administrator runs program 
	

system utility infected 

6 min 
	

root executes utility 
	

All privileges granted 

Takeover 2: 

Elapsed Time 	Event 
	

Effect 

0 	 Program announced on BBoard 

1 min 	 Social user runs program 

4 min 	 Editor owner runs "loadavg" 

6-12 min 	Many users use editor 

14 min 	 root uses editor 

existence published 

"loadavg" infected 

Editor infected 

many programs infected 

All privileges granted 

Once the results of the experiments were announced, administrators decided that no further computer security 
experiments would be permitted on their system. This ban included the planned addition of traces which could track 
potential viruses, and password augmentation experiments which could potentially have improved security to a great 
extent. This apparent fear reaction seems to be typical; rather than try to solve technical problems technically, policy 
solutions are often chosen. The problem with this is pointed out later in this section. 

After successful experiments had been performed on a Unix system, it was quite apparent that the same techniques 
would work on many other systems. In particular, experiments were planned for a Tops-20 system, a VMS system, a 
VM/370 system, and a network containing several of these systems. In the process of negotiating with administrators, 
feasibility was demonstrated by developing and testing prototypes. Prototype attacks for the Tops-20 system were 
developed by an experienced Tops-20 user in 6 hours, a novice VM/370 user with the help of an experienced 
programmer in 30 hours, and a novice VMS user without assistance in 20 hours. These programs demonstrated the ability 
to find files to be infected, infect them, and cross user boundaries. 

After several months of negotiation and administrative changes, it was decided that the experiments would not be 
permitted. The security officer at the facility was in constant opposition to security experiments. This is particularly 
interesting in light of an offer to allow systems programmers and security officers to observe and oversee all aspects of all 
experiments. In addition, systems administrators were unwilling to allow sanitized versions of log tapes to be used to 
perform offline analysis of the potential threat of viruses, and were unwilling to have additional traces added to their 
systems by their programmers to help detect viral attacks. Although there is no apparent threat posed by these activities, 
and they require little time, money, and effort, administrators were unwilling to allow investigations. It appears that their 
reaction was the same as the apparent fear reaction of the Unix administrators. 

9.2 A Bell-LaPadula Based System 

In March of 1984, negotiations began over the performance of experiments on a Bell-LaPadula [3] based system 
implemented on a Univac 1108. The experiment was agreed upon in principal in a matter of hours, but took several 
months to become solidified. In July of 1984, a two week period was arranged for experimentation. The purpose of this 
experiment was merely to demonstrate the feasibility of a virus on a Bell-LaPadula based system by implementing a 
prototype. 
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Because of the extremely limited time allowed for development (26 hours of computer usage by a user who had never 
used an 1108, with the assisuince of a programmer who hadn't used an 1108 in 5 years), many issues were ignored in the 
implementation. In particular, performance and generality of the attack were completely ignored. As a result, each 
infection took about 20 seconds, even though they could easily have been done more quickly. Traces of the virus were 
left on the system although they could have been eliminated to a large degree with little effort. Rather than infecting 
many files at once, only one file at a time was infected. 'This allowed the progress of a virus to be demonstrated very 
clearly without involving a large number of users or programs. As a security precaution, the system was used in a 
dcdicatcd mode with only a system disk, one terminal, one printer, and accounts dcdicatcd to the experiment. 

After 18 hours of connect time, the 1108 virus performed its first infection. A fairly complete set of user manuals, use of 
the system, and the assistance of a past user of the system wcrc provided to assist in the experiment. After 26 hours of use, 
the virus was dcmonstratcd to a group of about 10 people including administrators, programmers, and security officers. 
The virus demonstrated the ability to cross user boundaries and move from a given security level to a higher security 
level. Again it should be emphasized that no implementation flaws were involved in this activity, but rather that the 
Bell-LaPadula model allows this sort of activity to legitimately take place. 

All in all, the attack was not difficult to perform. The code for the virus consisted of 5 lines of assembly code, about 200 
lines of Fortran code, and about 50 lines of command files. It was estimated by a systems programmer that a competent 
programmer could write a much better virus for this system in under 2 weeks. In addition, once the nature of a viral 
attack is understood, developing a specific attack is not difficult. Each of the programmers present for the demonstration 
was convinced that they could have built a better virus in the same amount of time. 

9.3 Instrumentation 

In early August of 1984, permission was granted to instrument a VAX Unix system to measure sharing and analyze viral 
spreading. Data at this time is quite limited, but several trends have appeared. The degree of sharing appears to vary 
greatly between systems, and many systems may have to be instrumented before these deviations are well understood. A 
small number of users appear to account for the vast majority of sharing, and a virus could be greatly slowed by 
protecting them. The protection of a few "social" individuals might also slow biological diseases. The instrumentation 
was conservative in the sense that infection could happen without the instrumentation picking it up. 

As a result of the instrumentation of these systems, a set of "social" users were identified. Several of these surprised the 
main systems administrator. The number of systems administrators was quite high, and if any of them were infected, the 
entire system would likely fall within an hour. Some simple procedural changes were suggested to slow this attack by 
several orders of magnitude without reducing functionality. We include only a summary of results here as the raw data is 
about 1000 pages in length, and is only readable and practically analyzable on a computer. Copies of the analysis 
programs and some actual results are provided in the appendices, and confirming experiments would be welcomed. 

Summary of Spreading 

system 1 	 system 2 

class) Nd Ispreadl time 1 	class) B# Ispreadl time 

Is l 3 1 22 l  ci 1 Isis I no! 	I 
IA I  l I 1 1 0  1 I 	A 	l 	7  I  ni  l  120 

II 1 4 1 5 1 18 1 1 	II 	1 	7 1 24 	1 	600 	1 

Two systems are shown, with three classes of users (S for system, A for system administrator, and U for normal user). 
'# #' indicates the number of users in each compartment, 'spread' is the average number of users a virus would spread to, 
and 'time' is the average time taken to spread them once they logged in, rounded up to the nearest minute. Average times 
are misleading because once an infection reaches the "root" account on Unix, all access is granted. Taking this into 
account leads to takeover times on the order of one minute, which is so fast that infection time becomes a limiting factor 
in how quickly infections can spread. This coincides with previous experimental results using an actual virus, and is quite 
surprising. 
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Users who were not shared with are ignored in these calculations, but other experiments indicate that almost any user 
can get shared with by offering a program on the system bulletin board. Detailed analysis demonstrated that systems 
administrators tend to try these programs as soon as they arc announced. This allows normal users to infect system files 
within minutes. Administrators used their accounts for running other users' programs and storing commonly executed 
system files, and several normal users owned very commonly used files. These conditions make viral attack very quick. 
The use of separate accounts for systems administrators during normal use was immediately suggested, and the systematic 
movement (after verification) of commonly used programs into the system domain was also considered appropriate. 

9.4 Other Experiments 

Similar experiments have since been performed on a variety of systems to demonstrate feasibility and determine the 
ease of implementing a virus on many systems. Simple viruses have been written for VAX VMS and VAX Unix in the 
respective command languages, and neither program required more than 10 lines of command language to implement. 
The Unix virus is independent of the computer on which it is implemented, and is able to run under IDRIS, VENIX, and 
a host of other UNIX based operating systems on a wide variety of processors. A virus written in Basic has been 
implemented in under 100 lines for the Radio Shack TRS-80, the IBM PC, and several other machines with extended 
Basic capabilities. Although this is a source level virus and might be detected fairly easily by the originator of any given 
program, it is rare that a working program is examined by its creator after it is in operation. In all of these cases, the 
viruses have been written so that the traces in the respective operating systems would be incapable of determining the 
source of the virus even if the virus itself had been detected. Since the UNIX and Basic virus could spread through a 
heterogeneous network very easily, they are seen as quite dangerous. 

As of this time, we have been unable to attain permission to either instrument or experiment on any other of the 
multiuser systems that these viruses were written for. The results attained for these systems are based on very simple 
examples and may not reflect their overall behavior on systems in normal use. It is with great hesitancy that we provide 
the source code for a simple virus written for the IBM-PC under the D0S2.1 operating system in the appendices. 
Although confirmations of results herein are encouraged, we do not encourage experimentation with real viruses under 
any conditions except strict isolationism, and then only with knowing subjects and proper controls. 

9.5 Summary 

The following table summarizes the results of the experiments to date. The systems are across the horizontal axis (Unix, 
Bell-LaPadula, Instrumentation, etc.), while the vertical axis indicates the measure of performance (time to program, 
infection time, number of lines of code, number of experiments performed, minimum time to takeover, average time to 
takeover, and maximum time to takeover), where time to takeover indicates that all privileges would be granted to the 
attacker within that delay from introducing the virus. In the case of D0S2.1, any program that is run on the system 
hardware has complete control of the system, and thus takeover time is not a meaningful measure. 
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unixC 13-L Instr Shell VMS Basic DOS 

time Cihrs 1Ohrs N/A 15min 30min 2hrs 1hrs 

inf 	t .5sec 20sec N/A 2sec 2sec 15sec lOsec 

code 200L 260L N/A 7L 9L 30L 20L 

trials 5 N/A N/A N/A N/A N/A N/A 

min t 5min N/A 30sec N/A N/A N/A N/A 

avg t 30min N/A 30min N/A N/A N/A N/A 

max t 60min N/A <Mrs N/A N/A N/A N/A 

Figure 9.1 - Summary of Attacks 

Viral attacks appear to be easy to develop in a very short time, can be designed to leave few if any traces in most current 
systems, are effective against modern security policies for multilevel usage, and require only minimal expertise to 
implement. Their potential threat is severe, and they can spread very quickly through a computer system. It appears that 
they can spread through computer networks in the same way as they spread through individual computers, and thus 
present a widespread and fairly immediate threat to many current systems. 

The problems with policies that prevent controlled security experiments are clear; denying users the ability to continue 
their work promotes illicit attacks; and if one user can launch an attack without using system bugs or special knowledge, 
other users will also be able to. By simply telling users not to launch attacks, little is accomplished; users who can be 
trusted will not launch attacks; but users who would do damage cannot be trusted, so only legitimate work is blocked. 
The perspective that every attack allowed to take place reduces security is, in the author's opinion, a fallacy. The idea of 
using attacks to learn of problems is even required by government policies for trusted systems. [37] [36] It would be more 
rational to use open and controlled experiments as a resource to improve security. 



10. Viruses and Life 

When we investigate, in the mathematical sense, anything so closely related to our own biological existence as viruses, 
we seem compelled to examine the implications to our understanding of our own existence. Many philosophical authors 
have examined possible sources of this compulsion, but it seems best summed up in the statement "know thyself". In the 
seemingly eternal quest for the origin and nature of life, few investigations have taken truly mathematical approaches. 
The game of "life", the "Central Dogma of Molecular Biology", and numerous articles on variations of the theme of "self 
replicating" programs [34] [21] [35], have all somehow fallen short of examining the mathematical essence of life. 
Philosophical discussions such as those contained in "The Origin of Species" [14] and "The Selfish Gene" [17] are indeed 
compelling, but lack one rigorous fundamental definition, the definition of life. 

In the narrow sense, the mathematical discussion of computer viruses that we have presented is a discussion of a specific 
class of symbol sequences interpretable by a specific class of machines. In the much broader sense, it is a mathematical 
discussion of the two fundamental properties of life; reproduction and evolution. In reproduction, we have a basis for the 
informational survival of the life form. In evolution, we have a basis for change. Together, these form the essence of what 
we consider life. 

Consider a crystal. It has the ability to reproduce, in the sense that it can replicate crystal from a small informational 
seed and a proper environment, but it has no capability for change. It will eternally produce more and more identical 
crystal, with only minor changes in its structure due to flaws in the purity of its environment. We would be stretching 
ourselves to consider the crystal alive because it does not change itself. 

Consider water. Water changes all the time, it ebbs and flows through its environment, it evaporates, rains, snows, 
freezes, forms glaciers, and changes the face of the Earth. Water will ever undergo change, but it will never be able to 
reproduce itself. We would be stretching ourselves again to consider water alive because it cannot reproduce. 

The essoteric investigator will point out that death does not occur when we are no longer able to reproduce, and that we 
consider animals such as the mule to be alive. Nevertheless, when we are past the age of sexual reproduction, our cells still 
reproduce and evolve, as do the cells of the mule. When these cells fail to reproduce, we are indeed dead, and in the sense 
of the meme [17], we are alive until we are brain dead. 

In our initial investigation, we sought to define the virus as a "program that can modify other programs so as to include 
a possible evolved version of itself". Perhaps fortunately, we were unable to find a mathematical definition that fulfilled 
this concept without defining a complex structure of subjects and objects and the UPM to express what we meant by 
another "program". In order to remain general in our definition, we were forced to throw out the perception that there is 
a fundamental difference between data and program, and as a result, we were forced to define viruses in such a manner as 
to include all symbol sequences with the property of reproduction and/or reproductive evolution on a given machine. 
Perhaps we should have more properly used the term "life" for this most general form of definition. Let us do that and 
see where it takes us. 

Our definition of life in the mathematical sense maps quite well into several domains. In the biological domain, we have 
a feel for life, probably because, assuming our readers are biological, we are living it. The "Central Dogma of Molecular 
Biology" describes, in essence, a mechanism which, given the proper sequence of chemical instructions, yields a live 
biological entity. Note that the description of the machanism is only half of the description of life. Given a mechanism, 
we are left to our own devices to discover "live" sequences. The game of "life" is similarly used to conjole us into the 
enumeration of interesting initial sequences of symbols which, for a given machine, produce "live" results. 

The essence of a life form is not simply the environment that supports life, nor simply a form which, given the proper 
environment, will live. The essence of a living system is in the coupling of form with environment. The environment is the 
context, and the form is the content. If we consider them together, we consider the nature of life. 
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With our mathematical definition of life, we need not limit our study of living systems to the standard biological form. 
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In order to fulfill our mathematical description, a living system must merely consist of an environment and a set of forms 
which reproduce and evolve within that environment. The "memes" of "The Selfish Gene" are a perfect example of a life 
form in the environment of mental activity. Without both the meme and the mental environment, we don't have a live 
system. In the information systems we describe herein, we speak of the computing machine as the environment, and 
sequences of symbols as the form. Together, they form a living system, if and only if reproduction and evolution are 
possible. 

In this more general framework, we would like to review our previous mathematical results, keeping in mind always, 
that these results differ fundamentally from the sort of philosophical results usually seen in this context, in that they have 
been developed in a relatively formal system with relatively formal methods. 

We have proven that there are an infinite variety of possible life forms for a general class of environments, and that 
evolution from form to form may, as eternity passes, yield an infinite number of unique forms. In the biological analogy, 
we may rest assured that the potential variety of life forms is quite numerous in any general form of environment, and 
that as life forms, we may be able to evolve through an almost unlimited number of generations without fear for our 
individuality. Similarly, we can rest assured that the number of new ideas that can arise will not be limited by the vastness 
of our store of knowledge, and that there will never come a time when an old idea cannot be evolved into a new idea. As 
an intellectual writer and as a biological form, these facts may offer significant comfort in the years to come. 

We have proven that it is, in general, undecidablc in finite time, whether or not a given form and given environment 
form a living system. Thus, even though we have a definition for life in the mathematical sense, we can not decide in all 
cases whether or not a form can live in an environment. In the biological sense, we cannot determine whether or not a 
general amino acid sequence is a coding for a living being or not. In the mental sense, we cannot determine whether or 
not a mental concept can spread from mind to mind. 

We have proven that it is, in general, undecidable in finite time, whether or not a given form is an evolution of another 
given form in a given environment. In the biological sense, this tends to make questionable any proof that man evolved 
from apes. We do not contend that the theory of evolution is incorrect. In fact, in order to rationally consider the concepts 
we examine herein, we must certainly come to the conclusion that certain forms may compete for survival in a given 
environment. Those more "fit" for survival can certainly be defined as those that tend to survive. Nevertheless, before we 
accept a claim that one form evolved from another, we should demand mathematical evidence of the feasibility of the 
claimed evolution. 

Similarly, it is, in general, impossible to prove that a given idea did or did not evolve from another idea in a given 
mental system. Hence, we may view any attempt to write a program to detect plagerism with suitable skepticism. We note 
that such programs exist for detecting cheating in certain computer science classes, and that suitable evolutions always 
manage to avoid detection. Perhaps a computer virus will eventually be written to allow simplified plagerism against such 
automated defenses. 

We have proven that, in a general purpose environment with transitivity and sharing, it is, in general, impossible to 
prevent viruses from spreading. In the biological domain, we now have a strong basis for the belief that there is no 
universal antibody, antidote, or other antiviral agent. Similarly, there can be no virus that cannot be succesfully defended 
against by some biological form. In the mental environment, we may rest assured that regardless of the level of 
oppresion, a society with any form of information exchange cannot prevent the spread of unwanted ideas. Similarly, we 
can rest assured that regardless of the degree of freedom of ideas, we can never prevent the spread of ideas that attempt to 
limit the freedom of other ideas to spread. 

If there is a conclusion to be drawn about life from the study of computer viruses, it is likely this. In the computer, in 
the mind, and in all forms of life, it will always be as it has always been, a struggle for survival. 
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11. Summary, Conclusions, and Further Work 

We have already provided summaries of each portion of this work at their completion, and now quickly summarize the 
new lines of research and major results presented herein. The conclusions provided here are only the tip of an iceberg, 
and the reader is invited to make further conclusions, preferably through publication in the open literature. As in the 
opening of any novel field of research, a great deal of further work is indicated. We provide a fairly short list of the lines 
of research considered of the most interest to us, but make no claim as to the completeness or likelihood of success in the 
pursuit of these particular lines. 

11.1 Summary 

The field of computer viruses is an entirely new field, and its introduction alone is novel. The definition of viruses for 
Turing machines, demonstrations of TM viruses, and initial explorations into the number and sizes of viral sets and the 
nature of evolutionary programs is of considerable interest. Computability results which prove the undecidability of viral 
detection and detection of evolutions of programs is of considerable import to the remainder of the work presented 
herein, and the demonstration of the generality of evolution as a computational mechanism is worthy of note. 

The introduction of the "Universal Protection Machine" and its use to demonstrate the results of computational 
capabilities on the protection of systems is a novel extension of previous work in the field of protection modeling. The use 
of this model to demonstrate the transitive nature of integrity corruption is particularly worthy of note as it has many 
ramifications for the security and integrity of information in information systems beyond its obvious import to the study 
of computer viruses. 

The new results in the effects of combining the security and integrity models for computer security shed considerable 
light on their effectiveness in maintaining controls on information flow, most importantly in their partitioning of systems 
into closed subsets under transitivity. The resultant development of limited transitivity systems for restricting the distance 
of information flow without restricting the available paths of sharing is also a novel development with potential uses in 
future systems. 

The use of distributed domains in a computer network is novel in the computer security area, and provides the basic 
potential for treating remote sites as secure. The demonstration of a protocol for the secure implementation of this 
network has several novel aspects including a new method for secure key distribution in a public key cryptosystem, the 
ability to move information through networks without common levels while maintaining all security and integrity 
controls, and the maintenance of these controls in the presence of attackers. The analysis of networks under attacks such 
as those included herein is also novel in the open literature, and the resultant demonstration of several vulnerabilities in 
the manner in which current computer security systems are used is also noteworthy. 

The combination and generalization of the linear and lattice models of information flow to the partial ordering, and the 
resultant development of mathematical analysis techniques for evaluation of effective flow control and effects of collusion 
are significant in their generalization of the basic principals explored earlier in this work. The tune transitivity analysis of 
protection systems is novel and appears to shed significant light on an error in the use of many modern protection 
systems. The specification of an automated administrative assistant and a provably correct rule based system for managing 
security and integrity in information networks is likely to find rapid application, and the extensions of these results to 
other domains is likely to have wide ranging effects. 

The complexity based integrity maintenance mechanism offers a glimmer of hope in the design. of systems which use 
built in self test for self defense against viral and other integrity corruption mechanisms. The similarity between this 
defense and the biological situation is striking. 

The demonstration of viruses on actual systems and the collection of initial data reflecting the severity of viral attack are 
novel results which not only lend considerable support to the contentions and results presented herein, but also 
dramatically show the presence of a gaping hole in many systems previously considered as having the potential for secure 
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operation. The existence of command language and very short viruses shows the ease of implementation, while the attacks 
themselves should leave little doubt that a fairly unsophisticated attacker might easily circumvent even a sophisticated 
security system with relative ease. 

11.2 Conclusions 

Absolute protection can be easily attained by absolute isolationism, but that is usually an unacceptable solution. Other 
forms of protection all seem to depend on the use of extremely complex and/or resource intensive analytical techniques, 
or imprecise solutions that tend to make systems less usable with time. 

Prevention appears to involve restricting legitimate activities, while cure may be arbitrarily difficult without some denial 
of services. Statistical methods may be used to limit undetected spreading either in time or in extent. Behavior of typical 
usage must be well understood in order to use statistical methods, and this behavior is liable to vary from system to 
system. Limited forms of detection and prevention could be used in order to offer limited protection from viruses. 

Every general purpose system currently in use is open to at least limited viral attack. In many current 'secure' systems, 
viruses tend to spread further when created by less trusted users. Experiments indicate that viruses spread quickly and 
are easily created in a variety of operating systems. 

The results presented are not operating system or implementation specific, but are based on the fundamental properties 
of systems. More importantly, they reflect realistic assumptions about systems currently in use. The virus essentially 
proves that integrity control must be considered an essential part of any secure operating system. 

A major conclusion of this thesis is that the goals of sharing in a general purpose multilevel security system may be in 
such direct opposition to the goal of integrity maintenance as to make their reconciliation and coexistence impossible. 

Significant examples of evolutionary programs have been developed, and the demonstration of undecidability for viral 
evolutions is also true for nonviral evolutions. We conclude that many complexity based schemes for attack and defense 
may be possible through evolution. 

Secure computer networks are likely to be implemented in the near future, and many of the ideas presented here will 
have effects on their designs. Automated administrative assitance is likely to be in common use in the near future, with 
particular application to the domain of detection and prevention from damage due to spies. 

11.3 Further Work 

The field of computer viruses and transitive integrity corruption mechanisms is still very new, and clearly a great deal of 
fundamental work is still necessary before the exact nature of viruses is well understood. 

It has been suggested that the exact degree of undecidability of determining whether or not a given program is a virus 
may be of interest, and it appears that in the case of a virus that halts, a TM with an oracle for deciding whether a TM 
with an oracle for deciding whether a TM halts could determine whether or not a program is a virus. The procedure is to 
eliminate all programs that don't halt, and then write a program that simulates each sequence of symbols resulting from 
programs that halt, each sequence produced by them, etc. If this program halts, then the sequence under consideration is 
not a virus because there is a case where it no longer produces a virus outside itself. Although this discussion does not 
constitute a proof, it is likely that one may soon be generated from it. 

The field of evolutionary programs is also novel, and it appears to offer a great deal of promise for better understanding 
the nature of biological evolution as well as the evolution of other types of systems that may or may not be artifacts. The 
demonstration of the "survival of the fittest" result for computer systems may be of interest in several domains. Evolution 
has already proven useful in the design of a complexity based integrity maintenance mechanism which may be able to 
maintain integrity in a system with no built-in protection. 
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The UPM is quite general in that it allows modeling of operating systems and computer networks in a manner that 
permits mathematical analysis of interactions of programs with a protection mechanisms. Extending its use to other 
related areas may prove fruitful, and extending its generality still further may he of some interest. 

The prototype implementation of a limited transitivity system appears to be a logical extension of the results presented 
in the use of transitivity limitation for protection against transitive corruption, and some variation of the scheme 
presented here may be of value in future research. 

The implementation of a network based on distributed domains is already under consideration by several groups, and it 
is likely that such a network will be in operation within the next few years. Extensions to the analysis of secure computer 
network design are already underway, and it is hoped that this contribution will have effects on a quite large effort 
underway at this time to determine the requirements for, design, and implement, the first provably secure computer 
networks. 

Extensions of the results in modeling flow control with partial orderings are likely to result in the development of more 
general principals in distributed administration of secure networks, analysis of the effects of redundancy and self test 
components on security and integrity, and a wide range of results in the analysis of protection of data. The time 
transitivity model is likely to have wide ranging effects on the administration of current information systems in a variety 
of areas, and the automated analysis and administration of protection systems is likely to be in widespread use in the very 
near future. 

Extensions of the analysis of networks under attack are likely to be done in the near future as they appear to shed 
significant light on the potential effects of both human and hardware failures. It is quite likely that such analysis will be 
required by the U.S. government in any trusted computer network criterion, and the techniques in current use are simply 
inadequate to provide any level of assurance. 

Extensions of the complexity based integrity maintenance mechanism are likely to result in the eventual development 
of efficient and effective protection against viruses, Trojan horses, and a wide variety of other integrity corruption 
mechanisms. When combined with hardware controls, these techniques are likely to find widespread application, 
particularly in the area of copyright protection. 

Further experiments with viruses and defensive measures in computer systems and networks is clearly called for, and a 
safe environment for the performance of such experiments is clearly required. The analysis of viral spread in computer 
networks is closely related to the analysis of viral spread in biological situations, and it is likely that the models in both 
domains will be merged and extended to better model the behavior of both mechanisms. 

It is quite likely that many other extensions to this work will be done, and we wish to encourage all such work to as 
great an extent as possible, so long as proper precaution is used. 
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12. Appendices 

We have attempted to present as many of the experimental results as are reasonable and possible in the context of our 
limited space. We have taken the liberty of slightly reformatting output to conserve space, and the actual runs of the 
presented programs would not look quite identical to the presented results. The results are however genuine, and we 
invite others to reproduce them to confirm our results. 

12.1 Turing Machine Simulation Code 

This appendix contains the basic simulation code used for simulations of the Turing Machine examples used in earlier 
chapters of this thesis. All of the code used in these examples is written in the muLisp variant of the lisp language. 
Simulations were performed on a personal computer. and may be independently verified either by inspection or by 
simulation on the machine of the observers choice. In cases where the printout of entire simulations would be long and 
tedious, we have replaced unnecessarily repetitious entries with "...". In each case, we include the portion of the 
simulation code which is specific to the example (i.e. the next-state, output, and tape movement functions) in the text 
prior to the execution of the simulation. Comments are predominantly in lower case, while program text is 
predominantly in upper case. 

We begin with the basic simulation support program: 
x 	  x 
X Default assignment of initial variables % 

(SETQ TAPE °(I0 IO IO IHALT)) 	% TM tape % 
(SETQ STATE 'SO) 	 % FSM state % 
(SETQ POSITION 0) 	 % head position % 
(SETQ TRACE-TM T) 	 % activity trace on % 
(SETA EMPTY NIL) 	 % blank tape symbol % 
(SETQ TIME 0) 	 % initial move number % 

X Execution control of the TM % 

X ONE-MOVE executes one move of the TM % 
(DEFUN ONE-MOVE (LAMBDA (TMPSTATE TMPOUTPUT TMPMOVEMENT TMP OLDSTATE) 
(SETQ TMP (NTH POSITION TAPE)) % get the tape symbol at position % 
(SETQ TMPSTATE (NEXT-STATE STATE TMP)) % determine next state % 
(SETQ TMPOUTPUT (OUTPUT STATE TNP)) 	% new tape symbol % 
(SETQ TMPMOVEMENT (MOVEMENT STATE TMP)) % tape movement % 
(COND ((AND (EQUAL TMPSTATE STATE) (AND (EQUAL TMPOUTPUT TNP) 

(EQUAL TMPMOVEMENT 0))) % test for no change % 
(SETA TMPSTATE 'SHALT))) 	% if so, HALT state % 

(SETA TAPE (ONELIST (FIRSTN POSITION TAPE) 	% form new tape % 
(ONELIST (LIST TMPOUTPUT) (LASTN (PLUS 1 POSITION) TAPE)))) 

(SETQ OLDSTATE STATE) 
(SETQ STATE TMPSTATE) 	 % change state % 
(SETA POSITION (MAX 0 (PLUS POSITION TMPMOVEMENT))) % change position % 
(COND 	(TRACE-TM 	X if tracing activity, print out information % 

(PROGN 
(PRIN1 "Input •> ") (PRIN1 TNP) 

(PRIN1 " State •> ") (PRINT OLDSTATE) 
(PRIN1 "New State •> ") (PRIN1 TMPSTATE) 

(PRIN1 " Output •> ") (PRINT TMPOUTPUT) 
(PRIN1 "Movement ■> ") (PRIN1 TMPMOVEMENT) 

(PRIN1 " New Position ■>") (PRINT POSITION) 
(PRIN1 "New Tape •> ") (PRINT TAPE) 
TMPSTATE) 

(T TMPSTATE) 
	

% and return new state % 
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% RUN executes successive moves until the halting state is reached % 
(DEFUN RUN (LAMBDA (MAXTIME TMP) 
(SETQ STATE 'SO) 	 % initial state is always SO % 
(LOOP 	((EQUAL (ONE-MOVE) 'SHALT)) 	% execute ONE-MOVE till SHALT % 

(PRIM. "Time ■ ") (PRINT TIME) (PRINT "") % notify the user % 
(SETA TIME (PLUS 1 TIME)) 	% increment the time each move % 
(RECLAIM) 	% and reclaim any available storage space % 
((AND (NUMBERP MAXTIME) (GREATERP TIME MAXTIME))) 
% pause at TIME <■ MAXTIME if so requested % 

(COND 	((EQUAL STATE 'SHALT) "Machine Halted") % report machine halt % 
(T "Run paused by user request") % report machine pause % 

)) 

% RUM like run, does not set initial state (continue after pause) % 
(DEFUN RUNON (LAMBDA (MAXTIME TMP) 
(LOOP 	((EQUAL (ONE-MOVE) 'SHALT)) 	% execute ONE-MOVE till SHALT % 

(PRIN1 "Time • ") (PRINT TIME) (PRINT "") % notify the user % 
(SETA TIME (PLUS 1 TIME)) 	% increment the time each move % 
(RECLAIM) 	% and reclaim any available storage space % 
((AND (NUMBERP MAXTIME) (GREATERP TIME MAXTIME))) 
% pause at TIME <• MAXTIME if so requested % 

(COND 	((EQUAL STATE 'SHALT) "Machine Halted") % report machine halt % 
(T "Run paused by user request") % report machine pause % 

)) 

% Utility functions to support operation % 

% ONELIST merges two lists into one S 
(DEFUN ONELIST (LAMBDA (A 8) 

(COND 	((ATOM A) B) 
(T (CONS (CAR A) (ONELIST (CDR A) 8))) 

)) 

FIRSTN returns the first MUM elements of a list % 
(DEFUN FIRSTN (LAMBDA (NUM LST) 

(COND 	((LESSP NUM 1) ()) 
(T (ONELIST (LIST (CAR LST)) 

(FIRSTN (PLUS -1 MUM) (CDR LST)))) 

)) 

LASTN returns all but the first NUM+1 elements of a list % 
(DEFUN LASTN (LAMBDA (NUM LST) 

(COND 	((LESSP NUM 1) LST) 
(T (LASTN (PLUS -1 NUM) (CDR LST))) 

)) 

S 

• 

User modifiable functions describing TM operation S 

S NEXT-STATE as a function of state and tape symbol S 
(DEFUN NEXT-STATE (LAMBDA (STATE INPUT) 

(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'IO)) 'SO) 
((EQUAL STATE 'SHALT) 'SHALT) 
((EQUAL INPUT 'IHALT) 'SHALT) 
((EQUAL INPUT EMPTY) 'SHALT) 
(T 'SO) 

)) 

S OUTPUT as a function of state and tape symbol % 
(DEFUN OUTPUT (LAMBOA (STATE INPUT) 



94 

(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'ICI)) 'IO) 
((EQUAL STATE 'SHALT) 'IHALT) 
((EQUAL INPUT 'IHALT) 'IHALT) 
((EQUAL INPUT EMPTY) 'IHALT) 
(T 'IO) 

)) 

% MOVEMENT as a function of state and tape symbol % 
(DEFUN MOVEMENT (LAMBDA (STATE INPUT) 

(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'IQ)) 1) 
((EQUAL STATE 'SHALT) 0) 
((EQUAL INPUT 'IHALT) 0) 
(T 0) 

(RDS) 

12.2 Theorem 2 Simulation 

This simulation implements the Turing Machine used to 
% 	Theorem 2 from Fred Cohen's thesis 	X 
% SxI 	N 	0 	D % 
% % 
% S0,0 	SO 	0 	D % 
X S0,1 	S1 	1 	+1 % 
% S1,0 	SO 	1 	D % 
% S1,1 	SI 	1 	+1 % 
% 	  

% the next state function of current state and input symbol % 
(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'TO)) 'SO) 

((AND (EQUAL STATE 'SO) (EQUAL INPUT 'II)) 'S1) 
((AND (EQUAL STATE 'S1) (EQUAL INPUT 'ID)) 'SO) 
((AND (EQUAL STATE 'SI) (EQUAL INPUT 'II)) '51) 
(T 'SO) 

) 
)) 

X the output function of the current state and input symbol % 
(DEFUN OUTPUT (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'H)) 'IO) 

((AND (EQUAL STATE 'SO) (EQUAL INPUT 'I1)) '11) 
((AND (EQUAL STATE 1 S1) (EQUAL INPUT 'TO)) 'II) 
((AND (EQUAL STATE 'S1) (EQUAL INPUT 'II)) 'II) 
(T 'II) 

) 
)) 

% 

demonstrate theorem 2. 

% User modified code for a given TM starts here % 
% 	  % 

% the tape movement function of 
(DEFUN MOVEMENT (LAMBDA (STATE, 
(COND 	((AND (EQUAL STATE 'SO) 

((AND (EQUAL STATE 'SO) 
((AND (EQUAL STATE 'SI) 
((AND (EQUAL STATE 'SI) 
(T 0) 

) 
)) 

the current state and input symbol % 
INPUT) 
(EQUAL INPUT 'TO)) 0) 
(EQUAL INPUT 'II)) 1) 
(EQUAL INPUT 'TO)) 0) 
(EQUAL INPUT 'II)) 1) 

% Basic structures and variables % 
X 	  

(SETQ TAPE '(II IO TO II) II II ID TO ID Ii TO I0)) 
(SETQ STATE 'SO) 

X 



(SETQ POSITION 0) 
(SETQ TRACE-TM T) 
(SETQ TIME 0) 
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State •> S1 Output •> If Time ■ 0 
New Tape->(I1 IO IO IO I1 I1 IO IO 

State ■> SO Output •> If Time ■ 1 
New Tape■>(I1 IS IO IO I1 I1 IO IO 

(RUN 16) 
Input ■> I1 
Movement,01 

Input •> IO 
Movement•>0 

Input ■> Ii 
Movement01 

Input •> IO 
Movement■>O 

Input -> IS 
Movement01 

Input -> IO 
Movement00 

Input •> If 
Movement01 

Input •> I1 
Movement01 

Input •> Ii 
Movement01 

Input -> IO 
Movement->0 

Input 	If 
Movement01 

State 	SO New 
New Position01 

State ■> S1 New 
New Position01 

State 	SO New 
New Position02 

State •> Si New 
New Position02 

State ■> SO New 
New Position03 

State ■> S1 New 
New Position03 

State •> SO New 
New Position04 

State 	Si New 
New Position■>6 

State ■> SO New 
New Position06 

State •> S1 New 
New Position08 

State •> SO New 
New Position09 

State -> Si Output •> If Time ■ 2 
New Tape001 If IO IO If If IO IO 

State ■> SO Output •> IS Time ■ 3 
New Tape•>(I1 Ii I1 IO I1 I1 IO IO 

State •> S1 Output ■> If Time • 4 
Hew Tape001 I1 I1 IO IS IS IO IO 

State ■> SO Output •> If Time • 6 
New Tape•>(I1 I1 I1 I1 Il 11 IO IO 

State ■> S1 Output ■> 11 Time ■ 6 
New Tape0(I1 I1 I1 I1 Il IS IO IO 

State 	Si Output -> If Time ■ 7 
New Tape0(I1 I1 I1 I1 II IS IO IO 

State -> S1 Output ■> If Time • 12 
New TapeO(I1 I1 I1 I1 11 II I1 I1 

State ■> SO Output ■> If Time • 13 
New Tape■>(I1 I1 II 11 I1 11 I1 I1 

State ■> S1 Output -> If Time • 14 
New Tape■> (11 I1 11 11 I1 I1 I1 I1 If I1 IO) 

Input 	Ii State ■> Si New State ■> Si Output 	If Time ■ 15 
Movement.01 New Position010 New Tape0(I1 If 11 11 I1 II If If If If IO) 
Run paused by user request 

12.3 Theorem 3 Simulation 

This code simulates theThringmachine from theorem 3, in which a finite sized MVS is demonstrated. In this case, size 
CO = 4. 

% Theorem 3 from Fred Cohen's thesis % 
• SxI 	N 	0 

• SO,I0 SO 0 	0 
• SO,X SX X +1 
S SX,• 	SX 	EXII+1] 0 

% 

• 

User modified code for a given TM starts here % 

% the next state function of current state and input symbol % 
(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'IO)) 'SO) % S0,I0 •> SO % 

((EQUAL STATE 'SO) INPUT) % SO,• •> • % 
(T STATE) 	 % not SO •> state unchanged % 

)) 

% the output function of the current state and input symbol % 
(DEFUN OUTPUT (LAMBDA (STATE, INPUT) 
(COND 	((EQUAL STATE 'SO) INPUT) 	7: SO •> output■input % 

(T (PLUS 1 (REMAINDER STATE I))) % otherwise, output•CXII+13 % 
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)) 

% the tape movement function of the curront state and input symbol % 
(DEFUN MOVEMENT (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (NOT (EQUAL INPUT '10))) 1) X SO,IO■>+1 

(T 0) 	% else, don't move X 

)) 

% Basic structures and variables X 

(SETQ TAPE '(1 0 0 0 0 0 0 0 0)) 
(SETQ I 4) 
(SETQ POSITION 0) 
(SETQ TRACE-TM T) 
(SETQ TIME 0) 

X initial tape % 
X the modulus % 
X initial tape position % 
X trace the TM activities X 
X initial time X 

(RUN) 
Input •> 1 State ■> SO New State 	1 Output •> 1 Time • 0 
Movement■>1 New Position■>1 New Tape■>(1 0 0 0 0 0 0 0 0) 

Input ■> 0 Stato •> 1 New State ■> 1 Output •> 2 Time ■ 1 
Movoment•>O Now Position■>1 New Tepe■>(1 2 0 0 0 0 0 0 0) 

Input •> 2 State ■> 1 New State ■> SHALT Output •> 2 
Movemont•>O New Position■>1 New Tape■>(1 2 0 0 0 0 0 0 0) 
Machine Halted 

(RUN) 
Input ■> 2 State 	SO New State ■> 2 Output ■> 2 Time ■ 2 
Movemont■>1 New Position■>2 New Tape•>(1 2 0 0 0 0 0 0 0) 

Input ■> 0 State ■> 2 New State ■> 2 Output •> 3 Time ■ 3 
Movement■>0 New Position•>2 New Tepe■>(1 2 3 0 0 0 0 0 0) 

Input -> 3 State ■> 2 New State ■> SHALT Output 	3 
Movement■>0 New Position■>2 New Tepe■>(1 2 3 0 0 0 0 0 0) 
Machine Haltod 

Input •> 3 State ■> SO New State ■> 3 Output ■> 3 Time ■ 4 
Movement•>1 Now Position■>3 New Tepo•>(1 2 3 0 0 0 0 0 0) 

Input •> 0 State ■> 3 New State ■> 3 Output ■> 4 Time ■ 6 
Movement■>0 New Position■>3 Now Tepe■>(1 2 3 4 0 0 0 0 0) 

Input 	4 Stato ■> 3 New State 	SHALT Output •> 4 
Movement•>0 New Position■>3 New Tape■>(1 2 3 4 0 0 0 0 0) 
Machine Halted 

(RUN) 
Input •> 4 State 	SO New State •> 4 Output •> 4 Timo ■ 6 
Movement■>1 New Position•>4 New Tape■>(1 2 3 4 0 0 0 0 0) 

Input ■> 0 State •> 4 New Stato •> 4 Output ■> 1 Time • 7 
Movoment■>0 New Position•>4 New Tape•>(1 2 3 4 1 0 0 0 0) 

Input ■> 1 State •> 4 New State •> SHALT Output •> 1 
Movement■>0 New Position■>4 New Tape•>(1 2 3 4 1 0 0 0 0) 
Machine Haltod 

(RUN) 
Input ■> 0 State •> 2 New State •> 2 Output ■> 3 Time ■ 11 
Movement•>0 New Position•>6 New Tape0(1 2 3 4 1 2 3 0 0) 

Input ■> 3 State ■> 2 New State ■> SHALT Output ■> 3 
Movement■>0 New Position•>6 New Tape•>(1 2 3 4 1 2 3 0 0) 
Machine Halted 

(RUN) 
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Input -> 3 State -> SO New State ■> 3 Output -> 3 Time 	12 
Movement■>1 New Position07 New Tape■>(1 2 3 4 1 2 3 0 0) 

Input ■> 0 State 0 3 New State 	3 Output ■> 4 Time . 13 
Movement00 New Position07 New Tape0(1 2 3 4 1 2 3 4 0) 

Input -> 4 State ■> 3 New State -> SHALT Output ■> 4 
Movement->0 New Position07 New Tape0(1 2 3 4 1 2 3 4 0) 
Machine Halted 

12.4 Macros Demonstrated 

In this simulation, we demonstrate the Turing Machine macros defined to simplify the writing of FSM tables. In this 
demonstration, we show that the macros "HALT", "R(x)", "L(x)", and "C(x,y,z)" actually implement the functions 
claimed for them in the body of the thesis. The demonstration is a simple program which moves right till a given symbol, 
changes occurrences of one symbol to another till a given symbol, moves left to a given symbol, and then halts. 

TM macros from Fred Cohen's Thesis % 

SxI 	N 	0 

HALT Sn,* 	Sn 	 0 

R(x) Sn,x Sn+1 x 	0 
Sn,else Sn 	else 	+1 

L(x) Sn,x Sn+1 x 	0 
Sn,else Sn 	else 	-1 

C(x,y,z) 
Sn,z 	Sn+1 	z 	0 
Sn,x 	Sn 	y 	+1 
Sn,else Sn 	else 	+1 

exemplified by the following machine 
move right till "I6", 
change all "I6"s to "I7"s till "18", 
move left till "I41", and then halt 

the next state function of current state 
(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT) 
(COND ((EQUAL STATE 'HSTATE) 'HSTATE) 

((AND (EQUAL STATE 'RSTATE) (EQUAL 
((EQUAL STATE 'RSTATE) 'RSTATE) 
((AND (EQUAL STATE 'LSTATE) (EQUAL 
((EQUAL STATE 'LSTATE) 'LSTATE) 
((AND (EQUAL STATE 'CSTATE) (EQUAL 
((EQUAL STATE 'CSTATE) 'CSTATE) 
((EQUAL STATE 'SO) 'RSTATE) 
(T 'SO) 

)) 

the output function of the current state 
(DEFUN OUTPUT (LAMBDA (STATE. INPUT) 
(COND ((EQUAL STATE 'HSTATE) INPUT) 

((EQUAL STATE 'RSTATE) INPUT) 
((EQUAL STATE 'LSTATE) INPUT) 
((AND (EQUAL STATE 'CSTATE) (EQUAL 
((AND (EQUAL STATE 'CSTATE) (EQUAL 
((EQUAL STATE 'CSTATE) INPUT) 
(T INPUT) 

and input symbol 

• HALT macro 
INPUT RX)) RNSTATE) 

• R macro 
INPUT LX)) LNSTATE) 

• L macro % 
INPUT CZ)) CNSTATE) 

• C macro 

and input symbol 

• HALT macro 
• R macro 
• L macro 

INPUT CZ)) CZ) 
INPUT CX)) CY) 

• C macro 
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% the tape movement function of the current state and input symbol % 
(DEFUN MOVEMENT (LAMBDA (STATE, INPUT) 
(COND 	((EQUAL STATE 'HSTATE) 0) 	 % HALT macro % 

((AND (EQUAL STATE 'RSTATE) (EQUAL INPUT RX)) 0) 
((EQUAL STATE 'RSTATE) 1) 	 % R macro % 
((AND (EQUAL STATE 'LSTATE) (EQUAL INPUT LX)) 0) 
((EQUAL STATE 'LSTATE) -1) 	 % L macro % 
((AND (EQUAL STATE 'CSTATE) (EQUAL INPUT CZ)) 0) 
((EQUAL STATE 'CSTATE) 1) 	 % C macro % 
(T 0) 

)) 

% Basic structures and variables % 

(SETQ RX '15) 	 % right till IS % 
(SETQ RNSTATE 'CSTATE) X then to CSTATE % 
(SETQ CX '16) 	 % change 16 % 
(SETQ CY '17) 	 % to 17 % 
(SETQ CZ '18) 	 % till III % 
(SETQ CNSTATE 'LSTATE) % then to LSTATE % 
(SETQ LX '14) 	 % left till 14 % 
(SETQ LNSTATE 'HSTATE) % then to HSTATE % 

(SETQ TAPE '(ID 14 16 11 15 ID ICI ID 16 18 16)) 
(SETQ STATE 'SO) 
(SETQ POSITION 0) 
(SETQ TRACE-TN T) 
(SETQ TIME 0) 

(RUN) 
Input 	IO State ■> SO New State 	RSTATE Output 

	
IO Time ■ 0 

Movement00 New Pesitien00 New Tapea,00 14 16 Ii IS ID 16 TO 16 18 16) 

Input 	ID State ■> RSTATE New State 	RSTATE Output ■> ID Time ■ 1 
Movement01 New Pesition01 New Tape000 14 16 Ii 15 TO 16 IO 16 18 16) 

Input •> Ii State 	RSTATE New State 	RSTATE Output 

▪  

Ii Time ■ 4 
Mevement01 New Pesition•)4 New Tape000 14 16 Ii 16 IO 16 IO 16 18 16) 

Input ■> 16 State ■> RSTATE New State 	CSTATE Output ■> 16 Time ■ 6 
Movement00 New Pesition04 New Tape000 14 16 Ii 16 ID 16 ID 16 18 16) 

Input 	15 State a> CSTATE New State 	CSTATE Output ■> 16 Time ■ 6 
Movement01 New Pesitien■)6 New Tape000 14 16 Ii 15 ID IS IO 16 18 IO) 

Input ■> IO State ■> CSTATE New State 	CSTATE Output ■> IO Time • 7 
Mevement01 New Pesitien06 New Tape000 14 16 Ii 15 ID 16 IO 16 18 16) 

Input •> 16 State 	CSTATE New State ■> CSTATE Output ■> 17 Time ■ 8 
Movement•>1 New Position■>7 New Tape000 14 16 Ii 15 ID 17 ID 16 18 16) 

Input •> IO State 	CSTATE New State •> CSTATE Output 

▪  

IO Time ■ 9 
Movement•>1 New Pesition08 New Tape000 14 16 Ii 15 IO 17 ID 16 18 16) 

Input 	16 State 	CSTATE New State 	CSTATE Output 

▪  

17 Time ■ 10 
Mevement01 New Position09 New Tape000 14 16 Ii 15 ID 17 IO 17 18 16) 

Input ■> 18 State ■> CSTATE New State 	LSTATE Output •> 18 Time ■ 11 
Mevement00 New Position•>9 New Tape■>(I0 14 16 I1 IS IO 17 IO 17 18 16) 

Input 	16 State 	LSTATE New State ■> LSTATE Output ■> 16 Time ■ 19 
Mevement0-1 New Pesition01 New Tape0(I0 14 16 I1 15 IO 17 IO 17 18 16) 

Input ■> 14 State ■> LSTATE New State 	HSTATE Output ■> 14 Time ■ 20 
Mevement00 New Pesition01 New Tape0(I0 14 16 Ii 15 ID 17 10 17 18 16) 

Input •> 14 State •> HSTATE New State ■> SHALT Output •> 14 
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Movement■>0 New Position•>i New Tape.>(I0 14 16 Il 15 ICI 17 IO 17 18 16) 
Machine Halted 

12.5 Countably Infinite Viral Set 

This simulation demonstrates a virus which replicates itself with the addition of one symbol. This demonstration takes 
a virus with three Os in it, and produces a virus with 4 Os in it. 

% Countably infinite viral set from Fred Cohen's thesis % 
% 	SxI 	N 	0 	D 	% 
% 	 % 
% 	SO,L 	S1 	L 	+1 	% 
% 	SO,ELSE SO 	ELSE 	0 	% 
% 	S1,0 	CHANGE 0 TO X TILL R 	% 
% 	S2,R 	S3 	R 	+1 	% 
% 	S3 	S4 	L 	+1 	% 
% 	S4 	Sb 	X 	0 	% 
% 	S5 	L(R) 	 % 
% 	S6 	L(X OR L) 	 % 
% 	S7,L 	Sll 	L 	0 	% 
% 	S7,X 	S8 	0 	+1 	% 
% 	S8 	R(X) 	 % 
% 	S9,X 	S10 	0 	+1 	% 
% 	S10 	Sb 	X 	0 	% 
% 	Sll 	R(X) 	 % 
% 	S12 	S13 	0 	+1 	5 
IC 	S13 	S13 	R 	0 	5 
% 	  IC 
% User modified code for a given TM starts here % 
% 	  % 

% the next state function of current state and input symbol % 
(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'L)) 'S1) 

((EQUAL STATE 'SO) 'SO) 
((AND (EQUAL STATE 'S1) (EQUAL INPUT 'R)) 'S2) 
((EQUAL STATE 'S1) 'S1) 
((EQUAL STATE 'S2) 'S3) 
((EQUAL STATE 'S3) 'S4) 
((EQUAL STATE 'S4) 'S5) 
((AND (EQUAL STATE 'S6) (EQUAL INPUT 'R)) 'S8) 
((EQUAL STATE 'Sb) 'Sb) 
((AND (EQUAL STATE 'S6) (EQUAL INPUT 'X)) 'S7) 
((AND (EQUAL STATE 'S6) (EQUAL INPUT 'L)) 'S7) 
((EQUAL STATE 'S6) 'S6) 
((AND (EQUAL STATE 'S7) (EQUAL INPUT 'L)) 'S11) 
((AND (EQUAL STATE 'S7) (EQUAL INPUT 'X)) 'S8) 
((AND (EQUAL STATE 'S8) (EQUAL INPUT 'X)) 'S9) 
((EQUAL STATE 'S8) 'S8) 
((EQUAL STATE 'S9) 'S10) 
((EQUAL STATE 'S10) 'S5) 
((AND (EQUAL STATE 'S11) (EQUAL INPUT 'X)) 'S12) 
((EQUAL STATE 'S11) 'S11) 
((EQUAL STATE 'S12) 'S13) 
((EQUAL STATE 'S13) 'S13) 
(T STATE) 	 % not SO a> state unchanged % 

)) 

IC the output function of the current state and input symbol % 
(DEFUN OUTPUT (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 'L)) 'L) 

((EQUAL STATE 'SO) INPUT) 
((AND (EQUAL STATE 'S1) (EQUAL INPUT '0)) 'X) 
((EQUAL STATE 'S1) INPUT) 
((EQUAL STATE 'S2) 'R) 
((EQUAL STATE 'S3) 'L) 
((EQUAL STATE 'S4) 'X) 
((EQUAL STATE 'S5) INPUT) 
((EQUAL STATE 'S6) INPUT) 
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((AND (EQUAL STATE 'S7) (EQUAL 
((AND (EQUAL STATE 'S7) (EQUAL 
((EQUAL STATE 'S8) INPUT) 
((EQUAL STATE 'S9) '0) 
((EQUAL STATE 'S10) 'X) 
((EQUAL STATE 'S11) INPUT) 
((EQUAL STATE 'S12) '0) 
((EQUAL STATE 'S13) 'R) 

INPUT 'L)) 'L) 
INPUT 'X)) '0) 

% the tape movement function of the current state and input symbol % 
(DEFUN MOVEMENT (LAMBDA (STATE, 	INPUT) 
(COND ((AND (EQUAL STATE 	'SO) (EQUAL INPUT 'L)) 1) 

((EQUAL STATE 	'SO) 0) 
((AND (EQUAL STATE '51) (EQUAL INPUT 'R)) 0) 
((EQUAL STATE '51) 1) 
((EQUAL STATE 'S2) 1) 
((EQUAL STATE 	'S3) 1) 
((EQUAL STATE 	'S4) 0) 
((AND (EQUAL STATE 'S5) (EQUAL INPUT 'R)) 0) 
((EQUAL STATE 	'S6) -1) 
((AND (EQUAL STATE 'S6) (EQUAL INPUT 'X)) 0) 
((AND (EQUAL STATE 'S6) (EQUAL INPUT 'L)) 0) 
((EQUAL STATE 	'S6) -1) 
((AND (EQUAL STATE 'S7) (EQUAL INPUT 'X)) 1) 
((AND (EQUAL STATE 'S7)  (EQUAL INPUT 'L)) 0) 
((EQUAL STATE 'S7) 0) 
((AND (EQUAL STATE 'S8)  (EQUAL INPUT 'X)) 0) 
((EQUAL STATE 	'S8) 1) 
((EQUAL STATE 'S9) 1) 
((EQUAL STATE 	'S10) 0) 
((AND (EQUAL STATE 'S11) (EQUAL INPUT 'X)) 0) 
((EQUAL STATE 'S11)  1) 
((EQUAL STATE 'S12)  1) 
((EQUAL STATE 'S13)  0) 

0) 	% else, don't move % 

% Basic structures and variables % 

(SETQ TAPE '(L 0 0 0 R)) 
	

% initial tape % 
(SETQ 7) 
	

% the modulus % 
(SETQ POSITION 0) 
	

% initial tape position % 
(SETQ TRACE-TM T) 
	

% trace the TM activities % 
(SETQ TIME 0) 
	

% initial time % 

(RUN) 
Input •> L State •> SO New State •> S1 Output 0 L 
Movement 	1 New Position ->1 New Tape 	(L 0 0 0 R) 

Input -> D State ■> Si New State 	S1 Output ■> -2( 
Movement ■> 1 New Position •>2 New Tape 	(L X 0 0 R) 

Input ■> 0 State ■> S1 New State ■> S1 Output 	X 
Movement ■> 1 New Position ■>3 New Tape 	(L X X 0 R) 

Input ■> 0 State 	S1 New State ■> S1 Output 	X 
Movement -> 1 New Position ■>4 New Tape 	(L X X X R) 
Time 3 

Input 	NIL State ■> S3 New State ■> S4 Output 	L 
Movement ■> 1 New Position 08 New Tape -> (L X X X R L) 
Time ■ 8 

Input ■> NIL State ■> S4 New State 0 S5 Output 0 X 
Movement -> 0 New Position 08 New Tape 	(L X X X R L X) 
Time ■ 7 
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Input 	X State 	S6 New State -> S7 Output ■> X 
Movement ■> 0 New Position .>3 New Tape 	(LXXXRL X) 
Time ■ 12 

Input •) X State ■> S7 New State •> S8 Output a> 0 
Movement 0 1 New Position ■>4 New Tape 	(LXXORL X) 
Time • 13 

Input ■> X State 	S9 New State 	S10 Output 0 0 
Movement 	1 New Position a>7 New Tape ■> (LXXORL 0) 
Time ■ 17 

Input a> NIL State 	S10 New State •> S5 Output •> X 
Movement a> 0 New Position a>7 New Tape ■> (LXXORLO X) 
Time ■ 18 

Input 	X State ■> S7 New State ■> S8 Output 	0 
Movement ■> 1 New Position 03 New Tape ■> (L X 0 0 R L 0 X) 
Time • 26 

Input ■> X State a> S9 New State 	S10 Output 	0 
Movement ■> 1 New Position a>8 New Tape ■> (L X 0 0 R L 0 0) 
Time • 32 

Input ■> NIL State ■> S10 New State ■> S5 Output a> X 
Movement ■> 0 New Position ->8 New Tape 	(L X 0 0 R L 0 0 X) 
Time • 33 

Input a> X State ■> S7 New State -> S8 Output 	0 
Movement a> 1 New Position •>2 New Tape ■> (L 0 0 0 R L 0 0 X) 
Time • 43 

Input -> X State •> 50 New State ■> S10 Output ■> 0 
Movement 0 1 New Position ■>9 New Tape 	(L 0 0 0 R L 0 0 0) 
Time ■ 51 

Input 	NIL State ■> S10 New State 	S6 Output ■> X 
Movement ■> 0 New Position 09 New Tape a> (L 0 0 0 R L 0 0 0 X) 
Time • 62 

Input 	L State ■> S7 New State 	S11 Output 	L 
Movement ■> 0 New Position 00 New Tape -> (L 0 0 0 R L 0 0 0 X) 
Time • 84 

Input ■> L State 	Sli New State 0 S11 Output ■> L 
Movement ■> 1 New Position ■>1 New Tape •> (L 0 0 0 R L 0 0 0 X) 
Time • 65 
••• 

Input •> X State ■> S12 New State 	S13 Output 	0 
Movement ■> 1 New Position ■>10 New Tape ■> (L 0 0 0 R L 0 0 0 0) 
Time ■ 76 

Input •> NIL State ■> S13 New State ■> S13 Output ■> R 
Movement ■> 0 New Position ■>i0 New Tape 	(L 0 0 0 R L 0 0 0 0 R) 
Time • 78 

Input 	R State ■> S13 New State -> SHALT Output ■> R 
Movement •> 0 New Position •>10 New Tape 	(L 0 0 0 R L 0 0 0 0 R) 
Machine Hatted 

12.6 Recognize/Generate Simulation 

This example demonstrates the recognize/generate machines from Theorem 5 and subsequent examples. 
% Recognise/Generate machine from Fred Cohen's thesis % 
• Sal 	N 	0 

• SO,t Si t +1 
• SO,ELSE S7 
	

ELSE 	0 
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X Sl,e 	S2 e +1 
% S1,ELSE S6 ELSE -1 
% S2,s 	S3 s +1 
% S2,ELSE S5 ELSE -1 
% S3,t 	S8 t +1 
% S3,ELSE S4 ELSE -1 
X S4,* 	S5 • -1 
% S5,• 	S6 ° -1 
% S6,• 	S7 • -1 
X S7 didn't recognize state 
% S8 did recognize state 
% S8.° 	S9 	0 	+1 
% S9,• 	S10 K +0 
% S10,• 	S10 ° 0 

% User modified code for a given TM starts here % 

% the next state function of current state and input symbol % 
(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 't)) 'S1) 

((EQUAL STATE 'SO) 'S7) 
((AND (EQUAL STATE 'S1) (EQUAL INPUT 'e)) 'S2) 
((EQUAL STATE 'S1) 'S6) 
((AND (EQUAL STATE 'S2) (EQUAL INPUT 's)) '53) 
((EQUAL STATE 'S2) 'S5) 
((AND (EQUAL STATE 'S3) (EQUAL INPUT 't)) 'S8) 
((EQUAL STATE 'S3) 'S4) 
((EQUAL STATE 'S4) 'S6) 
((EQUAL STATE 'S5) 'S6) 
((EQUAL STATE 'S6) 'S7) 
((EQUAL STATE 'S7) 'S7) 
((EQUAL STATE 'S8) 'S9) 
((EQUAL STATE 'S9) 'S10) 
((EQUAL STATE 'S10) 'S10) 
(T STATE) 	 % not SO ®> state unchanged % 

)) 

% the output function of the current state and input symbol % 
(DEFUN OUTPUT (LAMBDA (STATE, INPUT) 
(COND 	((EQUAL STATE 'SO) INPUT) 

((EQUAL STATE 'S1) INPUT) 
((EQUAL STATE 'S2) INPUT) 
((EQUAL STATE 'S3) INPUT) 
((EQUAL STATE 'S4) INPUT) 
((EQUAL STATE 'S5) INPUT) 
((EQUAL STATE 'S5) INPUT) 
((EQUAL STATE 'S7) INPUT) 
((EQUAL STATE 'S8) '0) 
((EQUAL STATE 'S9) 'K) 
((EQUAL STATE 'S10) INPUT) 

)) 

% the tape movement function of the current steto and input symbol % 
(DEFUN MOVEMENT (LAMBDA (STATE, INPUT) 
(COND 	((AND (EQUAL STATE 'SO) (EQUAL INPUT 't)) 1) 

((EQUAL STATE 'SO) 0) 
((AND (EQUAL STATE 'S1)  (EQUAL INPUT 'e)) 1) 
((EQUAL STATE 'S1) -1) 
((AND (EQUAL STATE 'S2)  (EQUAL INPUT 's)) 1) 
((EQUAL STATE 'S2) -1) 
((AND (EQUAL STATE 'S3)  (EQUAL INPUT 't)) 1) 
((EQUAL STATE 'S3) -1) 
((EQUAL STATE 'S4) -1) 
((EQUAL STATE 'S6) -1) 
((EQUAL STATE 'S6) -1) 
((EQUAL STATE 'S7) 0) 
((EQUAL STATE 1S8) 1) 
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((EQUAL STATE 'S9) 0) 
((EQUAL STATE 'S10) 0) 
(T 0) 	% else, don't move % 

% Basic structures and variables % 

(SETQ TAPE '(t e s t)) 
(SETQ I 7) 
(SETQ POSITION 0) 
(SETQ TRACE-TM T) 
(SETQ TIME 0) 

% initial tape % 
% the modulus % 
% initial tape position % 
% trace the TM activities % 
% initial time % 

(RUN) 
Input 	t State 	SO New State •> Si Output ■> t Time 	0 
Movement ■> 1 New Position 01 New Tape •> (t e s t) 

Input •> e State •> S1 New State •> S2 Output ■> a Time ■ 1 
Movement ■> 1 New Position •>2 New Tape 	(t e s t) 

Input ■> s State ■> S2 New State •> S3 Output 	s Time • 2 
Movement ■> 1 New Position ■>3 New Tape 	(t e s t) 

Input ■> t State ■> S3 New State •> S8 Output 	t Time ■ 3 
Movement ■> 1 New Position •>4 New Tape 	(t e s t) 

Input ■> NIL State ■> S8 New State ■> S9 Output ■> 0 Time ■ 4 
Movement ■> 1 New Position ■>5 New Tape ■> (t e s t 0) 

Input 	NIL State ■> S9 New State ■> S10 Output •> K Time ■ 6 
Movement •> 0 New Position ■>6 New Tape 	(t e s t 0 K) 

Input ■> K State ■> S10 New State 	SHALT Output 	K 
Movement 	0 New Position ■>6 New Tape 	(t e s t 0 K) 
Machine Halted 

(RUN) 
Input ■> t State ■> SO New State •> Si Output 	t Time ■ 0 
Movement ■> 1 New Position ■>1 New Tape ■> (tease r) 

Input •> e State •> S1 New State 	S2 Output 	e Time • 1 
Movement ■> 1 New Position ■>2 New Tape ■> (tease r) 

Input •> a State ■> S2 New State •> S5 Output -> a Time • 2 
Movement ■> -1 New Position ■>1 New Tape ■> (tease r) 

Input ■> e State ■> S6 New State 	S8 Output 	e Time • 3 
Movement •> -1 New Position ■>0 New Tape •> (tease r) 

Input •> t State •> S8 New State ■> S7 Output ■> t Time • 4 
Movement ■> -1 New Position •>0 New Tape ■> (tease r) 

Input ■> t State •> S7 New State -> SHALT Output •> t 
Movement •> 0 New Position ■>0 New Tape •> (tease r) 
Machine Halted 

12.7 A PC DOS2.1 Virus 

The following batch command file implements a virus almost entirely in the command language of IBM-PC DOS2.1. 
The single exception to this is the use of the program DOMANY.0 which tests for the existence of the file done, and does 
each of the commands following it only if done exists. This could be implemented without the domany program but the 
resulting command language program would be intolerably slow for demonstration purposes, and clarity would be lost. 
We have also reformatted the text for readability, and placed no more than one command per line except in the case of 
"domany". In this form, the program takes 14 lines, but by removing the lines which are for demonstration purposes only 
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(e.g. echo Nothing left to infect) and merging mcrgablc lines, we could reduce its size to 6 lines. Following thc command 
file is the text of thc DOMAN Y program as written in the language "C". 

the virus 
echo off 
echo This program (%0) is infected 
for %Xi in (•.bat) do 

domany tdone 	t/z/%%1 copytUitdone 
copytnit/z/%%1 
copyt%O.battUi >> /tmp/log 

if exist done goto part2 
echo Nothing left to infect 
goto done 
:part2 
del done 
:done 
copy /z/%0.bat Amp/tmp.bat > /tmp/log 
tmp %1 %2 %3 %4 %5 %6 %7 %8 %9 

domany.c 
#include "/c/stdio.h" 
int 	sfix(s1) char •s1; 
(int 1; for (i■0;s1[1]I-'\0';i++) if (sl[i]■•'r') s1[1]."; return(0);) 
int 	scheck(s1) char 'Si; 
(int 1; if (s1[0]•■'r') /'if no such file, go on•/ 

{1■open(&(s1[1]),0); if (1 ( 0) return(-1); close(i); exit(0);) 
if (si[O]•■'?') /•if is such file, go on•/ 

{i•open(&(s1[1]),0); if (i >■ 0) (close(1);return(-1);) exit(0);) 
return(0);) 

main(argc,argv) int argc; char •'argv; 
(int 	i; argv++; for (i•00(argc:1++) 

if (scheck('argv) ■■ 0) (sfix(*argv); system('argv++);} else argv++;) 

12.8 Instrumentation Analysis Programs 

There are three basic measurements done by the measurement programs at this time. They are called social, spreader, 
and detailed. 

"Social" is set up to find how social users are with each other. It basically lists the number of times each user has used 
another users programs, and the number of times their programs have been used by other users. You would expect that 
the root, for example, would be used by many, but use others programs rarely (if ever)! This is intended to help find 
social users, and perhaps identify weak points against viral infection. By isolating the social users so that they cannot 
easily get infected, or by making them more aware and providing more checks for them, one might be able to slow a virus. 

"Spreader" is a program made to measure the overall spreading of a virus, assuming it started at a given user. This is 
basically a summary of the detailed analysis in that it tells how far a virus would have gotten, and how much time it would 
have taken to get there if it had started at each of the users in the system. It is to be expected that socialites would have 
lower times and larger spreads than isolationists. 

"Detailed" provides the exact details of the first infection of each user given a particular viral starting point. This lists 
each user that could have gotten infected, and the time at which the infection would have happened for each user in the 
system. 

/• This program is used to generate sample data to verify that the 
analysis programs operate correctly 
main() 
(long int buf[2]; 
int 	1,f; 
printf("%d",sizeof(buf)); 
f ■ creat("testin",0600); 
for (1 • 1;i ( 600;1++) 

(bunt)] • ((29*1)+13) % 64; 
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buf[1] • ((2101)+7) % 32; 
buf[2] • i; 
writo(f,&(buf[0]),12); 

close(f); 
exit(1): 

/0 	Copyright(c) Fred Cohen 19840/ 
/0 	show.c - show fred what goes*/ 
getinfo() 
(int 	f,tim,ouid,nuid,i; 
long 	int 	buf[2); 
if ((f ■ open("testin",0)) < 0) exit(-1); 
while(12 •• read(f,&(buf[0]),12)) 

(printf("%d\t%d\t%d\n",buf[0],buf[1],buf[2]): 
} 

} 

main() 
(getinfo(); 
exit(1); 
} 

/0 	Copyright(c) Fred Cohen 19840/ 
/0 	spread.c - sharing paths from each user vs. time*/ 
/0 	social - how social are users*/ 
int 	uses[256],used[256],totals,dt; 
/0 	I used them, they used me, totals, delta time*/ 
int 	user[266],fulltime[256],howbad[256]; 

getsoci() 
(int 	f,oldtime,time,ouid,nuid; 
long 	int 	buf[2]; 
if ((f ■ open("testin",0)) < 0) exit(-1); 
dt • 0; 
read(f,11(buf[0]),12);oldtime buf[2]; 
while(12 " read(f,&(buf[0]),12)) 

(nuid.buf[0];ouid■buf[1];time buf[2]; 
used[ouid] -1.0 1; 
uses[nuid] +. 1; 
totals +. 1; 
} 

dt • time - oldtime; 
return(1); 

showsoci() 
(float ratio; 
int 	i; 
printf("data summary\ntotal sharing* ■ %d\n",totals); 
printf("total time ■ %d\n",dt); 
ratio • totals/dt; 
printf("sharing/time • %f\n",ratio); 
printf("broken down by uses:\n"); 
printf("user\tuses\tused\n"); 
for (1 	< 266;i++) 

(if ((uses[i] I. 0) 11 (used[i] I. 0)) 
printf("%d\t%d\t%d\n",i,uses[i],used[1]); 

} 
return(0); 
} 

getinfo(uid) 
int 	uid; 
(int 	f,oldtim,tim,ouid,nuid,i; 
long 	int 	buf[2]; 
if ((f 0 open("testin",0)) < 0) exit(-1); 
for (i • 00<2500++) user[i] • 0; 
read(f,gbuf[0]),12);oldtim • buf[2]; 
usequid] • 1; 
while(12 ow read(f.81(buf[0]),12)) 

(nuid•but[0];ouid•butC13;tim • buf[2]; 
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if ((user[ouid] 1. 0) && (user[nuid] 	0)) 
(user[nuid] • (tim - oldtim)+1; 
fulltime[uid] 	(tim-oldtim)+1; 
howbad[uid] +• 1;} 

} 
printf("user %d spread time to %d users 	%d\n" 

t uid,howbad[uid],fulltime[uid]); 
close(f); 
return(1); 
} 

showinfo(uid) 
int 	uid; 
(float ratio; 
int 	i; 
if (fulltime[uid] 	1) return(Q); 
printf("user %d spreading summary:\n".uid); 
printf("user\ttim\n"); 
for (i ■ 00 < 2660++) 

(if (user[i] 1. 0) 
printf("%d\t%d\n",i,user[i]); 

} 
return(0); 

} 

main(argc,argv) 
int 	argc; 
char 	•argv[]; 
(int 	i; 
if (argc > 1) (getsoci();showsoci();) 
for (i • 	< 2560++) 

(getinfo(i); 
if (argc > 2) showinfo(1); 
} 

exit(1); 

} 

We now present the results of instrumentation analysis as measured in two actual systems. The first example shows first 
the ".out" file, and then, the ".sum" file, while the second only includes the ".sum" file due to the large size of the 
corresponding ".out" file. 

The output is a bit cryptic at first. The "inc" indicates the initiation of the experiment at some number of system clock 
ticks from some arbitrary date, and is simply subtracted from absolute times to produce the results herein. The analysis 
takes some time, and prints out messages to the user like "read in" to indicate that it is active. The total sharings indicates 
the number of times users ran programs belonging to other users, the total time is in "clock ticks" which correspond to 
milliseconds, and the sharings per time indicate the frequency with which sharing takes place. The figure indicates that 
information is shared between users about every 50 msec. This is misleading because user "0" is the system itself, and it is 
responsible for 65% of the cases of other users using its programs. 

The categories indicated in the per user breakdown show the user number (user), the -humber of times that user used 
other users' programs (uses), the number of times that user's programs were used by other users (used), and the first time 
at which the user used another user's program is indicated by the "firstuse" heading. 

We note especially that because of the separation of duties between various users on this system, the superuser had to 
use other users programs quite often, and that this is likely to result in rapid takeover of the entire system. In this case, a 
measure intended to maintain security via separation of duties actually compromises the system security by forcing 
increased sharing and thus more rapid viral attack. 

We also note that negative numbers indicate activities that occurred before the system's clock was set at system startup, 
and should be disregarded in statistics (although they are important because they do indicate sharing in the initialization 
of the system that could cause viral takeover. 



107 

The "takeover time" and "spread to" indications show how far a best case viral attack by a given user using only the 
measured data paths could do. Note that many users could takeover the system very quickly after their first program is 
run by another user, and that some takeover times are quite long (over an hOur). Many users don't take over at all, and 
many more users never used the system. 

inc • 
total 
user 

.OUT FILE 
11591 	- data read in 	- data summary - total sharings m 11691 
time • 641091 - sharing/time 0  0.021422 - broken down by uses: 

uses 	used 	firstuse 	user 	uses 	used 	firstuse 
0 2699 	7549 7 3 2033 2725 14106 
4 1489 	0 2247 8 60 0 118974 
8 600 	1 2388 10 12 0 6286 
19 186 	0 18560 25 1082 1 2677 
32 86 	0 455661 33 806 0 3220 
39 30 	1 6289 40 653 0 3250 
41 208 	0 196819 48 112 0 83102 
54 39 	0 466832 103 16 0 2335 
112 14 	7 3173 135 627 1 3187 
139 686 	0 4840 208 1 0 25050 
222 26 	1306 92337 226 1 0 466436 
392 236 	0 460901 
user 0 spread to 22 users in t 0.460902 dt0468652 
user 0 spreading summary: 
user tim 	rel beat user tim rel best  
0 1 	-2249 -8 3 14105 11866 1 
4 2260 	0 3 8 118976 116726 1 
8 2389 	139 1 10 6287 3037 1 
19 18561 	16301 1 25 3154 904 477 
32 455662 	453402 1 33 8259 6009 5039 
39 437464 	435214 431175 40 4722 2472 1472 
41 195820 	193570 1 48 83103 80863 1 
64 455833 	453683 1 103 2336 86 1 
112 120511 	118281 117338 136 4679 2329 1392 
139 4844 	2694 4 206 25051 22801 1 
222 92338 	90088 1 226 466437 464187 1 
392 460902 	458662 1 
user 3 takeover at 1 rel.0 
user 3 spread to 22 users in t • 460902 dt-460901 
user 3 spreading summary: 
user tim 	rel best user tim rel best 
0 1 	0 -6 3 1 0 -14104  
4 2248 	2247 1 8 118975 118974 1 
8 2389 	2388 1 10 5287 6288 1 
19 18551 	18550 1 26 3150 3149 473 
32 455662 	455651 1 33 8256 8265 6038 
39 6290 	6289 1 40 4722 4721 1472 
41 195820 	195819 1 48 83103 83102 1 
64 466833 	455832 1 103 2336 2336 1 
112 120611 	120610 117338 136 4679 4678 1392 
139 4841 	4840 1 206 26061 26050 1 
222 92338 	92337 1 228 468437 468438 1 
392 480902 	460901 1 
user 8 spread to 1 users in t • 184432 dt620 
user 8 spreading summary: 
user tim 	rel best 
8 	1 	-184431 -2387 
136 	184432 0 	181246 
user 26 spread to 1 users in t • 447639 dt00 
user 25 spreading summary: 
user 	tim 	rel 	best 
26 	1 	-447638 -2878 
40 	447639 0 	444289 
user 39 takeover at 466467 	re10,9229 
user 39 spread to 16 users in t • 636364 	dt-80907 
user 39 spreading summary: 
user 	tim 	rel 	best 	 user 	tin 	ref 	best 
0 456467 0 456450 3 458159 702 442064 
4 468247 2790 468000 8 467229 1772 464841 
19 536364 80907 617814 26 613074 67817 610397 
32 465662 196 1 33 466789 332 462689 
39 1. -466468 -8288 41 468336 878 280618 
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48 465743 	286 	372641 	 64 466833 376 1 
103 460400 	4943 	468065 	 139 513290 57833 608460 
226 
user 
user 

466437 	980 	1 	 392 
112 spread to 2 users in t • 8156 	dt•687 
112 spreading summary: 

460902 6446 1 

user tim 	rel 	best 
8 7689 	0 	6201 
112 1 	-7588 	-3172 
135 
user 
user 

8168 	687 	4969 
135 spread to 1 users in t ■ 5344 	dt■0 
136 spreading summary: 

user tim 	rel 	best 
10 5344 	0 	68 
135 
user 

1 	-6343 	-3188 
222 takeover at 2677 	re1.53 

user 
user 

222 spread to 22 users in t ■ 460902 
222 spreading summary: 

dt•458225 

user tim 	rel 	best 	 user tim rel best 
0 2677 0 2670 3 14106 11429 1 
4 3236 668 988 6 118976 118298 1 
8 3202 626 814 10 6287 2610 1 
19 18561 16874 1 25 2678 1 1 
32 466662 462975 1 33 3221 644 1 
39 437464 434787 431175 40 3261 574 1 
41 195820 193143 1 48 83103 80426 1 
64 465833 463158 1 103 13762 11086 11427 
112 3174 497 1 135 3188 511 1 
139 4844 2167 4 208 26051 22374 1 
222 1 -2878 -92338 228 468437 463760 1 
392 460902 458225 1 

.SUM FILE 

inc ■ 11591 - data read in - data summary - total sharings ■ 11591 
total time ■ 641091 - sharing/time • 0.021422 	broken down by uses: 

uses used firstuse 
2033 2726 14106 
50 0 118974 
12 0 6288 
1082 1 2677 
805 0 3220 
853 0 3250 
112 0 83102 
18 0 2335 
527 1 3187 
1 0 25050 
1 0 458438 

user 	uses 	used 	firstuse 	user 
0 	2699 	7649 	7 	 3 
4 	1489 	0 	2247 	 8 
8 	600 	1 	2388 	 10 
19 	188 	0 	18650 	 25 
32 	88 	0 	455651 	 33 
39 	30 	1 	8289 	 40 
41 	208 	0 	196819 	 48 
64 	39 	0 	465832 	 103 
112 	14 	7 	3173 	 135 
139 	686 	0 	4840 	 208 
222 28 1308 92337 	 228 
392 	236 	0 	480901 
user 0 spread to 22 users in t • 480902 dt■458852 
user 3 takeover at 1 	rel■0 
user 3 spread to 22 users in t • 450902 dt■480901 
user 8 spread to 1 users in t • 184432 	dt■0 
user 25 spread to 1 users in t ■ 447539 dt•0 
user 39 takeover at 455457 	re109229 
user 39 spread to 15 users in t • 635384 	dt■80907 
user 112 spread to 2 users in t ■ 8158 	dt■567 
user 135 spread to 1 users in t • 5344 	dt■0 
user 222 takeover at 2877 	rel■53 
user 222 spread to 22 users in t ■ 480902 	dt•458225 

ANOTHER .SUM FILE 

inc • 44558 - data read in - data summary - total sharings • 44558 
total time ■ 283789 - sharing/time • 0.157004 - broken down by uses: 
user 	uses 	used 	firstuse 	user 	uses 	used 	firstuse 
0 	13459 12403 2 	 3 	53 	28335 192758 
4 	377 	0 	527 	 5 	44 	23 	5325 
8 	944 	144 	1252 	 7 	158 	0 	2173 
8 	15 	3 	200472 	 9 	1560 	0 	8100 
10 	5 	0 	100338 	 11 	4 	0 	181052 
14 	839 	1 	172841 	 15 	3 	0 	181817 
18 	82 	0 	803 	 17 	81 	0 	175313 
19 	848 	0 	93010 	 23 	358 	0 	8980 
24 	58 	0 	50580 	 25 	17 	0 	201226 
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27 
29 
32 
... 
43 
... 
62 
... 
68 
... 
103 
... 
138 
... 
176 
.,. 
222 
2Z7 
235 
... 
306 
... 
340 
user 0 spread to 180 users in t ■ 283082 	dt■282534 
user 3 takeover at 1 	re1 ■0 
user 3 spread to 181 users in t ■ 283082 	dt■283061 
user 5 takeover at 8 	ref■9 
user 5 spread to 160 users in t ■ 283082 	dt■283054 
user 6 takeover at 169614 	re1 ■20632 
user 6 spread to 162 users in t • 283082 	dt■258774 
user 8 spread to 1 users in t • 204616 	dt■0 
user 14 spread to 1 users in t ■ 276624 dt•0 
user 27 spread to 2 users in t ■ 186375 dt■7621 
user 32 spread to 1 users in t • 179406 dt■0 
user 33 takeover at 268036 	re1039756 
user 33 spread to 78 users in t ■ 283169 	 dt■263246 
user 46 takeover at 5 	ref■6 
user 46 spread to 160 users in t ■ 283062 	dt•283057 
user 54 spread to 8 users in t ■ 280918 dt■12768 
user 72 spread to 1 users in t ■ 198123 dt■0 
user 112 spread to 1 users in t ■ 192445 	 dt■0 
user 139 takeover at 126166 	rele16933 
user 139 spread to 164 users in t ■ 283062 	dt•157894 
user 176 spread to 1 users in t • 189722 	dt■0 
user 222 takeover at 897 	re1069 
user 222 spread to 160 users in t • 283062 	dt•282166 
user 236 spread to 3 users in t • 273581 	dt•164661 
user 312 takeover at 1572 	re1.126 
user 312 spread to 180 users in t ■ 283062 	dt•261490 
user 346 takeover at 316 	rei■26 
user 345 spread to 180 users in t m 283082 	dt■282748 

79 11 990 28 66 0 19880 
121 0 10106 30 16 0 203108 
698 2 179772 33 640 64 95266 

609 0 2822 45 8 2063 36339 

2 0 188599 54 7 6 188564 

1 0 187586 72 8 2 40888 

24 0 39348 112 0 1 0 

1 0 74870 139 564 23 60578 

46 1 69638 177 68 0 132216 

7 2132 62194 224 25 0 175138 
44 0 60576 233 124 0 175407 
106 3 993 240 27 0 267250 

684 0 173109 312 10 1349 4238 

13 0 271646 345 8 1 40892 

A further experiment was planned wherein a program would be introduced to the system via the bulletin board, and its 
uses traced to indicate the spread of a nonviral program introduced to the users in this way. Unfortunately, one of the 
administrative users who was not supposed to know of the experiment violated the privacy of the account used to store 
the sources of the trace program, detected that the writer of the program was the author (via the copyright notice), and 
warned all users not to use the program because of its author, without checking the program to find that it was not in fact 
a threat to the system, but rather just a program that performed as advertised. Although this administrator probably did 
the "safe" thing, he certainly violated the privacy of the author, invalidated the experiment, and along with a lack of time, 
prevented the experiment from yielding any useful results. 

The author regrets the tendency of users of every system he ever uses to shun his programs, simply because of his 
reputation for being able to take over systems. Woe be, to the bearer of bad news! 
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