
W 
hen we use basic oper- Unix operating system. The project 
ating system facilities, proceeded in four steps: (1) pro- 
such as the kernel and grams wet-e constructed to generate 
major utility programs, random characters, and to help test 
we expect a high degree interactive utilities: (2) these pro- 

\ \ of reliability. These grams were used to test a large 
parts of the system are used fre- number of utilities on random 
quently and this frequent use im- input strings to see if they crashed; 
plies that the programs are well- (3) the strings (or types of strings) 
tested and workimg correctly. To that crash these programs were 
make a systematic statement about identified; and (4) the causes of the 

to the Internet worm (the “gets fin- 
ger” bug) [2,3] We have found ad- 
ditional bugs that might indicate 
future security holes. Third, some 
of the crashes were caused by input 
that might be carelessly typed- 
some strange and unexpected er- 
rors were uncovered by this 
method of testing. Fourth, we 
sometimes inadvertently feed pro- 
grams noisy input (e.g., trying to 

Am Empirical 
the correctness of a program, we 
should probably use some form of 
formal verification. While the tech- 
nology for program verification is 
advancing, it has not yet reached 
the point where it is easy to apply 
(or commonly applied) to large sys- 
tems. 

A recent expe&nce led us to be- 
lieve that, while formal verification 
of a complete set of operating sys- 
tem utilities was too onerous a task, 
there was still a need for some form 
of more complete testing: On a 
dark and stormy night one of the 
authors was logged on to his work- 
station on a dial-up line from home 
and the rain had affected the 
phone lines; there were frequent 
spurious characters on the line. 
The author had to race to see if he 
could type a sensible sequence of 
characters before the noise scram- 
bled the command. This line noise 
was not surprising; but we were 
surprised that these spurious char- 
acters wet-e causing programs to 
crash. These programs included a 
significant number of basic operat- 
ing system utilities. It is reasonable 
to expect that basic utilities should 
not crash (“core dump”); on receiv- 
ing unusual input, they might exit 
with minimal error messages, but 
they should not crash. This experi- 
ence led us to believe that there 
might be serious bugs lurking in the 
systems that we regularly used. 

This scenario motivated a sys- 
tematic test of the utility programs 
running on various versions of the 

program crashes were identified 
and the common mistakes that 
cause these crashes were catego- 
rized. As a result of testing almost 
90 different utility programs on 
seven versions of UnixTM, we were 
able to crash more than 24% of 
these programs. Our testing in- 
cluded versions of Unix that under- 
went commercial product testing. A 
byproduct of this project is a list of 
bug reports (and fixes) for the 
crashed programs and a set of tools 
available to the systems community. 

There is a rich body of research 
on program testing and verifica- 
tion. Our approach is not a substi- 
tute for a formal verification or 
testing procedures, but rather an 
inexpensive mechanism to identify 
bugs and increase overall system 
reliability. We are using a coarse 
notion of correctness in our study. 
A program is detected as faulty 
only if it crashs or hangs (loops in- 
definitely). Our goal is to comple- 
ment, not replace, existing test pro- 
cedures. 

This type of study is important 
for several reasons: First, it contrib- 
utes to the testing community a 
large list of real bugs. These bugs 
can provide test cases against which 
researchers can evaluate more so- 
phisticated testing and verification 
strategies. Second, one of the bugs 
that we found was caused by the 
same programming practice that 
provided one of the security holes 
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edit or view an object module). In 
these cases, we would like some 
meaningful and predictable re- 
sponse. Fifth, noisy phone lines are 
a reality, and major utilities (like 
shells and editors) should not crash 
because of them. Last, we were in- 
terested in the interactions between 
our random testing and more tradi- 
tional industrial software testing. 

While our testing strategy sounds 
somewhat naive, its ability to dis- 
cover fatal program bugs is impres- 
sive. If we consider a program to be 
a complex finite state machine, 
then our testing strategy can be 
thought of as a random walk 
through the state space, searching 
for undefined states. Similar tech- 
niques have been used in areas such 
as network protocols and CPU 
cache testing. When testing net- 
work protocols, a module can be 
inserted in the data stream. This 
module randomly perturbs the 
packets (either destroying them or 
modifying them) to test the proto- 
col’s error detection and recovery 
features. Random testing has been 
used in evaluating complex hard- 
ware, such as multiprocessor cache 
coherence protocols [4]. The state 
space of the device, when combined 
with the memory architecture, is 
large enough that it is difficult to 
generate systematic tests. In the 
multiprocessor example, random 
generation of test cases helped 
cover a large part of the state space 
and simplify the generation of 
cases. 
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The following section describes 
the tools we built to tcest the utilities. 
These tools include the fuzz (ran- 
dom character) generator, ptyjig (to 
test interactive utilitifes), and scripts 
to automate the testing process. 
Next, we will describe the tests we 
performed, giving the types of 
input we presented to the utilities. 
Results from the tests will follow 
along with an analysis of the results, 
including identification and classifi- 
cation of the program bugs that 
caused the crashes. The final sec- 
tion presents concluding remarks, 
including suggestions for avoiding 
the types of problems detected by 
our study and some commentary 
on the bugs we found. We include 
an Appendix with the user manual 
pages for fuzz and ptyjig. 

The Tools 
We developed two basic programs 
to test the utilities. The first pro- 
gram, called fuzz, generates a 
stream of random characters to be 
consumed by a target program. 
There are various options to fuzz to 
control the testing activity. A sec- 
ond program, plyjig, was also writ- 
ten to test interactive utility pro- 
grams. Interactive utilities, such as 
a screen editor, expect their stan- 
dard input file to have the charac- 
teristics of a terminal device. In 
addition to these two programs, we 
used scripts to automate the testing 
of a large number of utilities. 

Fuzz: Generating Random Input 
Strings. The program fuzz is basi- 
cally a generator of random charac- 
ters. It produces a continuous 
string of characters on its standard 
output file (see Figure I). We can 
perform different types of tests 
depending on the options given to 
fuzz. Fuzz is capable of producing 
both printable and control charac- 
ters, only printable characters, or 
either of these groups along with 
the NULL (zero) character. You 
can also specify a delay between 
each character. This option can ac- 
count for the delay in characters 
passing through a lpipe and help 
the user locate the characters that 
caused a utility to crash. Another 

option allows you to specify the 
seed for the random number gen- 
erator, to provide for repeatable 
tests. 

Fuzz can record its output stream 
in a file, in addition to printing to 
its standard output. This file can be 
examined later. There are options 
to randomly insert NEWLINE 
characters in the output stream, 
and to limit the length of the output 
stream. For a complete description 
of fuzz, see the manual page in the 
Appendix. 

The following is an example of 
fuzz being used to test deqn, the 
equation processor. 

fuzz 100000 -0 outfile 1 deqn 
The output stream will be at most 
100,000 characters in length and 
the stream will be recorded in file 
“outfile.” 

Ptyjig: Testing Interactive Utili- 
ties. There are utility programs 
whose input (and output) files must 
have the characteristics of a termi- 
nal device, (e.g., the vi editor and 
the mail program). The standard 
output from fuzz sent through a 
pipe is not sufficient to test these 
programs. 

Ptyjig is a program that allows us 
to test interactive utilities. It first 
allocates a pseudo-terminal file. 
This is a two-part device file that, 
on one side looks like a standard 
terminal device file (with a name of 
the form “/dev/ttyp?“) and, on the 
other side can be used to send or 
receive characters on the terminal 
file (“/dev/ptyp?“, see Figure 2). 
After creating the pseudo-terminal 
file, ptyjig then starts the specified 
utility program. Ptyjig passes char- 
acters that are sent to its input 
through the pseudo-terminal to be 
read by the utility. 

The following is an example of 
fuzz and ptyjig being used to test vi, 
a terminal-based screen editor: 
fuzz 100000 -0 outfile 1 ptyjigvi 
The output stream of fuzz will be at 
most 100,000 characters in length 
and the stream will be recorded in 
file “output.” For a complete de- 
scription of ptyjig, see the Appen- 
dix. 

The Scripts: Automating the 

Tests. A command (shell) script file 
was written for each type of test. 
Each script executes all the utilities 
for a given set of input characteris- 
tics. The script checks for the exis- 
tence of a core file after each utility 
terminates, indicating the crash of 
that utility. The core file and the 
offending input data file are saved 
for later analysis. 

The Testm 
After building the software tools, 
we used them to test a large collec- 
tion of utilities running on several 
versions of the Unix operating sys- 
tem. Each utility on each system was 
executed with several different 
types of input streams. A test of a 
utility program can produce one of 
three results: crash-the program 
terminates abnormally producing a 
core file; hang-the program ap- 
pears to loop indefinitely; or suc- 
ceed-the program terminates 
normally. Note that in the last case, 
we do not specify the correctness of 
the output. 

To date, we have tested utilities 
on seven versions of Unix’. These 
versions are summarized in Table I. 
Most of these versions are derived 
from some form of 4.2BSD or 
4.3BSD Berkeley Unix. Some ver- 
sions, like the SunOS release, have 
undergone substantial revision (es- 
pecially at the kernel level). The 
SC0 Xenix version is based on the 
System V standard from AT&T. 
The IBM AIX 1.1 Unix is a re- 
leased, tested product, supporting 
mostly the basic System V utilities. 
It is also important that the tests 
covered several hardware architec- 
tures, as well as several systems. A 
program statement with an error 
might be tolerated on one machine 
and cause the program to crash on 
another. Referencing through a 
null-value pointer is an example of 
this type of problem. 

Our testing covered a total of 88 
utility programs on the seven ver- 
sions of Unix. Most utilities were 
tested on each system. Table II lists 

‘Only the csh utility was tested on the IBM 
RTIPC. More complete testing is in progress. 
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the names of the utilities that were 
tested, along with the type of each 
system on which that utility was 
tested. For a detailed description of 
each of these utilities, we refer 
readers to the user manual for ap- 
propriate systems. The list of utili- 
ties covers a substantial part of 
those that are commonly used, such 
as the mail program, screen editors, 
compilers, and document-format- 
ting packages. The list also includes 
less commonly used utilities, such as 
cb, the C language pretty-printer. 

Each utility program we tested 
was subjected to several different 
types of input streams. The differ- 
ent types of inputs were intended to 
test for a variety of errors that 
might be triggered in the utilities 
being tested. The major variations 
in test data were including 
nonprintable (control) characters, 
including the NULL (zero) byte, 
and maximum length of the input 
stream. These tests are summarized 
in Table IIIa. 

The input streams for interactive 
utilities have slightly different char- 
acteristics. To avoid overflowing 
the input buffers on the terminal 
device, the input was split into ran- 
dom length lines (i.e., terminated 
by a NEWLINE character) with a 
mean length of 128 characters. The 
input length parameter is described 
by the number of lines, and is there- 
fore scaled down by a factor of 100. 

f 

pipe 
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The Results And Analysis 

Our tests of the Unix utilities pro- 
duced a surprising number of pro- 
grams that would crash or hang. In 
this section, we summarize these 
results, group the results by the 
common programming errors that 
caused the crashes, and show the 
programming practices that caused 
the errors. As a side comment, we 
noticed during our tests that many 
of the programs that did not crash 
would terminate with no error mes- 
sage or with a message that was dif- 
ficult to interpret. 

The basic test results are summa- 
rized in Table II. The first result to 
notice is that we were able to crash 
or hang a significant number of 
utility programs on each system 
(from 240/o-33%). Included in the 
list of programs are several com- 
monly used utilities: vi and emacs, 
the most popular screen editors; 
csh, the c-shell; and various pro- 
grams for document formatting. 
We detected two types of error re- 
sults-crashing and hanging. A 
program was considered crashed if 
it terminated, producing a core 
(state dump) file, and was consid- 
ered hung if it continued execut- 
ing, producing no output while 
having available input. A program 
was also considered hung if it con- 
tinued to produce output after its 
input had stopped. Hung programs 
were typically allowed to execute 
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for an additional five minutes after 
the hung state was detected. Pro- 
grams that were bloclked waiting for 
input were not considered hung. 

Table IV summarizes the list of 
utility programs that we were able 
to crash or hang, categorized by the 
cause of the crash, a:nd showing on 
which systems we were able to crash 
the programs. Notice that a utility 
might crash on one :system but not 
on another. There are several rea- 
sons for this: One reason is differ- 
ences in the processor architecture. 
For example, while the VAX will 
(incorrectly) tolerate references 
through null pointers, many other 
architectures will not (e.g., the Sun 
4). A second reason is that the dif- 
ferent systems had differences in 
the versions of the utilities. Local 
changes might improve or degrade 
a utility’s reliability. Both internal 
structure as well as e-sternal specifi- 
cation of the utilitie:s change from 
system to system. It is interesting to 
note that the commercially tested 
AIX 1.1 Unix is as susceptible as 
other versions of Unix to the type 
of errors for which .we tested. 

We grouped the causes of the 
crashes into the following catego- 
ries: pointer/array errors, not 
checking return codtes, input func- 
tions, sub-processes, interaction 
effects, bad error handler, signed 
characters, race conditions, and 
currently undetermined. For each 
of these categories, we discuss the 
error, show code fragments as ex- 
amples of the error, present impli- 
cations of the error, and suggest 
fixes for the problem. 

Note that, except for one exam- 
ple (noted in the text), all of the 
crashes or hangs were discovered 
through automatic tIesting. 

PointerlArmys 
The first class of pointer and array 
errors is the case where a program 
might sequentially access the cells 
of an array with a pointer or array 
subscript, while not checking for 
exceeding the range of the array. 
This was one of the most common 
programming errors, found in our 
tests. An example (taken from cb) 

shows this error using character 
input: 

while ((cc = get&h()) !=c){ 
string [j++] = cc; 
. . . 

1 
This example could be easily fixed 
to check for a maximum array 
length. Often the terseness of the C 
programming style is carried to ex- 

tremes; form is emphasized over 
correct function. The ability to 
overflow an input buffer is also a 
potential security hole, as shown by 
the recent Internet worm. 

The second class of pointer 
problems is caused by references 
through a null pointer. The prolog 
interpreter, in its main loop, can 
incorrectly set a pointer value that 

1, I I-I-I -1 - I 
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is then assumed to be valid in the 
next pass around the loop. A crash 
caused by this type of error can 
occur in one of two places. On ma- 
chines like the VAXTM, the refer- 
ence through the null pointer is 
valid and reads data at location 
zero. The data accessed are ma- 
chine instructions. A field in the 
(incorrectly) accessed data is then 

used as a pointer and the crash oc- 
curs. On machines like the Sun 4, 
the reference through the null 
pointer is an error and the program 
crashes immediately. If the path 
from where the pointer was set to 
where it was used is not an obvious 
one, extra checking may be needed. 

The assembly language debug- 
ger (adb) also had a reference 

through a null pointer. In this case, 
the pointer was supposed to be a 
global variable that was set in an- 
other module. The external (glo- 
bal) definition was accidentally 
omitted from the variable declara- 
tion in the module that expected to 
use the pointer. This module then 
referenced an uninitialized (in 
Unix, zero) pointer. 

Pointer errors do not always ap- 
pear as bad references. A pointer 
might contain a bad address that, 
when used to write a variable, may 
unintentionally overwrite some 
other data or code location. It is 
then unpredictable when the error 
will manifest itself. In our tests, the 
crash of lex (scanner generator) 
and ptx (permuted index genera- 
tor) were examples of overwriting 
data, and the crash of UI (underlin- 
ing text) was an example of over- 
writing code. 

The crash of as (the assembler) 
originally appeared to be a result of 
improper use of an input routine. 
The crash occurred at a call to 
the standard input library routine 
ungetc(), which returns a character 
back to the input buffer (often used 
for look-ahead processing). The 
actual cause was that ungetc() was 
redefined in the program as a 
macro that performed a similar 
function. Unfortunately, the new 
macro had less error checking than 
the system version of ungetc() and 
allowed a buffer pointer to be in- 
correctly set. Since the new macro 
looks like the original routine, it is 
easy to forget the differences. 

Not Checking Return Codes 
Not checking return codes is a sign 
of careless programming. It is a 
favorable comment on the current 
state of Unix that there are so few 
examples of this error. During our 
tests, we were able to crash adb (the 
assembly language debugger) and 
co1 (multi-column output filter 
ASCII terminals) utilities because 
of this error. Adb provides an in- 
teresting example of a program- 
ming practice to avoid. This code 

VAX is a trademark of Digital Equipment 
Corporation. 
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fragment represent:3 a loop in adb 
and a procedure called from that 
loop. 

format.c (line 276): 
. . . 
while (la&c != ‘\n’) { 

rdc 0; 
> 

inputx (line 27’): 

rdc 0 
I do { readchar 0; } 

while (lastc == ’ ’ 11 
lastc = = ‘\t’); 

return (la&c); 
) 

The initial loop reads characters, 
one by one, terminating when the 
end of a line has been seen. The 
rdc() routine calls readchar(), which 
places the new character into a glo- 
bal variable named “lastc.” Rdc() 
will skip over tab anld space charac- 
ters. Readchar uses the Unix file 
read kernel call to read the charac- 
ters. If readchar detects the end 
of the input file, it will set the value 
of lastc to zero. Neither rdc() nor 
the initial loop check for the end of 
file. If the end of file is detected 
during the middle of a line, this 
program hangs. 

We can speculate as to why there 
was no end of file check on the ini- 
tial loop. It may be because the pro- 
gram author thought it unlikely 
that the end of file would occur in 
this situation. It might also be that it 
was awkward to handle the end of 
file in this location. While this is not 
difficult to program, it requires 
extra tests and flags, more complex 
loop conditions, or possibly the use 
of a got0 statement. 

This problem was made more 
complex to diagnose because of the 
extensive use of macros (the code 
fragment above has the macros 
expanded). These macros may have 
made it easier to overlook the need 
for the extra test for the end of file. 

Input Functions 
We have already seen cases where 
character input routines within a 
loop can cause a program to store 
into locations past the end of an 

array. Input routines that read en- 
tire strings are also vulnerable. One 
of the main holes through which 
the Internet worm entered was the 
gets0 routine. The gets0 routine 
takes a single parameter that is a 
pointer to a character string. There 
is no possible means of bounds 
checking. Our tests crashed the ftp 
and telnet utilities through use of 

getsO. 
The scanf() routine is also vul- 

nerable. In the input specification, 
it is possible to specify an un- 

bounded string field. An example 
of this comes from the topological 
sort (tsort) utility. 

x = fscanf(input8, “%S%S”, 
precedes, follows); 

The input format field specifies two 
unbounded strings. In the pro- 
gram, “precedes” and “follows” are 
declared with the relatively small 
lengths of 50 characters. It is possi- 
ble to place a bound on the string 
field specification, solving this 
problem. 

4 
I I 

printable 

9 
printable 
printable 

f 
printable 10 
printable loo 
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Sub-Processes 
The code might be carefully de- 
signed and written, with the pro- 
gramming following all the good 
rules for program writing. But this 
might not be enough if another 
program is used as part of this one. 
Several of the Unix utilities execute 
other utilities as part of doing their 
work. For example, the diction and 
style utilities call deroff, vi calls csh, 
and vgrind calls troff. When these 
sub-processes are called, they are 
often given direct access to the raw 

input data stream, so they are vul- 
nerable to erroneous input. Access 
to sub-processes should be carefully 
controlled or insurance provided 
that the program input to the sub- 
process is first checked. Alterna- 
tively, the utility should be pro- 
grammed to tolerate the failure of a 
subprocess (though this can be dif- 
ficult). 

Interaction Effects 
Perhaps one of the most interesting 
errors that we discovered was a re- 

sult of an unusual interaction 0 
two parts of csh, along with a little 
careless programming. The follow- 
ing string will cause the VAX ver- 
sion of csh to crash 

!o%8f 

and the following string 
!o%888888888f 

will hang (continuous output of 
space characters) most versions of 
csh. The first example, which trig- 
gers the csh’s command history 
mechanism, says “repeat the last 

csh 
dc 
deqn 
deroff 
diction 
ditroff 

vshad 

VS 
vhd 

vshra vshra 
X 

s 

lex 
look 
m4 
make 
nroff 
plot 

vshxad 
vshxd 

h 
X 

X 
sh 
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“While our testing strategy sounds someuuhat naive, its 
command that began with ‘o%8f .“’ 
Since it does not find such a com- 
mand, csh forms an error message 
string of the form: “0%8f: Event 
not found.” This string is passed to 
the error-printing routine, which 
uses the string as the first parame- 
ter to the printf() function. The 
first parameter to printf() can in- 
clude format items, denoted by a 
“%.” The “%Sf” describes a floating 
point value printed in a field that is 
8 characters wide. Each format item 
expects an additional parameter to 
printf(), but in the c:sh error, none 
is supplied (or expected). This 
string was generated during the 
normal random testing. 

The second example string fol- 
lows the same path, but causes csh 
to try to print the floating point 
value in a field that is 888,888,888 
characters wide. The seemingly in- 
finite loop is the pr:intf() routine’s 
attempt to pad the output field with 
sufficient leading space characters. 
This second string was one that we 
generated by hand after discover- 
ing the first string. 

Both of these errors could be 
prevented by substituting the 
printf() call with a simple string 
printing routine (such as puts()). 
The printf() was used for historical 
reasons related to space efficiency. 
The error-printing routine as- 
sumed that it would always be 
passed strings that were safe to 
print. 

Bad Error Handler 
Sometimes the best intentions do 
not reach completion. The units 
program detects and traps floating 
point arithmetic errors. Unfortu- 
nately, the error recovery routine 
only increments a count of the 
number of errors detected. When 
control is returned to the faulty 
code, the error recurs, resulting in 
an infinite loop. 

Signed Characters 
The ASCII character code is de- 
signed so that codes normally fall in 
the range that can be represented 

40 

in seven bits. The equation proces- 
sor (eqn) depends on this assump- 
tion. Characters are read into an 
array of signed 8-bit integers (the 
default of signed vs. unsigned char- 
acters in C varies from compiler to 
compiler). These characters are 
then used to compute a hash func- 
tion. If an 8-bit character value is 
read, it will appear as a negative 
number and result in an erroneous 
hash value. The index to the hash 
table will then be out of range. This 
problem can be easily fixed by 
using unsigned values for the char- 
acter buffer. In a more sophisti- 
cated language than C, characters 
and strings would be identified as a 
specific type not related to integers. 

This error does not crash all ver- 
sions of adb. The consequence of 
the error depends on where in the 
address space is accessed by the bad 
hash value. (This error could be 
considered a subcase of the 
pointer/array errors.) 

Race Conditions 
Unix provides a signal mechanism 
to allow a program to asynchro- 
nously respond to unusual events. 
These events include keyboard- 
selected functions to kill the pro- 
gram (usually control-C), kill the 
program with a core dump (usually 
control-\), and suspend the pro- 
gram (usually control-Z). There are 
some programs that do not want to 
allow themselves to be interrupted 
or suspended; they want to process 
these control characters directly, 
perhaps taking some intermediate 
action before terminating or sus- 
pending themselves. Programs that 
make use of the cursor motions fea- 
tures of a terminal are examples of 
programs that directly process 
these special characters. When 
these programs start executing, 
they place the terminal device in a 
state that overrides processing of 
the special characters. When these 
programs exit, it is important that 
they restore the device to its origi- 
nal state. 

So, when a program, such as 

emacs, receives the suspend charac- 
ter, it appears as an ordinary con- 
trol-Z character (not triggering the 
suspend signal). Emacs will, on 
reading a control-Z, do the follow- 
ing: (1) reset the terminal to its 
original state (and will now respond 
to suspend or terminate signals), 
(2) clean up its internal data struc- 
tures, and (3) generate a suspend 
signal to let the kernel actually stop 
the program. 

If a control-\ character is re- 
ceived on input between steps (1) 
and (3) then the program will 
terminate, generating a core dump. 
This race condition is inherent in 
the Unix signal mechanism since a 
process cannot reset the terminal 
and exit in one atomic operation. 
Other programs, such as vi and 
more, are also subject to the same 
problem. The problem is less likely 
in these other programs because 
they do less processing between 
steps (1) and (3) providing a 
smaller window of vulnerability. 

Undetermined Errors 

The last two columns of Table IV 
list the programs where the source 
code was currently not available to 
us or where we have not yet deter- 
mined the cause of the crash. 

conclurlonr 
This project started as a simple 
experiment to try to better under- 
stand an observed phenomenon- 
that of programs crashing when we 
used a noisy dial-up line. As a result 
of testing a comprehensive list of 
utility programs on several versions 
of Unix, it appears that this is not 
an isolated problem. We offer two 
tangible products as a result of this 
project. First, we provide a list of 
bug reports to fix the utilities that 
we were able to crash. This should 
qualitatively improve the reliability 
of Unix utilities. Second, we pro- 
vide a simple-to-use, yet surpris- 
ingly effective test method (and 
tools). 

We do not claim that our tests are 
exhaustive; formal verification is 
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ability to discover fatal program bugs is impressive:’ 
required to make such strong 
claims. We cannot even estimate 
how many bugs remain to be found 
in a given program. But our simple 
testing technique has discovered a 
wealth of errors and is likely to be 
more commonly used (at least in 
the near term) than more formal 
procedures. Our tests appear to 
discover errors that are not easily 
found by traditional testing prac- 
tices. This conclusion is based on 
the results from testing AIX 1.1 
Unix. 

cise the same standards of care- 
fulness. If using someone else’s 
program is necessary, make 
sure that the data its fed has 
been checked. This is some- 
times called “defensive pro- 
gramming.” 

(6) In redefining something to look 
too much like something else, a 
programmer may eventually 
forget about the redefinition. 
He or she then becomes subject 
to problems that occur because 
of the hidden differences. This 
may be an argument against 
excessive use of procedure 
overloading in languages such 
as Ada or C++. 

hundred Unix workstations), we 
asked if they had encountered bugs 
that they had not reported to any- 
one. We also asked about the sever- 
ity of the bugs and why they had 
not reported them. Many users re- 
sponded to the survey and all (but 
one) reported finding bugs that 
they did not report; about two- 
thirds of these bugs were serious 
ones. The commentary of the vari- 
ous users speaks for itself. Follow- 
ing are quotes from the responses 
of several users: 

- 
\ 

Comments on the ReSUltS 
Our examination of the results of 
the tests have exposed several com- 
mon mistakes made by program- 
mers. Most of these mistakes in- 
volve areas already known to 
experienced programmers, but an 
occasional reminder is sometimes 
helpful. From our inspection of the 
errors found, we suggest the fol- 
lowing guidelines: 

(1) 

(2) 

(3) 

(4) 

Check all array references for 
valid bounds. This is an argu- 
ment for using range checking 
full-time. Even (especially!) 
pointer-based array references 
in C should be checked. This 
spoils the terse and elegant style 
often used by experienced C 
programmers, but correct pro- 
grams are more elegant than 
incorrect ones. 
Be sure that all input fields are 
bounded-this is just an exten- 
sion of guideline (1). In Unix, 
using “Q” without a length 
specification in an input format 
is a bad idea. 
Check all system call return val- 
ues; do this checking even when 
an error result is unlikely and 
the response to an error result 
is awkward. 
Check pointer values often be- 
fore using them. If all the paths 
to a reference are not obvious, 
an extra sanity check can help 
catch unexpected problems. 

(5) Judiciously extend trust to oth- 
ers; not all programmers exer- 

(7) 

(8) 

Error handlers should handle 
errors. These routines should 
be thoroughly tested so that 
they do not introduce new er- 
rors or obfuscate old ones. 
Goto statements are generally a 
bad idea. Dijkstra observed this 
many years ago [I], but it is dif- 
ficult to convince some pro- 
grammers. Our search for the 
cause of a bad pointer in the 
prolog interpreter’s main loop 
was complicated by the interest- 
ing weaving of control flow 
caused by the goto statements. 

Comments on LurRlng sugs 
An interesting question is: why are 
there so many buggy programs in 
Unix? This section contains com- 
mentary and speculation; it should 
be considered more editorial than 
factual. It is our experience that we 
often encounter bugs in programs, 
but ignore them; we do so, not be- 
cause they are not serious (they 
often cause crashes). There are, 
however, two reasons for ignoring 
bugs: First, it is often difficult to 
isolate exactly what activity caused 
the program to crash. Second, it’s 
quicker to try a slightly different 
method to get the current job done 
than it is to find and report a bug. 

“I haven’t reported this be- 
cause recovery from this error 
is usually fast and 
easy. . . That is, the time and 
effort wasted due to a single 
occurrence of the bug is usu- 
ally smaller than the time 
needed to report it.” 

“I don’t generally report prob- 
lems because I have gotten the 
impression over the years that 
unless it’s a security hole in 
mail or something, either no- 
one will look at it, they will 
chalk it up to a one-time event 
or user mistake, or it will take 
forever to fix.” 

Some users are easy to please. We 
received one response from our 
survey that stated: 

“I have not encountered any 
bugs in Unix software.” 

As part of an informal survey of The number of bugs in Unix 
the Unix user community in our might also be explained by its evo- 
department (comprising research- lution. Unix has suffered from a 
ers, staff, and students on several “features are more important than 

“Because (name of research tool) 

was involved, I Figured it is too 
complicated. Besides, by 
changing a few parameters, I 
would get a core image that 
dbx would not crash on, thus 
preventing me from really 
having to deal with the prob- 
lem.” 
“My experience is that it is 
largely useless to report bugs 
unless I can supply algorithms 
to reproduce them.” 
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testing” mentality. In its early years, 
it was a research-only tool. The 
commercial effort required to do 
complete testing was not part of the 
environment in which it was used. 
Later, the Berkeley Unix v. 
System V (“tastes great” v. “less fill- 
ing”) competition forced a race for 
features, power, and performance. 
Absent from that debate was a seri- 
ous discussion of reliability. There 
were some claims that the industry 
version (System V) had support 
when compared to that of a univer- 
sity product. Support for Unix 
seems to be more concerned with 
user complaints than with releasing 
a significantly more reliable prod- 
uct. 

Unix should not be singled out as 
a buggy-operating system. Its 
strengths help make its weaknesses 
visible-testing programs under 
Unix was particularly easy because 
of the mix-and-match modularity 
provided by pipes and standard 
I/O. Other systems must undergo 
similar tests before any conclusion 
can be made about Unix’s reliability 
compared to other systems. 

MOretODO 

We still have many experiments left 
to perform. We have tested only the 
utilities that are directly accessible 
by the user. Network services 
should also receive the same atten- 
tion. It is a simple matter to con- 
struct a portjig program, analogous 
to our ptyjig, to allow us to connect 
to a network service and feed it the 
output of the fuzz generator. A sec- 
ond area to examine is the process- 
ing of command-line parameters to 
utilities. Again, it would be simple 
to construct a purmj,!g that would 
start up utilities with the command- 
line parameters being generated by 
the random strings from the fuzz 
generator. A third area to study is 
other operating systems. While 
Unix pipes make it simple to apply 
our techniques, utility programs 
can still be tested on other systems. 
The random strings from fuzz can 
be placed in a file and the file used 
as program input. A comparison 
across different systems would pro- 
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vide a more comprehensive state- 
ment on operating-system reliabil- 
ity. A fourth area is using random 
testing to help find security holes. 
The testing might involve sending 
programs random sequences of 
nonrandom key or command 
words. 

Our next step is to fix the bugs 
that we have found and reapply our 
tests. This retesting may discover 
new program errors that were 
masked by the errors found in the 
first study. We believe that a few 
rounds of testing will be needed 
before we reach the limits of our 
tools. 

We are making our testing tools 
generally available and invite others 
to duplicate and extend our tests. 
Initial results coming in from other 
researchers match the experiences 
in this report. 
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CP 
(continued from page 117) 

bipolar as it does in CMOS. Since 
any processor, especially a CMOS 
processor, gains greatly in perfor- 
mance by having a large amount of 
on-chip memory, this advantage 
could well tip the balance in favor 
of CMOS. 

The advantage that would result 
from being able to put CMOS tran- 
sistors and bipolar transistors on 
the same chip has not gone unno- 
ticed in the industry. Active devel- 
opment is proceeding in this area, 
under the generic name BiCMOS. 
BiCMOS is also of interest for ana- 
logue integrated circuits. 

If the BiCMOS process were op- 
timized for bipolar transistors it 
would be possible to have a very 
high-performance bipolar proces- 
sor with CMOS on-chip memory. If 
the bipolar transistors were of 
lower-performance levels they 
would still be of value for driving 
off-chip connections and also for 
driving long-distance connections 
on the chip itself. 

A pure bipolar chip, with a mil- 

lion transistors on it, will dissipate 
at least 50 watts, probably a good 
deal more. Removing the heat pre- 
sents problems, but these are far 
from being insuperable. More se- 
vere problems are encountered in 

supplying the power to the chip 
and distributing it without a serious 
voltage drop or without incurring 
unwanted coupling. Design tools to 
help with these problems are lack- 
ing. A BiCMOS chip of similar size 
will dissipate much less power. On 
the other hand, BiCMOS will un- 

doubtedly bring a spate of prob- 
lems of its own, particularly as the 
noise characteristics of CMOS and 
bipolar circuits are very different. 

CMOS, bipolar, and BiCMOS 
technologies are all in a fluid state 
of evolution. It is possible to make 
projections about what may happen 
in the short term, but what will hap- 
pen in the long term can only be a 
matter of guess work. Moreover, 
designing a computer is an exercise 
in system design and the overall 
performance depends on the statis- 
tical properties of programs as 
much as on the performance of the 
individual components. It would be 
a bold person who would attempt 
any lit-m predictions. 

And then, finally, there is the 
challenge of gallium arsenide. A 
colleague, with whom I recently 
corresponded, put it very well when 
he described gallium arsenide as 
the Wankel engine of the semicon- 
ductor industry! q 
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