
W
hen we use basic oper- Unix operating system. The project
ating system facilities, proceeded in four steps: (1) pro-
such as the kernel and grams wet-e constructed to generate
major utility programs, random characters, and to help test
we expect a high degree interactive utilities: (2) these pro-

\ \ of reliability. These grams were used to test a large
parts of the system are used fre- number of utilities on random
quently and this frequent use im- input strings to see if they crashed;
plies that the programs are well- (3) the strings (or types of strings)
tested and workimg correctly. To that crash these programs were
make a systematic statement about identified; and (4) the causes of the

to the Internet worm (the “gets fin-
ger” bug) [2,3] We have found ad-
ditional bugs that might indicate
future security holes. Third, some
of the crashes were caused by input
that might be carelessly typed-
some strange and unexpected er-
rors were uncovered by this
method of testing. Fourth, we
sometimes inadvertently feed pro-
grams noisy input (e.g., trying to

Am Empirical
the correctness of a program, we
should probably use some form of
formal verification. While the tech-
nology for program verification is
advancing, it has not yet reached
the point where it is easy to apply
(or commonly applied) to large sys-
tems.

A recent expe&nce led us to be-
lieve that, while formal verification
of a complete set of operating sys-
tem utilities was too onerous a task,
there was still a need for some form
of more complete testing: On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters wet-e causing programs to
crash. These programs included a
significant number of basic operat-
ing system utilities. It is reasonable
to expect that basic utilities should
not crash (“core dump”); on receiv-
ing unusual input, they might exit
with minimal error messages, but
they should not crash. This experi-
ence led us to believe that there
might be serious bugs lurking in the
systems that we regularly used.

This scenario motivated a sys-
tematic test of the utility programs
running on various versions of the

program crashes were identified
and the common mistakes that
cause these crashes were catego-
rized. As a result of testing almost
90 different utility programs on
seven versions of UnixTM, we were
able to crash more than 24% of
these programs. Our testing in-
cluded versions of Unix that under-
went commercial product testing. A
byproduct of this project is a list of
bug reports (and fixes) for the
crashed programs and a set of tools
available to the systems community.

There is a rich body of research
on program testing and verifica-
tion. Our approach is not a substi-
tute for a formal verification or
testing procedures, but rather an
inexpensive mechanism to identify
bugs and increase overall system
reliability. We are using a coarse
notion of correctness in our study.
A program is detected as faulty
only if it crashs or hangs (loops in-
definitely). Our goal is to comple-
ment, not replace, existing test pro-
cedures.

This type of study is important
for several reasons: First, it contrib-
utes to the testing community a
large list of real bugs. These bugs
can provide test cases against which
researchers can evaluate more so-
phisticated testing and verification
strategies. Second, one of the bugs
that we found was caused by the
same programming practice that
provided one of the security holes

Unix is a trademark of AT&T Bell Laborato-
ries.

edit or view an object module). In
these cases, we would like some
meaningful and predictable re-
sponse. Fifth, noisy phone lines are
a reality, and major utilities (like
shells and editors) should not crash
because of them. Last, we were in-
terested in the interactions between
our random testing and more tradi-
tional industrial software testing.

While our testing strategy sounds
somewhat naive, its ability to dis-
cover fatal program bugs is impres-
sive. If we consider a program to be
a complex finite state machine,
then our testing strategy can be
thought of as a random walk
through the state space, searching
for undefined states. Similar tech-
niques have been used in areas such
as network protocols and CPU
cache testing. When testing net-
work protocols, a module can be
inserted in the data stream. This
module randomly perturbs the
packets (either destroying them or
modifying them) to test the proto-
col’s error detection and recovery
features. Random testing has been
used in evaluating complex hard-
ware, such as multiprocessor cache
coherence protocols [4]. The state
space of the device, when combined
with the memory architecture, is
large enough that it is difficult to
generate systematic tests. In the
multiprocessor example, random
generation of test cases helped
cover a large part of the state space
and simplify the generation of
cases.

December 199o/vo1.33, No.I*ICOYY”IIICITlO”*OFT”EliCY

Barton l! Miller, Lars Fredriksen and Bryan So

Studyoithe
RelCabClCty OF

The following section describes
the tools we built to tcest the utilities.
These tools include the fuzz (ran-
dom character) generator, ptyjig (to
test interactive utilitifes), and scripts
to automate the testing process.
Next, we will describe the tests we
performed, giving the types of
input we presented to the utilities.
Results from the tests will follow
along with an analysis of the results,
including identification and classifi-
cation of the program bugs that
caused the crashes. The final sec-
tion presents concluding remarks,
including suggestions for avoiding
the types of problems detected by
our study and some commentary
on the bugs we found. We include
an Appendix with the user manual
pages for fuzz and ptyjig.

The Tools
We developed two basic programs
to test the utilities. The first pro-
gram, called fuzz, generates a
stream of random characters to be
consumed by a target program.
There are various options to fuzz to
control the testing activity. A sec-
ond program, plyjig, was also writ-
ten to test interactive utility pro-
grams. Interactive utilities, such as
a screen editor, expect their stan-
dard input file to have the charac-
teristics of a terminal device. In
addition to these two programs, we
used scripts to automate the testing
of a large number of utilities.

Fuzz: Generating Random Input
Strings. The program fuzz is basi-
cally a generator of random charac-
ters. It produces a continuous
string of characters on its standard
output file (see Figure I). We can
perform different types of tests
depending on the options given to
fuzz. Fuzz is capable of producing
both printable and control charac-
ters, only printable characters, or
either of these groups along with
the NULL (zero) character. You
can also specify a delay between
each character. This option can ac-
count for the delay in characters
passing through a lpipe and help
the user locate the characters that
caused a utility to crash. Another

option allows you to specify the
seed for the random number gen-
erator, to provide for repeatable
tests.

Fuzz can record its output stream
in a file, in addition to printing to
its standard output. This file can be
examined later. There are options
to randomly insert NEWLINE
characters in the output stream,
and to limit the length of the output
stream. For a complete description
of fuzz, see the manual page in the
Appendix.

The following is an example of
fuzz being used to test deqn, the
equation processor.

fuzz 100000 -0 outfile 1 deqn
The output stream will be at most
100,000 characters in length and
the stream will be recorded in file
“outfile.”

Ptyjig: Testing Interactive Utili-
ties. There are utility programs
whose input (and output) files must
have the characteristics of a termi-
nal device, (e.g., the vi editor and
the mail program). The standard
output from fuzz sent through a
pipe is not sufficient to test these
programs.

Ptyjig is a program that allows us
to test interactive utilities. It first
allocates a pseudo-terminal file.
This is a two-part device file that,
on one side looks like a standard
terminal device file (with a name of
the form “/dev/ttyp?“) and, on the
other side can be used to send or
receive characters on the terminal
file (“/dev/ptyp?“, see Figure 2).
After creating the pseudo-terminal
file, ptyjig then starts the specified
utility program. Ptyjig passes char-
acters that are sent to its input
through the pseudo-terminal to be
read by the utility.

The following is an example of
fuzz and ptyjig being used to test vi,
a terminal-based screen editor:
fuzz 100000 -0 outfile 1 ptyjigvi
The output stream of fuzz will be at
most 100,000 characters in length
and the stream will be recorded in
file “output.” For a complete de-
scription of ptyjig, see the Appen-
dix.

The Scripts: Automating the

Tests. A command (shell) script file
was written for each type of test.
Each script executes all the utilities
for a given set of input characteris-
tics. The script checks for the exis-
tence of a core file after each utility
terminates, indicating the crash of
that utility. The core file and the
offending input data file are saved
for later analysis.

The Testm
After building the software tools,
we used them to test a large collec-
tion of utilities running on several
versions of the Unix operating sys-
tem. Each utility on each system was
executed with several different
types of input streams. A test of a
utility program can produce one of
three results: crash-the program
terminates abnormally producing a
core file; hang-the program ap-
pears to loop indefinitely; or suc-
ceed-the program terminates
normally. Note that in the last case,
we do not specify the correctness of
the output.

To date, we have tested utilities
on seven versions of Unix’. These
versions are summarized in Table I.
Most of these versions are derived
from some form of 4.2BSD or
4.3BSD Berkeley Unix. Some ver-
sions, like the SunOS release, have
undergone substantial revision (es-
pecially at the kernel level). The
SC0 Xenix version is based on the
System V standard from AT&T.
The IBM AIX 1.1 Unix is a re-
leased, tested product, supporting
mostly the basic System V utilities.
It is also important that the tests
covered several hardware architec-
tures, as well as several systems. A
program statement with an error
might be tolerated on one machine
and cause the program to crash on
another. Referencing through a
null-value pointer is an example of
this type of problem.

Our testing covered a total of 88
utility programs on the seven ver-
sions of Unix. Most utilities were
tested on each system. Table II lists

‘Only the csh utility was tested on the IBM
RTIPC. More complete testing is in progress.

34 December 199O/Va1.33. No.l2ICOYYUNICITIOWSOFT”E~~N

Sun 4/110 SPARC SunOS3,2&SunOS4.0withNFS 1

Citrus 80386 i386 SC0 XenixSystem V Rel. 2.3-l

the names of the utilities that were
tested, along with the type of each
system on which that utility was
tested. For a detailed description of
each of these utilities, we refer
readers to the user manual for ap-
propriate systems. The list of utili-
ties covers a substantial part of
those that are commonly used, such
as the mail program, screen editors,
compilers, and document-format-
ting packages. The list also includes
less commonly used utilities, such as
cb, the C language pretty-printer.

Each utility program we tested
was subjected to several different
types of input streams. The differ-
ent types of inputs were intended to
test for a variety of errors that
might be triggered in the utilities
being tested. The major variations
in test data were including
nonprintable (control) characters,
including the NULL (zero) byte,
and maximum length of the input
stream. These tests are summarized
in Table IIIa.

The input streams for interactive
utilities have slightly different char-
acteristics. To avoid overflowing
the input buffers on the terminal
device, the input was split into ran-
dom length lines (i.e., terminated
by a NEWLINE character) with a
mean length of 128 characters. The
input length parameter is described
by the number of lines, and is there-
fore scaled down by a factor of 100.

f

pipe

FIGURE 9. 0Ut~Ut Of FUZZ Piped t0 P

UtilIQ.

FlGURR 2. FUZZ With hjig to l@t Ill

InteractIre ut0Itv.

The Results And Analysis

Our tests of the Unix utilities pro-
duced a surprising number of pro-
grams that would crash or hang. In
this section, we summarize these
results, group the results by the
common programming errors that
caused the crashes, and show the
programming practices that caused
the errors. As a side comment, we
noticed during our tests that many
of the programs that did not crash
would terminate with no error mes-
sage or with a message that was dif-
ficult to interpret.

The basic test results are summa-
rized in Table II. The first result to
notice is that we were able to crash
or hang a significant number of
utility programs on each system
(from 240/o-33%). Included in the
list of programs are several com-
monly used utilities: vi and emacs,
the most popular screen editors;
csh, the c-shell; and various pro-
grams for document formatting.
We detected two types of error re-
sults-crashing and hanging. A
program was considered crashed if
it terminated, producing a core
(state dump) file, and was consid-
ered hung if it continued execut-
ing, producing no output while
having available input. A program
was also considered hung if it con-
tinued to produce output after its
input had stopped. Hung programs
were typically allowed to execute

CCMU”W,CATlCWSCFTWE ACM/December 199O/Vol.33. No.12 35

for an additional five minutes after
the hung state was detected. Pro-
grams that were bloclked waiting for
input were not considered hung.

Table IV summarizes the list of
utility programs that we were able
to crash or hang, categorized by the
cause of the crash, a:nd showing on
which systems we were able to crash
the programs. Notice that a utility
might crash on one :system but not
on another. There are several rea-
sons for this: One reason is differ-
ences in the processor architecture.
For example, while the VAX will
(incorrectly) tolerate references
through null pointers, many other
architectures will not (e.g., the Sun
4). A second reason is that the dif-
ferent systems had differences in
the versions of the utilities. Local
changes might improve or degrade
a utility’s reliability. Both internal
structure as well as e-sternal specifi-
cation of the utilitie:s change from
system to system. It is interesting to
note that the commercially tested
AIX 1.1 Unix is as susceptible as
other versions of Unix to the type
of errors for which .we tested.

We grouped the causes of the
crashes into the following catego-
ries: pointer/array errors, not
checking return codtes, input func-
tions, sub-processes, interaction
effects, bad error handler, signed
characters, race conditions, and
currently undetermined. For each
of these categories, we discuss the
error, show code fragments as ex-
amples of the error, present impli-
cations of the error, and suggest
fixes for the problem.

Note that, except for one exam-
ple (noted in the text), all of the
crashes or hangs were discovered
through automatic tIesting.

PointerlArmys
The first class of pointer and array
errors is the case where a program
might sequentially access the cells
of an array with a pointer or array
subscript, while not checking for
exceeding the range of the array.
This was one of the most common
programming errors, found in our
tests. An example (taken from cb)

shows this error using character
input:

while ((cc = get&h()) !=c){
string [j++] = cc;
. . .

1
This example could be easily fixed
to check for a maximum array
length. Often the terseness of the C
programming style is carried to ex-

tremes; form is emphasized over
correct function. The ability to
overflow an input buffer is also a
potential security hole, as shown by
the recent Internet worm.

The second class of pointer
problems is caused by references
through a null pointer. The prolog
interpreter, in its main loop, can
incorrectly set a pointer value that

1, I I-I-I -1 - I

36 December 199ONo1.33, No.12fCOYYUNIUTIONSOCTNE~~ICY

is then assumed to be valid in the
next pass around the loop. A crash
caused by this type of error can
occur in one of two places. On ma-
chines like the VAXTM, the refer-
ence through the null pointer is
valid and reads data at location
zero. The data accessed are ma-
chine instructions. A field in the
(incorrectly) accessed data is then

used as a pointer and the crash oc-
curs. On machines like the Sun 4,
the reference through the null
pointer is an error and the program
crashes immediately. If the path
from where the pointer was set to
where it was used is not an obvious
one, extra checking may be needed.

The assembly language debug-
ger (adb) also had a reference

through a null pointer. In this case,
the pointer was supposed to be a
global variable that was set in an-
other module. The external (glo-
bal) definition was accidentally
omitted from the variable declara-
tion in the module that expected to
use the pointer. This module then
referenced an uninitialized (in
Unix, zero) pointer.

Pointer errors do not always ap-
pear as bad references. A pointer
might contain a bad address that,
when used to write a variable, may
unintentionally overwrite some
other data or code location. It is
then unpredictable when the error
will manifest itself. In our tests, the
crash of lex (scanner generator)
and ptx (permuted index genera-
tor) were examples of overwriting
data, and the crash of UI (underlin-
ing text) was an example of over-
writing code.

The crash of as (the assembler)
originally appeared to be a result of
improper use of an input routine.
The crash occurred at a call to
the standard input library routine
ungetc(), which returns a character
back to the input buffer (often used
for look-ahead processing). The
actual cause was that ungetc() was
redefined in the program as a
macro that performed a similar
function. Unfortunately, the new
macro had less error checking than
the system version of ungetc() and
allowed a buffer pointer to be in-
correctly set. Since the new macro
looks like the original routine, it is
easy to forget the differences.

Not Checking Return Codes
Not checking return codes is a sign
of careless programming. It is a
favorable comment on the current
state of Unix that there are so few
examples of this error. During our
tests, we were able to crash adb (the
assembly language debugger) and
co1 (multi-column output filter
ASCII terminals) utilities because
of this error. Adb provides an in-
teresting example of a program-
ming practice to avoid. This code

VAX is a trademark of Digital Equipment
Corporation.

COYYUNIUTIONSOCTNSliCYlDccember 199O/Vo1.33, No.12 37

fragment represent:3 a loop in adb
and a procedure called from that
loop.

format.c (line 276):
. . .
while (la&c != ‘\n’) {

rdc 0;
>

inputx (line 27’):

rdc 0
I do { readchar 0; }

while (lastc == ’ ’ 11
lastc = = ‘\t’);

return (la&c);
)

The initial loop reads characters,
one by one, terminating when the
end of a line has been seen. The
rdc() routine calls readchar(), which
places the new character into a glo-
bal variable named “lastc.” Rdc()
will skip over tab anld space charac-
ters. Readchar uses the Unix file
read kernel call to read the charac-
ters. If readchar detects the end
of the input file, it will set the value
of lastc to zero. Neither rdc() nor
the initial loop check for the end of
file. If the end of file is detected
during the middle of a line, this
program hangs.

We can speculate as to why there
was no end of file check on the ini-
tial loop. It may be because the pro-
gram author thought it unlikely
that the end of file would occur in
this situation. It might also be that it
was awkward to handle the end of
file in this location. While this is not
difficult to program, it requires
extra tests and flags, more complex
loop conditions, or possibly the use
of a got0 statement.

This problem was made more
complex to diagnose because of the
extensive use of macros (the code
fragment above has the macros
expanded). These macros may have
made it easier to overlook the need
for the extra test for the end of file.

Input Functions
We have already seen cases where
character input routines within a
loop can cause a program to store
into locations past the end of an

array. Input routines that read en-
tire strings are also vulnerable. One
of the main holes through which
the Internet worm entered was the
gets0 routine. The gets0 routine
takes a single parameter that is a
pointer to a character string. There
is no possible means of bounds
checking. Our tests crashed the ftp
and telnet utilities through use of

getsO.
The scanf() routine is also vul-

nerable. In the input specification,
it is possible to specify an un-

bounded string field. An example
of this comes from the topological
sort (tsort) utility.

x = fscanf(input8, “%S%S”,
precedes, follows);

The input format field specifies two
unbounded strings. In the pro-
gram, “precedes” and “follows” are
declared with the relatively small
lengths of 50 characters. It is possi-
ble to place a bound on the string
field specification, solving this
problem.

4
I I

printable

9
printable
printable

f
printable 10
printable loo

12 pfintable loo0

Sub-Processes
The code might be carefully de-
signed and written, with the pro-
gramming following all the good
rules for program writing. But this
might not be enough if another
program is used as part of this one.
Several of the Unix utilities execute
other utilities as part of doing their
work. For example, the diction and
style utilities call deroff, vi calls csh,
and vgrind calls troff. When these
sub-processes are called, they are
often given direct access to the raw

input data stream, so they are vul-
nerable to erroneous input. Access
to sub-processes should be carefully
controlled or insurance provided
that the program input to the sub-
process is first checked. Alterna-
tively, the utility should be pro-
grammed to tolerate the failure of a
subprocess (though this can be dif-
ficult).

Interaction Effects
Perhaps one of the most interesting
errors that we discovered was a re-

sult of an unusual interaction 0
two parts of csh, along with a little
careless programming. The follow-
ing string will cause the VAX ver-
sion of csh to crash

!o%8f

and the following string
!o%888888888f

will hang (continuous output of
space characters) most versions of
csh. The first example, which trig-
gers the csh’s command history
mechanism, says “repeat the last

csh
dc
deqn
deroff
diction
ditroff

vshad

VS
vhd

vshra vshra
X

s

lex
look
m4
make
nroff
plot

vshxad
vshxd

h
X

X
sh

CCYY”WICITICW~CCTRLACM/December 199O/Vd.33. No.12

“While our testing strategy sounds someuuhat naive, its
command that began with ‘o%8f .“’
Since it does not find such a com-
mand, csh forms an error message
string of the form: “0%8f: Event
not found.” This string is passed to
the error-printing routine, which
uses the string as the first parame-
ter to the printf() function. The
first parameter to printf() can in-
clude format items, denoted by a
“%.” The “%Sf” describes a floating
point value printed in a field that is
8 characters wide. Each format item
expects an additional parameter to
printf(), but in the c:sh error, none
is supplied (or expected). This
string was generated during the
normal random testing.

The second example string fol-
lows the same path, but causes csh
to try to print the floating point
value in a field that is 888,888,888
characters wide. The seemingly in-
finite loop is the pr:intf() routine’s
attempt to pad the output field with
sufficient leading space characters.
This second string was one that we
generated by hand after discover-
ing the first string.

Both of these errors could be
prevented by substituting the
printf() call with a simple string
printing routine (such as puts()).
The printf() was used for historical
reasons related to space efficiency.
The error-printing routine as-
sumed that it would always be
passed strings that were safe to
print.

Bad Error Handler
Sometimes the best intentions do
not reach completion. The units
program detects and traps floating
point arithmetic errors. Unfortu-
nately, the error recovery routine
only increments a count of the
number of errors detected. When
control is returned to the faulty
code, the error recurs, resulting in
an infinite loop.

Signed Characters
The ASCII character code is de-
signed so that codes normally fall in
the range that can be represented

40

in seven bits. The equation proces-
sor (eqn) depends on this assump-
tion. Characters are read into an
array of signed 8-bit integers (the
default of signed vs. unsigned char-
acters in C varies from compiler to
compiler). These characters are
then used to compute a hash func-
tion. If an 8-bit character value is
read, it will appear as a negative
number and result in an erroneous
hash value. The index to the hash
table will then be out of range. This
problem can be easily fixed by
using unsigned values for the char-
acter buffer. In a more sophisti-
cated language than C, characters
and strings would be identified as a
specific type not related to integers.

This error does not crash all ver-
sions of adb. The consequence of
the error depends on where in the
address space is accessed by the bad
hash value. (This error could be
considered a subcase of the
pointer/array errors.)

Race Conditions
Unix provides a signal mechanism
to allow a program to asynchro-
nously respond to unusual events.
These events include keyboard-
selected functions to kill the pro-
gram (usually control-C), kill the
program with a core dump (usually
control-\), and suspend the pro-
gram (usually control-Z). There are
some programs that do not want to
allow themselves to be interrupted
or suspended; they want to process
these control characters directly,
perhaps taking some intermediate
action before terminating or sus-
pending themselves. Programs that
make use of the cursor motions fea-
tures of a terminal are examples of
programs that directly process
these special characters. When
these programs start executing,
they place the terminal device in a
state that overrides processing of
the special characters. When these
programs exit, it is important that
they restore the device to its origi-
nal state.

So, when a program, such as

emacs, receives the suspend charac-
ter, it appears as an ordinary con-
trol-Z character (not triggering the
suspend signal). Emacs will, on
reading a control-Z, do the follow-
ing: (1) reset the terminal to its
original state (and will now respond
to suspend or terminate signals),
(2) clean up its internal data struc-
tures, and (3) generate a suspend
signal to let the kernel actually stop
the program.

If a control-\ character is re-
ceived on input between steps (1)
and (3) then the program will
terminate, generating a core dump.
This race condition is inherent in
the Unix signal mechanism since a
process cannot reset the terminal
and exit in one atomic operation.
Other programs, such as vi and
more, are also subject to the same
problem. The problem is less likely
in these other programs because
they do less processing between
steps (1) and (3) providing a
smaller window of vulnerability.

Undetermined Errors

The last two columns of Table IV
list the programs where the source
code was currently not available to
us or where we have not yet deter-
mined the cause of the crash.

conclurlonr
This project started as a simple
experiment to try to better under-
stand an observed phenomenon-
that of programs crashing when we
used a noisy dial-up line. As a result
of testing a comprehensive list of
utility programs on several versions
of Unix, it appears that this is not
an isolated problem. We offer two
tangible products as a result of this
project. First, we provide a list of
bug reports to fix the utilities that
we were able to crash. This should
qualitatively improve the reliability
of Unix utilities. Second, we pro-
vide a simple-to-use, yet surpris-
ingly effective test method (and
tools).

We do not claim that our tests are
exhaustive; formal verification is

December 199ONo1.33, No.l2ICOYYNNICITIONSOFTRE~ON

ability to discover fatal program bugs is impressive:’
required to make such strong
claims. We cannot even estimate
how many bugs remain to be found
in a given program. But our simple
testing technique has discovered a
wealth of errors and is likely to be
more commonly used (at least in
the near term) than more formal
procedures. Our tests appear to
discover errors that are not easily
found by traditional testing prac-
tices. This conclusion is based on
the results from testing AIX 1.1
Unix.

cise the same standards of care-
fulness. If using someone else’s
program is necessary, make
sure that the data its fed has
been checked. This is some-
times called “defensive pro-
gramming.”

(6) In redefining something to look
too much like something else, a
programmer may eventually
forget about the redefinition.
He or she then becomes subject
to problems that occur because
of the hidden differences. This
may be an argument against
excessive use of procedure
overloading in languages such
as Ada or C++.

hundred Unix workstations), we
asked if they had encountered bugs
that they had not reported to any-
one. We also asked about the sever-
ity of the bugs and why they had
not reported them. Many users re-
sponded to the survey and all (but
one) reported finding bugs that
they did not report; about two-
thirds of these bugs were serious
ones. The commentary of the vari-
ous users speaks for itself. Follow-
ing are quotes from the responses
of several users:

-
\

Comments on the ReSUltS
Our examination of the results of
the tests have exposed several com-
mon mistakes made by program-
mers. Most of these mistakes in-
volve areas already known to
experienced programmers, but an
occasional reminder is sometimes
helpful. From our inspection of the
errors found, we suggest the fol-
lowing guidelines:

(1)

(2)

(3)

(4)

Check all array references for
valid bounds. This is an argu-
ment for using range checking
full-time. Even (especially!)
pointer-based array references
in C should be checked. This
spoils the terse and elegant style
often used by experienced C
programmers, but correct pro-
grams are more elegant than
incorrect ones.
Be sure that all input fields are
bounded-this is just an exten-
sion of guideline (1). In Unix,
using “Q” without a length
specification in an input format
is a bad idea.
Check all system call return val-
ues; do this checking even when
an error result is unlikely and
the response to an error result
is awkward.
Check pointer values often be-
fore using them. If all the paths
to a reference are not obvious,
an extra sanity check can help
catch unexpected problems.

(5) Judiciously extend trust to oth-
ers; not all programmers exer-

(7)

(8)

Error handlers should handle
errors. These routines should
be thoroughly tested so that
they do not introduce new er-
rors or obfuscate old ones.
Goto statements are generally a
bad idea. Dijkstra observed this
many years ago [I], but it is dif-
ficult to convince some pro-
grammers. Our search for the
cause of a bad pointer in the
prolog interpreter’s main loop
was complicated by the interest-
ing weaving of control flow
caused by the goto statements.

Comments on LurRlng sugs
An interesting question is: why are
there so many buggy programs in
Unix? This section contains com-
mentary and speculation; it should
be considered more editorial than
factual. It is our experience that we
often encounter bugs in programs,
but ignore them; we do so, not be-
cause they are not serious (they
often cause crashes). There are,
however, two reasons for ignoring
bugs: First, it is often difficult to
isolate exactly what activity caused
the program to crash. Second, it’s
quicker to try a slightly different
method to get the current job done
than it is to find and report a bug.

“I haven’t reported this be-
cause recovery from this error
is usually fast and
easy. . . That is, the time and
effort wasted due to a single
occurrence of the bug is usu-
ally smaller than the time
needed to report it.”

“I don’t generally report prob-
lems because I have gotten the
impression over the years that
unless it’s a security hole in
mail or something, either no-
one will look at it, they will
chalk it up to a one-time event
or user mistake, or it will take
forever to fix.”

Some users are easy to please. We
received one response from our
survey that stated:

“I have not encountered any
bugs in Unix software.”

As part of an informal survey of The number of bugs in Unix
the Unix user community in our might also be explained by its evo-
department (comprising research- lution. Unix has suffered from a
ers, staff, and students on several “features are more important than

“Because (name of research tool)

was involved, I Figured it is too
complicated. Besides, by
changing a few parameters, I
would get a core image that
dbx would not crash on, thus
preventing me from really
having to deal with the prob-
lem.”
“My experience is that it is
largely useless to report bugs
unless I can supply algorithms
to reproduce them.”

COYY"W~CI~,ONSOFT"~~=CY,D~~~~~~~ 199O/Vo1.33, No.12

testing” mentality. In its early years,
it was a research-only tool. The
commercial effort required to do
complete testing was not part of the
environment in which it was used.
Later, the Berkeley Unix v.
System V (“tastes great” v. “less fill-
ing”) competition forced a race for
features, power, and performance.
Absent from that debate was a seri-
ous discussion of reliability. There
were some claims that the industry
version (System V) had support
when compared to that of a univer-
sity product. Support for Unix
seems to be more concerned with
user complaints than with releasing
a significantly more reliable prod-
uct.

Unix should not be singled out as
a buggy-operating system. Its
strengths help make its weaknesses
visible-testing programs under
Unix was particularly easy because
of the mix-and-match modularity
provided by pipes and standard
I/O. Other systems must undergo
similar tests before any conclusion
can be made about Unix’s reliability
compared to other systems.

MOretODO

We still have many experiments left
to perform. We have tested only the
utilities that are directly accessible
by the user. Network services
should also receive the same atten-
tion. It is a simple matter to con-
struct a portjig program, analogous
to our ptyjig, to allow us to connect
to a network service and feed it the
output of the fuzz generator. A sec-
ond area to examine is the process-
ing of command-line parameters to
utilities. Again, it would be simple
to construct a purmj,!g that would
start up utilities with the command-
line parameters being generated by
the random strings from the fuzz
generator. A third area to study is
other operating systems. While
Unix pipes make it simple to apply
our techniques, utility programs
can still be tested on other systems.
The random strings from fuzz can
be placed in a file and the file used
as program input. A comparison
across different systems would pro-

42

vide a more comprehensive state-
ment on operating-system reliabil-
ity. A fourth area is using random
testing to help find security holes.
The testing might involve sending
programs random sequences of
nonrandom key or command
words.

Our next step is to fix the bugs
that we have found and reapply our
tests. This retesting may discover
new program errors that were
masked by the errors found in the
first study. We believe that a few
rounds of testing will be needed
before we reach the limits of our
tools.

We are making our testing tools
generally available and invite others
to duplicate and extend our tests.
Initial results coming in from other
researchers match the experiences
in this report.

Acknowledgments.
We are extremely grateful to Jerry
Popek, Phil Rush, Jeff Fields, Todd
Robertson, and Randy Fishel of
Locus Computing Corporation for
providing the facilities and support
to test the AIX 1.1 Unix system. We
are also grateful to Matt Thurmaier
of The Computer Classroom (Mad-
ison, Wis.) for providing us with
technical support and use of the
Citrus 386-based XENIX machine.
Our thanks to Dave Cohrs for his
help in locating the race condition
that caused emacs to crash. We
thank those people in our Com-
puter Science Department that took
the time to respond to our survey.
(The suggestion on using random
testing to help find security holes is
due to one of the anonymous refer-
ees.)

References
Dijkstra, E. W. GOT0 Statement
Considered Harmful. Commun. ACM
II, 3 (March 1968), 147-8.

Rochlis, J. A., and Eichin, M. W.
With microscope and tweezers: The
Worm from MIT’s perspective. Com-
mun. ACM 32, 6 (June 1989), 689-
698.
Spafford, E. H. The Internet Worm:
Crisis and aftermath. Commun. ACM
32, 6 (June 1989), 678-687.

4. Wood, 1~. A., Gibson, G. A., and
Katz, R. H. Verifying a multiproces-
sor cache controller using random
case generation. Computer Science
Tech. Rep. UCB/CSD 89/490, Uni-
versity of California, Berkeley (Janu-
ary 1989).

CR Categories and Subject Descript-
ors: D.2.5 [Software Engineering]: test-
ing and debugging; D.4.9 [Operating
Systems];Systems Programs and Utili-
ties

General Terms: Reliability
Additional Key Words and Phrases:

Unix

About the Authors
BARTON P. MILLER is an associate
professor of computer science at the
University of Wisconsin-Madison. His
research interests include parallel and
distributed debugging, network man-
agement and naming service, distrib-
uted operating systems, and user inter-
faces. Author’s Present Address:
Computer Science Department, Univer-
sity of Wisconsin-Madison, 1210 W.
Dayton St., Madison, WI 53706. email
bart@cs.wisc.edu.

LARS FREDRIKSEN is a member of
the technical staff at AT&T Bell Labs.
His research interests include software
development dealing with real-time
database and operating systems, devel-
opment tools and application program-
ming. Author’s Present Address:
AT&T Bell Labs, 2000 N. Naperville
Rd., Naperville, IL 60566. email
L.Fredriksen@att.com.

BRYAN SO is a Ph.D. candidate at the
University of Wisconsin-Madison. His
research interests include hypertext sys-
tems and expert systems. Author’s
Present Address: Computer Sciences
Department, University of Wisconsin-
Madison, 1210 W. Dayton St., Madison,
WI 53706. email so@cs.wisc.edu.

Research was supported in part by National
Science Foundation grants CCR-8703373 and
CCR-8815928, Office of Naval Research
grant NOOO14-89-1222, and a Digital Equip-
ment Corporation External Research Grant.

Permission to copy without fee all or pan of this
material is granted provided that the copies arc not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title ofthe
publication and its date appear, and notice is given
that copying is by permission ofthe Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1990 ACM OOOI-0782/90/1200-0032 $1.50

December 199O/Vo1.33, No.12ICOYYUNICATIONS OF T”E ACM

-.

COYYUWICITIONSOFT"EliCYIDecember 1990/Vol.33,No.1'2

CP
(continued from page 117)

bipolar as it does in CMOS. Since
any processor, especially a CMOS
processor, gains greatly in perfor-
mance by having a large amount of
on-chip memory, this advantage
could well tip the balance in favor
of CMOS.

The advantage that would result
from being able to put CMOS tran-
sistors and bipolar transistors on
the same chip has not gone unno-
ticed in the industry. Active devel-
opment is proceeding in this area,
under the generic name BiCMOS.
BiCMOS is also of interest for ana-
logue integrated circuits.

If the BiCMOS process were op-
timized for bipolar transistors it
would be possible to have a very
high-performance bipolar proces-
sor with CMOS on-chip memory. If
the bipolar transistors were of
lower-performance levels they
would still be of value for driving
off-chip connections and also for
driving long-distance connections
on the chip itself.

A pure bipolar chip, with a mil-

lion transistors on it, will dissipate
at least 50 watts, probably a good
deal more. Removing the heat pre-
sents problems, but these are far
from being insuperable. More se-
vere problems are encountered in

supplying the power to the chip
and distributing it without a serious
voltage drop or without incurring
unwanted coupling. Design tools to
help with these problems are lack-
ing. A BiCMOS chip of similar size
will dissipate much less power. On
the other hand, BiCMOS will un-

doubtedly bring a spate of prob-
lems of its own, particularly as the
noise characteristics of CMOS and
bipolar circuits are very different.

CMOS, bipolar, and BiCMOS
technologies are all in a fluid state
of evolution. It is possible to make
projections about what may happen
in the short term, but what will hap-
pen in the long term can only be a
matter of guess work. Moreover,
designing a computer is an exercise
in system design and the overall
performance depends on the statis-
tical properties of programs as
much as on the performance of the
individual components. It would be
a bold person who would attempt
any lit-m predictions.

And then, finally, there is the
challenge of gallium arsenide. A
colleague, with whom I recently
corresponded, put it very well when
he described gallium arsenide as
the Wankel engine of the semicon-
ductor industry! q

Maurice V. Wilkes received the ACM
Turing Award in 1967 and is the au-
thor of Memoirs of a Computer Pio-
neer, MIT Press, 1985.

December 199O/Vo1.33, No.l2ICOYYUYICITIOYSOFlllL~”

