
Exploitation and state
machines

Programming the “weird machine”,
revisited

Thomas Dullien / Halvar Flake

What is this talk about ?

• Keywords for conversations in the community: vulnerabilities, exploits,
control-hijack, stability, write4 etc.

• “Clear to everybody"

• A lot of folklore knowledge -- impossible-to-attribute terms understood by
people immersed in the community

• Occasionally, clashes with academia flare up when terms (“exploit”) are
misappropriated

o APEG - Hopping a few branches to reach vulnerability
o AEG - Successfully performing a simple EIP hijack on a 2003-style

example
o Return-Oriented Programming - repeated chaining of existing code

fragments

What is this talk about ?

• Reconsidering what we do:

• What exactly is this thing we call “exploitation” ?

• What are the current limits of automation ?

• Part 1 of the talk:

• What is exploitation ?

• What is the right way to think about exploitation ?

• Why doesn't ASLR+DEP matter in many situations ?

• Tangentially related to this I will talk about

• What is the role of the implicit state machines ?

• What do these state machines mean for static analysis and automated
input generation ?

• Does existing theory capture any of it ?

Whose ideas are these ?

• The underlying ideas in the talk are clearly not "my" ideas

• Everybody that has built sophisticated exploits has parts of
these ideas floating around in his brain

• TAOSSA mentions very similar ideas, less fleshed out

• Sergey Bratus seems to have coined the term “weird
machine”

• Truth is: This is folklore knowledge that really should be put
in writing somewhere (before we get 20 papers claiming
invention)

What are programs ?

• Every instruction transforms a state into a new state

• “Traditional” way to look at code

• Is this the right way to look at things ? Isn't it overly fine-
grained ?

• Slightly different viewpoint: Each interaction with a program
transforms a state into a new state

• The programmer defines a set of “valid states” – a program
can only do things allowed by these states, and executing
attacker code isn't part of that

Memory corruptions ...

• So let's view programs as finite state machines

• Interaction causes transitions between states

• Assume all states are “under control” – e.g. no valid
program state is insecure (for this presentation)

• … and then we corrupt memory ...

• Suddenly, the space of possible program states explodes in
size

Weird machines ...

• The transition functions that map between states still exist

• They now they operate on invalid / absurd states

• With each interaction, we transform one invalid / absurd state into
a new absurd / invalid state

• We have a new state machine now: One with gazillions of
unknown states, and most transitions lead to instant death (crash)

• But in the end, this isn't much different from any CPU – at any
point in time, most instructions will yield a crash

• Sergey Bratus called these things “weird machines”

So what is exploitation really ?

• Exploitation is setting up, instantiating, and programming the
weird machine

So what is exploitation really ?

• The goal is to reach a state that violates security
assumptions (ideally in the most egregious imaginable way)

• The “traditional” EIP-to-data hijack was just an easy way to
transform the weird machine into one we understand well:
Native CPU code

• In the end, we really do not care -how- we're performing
computations inside the process address space

Weird machines – what are they ?

• Weird machines are application-dependent

• Weird machines are initial-state-dependent

• Weird machines are really hard to control – hence attackers
spend a lot of time setting the initial state in a way that
allows more controlled transitions

• Even then, probabilistic risk remains: Initial state is
nondeterministic (unknown initial heap state due to inherent
nondeterminism from multithreaded heap operations)

Examples for weird machine programs

• Bootstrapping regular executable code via chaining code
chunks – short, transition to x86

• Mark Dowd's virtual shellcode work (patching out restrictions
from the .NET/Java interpreter, executing unrestricted code)

• Fully chained payloads (Iozzo/Weinmann IPhone 2010)

• Peter Vreugdenhil ASCII/Unicode overflow-to-infoleak

• But much more: Pretty much any sophisticated heap exploit
nowadays has a long set-up to start the weird machine in
the right initial configuration

Consequences

• Mitigations fail routinely. The pattern is:

• 10: Attackers use one “path” to program the weird machine

• 20: Defenders mitigate against that path

• 30: Attackers change the path slightly

• 40: After a few months/years of ownage, a path becomes
public. GOTO 20.

• Forensics on sophisticated exploits without the trigger can be very
hard

• Without network traffic, you might not have reproducibility

• Your server did something bizarre and unexplainable –
without understanding the initial state and the instructions of
the weird machine, understanding is nigh-impossible

What does this mean for the attacker ?

• “Cut out all this handwaving – get to the meat”

• ASLR+DEP do not matter nearly as much as one would
think

• Most of the time, they can be broken through clever weird
machine programming

• Infoleaks are made, not found

• Sometimes, you can program the weird machine without an
infoleak

Many ways that ASLR+DEP failed

• Phrack 58.4 (Nergal), Phrack 59.9 (Tyler Durden) (PaX specific, fixed)
• Dowd / Sotirov: How to Impress Girls with Browser Memory Protection

Bypasses
• Dowd: Virtual Shellcode
• Blazakis: Btree element ordering pointer inference
• Blazakis: JIT spraying
• Currently en vogue: Programming the weird machine to create an info

leak

• Example: Peter Vreudgenhil's ASCII/Unicode Overlap

• Dozens of others are floating around, standard fare for modern
server-side attacks – every second researcher has a favourite

• In this talk (mostly as academic exercise): Hijacking the
Spidermonkey Javascript Bytecode interpreter

Hijacking the Spidermonkey bytecode

• Spidermonkey compiles Javascript into a byte code

• This byte code is subsequently interpreted

• The byte code is trusted – it is assumed to be generated by
the compiler, and not do anything evil

• The byte code is quite powerful – you can certainly do
whatever you want once you execute arbitrary such code

• Adding values, copying data, etc. are all doable with a bit of
effort

Useful instructions

• JSOP_POPN
• JSOP_DUP
• JSOP_DUP2
• JSOP_POPV
• JSOP_GOTOX, JSOP_GOTO
• JSOP_SWAP
• JSOP_ADD, JSOP_OR, JSOP_SUB etc.
• JSOP_IFEQ
• JSOP_SETLOCAL

Useful instructions

• JSOP_POPN

BEGIN_CASE(JSOP_POPN)

 regs.sp -= GET_UINT16(regs.pc);
END_CASE(JSOP_POPN)

Useful instructions

• JSOP_SWAP

BEGIN_CASE(JSOP_SWAP)

 rtmp = regs.sp[-1];

 regs.sp[-1] = regs.sp[-2];

 regs.sp[-2] = rtmp;

END_CASE(JSOP_SWAP)

Useful instructions

• JSOP_POPV

BEGIN_CASE(JSOP_POPV)

 ASSERT_NOT_THROWING(cx);

 fp->rval = POP_OPND();

END_CASE(JSOP_POPV)

Useful instructions

• JSOP_SETLOCAL

BEGIN_CASE(JSOP_SETLOCAL)

 slot = GET_UINT16(regs.pc);

 JS_ASSERT(slot < script->depth);

 vp = &fp->spbase[slot];

 GC_POKE(cx, *vp);

 *vp = FETCH_OPND(-1);

END_CASE(JSOP_SETLOCAL)

Amusing complications
Some amusing complications arise due to Spidermonkey's
peculiar handling of values that double as pointers to objects.

Writing large values can be challenging, and writing to non-
dword aligned locations takes a bit of imagination.

It's fun, though, and much less annoying than writing code in
JITsprayed operands.

Slightly amusing scenario

• Ok, let's assume we have a semi-controlled write
• We can write a value that we control
• The destination address is not really controlled – a

random 24 bit value will be added before the write
• The write will be DWORD aligned though – so only 22 bit

of random

• ASLR + DEP are enabled – we don't know any code
addresses, but we vaguely know (with some margin of error)
where the heap is at

• Can we get reliable execution ?

Battle plan

• Fill the heap with the bytecode of Javascript Functions
(generated by the Javascript compiler)

• Make sure these functions “call each other”
• Each function calls the “next” function in the chain

• Interleave those bytecode arrays on the heap with controlled
data

• Write a jump jump into bytecode stream

• Hijack execution of the bytecode interpreter

Diagram

Javascript Function

Data

Diagram

Diagram

Javascript Function

Data

Approx. 50 megs

Diagram

Javascript Function

Data

Garbage collection kicks in,
just for illustration

Data is blackData is black

Bytecode is
green

Hijacking the stream

• What Javascript are we going to populate memory with ?

f(v,idx,arr){ v++(...);if(idx < MAX) arr[idx+1](v,idx+1,arr); }

• Streams of “v++;” get compiled to

0x63 0x00 0x00 arginc 0

0x51 pop

• 4-byte aligned, for your convenience

• Overwrite with JSOP_GOTO 0x06 0xXXXX

• Alternatively, with JSOP_GOTO 0x8B 0xXXXXXXXX

Summary

• Extremely simplified scenario

• Within Adobe Reader, semi-controlled write4 with a 25-
megabyte margin-of-error will still be moderately easily
exploitable in the presence of ASLR+DEP

• This should hold for IE and Firefox, too

Questions for part 1 ?

No, we don't need the interpreter

• Having an interpreter certainly makes life easy

• There's many of these – think Postscript, Glyph Scaling,
Javascript, Flash, Python, PHP etc. etc. etc.

• Exercise: Analyze Microsoft's Javascript implementation for
the same sort of fun

• But you do not need the interpreter

• The take-away from this presentation is: You can and should
be programming the weird machines

• Obsession with taking EIP might sometimes be a bad thing

Credit for prior art

• Sergey Bratus for his RSS talk 2009
http://www.cs.dartmouth.edu/~sergey/hc/rss-hacker-research.pdf

• The TAOSSA Crew (Justin Schuh, Mark Dowd, John
McDonald) for having implicitly formulated a lot of this

• Stefan Esser for prior work on the PHP interpreter (Syscan
2010)

• Mark Dowd for his contributions on Virtual Shellcode
(PacSec 2010)

• I am sure I have forgotten more, please ping me so you get
added

http://www.cs.dartmouth.edu/~sergey/hc/rss-hacker-research.pdf

Part 2: Implicit state machines

• This part is less constructive than the first part

• It will mostly be a critical examination of the actual
capabilities of the tools & theory available to us

• I don't have solutions

• I'll just discuss a bunch of things that we (as a species)
really don't know how to do yet

Implicit state machines

• A lot of folks want to do “automated exploitation”

• Bugfinding → input crafting to reach vulnerability → Execution Hijack

• Static Analysis → Dynamic symbolic execution → SMT Solving

• A common mistake made by everybody: Viability of a code path
depends heavily on application state

• Getting an application into the right state can be hard

• There is always an implicit state machine in the way

• Ignoring the implicit state machines leads to failure (or worse,
overstating your actual achievement and having that published)

Why is input crafting hard ?

• Many folks have gone down the route “generate constraints from program path, throw
into solver, pray for result”

• How do you treat global state here ?

• What if the program wants you to issue a “EHLO” first ?

• The necessary state modifications will happen on a different program path

• If you don't know sets of possible values for global state variables, you won't know if
a path is feasible or not

• Real software almost always requires you to put the program into a state that will
permit the vulnerable code path. This is a recursive problem: To put the software into
that state, you might to have to first put it into another state.

Ignoring the implicit state machine is not helping.

Determining nonexploitability is hard

• A crash is always a symptom – the root cause is something else

• The root cause is usually -semantic- in nature – not checking something,
misunderstanding something, misusing something

• The root cause and the crash can be arbitrarily far removed – a process can
crash hours after the actual root cause for the crash

• In order to determine exploitability, one would have to:

• Backtrack to find the -semantic- root cause

• Explore program states forward from there to see what one can do

• That stuff is hard.

• !exploitable pays for trying to solve the problem cheaply by being essentially a
biased coinflip

Why didn't static analysis kill all bugs?

• Ask a static analysis guru:
• Why have your tools not killed all bugs (or found really

awesome bugs) ?

• Usual answers are:
• Interprocedural analysis is hard
• C++ analysis is hard
• “They will, next year”
• “They aren't used widely enough”

• While most of the above is true, there are other reasons, too

Why didn't static analysis kill all bugs?

• Let's check a real bug & reduce it: crackaddr() overflow

• Reduced to small example
• 60 lines of C code,
• one function
• simple stack overflow
• yet no static analyzer can distinguish vulnerable from

non-vulnerable

Remove comment
to fix bug

The state machine

00 01

10 11

• We need to cycle through 00 → 01 → 00 → (…) many
times to push the upper pointer outside of bounds

• We need to then perform at least 100 iterations to copy
data

• Then we have a standard stack smash

Why does static analysis fail ?

• Most abstract interpretation-style analyses will try to map
program lines to sets of states for variables

• Some of the more sophisticated analyses use relational
domains (e.g. putting multiple variables into relationship to
each other)

• They tend to “combine” different states using something like
a union operator

Why does static analysis fail here ?

• When control flow converges, states are merged and “safely approximated”

• So “state 00 and p between 0 and 4” combined with “state 01 and p between 0 and 2”
will be combined into “state 00 or 01 and p between 0 and 4”

• This contains spurious states: 01 and p=4 can't actually happen

• More precision is lost on each iteration of the loop

• So … uhm … even when we could solve all the interprocedural analysis and C++
issues, we still fail on heavily simplified versions of real-world code

Summary

• Automated input crafting that ignores the implicit state machine is useless in
most real-world scenarios

• Determining that a bug identified by a crash is not exploitable is impossible
without a full program trace up until that point – and even then it's totally
unclear how you'd go about it

• Static analysis is powerful for large classes of bugs – but memory-copying
loops with multiple internal states still mean failure most of the time

• Clearly, one can construct & find examples where all of this works – but just
because I can construct one example where I do not fail does not mean I
succeed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

