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Undoubtedly, dealing with security issues is one of the most important and complex tasks
various networks face today. A large number of security algorithms have been proposed to
enhance security in various types of networks. Many of these solutions are either directly
or indirectly based on Bloom filter (BF), a space- and time-efficient probabilistic data struc-
ture introduced by Burton Bloom in 1970. Obviously, Bloom filters and their variants are
getting more and more consideration in network security area. This paper provides an
up-to-date survey of the application of BFs and their variants to improve performance of
the approaches proposed to address security problems with different types of networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Security has always been a major concern for net-
worked systems administrators and users. With the
increasing use of high-speed networks and also increasing
demand for specific technologies such as wireless, network
security has become a complex challenge and a priority is-
sue. Many approaches have been proposed to achieve the
various security goals. In these approaches, a variety of
techniques and data structures have been used to address
the security concerns in an efficient manner. On the other
hand, there are typically umpteen numbers of data items
that need to be stored, queried and updated in the network
environment. Therefore, the fact is concluded that space
and time are two important factors that should be taken
into consideration by the security approaches, especially
in the specific networks, such as sensor networks, which
suffer from severe limitations.

A probabilistic data structure that has been widely uti-
lized in this field is Bloom filter (BF), which was introduced
by Burton Bloom in 1970 [1]. BF is a simple, memory- and
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time-efficient randomized data structure for succinctly
representing a set of elements and supporting set member-
ship queries. These properties of BF make it very attractive
to be utilized for many security applications. Initially, BF
was applied to database applications, spell checkers and
file operations [2-4]. In recent years, BFs and their variants
have been widely used in networking applications, such as
resource routing, security, and web caching [5,6].

This paper provides a state-of-the-art survey on the
applications of BFs in the field of network security. A hier-
archical classification of the various security-related
schemes which are either directly or indirectly based on
BFs is provided. In the first level of the classification, we
classify networking environments into two categories:
wireless networks and wired networks. This is because they
are different from each other in some security aspects. In
the second level, each category is broken up further into
several subsections each of which explores a specific field
of BF applications. Note that we only focus on the idea be-
hind the approaches without discussing implementation
details. It should be noted, however, that our goal of mak-
ing this survey is not providing an exact classification of
security attacks for different networks. But, we intend to
review where BFs and their variants have been used to
improve the efficiency of the different security schemes.
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It is our hope that it provides useful information for them
who want to investigate in this scope and use BFs in new
applications.

The rest of this survey article organized as follows. Sec-
tion 2 provides an introduction to the theory of standard
BF. Moreover, this section briefly introduces the basic idea
behind some important variants of BFs used in security-re-
lated schemes. Section 3 surveys the contribution of BFs to
the network security according to the hierarchical classifi-
cation of the existing schemes. Finally, Section 4 concludes
the survey with a brief summary on the Bloom filters
applications.

2. Bloom filters and theirs variants

A Bloom filter is a data structure which can store the
elements of a set in a space-efficient manner, if a small er-
ror is allowed when testing for elements in the Bloom fil-
ter. In Section 2.1, these basic properties of Bloom filters
are described. In the years after the introduction of the
Bloom filter, several data structures based on the basic fil-
ter were presented by different researchers. These variants
are described in Section 2.2.

2.1. Preliminaries of Bloom filters

Information representation and query processing are
two core problems of many computer applications, and
are often associated with each other. Representation
means organizing information according to some formats
and mechanisms, and making information operable by
the corresponding method. Query processing means mak-
ing a decision about whether an element with a given attri-
bute value belongs to a given set. For this purpose, BF can
be an optimal candidate.

A Bloom filter, conceived by Burton Howard Bloom in
1970, is a simple space-efficient randomized data structure
for representing a set in order to support membership que-
ries [1]. BFs may yield a small rate of false positives in
membership queries; that is, an element might be incor-
rectly recognized as member of the set. Although Bloom
filters allow false positives, for many applications the space
savings and locating time constantly outweigh this draw-
back when the probability of false positive can be made
sufficiently small.

Initially, BF was applied to database applications, spell
checkers and file operations [2-4]. In recent years, BFs
have received a great deal of attention in networking appli-
cations, such as peer-to-peer applications, resource rout-
ing, security, and web caching [5,6]. A survey on the
applications of Bloom filters in distributed systems can
be found in [7]. BFs are also being used in practice. For in-
stance, Google Chrome uses a Bloom filter to represent a
blacklist of dangerous URLs.

The idea of standard BF is to allocate vector A of m bits,
initially all set to O, for representing a set S = {x{, X2, ..., Xn}
of n elements. The BF uses k independent hash functions
hy, hy, ..., hy, each with range {0, ..., m — 1}. A BF is con-
structed in two phases: programming phase and querying
phase [1,5]. In the programming phase, each element x € S

is hashed by k independent hash functions. Then, all the
bits at positions A[hy(x)] in A are set to 1 for (1 <i<k).
Fig. 1 depicts the pseudocode for insertion of n elements.

A particular position in the vector might be set to 1
multiple times, but only the first time has an effect. In
the querying phase, to query for an element y, we check
the bits at positions h;(y). If any of the bits at these posi-
tions are 0, the element is definitely not in the set. Other-
wise, either the element is in the set, or the bits have by
chance been set to 1 during the insertion of other elements,
resulting in a false positive. Fig. 2 depicts the pseudocode
for querying an element. The more elements that are added
to the set, the larger the probability of false positives.

The percentage of false positive of a Bloom filter can be
minimized by tuning the three parameters: (i) number of
elements (n) added to generate the Bloom filter. In most
cases, this parameter is defined by the application and,
thus, cannot be controlled. (ii) Number of bits used in a
Bloom filter (m). m can be used in order to minimize false
positives but obviously the larger the value of m the less
compact representation. (iii) Number of hash functions
(k) used to create the Bloom filter. The larger k the higher
processing overhead (CPU usage) especially if hash func-
tions perform complex operations.

Fig. 3 depicts the mentioned process. In Fig. 3, three ele-
ments X1, X, and x3 are separately hashed by 3 hash func-
tions and then the corresponding bits in A are set to 1. To
check if the element y; is in the set approximated by A,
we check whether all A[h(y;)] are 1. As depicted in Fig. 3,
because the bit position 8 is not 1, we surely conclude that
¥ is not a member of the set. Since all the three bit posi-
tions related to y, are set to 1, we conclude that y, is a
member, although this may be wrong due to the false po-
sitive probability.

There is a trade-off between the probability of false po-
sitive and the length m of the BF array [1,5]. It has been
proven that the probability of false positive (fp) is equal to:

K\ K
4 :<1<1;> ) ~ (1—em)” (1)

Input: Set of n elements;
Output: Bloom filter 4;
A = allocate m bits initialized to 0;
for each x; in the set do
for j «— 1 tokdo
L | Alhj(x)] < 1

Fig. 1. Pseudocode for programming phase.

Input: An element y;
Output: True/False;
for j < 1 to k do
L If A[h;(y)] = O return False;

return True;

Fig. 2. Pseudocode for querying phase.
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Bloom filter A: a vector of bits initially all set to Os

0 0 0 0 0 0 0

0

0 0 0 0 0 0

Programming phase: insert each element xj in S into the A, A[Hj(xj)]=1

0 1 0 0 1 0 0

1

0 1 1 0 1 0

X1 X2

———
——

V\Q.\ ————

X3

Querying phase: if all A[Hj(y)]=1 return Yes
with false positive probability, otherwise return No

0 1 1 0 1 0

y1 is definitely not a
member of S

y2
y, is @ member of S
(false positive)

Fig. 3. Insert and query operations in standard Bloom filter.

Now it is clear that the optimal number of hash func-
tions k, which minimize fp, can be easily found by taking
the derivative of the above equation [1,5]. Therefore:

k="nw2) )
n
In the last decade, a number of extensions of the origi-
nal BF have been developed by researchers to address its
limitations. Subsequently, we briefly review some of the
important variants utilized in the network security-related
schemes discussed in this research.

2.2. Bloom filter variants

Several improvements have been proposed over the ori-
ginal Bloom filter. In this section, some well-known vari-
ants of Bloom filters are presented.

2.2.1. Counting Bloom filter

The standard BF can only allow for insert operation on a
BF. We cannot remove an element from the BF because we
might zero a bit that was also set by another element and
so marKk it as not being in the filter as well. To address this
drawback, counting Bloom filter (CBF) was introduced by
Fan et al. [6]. A counting Bloom filter replaces the array
of bits with the array of counters. In fact, each position is
a counter, allowing insert and delete operations on the
CBF. Whenever an element is added to or deleted from
the CBF, the corresponding counters are incremented or
decremented, respectively. The size of the counter must
be chosen large enough to avoid counter overflow. The
analysis performed in [6] shows that 3 or 4 bits per counter
works well for most applications.

2.2.2. d-Left counting Bloom filter

Bonomi et al. [8] presented a data structure based on d-
left hashing and fingerprints that is functionally equivalent
to a counting Bloom filter, but saves approximately a factor
of two or more space. The d-left hashing scheme divides a
hash table into d subtables that are of equal size. Each sub-
table has n/d buckets, where n is the total number of buck-
ets. Each bucket has capacity for c cells, each cell being of
some fixed bit size to store a fingerprint of the element
along with a counter. When an element is placed into the
table, following the d-left hashing technique, d candidate
buckets are obtained by computing d independent hash
values of the element. A hash-based fingerprint f, = H(x)
is stored in the bucket that contains more empty cells
(i.e., least inserted elements per bucket). In case of a tie,
the element is placed in the bucket of the leftmost subtable
with the smallest number of elements examined. Element
lookups use parallel search of the d subtables to find the
fingerprint and obtain the value of the counter. In case of
a deletion the counter is decremented by one [8].

2.2.3. Compressed Bloom filter

Bloom filters can be used in distributed protocols where
systems need to share information about what recourses
they have, like URLs [6]. In such environments, Bloom fil-
ters are usually sent as messages over the network. In or-
der to reduce the number of bits broadcast, the false
positive probability, and/or the amount of computation
per lookup, the idea of compressed Bloom filter was intro-
duced by Mitzenmacher [9]. In addition to the three funda-
mental metrics for original Bloom filters (i.e., k, m and n),
compressed Bloom filter introduces another factor, called
the transmission size z, which refers to the size of the data
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that needs to be sent over the network. According to [9],
Bloom filters can be compressed to improve their perfor-
mance by achieving either a lower false positive rate with
the same memory size or a smaller memory size with the
same false positive rate. Mitzenmacher shows in [9] that
compressing Bloom filters might lead to significant band-
width savings at the cost of higher memory requirements
(larger uncompressed filters) and some additional compu-
tation time to compress the filter that is sent across the
network.

2.2.4. Bloomier filter

Whereas the standard Bloom filter can only support
membership queries on the elements of the set S, Bloomier
filters are able to store the membership function
f=S—10,1] [10]. Bloomier filters can encode arbitrary
functions and allow us to associate values with a subset
of the elements of the filter. Bloomier filters generalize
Bloom filters to functions while maintaining their econom-
ical use of storage. Also, they allow for dynamic updates to
the function, provided the support of the function remains
unchanged. To build a meta-database, for example, the
Bloomier filter keeps track of which database contains
information about each bucket. Therefore, it allows us to
directly access the relevant database.

2.2.5. Space-code Bloom filter

Per-flow traffic measurement is critical for usage
accounting, traffic engineering, and anomaly detection.
Kumar et al. [11] introduced a novel technique for
measuring perflow traffic approximately, which is based
on space-code Bloom filters. A space-code Bloom filter is
an approximate representation of a multiset in order to
answer queries of the form “Is an element x in a multiset?”
and “How many occurrences of x are there in multiset?”.
SCBF uses several Bloom filters and maximum likelihood
estimation in order to represent accurate estimates of ele-
ment counts for all flows regardless of their sizes, at very
high-speed. Each element in this multiset is a traffic flow
and its multiplicity is the number of packets in the flow.
The space-code Bloom filter is made up of [ groups of hash
functions, each group can be viewed as a traditional Bloom
filter. To insert an element x into the filter, the element is
hashed through one group of the hash functions chosen
randomly, and then the corresponding  bits,
AR} (%), h5(x), ..., h,(%)] in the filter are set to 1. To query
for a flow y, first counts the number of groups that y has
matched and then the result is used to estimate multiplic-
ity of y in the multiset [11].

2.2.6. Dynamic Bloom filter

Standard Bloom filters are suitable for representing sta-
tic sets whose size is known in advance and does not
change over time. Dynamic Bloom filters [12] address this
drawback by dynamically creating new filters as they are
needed. The basic idea of dynamic Bloom filters is to repre-
sent a dynamic set A with a dynamic s x m bit matrix that
consists of s standard Bloom filters. A dynamic Bloom filter
initially consists of one active Bloom filter. That is, the ini-
tial value of s is one. The elements of the set are then in-
serted into this active filter. Before the false positive rate
of the active filter starts growing fast, we simply switch

to a new filter, store the old one and then add 1 to s. Only
the last Bloom filter of a DBF is always active, others are
inactive. To query for an element y, we try to find a stan-
dard Bloom filter with all bits hj(y) set to 1. If the result
is false, the element is definitely not in the set. Otherwise,
we believe that y € A with some false positive probability.
Dynamic Bloom filter has been intended for a number of
distributed environments, especially those in which new
data is inserted (and potentially removed) frequently [12].

There are several more of these variants, such as dis-
tance-sensitive Bloom filter [13], spectral Bloom filter
[14], generalized Bloom filter [15], scalable Bloom filter
[16], split Bloom filter [17], attenuated Bloom filter [18],
and incremental Bloom filter [19]. A brief description of
all the mentioned variations can be found in [7].

3. Applications of Bloom filters in network security

In this section, we review the network security schemes
which are directly or indirectly based on BFs and their new
variants. We conduct a taxonomy of uses of the BFs in dif-
ferent networks as shown in Table 1. In the wireless net-
works category, application of BFs in various types of
wireless networks is discussed. In the other category, we
study the BF applications in various fields related to wired
networks, such as tracebacking, pattern matching, and so
on. The last three columns of this table give information
about where Bloom filters have been embedded in each
specific security application. These columns indicate
whether the Bloom filters used for each security field are
embedded in end-devices (ED), such as server machine,
intermediate-devices (ID), such as routers or sensor nodes
in the sensor networks, and/or in-packet (IP), where Bloom
filter is located inside the packet traversing the network
[20]. We emphasize that this categorization is not com-
pletely exhaustive. There may be some works that could
be fallen into more than one category.

3.1. Wireless networks

In this section, the BFs applications related to various
kinds of wireless networks are discussed.

3.1.1. Authentication

3.1.1.1. Message authentication. In [21], Son et al. proposed
a communication-efficient message authentication proto-
col to authenticate messages flooded in large-scale WSNs.
Each sensor node is preloaded with [ symmetric keys and
k hash functions. The sink also maintains k hash functions
and n keys. The sink constructs n message authentication
codes (MACs) using the n keys. These resulting MACs are
then inserted into the BF. Subsequently, the BF is flooded
along with the message in the whole network. When the
message arrives at each node, | MACs are constructed again
in the same way by using [ keys stored in the node. These [
MACs are sought in the arrived BF. When a zero value is
found, the message is assumed to be invalid; otherwise,
it is sent to the neighbor nodes [21]. Moreover, they pro-
posed to use compressed Bloom filters [9] for reducing false
positive rate and the size of BF.
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Table 1

A taxonomy of Bloom filter Application in Network Security; end-devices (ED), intermediate-device (ID), in-packet (IP).

Environment Application ED IP ID
Wireless networks - Authentication - Message authentication x V4 V4
- Node authentication X Vv Vv

- Anonymity and privacy-preserving - Anonymous routing x Vv Vv

- privacy-preserving V4 V4 V4

- Firewalling - Mesh firewall X Vv Vv

- 3G firewall X X Vv

- Tracebacking V4 x x

- Misbehavior detection x v v

- Replay protection x Vv Vv

- Node replication detection x Vv Vv

Wired networks - String matching - Standard BF-based schemes Vv X Vv
- Counting BF-based schemes Vv x Vv

- Bloomier based schemes V4 x V4

- Standard and counting BF-based schemes Vv X Vv

- IP tracebacking - Logging-based IP tracebacking X X V4

- Marking-based IP tracebacking x Vv x

- Logging- and Marking-based IP tracebacking X Vv Vv

- Spam filtering and e-mail protection - Spam filtering V4 X X

- E-mail Server protection Vv X X

- DoS and DDoS detection - DoS and DDoS attacks addressing X Vv vV

- DNS attacks addressing X X Vv

- SYN flooding attacks addressing X x Vv

- Anomaly detection x x v

The scheme introduced in [22] tries to protect the data
of the network from the attackers in an efficient manner. In
this scheme, a group of sensors, named aggregators, classify
the packets arrived from the other sensors. This scheme
utilizes BFs for keeping trade-off between communication
and computation costs and also enhancing the perfor-
mance of the network. To this end, BF keeps the keywords
associated with the nodes in the network. The base station
sends a request message in the form of Req [r, BF(wy, -
...,wWp)] (where r is a random key and BF{(wy, ..., w,) is
the BF resulting from k hash functions applied to the key-
word r) either to the all nodes of the network or only to the
aggregators. The sensors compare the keywords (their own
BFs) with BF(wy,...,w;,) to find a match. If there is a
match, an encrypted message is generated based on the
predefined policy and sent to the requester (aggregator
or base station). One problem with this scheme is that
the main consideration of it is to reduce the data redun-
dancy; security is not taken into account sufficiently.

In [23], Ren et al. proposed several public key cryptog-
raphy-based methods to provide a multi-user broadcast
authentication service to minimize computation and com-
munication costs. In the proposed method, called Bloom fil-
ter-based Authentication Scheme (BAS), all public keys
assigned to the network users are inserted into a BF. Even-
tually, this BF is placed within all the sensor nodes of the
network. When receiving a broadcast message, the sensor
node checks the membership of its public key in the BF.
Then, if a zero value is found, the message is discarded.
The scheme is of interest but is applicable for special kind
of WSNs with many user nodes. Moreover, the whole
scheme cannot resist DoS attack. In addition, the long time
to verify each message using PKC increases the response
time of the nodes.

In [24], another source authentication scheme based on
multi-level u TESLA has been proposed in which BF is used
to store MACs in order to diminish the communication cost
and the total energy overhead. In this case, the sender gen-
erates d MACs for each packet in specified time intervals.
The d MACs of each packet are mapped into its BF. When
receiving a packet, if the number of 1's in the BF is less than
or equal to d x k, the receiver calculates MAC by using the
corresponding key; otherwise, the packet is dropped. If the
mentioned condition occurs, the resulting MAC value is
sought in the BF and the valid packet is recognized. This
scheme cannot eliminate the node compromise problem,
which is a very difficult problem in WSNs.

In addition, the multi-user broadcast authentication
scheme proposed in [25] uses BFs to address multiuser
authentication problem in WSNs. This protocol is based on
Elliptic Curve Cryptography (ECC) algorithm. In this case,
the sink associates each user in the network with a public
key, where PS= {<IDy,PKpp, >, <ID,,PKp, >,...,<IDp,
PKp, >} indicates the set of users and public keys. All the
elements of this set are then mapped into the BF. This BF is
located in each sensor node in advance. Upon receiving a
broadcast message, k hash functions are applied to the
(ID, PK) pair contained in the message. If all the k positions
in the BF are 1, the message is considered to be valid. This
scheme also uses a reputation-based randomized authenti-
cation scheme to deal with DoS attacks. The authors pointed
out that the scheme is more resilient to DoS attack, and the
end-to-end delay is acceptable.

In one-time sensor networks, each sensor can generate
only one message during its lifetime but can always
retransmit messages arrived from other sensors. To com-
bat intrusions into such networks, a cost-efficient scheme
was proposed in [26], in which BF keeps the (idx, id) pair



4052 S. Geravand, M. Ahmadi/Computer Networks 57 (2013) 4047-4064

values of the all nodes in the network. Both the index value
(idx,0...n — 1) and the identifier value (id,0... N — 1) are
located in the message header, where n is the number of
nodes in the sensor network and N is a large set of values,
in which n < N. When receiving a message, sensor checks
the membership of (idx, id) of the message in the BF. If a
zero value is detected, the message is considered to be a
spurious one. The authors believe that this scheme can
work well against all kinds of attacks [26]. Moreover, in or-
der to filter false messages inside the network and to elim-
inate bandwidth consumption, the approach proposed in
[27] adds some additional information, called En-route
Authentication Bitmap (EAB), to the messages. Instead of di-
rectly using MAC for the existing nodes in the path, the
MAC s are first hashed and mapped into the BF and then
this new BF, i.e., EAB, is transmitted. Therefore, intermedi-
ate routers only pass the correct message by using the EAB.
The authors claim that this lightweight approach has a low
computational cost and a small communication overhead.
However, this scheme has no resilience to the selective for-
warding attack and report disruption attack.

3.1.1.2. Node authentication. In data-centric sensor net-
works, key BFs have been used for generating query mes-
sages and enhancing the privacy of information against
various attacks [28]. In this case, in order to avoid perform-
ing membership test by the attacker, the IDs of all storage
cells are encrypted using cell keys, and then hashed and in-
serted into the BF. In this scheme, when the query message
arrives at a cell, it is sought in the key BF. If the neighbor is
in the BF, the message is sent to that neighbor. This scheme
can only partially address the threats against data privacy
and data availability. For instance, it cannot cope with
information leakage caused by node compromises or com-
munication disturbance caused by jamming attacks. More-
over, it employs homogeneous network architecture and
cannot apply to a tiered WSN. In addition, a new mecha-
nism based on one-way functions has been proposed in
[29], which employs BFs and p TESLA to control joining
and leaving of nodes in the network. In this case, the BF
has been used to avoid underflow and also to protect IDs
from being used further by the attackers, when leaving a
member of WMSN. At the beginning, all nodes in the net-
work are hashed into the BF. When sink detected that a
node wants to leave the network, the BF is updated and
sent to the all nodes in the network. Subsequently, they
update their own BFs based on the new BF. However, the
inherent features of such u TESLA-like schemes, such as
the need for (loose) time synchronization and the delayed
authentication, have made them vulnerable to a variety of
attacks.

3.1.2. Anonymity and privacy-preserving

3.1.2.1. Anonymous routing. A secure anonymous routing
protocol for clustered ad hoc networks was proposed by
Chen et al. [30]. Because of using BFs, this protocol does
not require any public key operation. In this scheme, BF
has been used to both anonymous data transmission and
anonymous route discovery. The identities of the nodes
in the route from source to destination are mapped into
the BF. Therefore, to hide the ID, the node only needs to

hash its ID by k hash functions and set the corresponding
bits in the BF. In the data transmission phase, the BF con-
taining routing information is sent along with the message.
The authors believe that this protocol can provide different
levels of anonymity [30]. ODAR [31] uses Bloom filters to
complete anonymity of nodes and source-routing paths.
However, the ODAR requires a online key distribution ser-
ver G in the ad hoc network and the communication is not
blind to the G. Furthermore, it only considers the source
and destination pattern and not the security of the Bloom
filter in the intermediate nodes.

In addition, a storage- and communication-efficient ap-
proach, called anonymous multi-cast routing (AMUR) for ad
hoc networks was proposed in [32]. This approach benefits
from the use of BF and Diffie-Hellman key exchange proto-
col to provide anonymous routing. In that paper, BF has
been used to provide anonymity in multicast routing. To
do so, BF maintains the links from transmitter to receiver.
When a packet arrives at a node, the BF is sought to check
the membership of the links. Moreover, another extension
of BFs, called ToPoBF, has been introduced based on atten-
uated BF to store routing information, i.e., information
about the nodes in the next hop and their distance. In gen-
eral, AMUR can provide strong anonymity to data forward-
ing and routing control mechanisms and thwarts address
spoofing attacks. However, AMUR cannot prevent nodes
on the source path from injecting invalid packets and stag-
ing denial of service attacks in the ad hoc network.

3.1.2.2. Privacy-preserving mechanisms. In [33], Zhu and
Mutka have proposed a message notification protocol to
reduce power consumption and wireless wide area net-
work (WWAN) access costs for instant messaging (IM) ser-
vices that convey presence information of mobile users. In
Cooperating ad Hoc network to sUpport Messaging (CHUM)
only one of the terminals in the ad hoc network at a time,
acting as proxy, needs to have access to the IM server in the
fixed network. A proxy should not be able to see or change
the content of the messages sent to the other peers. User-
names should also be esoteric when needed. In this situa-
tion, compressed Bloom filter [9] is used in CHUM to store
and represent the message notification exchanged be-
tween the IM server and the peer group to provide security
and privacy and also to reduce the overhead of the protocol
[33]. However, if the proxy is compromised, it is difficult to
detect whether the Bloom filter has been changed. In order
to cope with privacy problems caused by the use of Radio
Frequency Identification (RFID) in computing environments,
Nohara et al. in [34] proposed a high-speed identification
scheme in which the pre-calculated outputs of the tags
are saved in the BF. The problems arise when the attacker
tries to use the ID of the tags to keep track of the user. This
scheme consists of three phases: pre-computing, identifi-
cation and updating. For each tag;, there is a BF; that stores
the set of the outputs of the tag. In the second phase, in or-
der to search a specific ID, all the BFs are checked. If a
match is detected, the ID is retrieved from the correspond-
ing BF. The authors pointed out that their scheme can up-
date the pre-calculation results efficiently and can always
keep the constant margin for synchronization as compared
to the other schemes such as Avoine. In [35], Yang et al.
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have designed an algorithm which uses sensitive data hid-
ing techniques inside the traversing packets to protect sen-
sitive data in WSNs. The sensitive information is saved in
BF and then this BF is located inside the main data of the
packet. Therefore, the attackers will not be able to see it.
Later, the destination node retrieves the sensitive informa-
tion according to the predefined extraction rules. This
scheme is able to hide sensitive information effectively
and avoid adversaries? attention, but it cannot completely
resist various attacks.

3.1.3. Firewalling

This section provides the application of Bloom filters to
address the problem of firewalling. Table 2 lists the words
related to the abbreviations used in this section.

3.1.3.1. Mesh firewall. In mesh networks, firewall schemes
are essential to classify and filter traffic. Maccari et al.
[36] proposed a scheme that uses BFs to create a distrib-
uted firewall. In the scheme, each node adopts a Bloom fil-
ter to represent all packets accepted by the node, and then
distributes the Bloom filter to all nodes in the network.
When a node wants to forward a packet, it queries the
packet from all Bloom filters it has received from other
nodes. If it is found, the packet is forwarded; otherwise,
it is discarded. In this scheme, a firewall rule is presented
by the set R={sourcelP, destinationlP, sourcePort, destina-
tionPort}. The authors consider their scheme as a stateless
firewall, as it does not taken the state of the connection
into account. When implementation, they only consider
packets with class C IP addresses and port numbers less
than 1024, which is a drawback of the scheme. In [37],
Maccari et al. reported further results on the use of CBFs
to address the problem of firewalling in a real-time test-
bed. The authors extend their work in [38] to support
stateful firewalls and they use dICBF [8] with handover
support to save memory space. The scheme uses state
automation to evaluate the accuracy of the relationship be-
tween peers. To do this, the current state of each flow is
stored. This new BF maintains the set of tuples related to
the next valid states, named State Expectation (SE). The
authors named the scheme stateful, as it takes the state
of the TCP connection into account when classifying pack-
ets. when a packet arrives at Access Point (AP), the new
state is sought in the dICBF. If it does not exist, the packet
is not a member of the safe flows. To remove SE from the
dICBF while avoiding false negative, they have used

Table 2
Full words related to the abbreviations mentioned in this section.
Specification Value
APN Access point name
LSF Longest sub-string first
TSBF Two-stage structure BF
IMSI International mobile subscriber identity
GTP GPRS tunneling protocol
MCC Mobile country code
MNC Mobile network code
MSIN Mobile subscriber identification number
TEID Tunnel endpoint identifier

beyond Bloom filters. In general, since the amount of ac-
cepted packets is huge in the mesh networks, the Bloom
filter is very big, so the efficiency in the scheme is still a
challenging issue. These schemes are not scalable as the
size of Bloom filters is tightly dependent on the size of ac-
cepted packets. In addition, the distribution of the large BFs
among all the nodes in the network results in high commu-
nication overhead.

3.1.3.2. 3G firewall. Bloom filters also have been used in 3G
firewall. APN filtering and IMSI filtering are important
functions in combating “create PDP request” flood attacks
in 3G security devises. To perform APN filtering efficiently,
a TSBF architecture was proposed in [39], which utilizes
CBF [6] along with the standard BF [1] to filter APN strings.
The authors reported that the performance of the TSBF is
better than LSF [39]. The hardware techniques, such as
LSF may be not suitable to address these problems because
the maximum length of an APN string can reach 100 bytes.
Moreover, the scheme proposed by Liu et al. [40] inspects
GTP packets to find IMSI that matches IMSI rules stored
in the Bloom filter. IMSI is a unique number dedicated to
the cell phone users in 3G networks. This parallel scheme
is able to match prefix and whole string by using
[XP2850 network processor and BF. In addition, the scheme
proposed in [41] inspects GTP channels to cope with the
huge number of flows each including a large number of
packets. To do so, CBFs have been used in parallel to main-
tain flow information in the processors. A new TEID is cal-
culated by the hash functions, the corresponding bits of the
BF are set to 1 and the counter should accumulate. All the
TEIDs in the packets should be checked. A decision word is
then initialized by zero, and the TEID is hashed using k
hash functions. Eventually, if the TEID string is found in
the BF, the packet is legal and be forwarded; otherwise, it
is dropped. They have pointed out that the scheme can in-
spect of 1Gbps flow in the GTP channel. Although the
Bloom filter can compact the data structure, the efficiency
in the scheme is still a challenging issue once the amount
of packets may be huge in such an environment.

3.1.4. Tracebacking

3.1.4.1. Tracebacking in WSN. In the architecture proposed
in [42], cooperative sensors utilize multi-dimensional
BFs, named space-time Bloom filters, to maintain the attri-
butes of the packets in order to traceback the attacker
packets. In this case, in addition to the packet information,
the ID of the forwarding node is also added to the input
string of the hash functions. When passing a packet
through a sensor, this packet is mapped into the BF of
the sensor. Later, the BF will be used to reconstruct the at-
tack graph. However, this scheme has been designed for a
small sensor network, and it has no feature to recompute
the attack path.

3.1.4.2. Tracebacking in MANETSs. In [43], Kim and Kim pro-
posed a logging-based IP traceback technique which uti-
lizes another extension of BFs, called time-tagged Bloom
filter, to maintain the information of the packet passing
through the router. This scheme uses the 28 bytes of the
packet IP header and 8 bytes of the IP data as input to
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the hash function. To control collision and to avoid includ-
ing safe routers in the tracebacking process in a long-term,
each entry of the BF is equipped with a time-tag with an
initial value. Each node that tries to detect attack collects
information and sends it to the cluster head in the form
of an IP traceback message. After authentication, the mes-
sage is sent to the neighbors of the node to be checked in
the BF. If the answer is positive, it is sent to the other
neighbors in the next hop to reconstruct the attack graph
[43]. Hotspot technique proposed in [44] adds TTL-tags in
the Bloom filter and uses this information together with
a neighboring list to find the nodes in the attack path. Since
the request for path recovery is broadcast, it causes heavy
network traffic. It also does not show clearly how to refresh
the Bloom filter. In addition, in the scheme proposed in
[45], the authors have proposed two advancements in the
previous traceback schemes such as [42,43]. The scheme
uses multiple IDBFs (ID based Bloom filters) to reduce false
positive rate. Also, they added the support of directed que-
ries, which reduces the number of messages generated by
the traceback process. One problem with this scheme is
that it uses more memory than the traditional traceback
schemes specially when the number of nodes increases
in the network.

3.1.4.3. Tracebacking in WiBro. An IP traceback methodol-
ogy using Markov chain and BFs for E802.16 protocol was
introduced in [46], in which the duty of the BF is to store
the information about the routers. This methodology veri-
fies the normality of the hashed information and then per-
forms IP traceback.

3.1.5. Misbehavior detection

3.1.5.1. Misbehaving node. Kozma and Lazos proposed a
technique to recognize misbehaving nodes, which does
not rely on continuous overhearing or intensive acknowl-
edgment techniques [47]. In this technique, the source
node S audits the nodes in the network in a specified time
period to identify the nodes refusing to forward packets to
a destination. The source node S sends an audit request to
the suspected node and asks it to keep track of the packets
sent by the suspected node during that time period. Since a
huge memory is needed to store this information, the sus-
pected node utilizes a Bloom filter to represent the set of
packets forwarded. The suspected node then sends its BF
to the source node. The source node then evaluates the
behavior of the intermediate node. The drawback of the
scheme is that it only focuses on the problem of identifying
one misbehavior node and it has not been evaluated for
multiple misbehaving nodes. In addition, There is no pro-
posal to protect the Bloom filter from attacks such as
burst-force one.

3.1.5.2. Misbehaving vehicle. Since the idea of using pseudo-
nym to ensure privacy in VANETs was introduced, some
malicious vehicles abused this attribute by continually
changing their identities. In order to isolate a malicious
vehicle in VANETS, Liu et al. [48] proposed a mechanism
in which each vehicle maintains its own reputation in its
Tamper-Proof Device (TPD) based on the reputation seg-
ments of its neighbors. In this case, the BF is used to record

both dishonest and trusted vehicles and to reduce the
overhead of message broadcasting. The authors believe
that this scheme ensures both the privacy and security of
data. However, this scheme fails to consider the common
attacks to reputation aggregation, e.g., blocking negative
reputation segments.

3.1.6. Replay attack detection

One of the most common methods for checking the
freshness and thus protecting the message from replay at-
tacks is to use sequence numbers. In [49], a protocol, called
Low-Overhead Freshness Transmission (LOFT), has been
introduced in which only the least significant bits of the se-
quence numbers are transmitted along with the message.
In the case of abnormal increase of the arrived messages
and in order to diminish the overhead of freshness check
caused by DOS attacks, LOFT uses BFs to keep the last w
messages sent by the sender. In this situation, before
checking the freshness of the message, the receiver checks
the recent w messages mapped into the BF. If the answer is
not positive, the message is discarded; otherwise, the
freshness of the message must be checked exactly. The
authors pointed out that LOFT is more tolerant to message
loss and replay attacks than the previous schemes such as
SNEP. However, LOFT is not applicable for the sensor nodes
that are multiple hops away. It just focuses on communica-
tion between adjacent sensor nodes. In addition, the SNEP
scheme works better than LOFT in term of freshness trans-
mission overhead. In [50], Jinwala et al. argued that any re-
play detection scheme in WSNs must be implemented at
the link layer. They discussed and implemented three ap-
proaches, counter-based, hash-based and BF-based ap-
proaches. In the third solution, instead of the hash and
counter values, BF is used to reduce the memory overhead.
That is, the received packets are completely hashed and in-
serted into the BF. The freshness of the incoming packet is
verified using this Bloom filter. They pointed out that the
BF-based solution works well for different types of net-
works, regardless of the number of the nodes in the net-
work. However, increasing the number of packets in the
network results in the increase in false positive rate. This
matter has not been clearly discussed in that paper.

3.1.7. Node replication detection

In a node replication attack, several nodes decide to use
the same ID in WSN. The hierarchical algorithm proposed
in [51] uses BFs to detect replicas. In this hierarchical
structure, the cluster-head nodes selected by the other
nodes or by Local Negotiated Clustering Algorithm have
responsibility for detecting replicated nodes. To this end,
the IDs associated with all the nodes in the cluster are
mapped into the dynamic Bloom filters by the cluster head.
Subsequently, this dynamic Bloom filter is encrypted and
sent to the destination node, along with the other encryp-
tion information of the node. The receiver then searches
dynamic Bloom filter to find the IDs of the nodes included
in the cluster. If a match is found, it sends the matched ID
to the sender cluster-head node for performing exact
checking. If the answer is positive, the ID is considered as
a replica [51]. The scheme proposed by Tong et al. [52] in-
tends to broadcast intruder information to the all sensor
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nodes in the network in order to address intruder replica-
tion problem properly. The scheme uses cooperative BFs for
local management of intruder information and for saving
space in sensors. To this end, each node maintains a BF
containing the IDs of all detected intruders. A special ser-
ver, called dedicated membership server (DMS), periodically
sends the information of the recently detected intruders to
the all nodes in the network. These nodes then add these
new intruders to their own lists. Eventually, the compro-
mised nodes are detected according to the information re-
ceived from the neighbor nodes [52]. In [53], Zhang et al.
presented two new techniques, which are called cell for-
warding and cross forwarding to improve the node replica
detection in WSNs. The proposed schemes use BFs to store
the information stored at the sensors to reduce the mem-
ory usage of intermediate nodes in LSM. These schemes
use two BFs, one for storing ID of the nodes (ID filter)
and the other one for keeping the locations (location filter).
Subsequently, these two BFs will be utilized by the nodes
to detect conflicting claims in the subsequent operations.
These schemes are based on distributing the location
claims to relay nodes in the network. Since the location
claim is distributed to many nodes in the network, it in-
creases a chance to detect the node replication. However,
these schemes have a lot of communication overhead, de-
spite of using BFs, because they try to forward the location
claims to intermediate nodes which act as a witness node.
In addition, these schemes cannot detect the replication at-
tacks in a mobile sensor environment. They rely on the rel-
atively expensive public key cryptography.

3.2. Wired networks

In this section, we review the various uses of BFs in the
design of different security mechanisms proposed for
wired networks.

3.2.1. String matching

The core operation of the deep packet inspection is to
search for predefined signatures in the packet payload.
This is also known as string matching. In this section, we
demonstrate where BFs and their variants have been uti-
lized to improve the efficiency of string matching algo-
rithms. We categorize these approaches according to the
type of BF used.

3.2.1.1. Standard Bloom filter-based schemes. In [54], a set of
hardware BFs have been used in parallel to verify which in-
put flow matches against a set of predefined signatures. In
this architecture, each BF maintains the signatures of a par-
ticular length. Therefore, each BF is utilized to find the
strings of a specific length in the input stream. This archi-
tecture is depicted in Fig. 4. In each run, a window of the
data stream is inspected by the system. If each of these
BFs detects a match, the string is delivered to the analyzer
to perform exact matching; otherwise, the next byte of the
stream is processed. If there are multiple matches for dif-
ferent lengths, the longest one is selected. In contrast to
the previous methods, such a Bloom filter-based system
is able to handle large databases with reasonable resources
and supports fast updates to the database. However, the
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analyzer might be much slower than BFs, if false positive
rate is too high, additional accesses to the analyzer will re-
duce overall system’s throughput. Lee and Choi in [55]
have improved the hardware Bloom filter proposed in
[54] so that it can discover the fault (which may generate
some false results) caused by mistakenly being reset a spe-
cific bit when computing hash values. The implementation
results of BFs on the Field Programmable Port Extender (FPX)
platform [56] for string matching have been shown in [57].

In [54], the number of the Bloom filters increases linear
with the number of various pattern lengths. In [58], in or-
der to split long patterns into small substrings for reducing
the number of Bloom filters, stateful BF engine has been
proposed which utilizes a special prefix register heap in
addition to parallel BFs and lookup table. For detecting
long patterns, these parallel BFs maintain intermediate sta-
tuses, i.e., the index of the current matched substring. This
is because after detecting a match in any of the engines,
there is no need to check all the patterns in the set when
doing exact matching in the next stage. Because long pat-
terns are split into small substrings, the intermediate sta-
tuses need to be saved. In the second stage, both the
matched substring and the active prefix are used to per-
form deterministic string matching [58].

The work in [54] does not focus on the software imple-
mentation and CPU computation cost aspects of hash func-
tions used in scanning application. The Hash-AV system
proposed in [59] tries to embed BFs and hash functions
on the CPU second-level cache in order to use the capabil-
ities of CPU for scanning viruses. Hash-AV utilizes two
groups of hash functions: bad-but-cheap hash functions
to do the approximate scan in the first stage and good-
but-expensive hash functions to do the exact scan in the
second stage. The second group is used only if there is a
need to do exact matching. Using the bad-but-cheap hash
functions, the CPU computational cost is reduced when
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scanning BF because there are mostly no match in the first
stage. In contrast with [54], k hash functions are not calcu-
lated simultaneously in Hash-AV. If the bit corresponding
to the output value of the current hash function is 1, the
next function will be computed. However, the applicability
of the Hash-AV as a software solution for other string
matching based application such as anti-spam applications
has not been discussed in [59].

The scheme in [54] is not able to efficiently address
multi-packet signature detection problem, because a BF is
not capable of recognizing partial signatures. This moti-
vates Artan and Chao to propose an architecture composed
of a flow processor and a payload processor [60]. The for-
mer maintains per flow state information for multi-packet
signature detection, whereas the latter uses a combination
of parallel BFs. More precisely, the payload processor
adopts, for each length, a BF that represents all the strings
of that length, as well as a BF that represents all the string
pieces of that length. Fig. 5 illustrates the proposed archi-
tecture. When a packet arrives, a complete check is per-
formed on all the filters (an expensive process). If a
match is detected, the flow database is updated, and the
state becomes malicious (if a whole signature is found)
or suspicious (if a simple piece is found). Whenever the
flow state is malicious, the flow is passed to an analyzer
for a further deterministic check. This scheme assumes
that packets are not ambiguous, in order, and not over-
lapped, thus neglecting many real issues. Moreover, the
use of filters for prefixes of one or two bytes appears too
expensive for memory requirements, processing power,
and alert rate, thus making such a system inefficient.

As some of the previous works, Dharmapurikar and
Lockwood [61] use on-chip memory in FPGA/VLSI to fulfill
high-speed pattern matching. In addition to the off-chip
hash table which saves strings, on-chip BFs are utilized
to store the strings on the FPGA. There is a distinct on-chip
BF for each hash table. If the matching occurs in each BF,
the off-chip hash table is scanned to do exact matching;
otherwise, there is no need for the hash tables. As a result,
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the number of references to the off-chip memory is highly
reduced, and the speed and performance of the system are
also improved. Fig. 6 depicts the block diagram of the sys-
tem proposed in [61].

In [62], Artan et al. wanted to improve query through-
put and solve the memory fragmentation problem caused
by using several BFs by NIDS/NIPSs to deal with small sets.
To do this, they proposed aggregated BF in which queries
are hashed in sequence and then aggregated to enhance
the average throughput. The proposed architecture is de-
picted in Fig. 7.

The m-bit BF is divided into k portions where each por-
tion corresponds to a hash function, leading to form a func-
tion-bitmap pair, called Processing Element (PE). Each PE; is
responsible for a query queue. For each query Q;, the coun-
ter (G;) counts the number of matches. Each PE; processes
the first query in the queue. If the matching occurs for
Qa, the counter is increased and PE.q) will process Qa;
otherwise, Q4 is discarded. All the matched queries and
the corresponding counters are delivered to the next PEs.
To address various signature lengths, several sets are
aggregated in one m-bit BF. This aggregation can reduce
the overall number of queries. The authors claim that the
aggregated BF represents sevenfold improvement in the
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average query throughput and four times less memory
usage compared to the previous hardware BFs for this
application [62].

In [63], Nourani and Katta proposed another architec-
ture based on BFs and Parallel Hashing (PH), in which BF
acts as an accelerator and does preliminary matching. In
this case, an [-byte substring of the input stream is hashed
and sought in the BF. If a match is detected, the dispatcher
sends this substring to the PH engine for exact match. In
comparison with the work in [54] which uses 35 hash
functions, this architecture uses only one or two hash
functions.

Nourani and Katta in [63] believe that their architecture
can perform matching of 16,000 strings and achieves
throughput in excess of 100 Gbps. Note that it is possible
that the packet payload is distributed between several
packets along the path. These partitioned packets also
may be distanced from each other by the packet of other
streams. Therefore, there is a need to embed a string
matching algorithm in router, which considers the statuses
of the pattern matcher when performing pattern matching.
To this end, Kumar [64] has used the linearly recursive
hash functions in BFs in such a way that the new hash va-
lue is calculated based on the previous value. When receiv-
ing a new packet, its stream is detected and then the hash
values of the stream are loaded to be utilized in the new
computations. Fig. 8 depicts the architecture. The author
also purposed a string matching algorithm using Program-
mable Ethernet Interface Card (PEIC) to enhance the
throughput of NIDSs at high packet rates via discarding un-
wanted packets [65]. This string matching is performed in
the BF-equipped FPGA-based PEIC [65].

The byte-filtered string matching algorithm proposed in
[66] tries to address unnecessary state transitions problem
of bit-split string matching algorithm. In this case, each
byte of the input stream is processed by using BFs just be-
fore performing bit-split matching. If the matching occurs,
this stream of bytes is divided into a set of k-bit substrings
to run bit-split string matching algorithm by parallel tiny
DFAs. If a match is detected, every DFAs can make a tran-
sition to a next state, and then the output vectors are gen-
erated. Eventually, the matched strings can be detected by
bitwise AND unit [66].
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In [67], Lin et al. proposed an architecture to perform
string matching in sub-linear time based on algorithmic
heuristics. This architecture uses the capabilities of parallel
BFs to speed up matching operation. In this case, the pat-
terns are divided into some groups according to their
lengths and positions, and then saved in the BFs. Then, a
value in the search window, called shift value, is specified
and sought in a set of BFs. If a match is detected in any
BF, it is a member and then the shift value is adjusted in
accordance with the heuristics [67].

3.2.1.2. Counting Bloom filter-based schemes. The pipeline
architecture proposed by Kefu et al. [68] puts to use the
benefits of CBFs to perform deep packet inspection. This
system consists of two sub-systems: the fast pipeline
sub-system which carries out approximate checking to de-
tect suspected substrings and low pipeline sub-system
which exactly checks the output substrings of the first
sub-system. In contrast with the previous schemes such
as [54,57,60], this architecture is a loosely coupled frame-
work in which the approximate matching is performed
asynchronously from the exact matching operation. As a
result, the speed of the architecture is more than that of
previous systems [68].

Another FPGA-based architecture introduced for intru-
sion detection problem puts into service the capabilities
of FPGAs to implement CBFs to support insertion and dele-
tion operations of viruses and worms [69]. This architec-
ture has been called system on-a-chip because of the
presence of power-pc 405 processor and thus there is no
need for any extra computer to establish network commu-
nications. 2-, 4-, 8-byte data inputs are employed, in turn,
by filters and the results of their querying in the CBFs are
analyzed by the power-pc processor. The real threat is de-
tected with the help of an extra hash table placed in DDR-
RAM of the FPGA and eventually the packet is dropped
[69].

Based on Parallel Longest Prefix Matching (PLPM) [54]
and Longest Prefix Matching (LPM) [70], a new architecture,
called Memory Efficient Parallel Bloom filter (MEPBF), was
proposed in [71] that consumes less memory than PLPM.
This is because only one 2-bit counter is utilized in their
proposed design. However, the speed of string matching
process in the architecture is less than that in [54].

In [72], CBFs have been used to design an anti-evasion
string matching approach and also avoid reassembling
the packet at high-speed rates. In fact, CBFs checks various
substrings of the real string. In this architecture, the input
streams are separated based on the transition protocol and
fed into the substring detectors made of subCBFs. Each
subCBF maintains common attacks related to each proto-
col. This architecture has been designed for supporting
substrings of 3-byte lengths. After finding a preliminary
match in the subCBF, other low-speed units, called PMEs,
perform full matching. The authors claim that this ap-
proach can recognize up to 99% of attacks. However, this
mechanism needs extra operation for two- or three-byte
long packets. Moreover, there is no clear report about the
speed of the system and also memory consumption.

In [73], instead of CBF, Lin et al. have used dICBF [8] for
performing dynamic pattern matching. In the authors
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point of view, CBF has some shortcomings, such as high
false positive rate, limited rule capacity and low memory
utilization, which can be improved by dICBF. It has been re-
ported that dICBF saves 56 times memory allocation than
CBF. However, there is no analysis on the time complexity
of the given algorithm.

3.2.1.3. Bloomier filter-based schemes. In [74], Ho and Lem-
ieux have proposed a FPGA-based software architecture to
fulfill pattern matching on ClamAV [75]. The ClamAV is the
most popular open source anti-virus database which uses
Bloomier filter [10] as the core of its architecture. The
architecture consists of several predefined Bloomier filter
units each of which hashes strings of a certain length into
the corresponding hash table. All of the patterns are
mapped into Bloomier Filter Units (BFUs). In each cycle,
one byte of the input stream is scanned by the BFUs. If a
match is detected, the information of the matched patterns
is sent to another unit named metadata unit. This unit then
extracts full information of the suspected pattern from off-
chip memory and sends it to another unit to do exact
matching [74]. In addition, Tuan et al. [76] offered another
architecture to accelerate the performance of pattern
matching in ClamAV database. The architecture reduces
off-chip memory access time. This architecture combines
standard BF and Bloomier filter to minimize memory ac-
cess times in the comparison phase. The authors believe
that the architecture can provide a significant improve-
ment in terms of memory requirement [76]. None of these
two approaches are not able to discover unknown viruses
in the current design.

32.14. Standard and counting Bloom filter-based
schemes. Song and Lockwood proposed a new architecture
which uses a novel Extended BF (EBF) and link lists in order
to optimize searching process [77]. Every bucket in the BF
consists of 3 fields. The first field is one bit and has the
same definition as in the standard Bloom filter. The second
field counts the number of signatures hashed into the cor-
responding cell and the third field is a pointer which helps
to store the actual items in the signature set. However for
each item, it is stored for k times. In this architecture, in
contrast with the work presented in [54], if there is a
match in the main BF, only the shortest list is searched.
The authors also proposed a scheme to deal with long sig-
natures. They claim that this architecture can work well in
terms of memory storage and throughput. However, the
capability of this algorithm for scanning traffic in a high
speed network has not been proven.

In addition, Shenghua et al. in [78], proposed a cascade
hash design of BFs to be used in signature detection appli-
cations. This design consumes a small space while greatly
reducing the false positive rate in query phase. The archi-
tecture utilizes primary and secondary BFs. The m-bit array
of primary BF is split into w-size blocks and also k hash
functions are divided into two groups: odd and even. Both
of these addresses are placed in the same memory I/O
block. The concatenation of the acquired addresses in pri-
mary BF is generated for the signature S in the form of a
string. This string is hashed as a mirror image of S and then
it is inserted into the secondary BF. This design has a lower

false positive rate and memory consumption than the
structure in [77].

To tackle worm attacks in high-speed LAN networks,
Chen et al. [79] have used parallel BFs for building an IXP
processor-based software system which works similar to
the work presented in [54]. The main idea is to find and lo-
cate worms by detecting the signatures of worms in every
packet enroute.

Moreover, Chen et al. [80] have introduced a new BF-
based architecture to speed up membership queries by
reducing memory accesses. This architecture intends to
create a relationship between hashed memory addresses.
To this end, it uses burst-type data I/O capabilities in
DRAM design. In each insertion, 2 bits in the BF are set to
1 s. To check the membership of the element, 2 bits of each
block are checked. Because every 2 bits placed in a same
block shares one initiation address, these two bits are
loaded together in each I/O operation. Consequently, the
total number of memory 1/Os is reduced by half. Therefore,
the average query delay can be reduced significantly. How-
ever, its false positive rate is higher than standard Bloom
filter.

There are some work trying to reduce power consump-
tion in the current BF-based architectures [81,82]. They di-
vides k hash functions into two groups. In [81], where the
well-known pipelining technique is used, the primary func-
tions are always calculated but the secondary functions are
employed only when a match is detected in the first step.
In [82], in the first phase, r hash functions out of k-r are
calculated. When a zero value is detected, the other k-r
hash functions are ignored [82]. As a result, Both reduce
the overall power consumption of the BF.

3.2.2. IP tracebacking
In this section, we present the use of BFs in traceback
schemes proposed to reconstruct attack graph.

3.2.2.1. Logging-based IP tracebacking. The Source Path Isola-
tion Engine (SPIE) presented in [83-85] is a logging-based
single packet IP traceback system designed for IP version
4 and 6. In SPIE, routers store packet digests, instead of
packets themselves, in a Bloom filter. This BF is paged
out before it becomes saturated, preventing unacceptable
false-positive rates. For each arriving packet, the SPIE uses
the first 24 invariant bytes of the packet (20-byte IP header
with 4 bytes masked out plus the first 8 bytes of the packet
payload) as input to the hash functions. In the case of IPv6,
the extension header fields and initial 20 bytes of the pay-
load are also appended to the hash input [84]. When
receiving a request at SPIE for tracking the attacker’s pack-
et, the related fields are hashed and sought in the BF
belonging to that particular time period. This operation is
continued until the attack graph is generated. As shown
in [83], the storage overhead is reduced significantly
(down to 0.5% of the total link capacity per unit time).
However, at routers with high speed links, the storage
requirement of 0.5% of the total link capacity per unit time
may be still prohibitive. Moreover, SPIE needs to examine
more BFs to cover a period long enough to offset the timing
uncertainties. This increases the complexity of implemen-
tation and reduces the reliability of results. Some work
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have been proposed to further reduce the storage overhead
of SPIE architecture [86-88].

The scheme in [86] takes the digests of the packet aggre-
gation units, such as flow and source-destination set, pro-
viding useful capabilities with much smaller memory
requirements than that of individual packet digesting [86].
But, due to increased diversity of applications, this mecha-
nism cannot greatly reduce the memory requirement at
the routers, especially when the number of flows is very
high. Li et al. proposed another system that reduces memory
requirements through sampling and logging only a small
fraction of packets in the BF and 1 bit packet marking is used
in their sampling scheme. Their simulation results showed
that the system can provide a high accuracy and deal with
a wide range of attacks [87]. However, because of the low
sampling rate, the scheme is no longer capable to trace
one attacker with only one packet. Another scheme, called
Payload Attribution System (PAS), was designed based on a
hierarchical BF [88] to address the problem of log-based IP
traceback systems’s large storage space requirement. Com-
pared with SPIE which is a packet digesting scheme, PAS
only uses the payload excerpt of a packet. It is useful when
the packet header is unavailable. However, the excerpt must
be long enough to identify different packets, and thus the
attackers may avoid detect by attacking through a lot of
packets with short payload.

In the previous schemes such as SPIE, when a router re-
ceives a query, it checks its BF for that time interval, if the
result is positive, the router queries all its upstream rou-
ters, leading to a lot of unnecessary queries sent to inno-
cent routers. To reduce the number of necessary queries
and false positive rate in SPIE, a BF-based topology-aware
single packet IP traceback system, called TOPO, was intro-
duced in [89]. The idea of TOPO is that some routers use
the packet information together with the predecessor
identifier as input to the hash functions. These routers
are equipped with Bloom filters. TOPO generates the
packet graph based on the responses from the queried
TOPO-equipped routers. It has been proposed to apply
compressed BF [9] and hierarchical BF [88] to enhance the
performance of the system.

The scheme proposed in [90] is based on SPIE. As the
authors pointed out, because of the use of the packet’s
TTL field as input to the hash functions, the precision of
traceback is improved. Furthermore, the number of queries
employed by the traceback operation is decreased. In com-
parison with the above schemes, the proposed scheme has
taken into account the privacy of packet information [90].
In [91], Tang et al. have introduced a traceback-based
mechanism to diminish the effect of false positive when
tracing a packet. This scheme utilizes statistical informa-
tion of packets along with the Traceback BF (TBF) repre-
senting the IP’s TTL fields of the packets to detect and
block the area in which the number of attacks is high. In
contrast with standard Bloom filter, each hash function in
the TBF maps elements to a discrete BF, leading to the de-
crease in the false positive rate [91].

3.2.2.2. Marking-based IP tracebacking. A Bloom filter in an
IP traceback scheme is carried by the packet traveling in
the network. Takurou et al. [92] proposed a packet marking

method which aims to trace a single packet without any
need to a large-capacity high-speed memories. Each packet
traveling in the network carries a BF keeping the informa-
tion about the routers that process the packet. Each router
in this scheme deterministically generates a Bloom filter of
it’s IP address and accumulates it with the main Bloom fil-
ter inside the IP header of the packet. The source path is
then reconstructed using this information. However, the
false positive rate can be rapidly increased due to the accu-
mulation of BFs, which makes it unable to scale to large-
scale DDoS attack. In [93], a fast traceback scheme was
proposed based on space-code Bloom filter [11] to scale to
large-scale DDoS attacks at high-speed links. In this
scheme, in contrast with the previous work, the router
information is probabilistically inserted into the Bloom fil-
ter integrated into the header of passing packet. If the BF
becomes full, it is replaced by a new one so that another
packet with the same source address and destination ad-
dress is generated to carry the new Bloom filter. It was
shown that the false positive rate, the overhead of the net-
work and the number of required packets for reconstruc-
tion are reduced [93]. A problem with such schemes is
related to the security issues such as all-one attack in
which the attacker sets all bits in the BF to one. In [94],
Laufer et al. proposed an IP traceback scheme, which ad-
dresses the issue of faked identification field by attacker
and is able to traceback a single-packet DDoS attack. But,
since it requires relatively large-size bit field (192 bits) to
be included to every IP packet, and suffers from limited
scalability, its practical deployment in real Internet is prob-
lematic. This scheme uses Generalized Bloom Filter (GBF)
[15] to store the IP address of traversed routers and to
avoid digest spoofing and also rendering all-one attack.
In GBF, the bits of the BF array can be reset when inserting
new elements [94].

3.2.2.3. Logging- and marking-based IP tracebacking. Instead
of logging every packet that is traveling through the net-
work, the scheme proposed in [95] logs only packets,
which are destined to a small fraction of nodes. The
scheme is based on deterministic packet marking and log-
ging, which tends to reduce the storage requirement by
logging only the packets traversing through these nodes.
This scheme uses BF to maintain the Protected Node Set
(PNS) in the form of a Log Table (LT). Each entry of this table
contains neighbor list BF and packet BF. When a packet ar-
rives at a Traeback-Enabled Router (TER), TER checks the
membership of the packet in PNS based on the destination
IP address. If a match is found, the packet is forwarded
without any logging; otherwise, the validity of the ID will
be checked. If it is valid, the ID of the previous TER through
which the packet has traversed, is logged in the neighbor
list BF. Then, the flow information of the packet is stored
in the packet BF [95].

3.2.3. Spam filtering and e-mail protection

BFs also have been used to protect personal e-mails and
to combat unwanted emails. This section describes these
applications.

3.2.3.1. Spam filtering. Signature-based Collaborative Spam
Detection (SCSD) systems usually maintain a huge database
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containing email signatures, demanding lots of resource in
signature lookup and storage. In [96], Yan and Cho have
used BFs to enhance two popular SCSD systems, i.e., Dis-
tributed Checksum Clearinghouse (DCC) [97] and Razor
[98]. Razor utilizes BF to maintain the database of the spam
messages and DCC maintains the number of occurrence of
a signature by using CBF [6] for detecting a spam signature.
The authors reported that BF can significantly reduce the
size of a signature database and make the signature look-
up-time constant [96].

In [99], an approximate method was proposed to speed
up spam filter processing. It utilizes BFs in two techniques,
called approximate pruning and approximate lookup. In the
former case, an m-bit BF is used to maintain the tokens
resulting from parsing each message in order to reduce
the delay of searching repeated tokens when performing
approximate membership test. In the latter case, a two-
dimensional BF is used to reduce memory requirement
by supporting information retrieval. The authors reported
that the scheme has shown a factor of 6x speedup with
similar false negative rates and identical false positive
rates compared to the original filters [99].

Takesue [100] has used local filtering in user side to de-
tect spam messages based on the user’s interest. In this
way, the system utilizes two BFs merged into a single
one (for reducing cache miss ratio), called twin-BF (TBF),
which creates a blacklist of the previous spam messages
and newly added spam messages by user. Least Recently
Matched (LRM) spam messages are saved in the primary
BF and Recently Matched (RM) spam messages in the sec-
ondary BF. In this scheme, to block a polymorphic spam at-
tack, a partial matching is performed based on the
fingerprints of k portions of each e-mail’s content [100].

3.2.3.2. E-mail server protection. Most users maintain their
emails in a central server to use some services, such as re-
mote access and backup operation.In [101], a system, called
Secure Searchable Automated Remote Email Storage (SSARES),
was proposed which allows privacy-preserving search of
the email server. This system utilizes a combination of Public
Encryption with Keyword Search and Bloom filters. The key-
words of the incoming email are extracted and encrypted
using PEKS public key and then stored in the Bloom filter.
The Bloom filter intentionally yields a high false positive
rate to protect email from dictionary attacks [101].

3.2.4. DoS and DDoS attacks detection

This section presents the uses of BFs for addressing
three important types of flooding attacks, including DDoS,
DNS, and SYN flooding attacks.

3.2.4.1. DoS and DDoS attacks addressing. Some of the works
mentioned in the previous sections, such as [86,90,92—
94,96, could also be placed in this section. Various forms
of DDoS attacks have led to an increased need for tech-
niques to analyze and monitor network traffic. IDR [102]
is one of the first destination addresses-based monitoring
schemes, which aims to detect DDoS attack by using BFs.
The IDR splits the destination address of the packet into
four fields detached by dot, independently hashes them
using k hash functions and then the corresponding cells

in the BF are increased by 1. If the counter values exceed
a predefined threshold, the packet is considered to be an
attacker [102]. However, the counter value may have been
increased due to inserting IP address of the other packets,
leading the system to mistakenly consider the packet to
be an attack traffic. To address this problem, the scheme
proposed in [103] provides a relation between address
fields. The scheme utilizes an IP Bloom filter module to
maintain address fields separately and an extra table to
manage relation among different fields. It reduces wrong
detection rate. If the number of a packet exceeds a prede-
fined threshold, this situation will be reported to the next
module, called statistic module, as an abnormal traffic. In
this scheme, a central controller makes the final decision.

In [104], a router-based algorithm was introduced to
combat DDoS attacks. It utilizes only a small number of
routers for detecting abnormal traffic. In this case, BFs cre-
ate a complete list of the valid IP addresses in order to re-
duce memory requirements. If a host is a member of the
BF, the router sends the packet to the destination; other-
wise, the packet is sent to a module, called GA-filter for fil-
tering bad traffic. Moreover, Rothenberg et al. [105] have
proposed a secure packet forwarding mechanism which
uses BFs to maintain and update identifiers of the links.
When the packet arrives at a node, all the outgoing links
are computed and sought in in-packet BF, according to
the information contained in the packet, such as flow ID,
keyword, and link ID. If a match is detected, the packet is
forwarded through the matched link.

In [106], Du and Nakao proposed a defense architecture,
called Network Egress and Ingress filtering (NEIF), which
adopts packet symmetry as the criteria to combat DDoS at-
tacks. Ingress filtering blocks DDoS attacks rendered by the
customers and egress filtering protects the customer
against attacks. Their idea is to design a memory-efficient
system with low implementation complexity to be embed-
ded in ISP edge routers. In this case, only a small number of
the large flows, which are most likely responsible for the
occurrence of attacks, are tracked. These major traffic flows
are measured by Bloom filters through applying multiple
hash functions to the ID of the flows. Consequently, sus-
pected flows are detected based on a certain formula.

3.24.2. DNS attacks addressing. With increasing the
IP-spoofed requests forwarded to the DNS servers, the
possibility of occurrence of the DNS amplification attacks
is increased. In [107], a low-cost hardware approach con-
sisting of two phases has been proposed to deal with such
attacks. In the detection phase, the attack traffic is de-
tected. In the second phase, the scheme distinguishes the
forged responses from the secure packets by using two
BFs which alternately store the requests in two continuous
time periods. If the input response does not match a
request in the two BFs, the response is illegitimate. The
authors reported that this scheme is feasible to be
employed at high speed links [107].

3.2.4.3. SYN flooding attacks addressing. In [108], a symmet-
ric connection detection (SCD) method has been proposed
for filtering network traffic. It uses two CBFs to manage
TCP SYN packets in order to detect fully established
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Fig. 9. The logic architecture of SACK [111].

connections. To do this, BF maintains the state of TCP con-
nection attempts. The SCD allows only fully established
flows to pass. Each one of the two CBFs is responsible for
keeping SYN information in a specific direction. When a
SYN packet arrives, the CBF which is responsible for the
other direction is tested. If a match is detected, it means
that the connection has been recently established. A new
flow is inserted into the corresponding CBF. Their simula-
tions show that the SCD can achieve accuracy of 99% [108].

The authors in [109] reported that their scheme pro-
posed to detect SYN flooding agents can address any type
of IP spoofing. This scheme utilizes SYN-SYN/ACK pairs

Table 3

and header information of the packets in order to detect
abnormal distribution of the packets in the network. The
CBF is used to classify incoming SYN-ACK packets into
two groups: the first SYN/ACK packets (SYN/ACKf) and
the retransmission SYN/ACK packets (SYN/ACKr). The ISN
of the arriving SYN packet is hashed by and then the corre-
sponding counters in the CBF are incremented by 1. When
receiving a SYN/ACK packet, its ACK number is hashed and
sought in the CBF. If all the corresponding bits are not zero,
it is categorized as a SYN/ACKf packet; otherwise, it is cat-
egorized as a SYN/ACKr packet. Eventually, the attacks are
detected according to the difference between the number
of these two types of packets [109]. In addition, Sun et al.
[110] proposed a router-based SYN flooding attack detec-
tor method which works based on the behavior of SYN-
FIN or SYN-ACK pairs. Moreover, it takes the flow informa-
tion of the SYN packets into account. A valid SYN packet in
this scheme is a packet which closes the TCP connection.
The method maintains valid SYN packets in CBF by hashing
4-tuple {source and destination port, source and destina-
tion IP} of the packet as a single item. The arriving FIN
packet is sought in the CBF. If it is found, the number of va-
lid FIN packets is increased and the item is removed from
the CBF; otherwise, the packet is invalid [110]. The idea
of the work is interesting but it would miss some elabo-
rated SYN flood attacks, especially when the attack is suit-
ably spoofed to appear benign. The authors in [111]
concentrate on the accurate and fast router-based detec-
tion method for all kinds of SYN flood attacks. SACK uses
Client ACK (CliACK) packets to detect SYN flooding attacks.
In contrast with the previous work, SACK applies SYN/
ACK-CliACK pair to detect the victim server. Fig. 9 depicts
the SACK architecture. Two CBFs are used to maintain the
full information of TCP connection, including the 6-tuple
of the output SYN/ACK packet, i.e., source and destination’s
IP addresses, source and destination’s ports, sequence
number and ACK sequence number, and also the same 6-
tuple of the input ACK packet. The authors reported that

Bloom filter variants and their contribution to network security; false positive (FP), false negative (FN).

Bloom filter FP  FN  Security  Application domain
usage

Standard Bloom filter Yes No Yes Authentication, Firewalling, Anomaly detection, Tracebacking, Node replication
detection, Anonymous routing and privacy-preserving, String matching, DoS and DDoS
addressing, Email protection, Misbehavior detection

Adaptive Bloom filter Yes No No

Bloomier filter Yes No Yes String matching

Compressed Bloom filter Yes No Yes Authentication, IP tracebacking

Counting Bloom filter Yes No Yes Firewalling, String matching, Email protection, SYN flooding addressing

Decaying Bloom filter Yes No No

Deletable Bloom filter Yes No No

Distance-sensitive Bloom filters Yes Yes No

Dynamic Bloom filter Yes No Yes Node replication detection

Generalized Bloom filter Yes Yes Yes IP tracebacking

Hierarchical Bloom filter Yes No Yes IP tracebacking

Retouched Bloom filter Yes Yes No

Scalable Bloom filter Yes No No

Space Code Bloom filter Yes No Yes IP tracebacking

Spectral Bloom filter Yes No No

Split Bloom filter Yes No No

Stable Bloom filter Yes Yes No

Weighted Bloom filter Yes No No
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in the worst case, the memory cost of SACK for 10 Gbps
links is about 364 KB, which makes it well-suited to be
embedded in modern routers [111].

3.2.5. Anomaly detection

In [112], Patcha and Park proposed a network anomaly
detection system based on stochastic clustering of the net-
work flows. Incoming audit data is clustered based on
expectation-maximization (EM) algorithm. In this case,
BF is used to accelerate convergence of the clustering pro-
cess. In this scheme, the cluster candidates are hashed and
inserted into the BF. Then, if the value of each entry of the
BF is greater than or equal to a threshold value, a new clus-
ter is created. Subsequently, these clusters are applied to
detect anomaly. The authors reported that their scheme
can detect anomaly, with high accuracy, even when com-
plete audit data is not available. In addition, an extension
of Bloom filters, called Bloom filter Array (BFA), has been
used in [113] to efficiently extract two-directional (2D)
matching features from traffic in order to help anomaly
detection systems. The authors reported that this algo-
rithm needs a memory of only 62.9 Mbits at the cost of los-
ing 1% accuracy in feature extraction, compared to the
1.01 Gbits of the other algorithm (i.e., hash table) [113].

4. Summary

In the last decade, Bloom filters have received a great
attention in the network security area. This is because of
their key features such as low memory requirement, high
processing speed, low implementation complexity and
the probabilistic nature of them. In this work, we provided
an updated and comprehensive survey of the application of
Bloom filters in various security application in both wired
and wireless networks. Table 3 summarizes the contribu-
tion of various types of Bloom filters introduced in this pa-
per to network security. For each variant, this table
indicates its application domain and whether the false pos-
itives (FP) and/or false negatives (FN) are introduced (Yes/
No). We believe that Bloom filters will continue to be used
in many new applications and also next variants of this
structure will be introduced to deal with the incoming
security problems.
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