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Abstract. Ideas are connected. New ideas are often seen as creative combinations of
previous ideas. I study these connections in the context of motion pictures. A network of
4,445 movies is constructed to indicate which movies are similar. I first examine the
properties of the network using descriptive and regression analysis; then I develop a
model of network formation for counterfactual analysis. It is found that most movies
imitate and evolve around a “core” of the more successful movies. In addition,
imitation is both conventional and atypical: a new movie usually follows a stream of
similar movies yet simultaneously combines atypical elements from movies outside this
stream. This atypicality, if well balanced, has a positive effect on the individual movie’s box
office. However, I find that, in the long run, atypical combination may lead to a worse
collective box-office performance because of the way it changes the market structure.
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1. Introduction
Ideas are connected. Many models of creativity see
new ideas as innovative combinations of existing ideas.
This concept was discussed as early as in Schumpeter’s
theory of economic development, which defines the
essence of entrepreneurship as “the carrying out of new
combinations.” Combinatorial creativity has been stud-
ied across fields, including psychology, information
theory, economics, sociology, and organizational theory.1

Earlier studies focused on understanding the impli-
cations of the combinative process. More recent studies
have moved to the question of how to make this pro-
cess more effective. For example, to produce the most
fruitful papers in science, should a researcher stay in her
comfort zone or reach out for unconventional ideas?

Although the concept of combinatorial creativity
has generated great insights in various fields, it sees
little application in studies of markets. Products, just
like ideas and scientific papers, are not isolated but
connected. The goal of this paper is to show how the
application of this simple concept can uncover pat-
terns and insights that have remained unknown to us
with traditional market analyses. Specifically, I study
a large network that represents the similarity pattern
between motion pictures.

The network can be conceptualized using a standard
diagram of market analysis. Given a market, a product
is often represented as a point in the characteristic space
(whose dimensions correspond to product character-
istics). Two similar products are placed close to each
other, and when a new product enters at a certain

location, we can think of it as imitating the nearby
existing products. A more compact yet still informative
way to present these relations is a network; one uses
nodes to representproducts andadds a linkbetween two
nodes if they are similar. As I demonstrate throughout
the paper, the network representation has several im-
portant advantages. First, from a data point of view,
constructing a network is often more feasible than a
full characteristic space. One example is the citation
network: although it is hard to quantify all the char-
acteristics of a paper, it is simple to identify the citation
from one paper to another. Second, networks do not
suffer from the curse of dimensionality, which is par-
ticularly useful when one deals with complex products
that cannot be easily characterized using a few dimen-
sions, such as movies. Third, there have been many
recent exciting developments in network science that
allow us to scale up the analysis to millions of product
pairs. Most of these tools have yet to see applications in
market analyses.2

I chose the movie industry as the empirical setting
partly because of the seemingly conflicting nature of
this industry. Although being one of the so-called
creative industries, it seems to heavily rely on imi-
tation (probably because of the great amount of un-
certainty associated with investing in movies).3 This
makes the topic of combinatorial creativity particularly
interesting and relevant. One may ask: is there evidence
of imitation? To what extent do prior similar movies
predict and reduce the uncertainty in the return on in-
vestment (ROI)? What types of combinations are more
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likely to create box-officehits?Howdoes imitation shape
the landscape of the industry?4

Another reason for the choice of the movie industry
is data availability. Thanks to high public interest,
information on budget, cast, and box-office revenue
has been kept track of for most movies. Apart from
this information, my study also requires the data to
identify which movies are similar. Although the most
straightforward approach here is to measure the
distances between movies in the characteristic space,
many defining characteristics of a movie are difficult
to quantify (e.g., narration, acting, camera work, music,
special effects, ideology).5 In addition, it is not simple
to decide a priori which characteristics should be
given relatively more weight in calculating the dis-
tance. An alternative approach here is using the
revealed preferences of consumers, based on the idea
that, if two movies are similar, they should get similar
receptions from the same consumer. This indirect ap-
proach circumvents the difficulties of dealingwith a full
characteristic space. It has been widely used in rec-
ommender systems (most notably Amazon’s) and has
seen much development in computer science (Linden
et al. 2003, Desrosiers and Karypis 2011). Following
their practices, in Section 2 of the paper, I construct a
similarity network among 4,445 movies from a data
set of 20 million movie ratings by 138,000 individuals
(known as the MovieLens data set). An illustration of
a segment of the network is given in Figure 1.

Section 3 conducts model-free analyses on the net-
work. I start with the macro-level structural properties.
The network is found to have a clump or “core” of
densely linked nodes, surrounded by a “periphery” of
nodes that are directly or indirectly connected to the
core. Interestingly, the movies in the core tend to have
relatively high ROIs. This depicts an industry in which
most of the products evolve around a set of successful
stereotypes. Indeed, it is veryhard todivide thenetwork
into “communities” that are clearly distinctive from
each other even with the latest network algorithms.

An important question about combinatorial creation is
whether the combination happens more out of ran-
domness or follows certain patterns. To this end, I move
analyses to amoremicrolevel and examine a class of local
networks (subsets of the similarity network). For each
movie j, the local networkdisplays the similarity relations
between themovies that j imitates. I find that such a local
network usually features one cluster of connected nodes
togetherwith several isolated nodes. This indicates that a
newmovieusually followsanestablishedstream(cluster)
of movies yet simultaneously combines “atypical” ele-
ments from movies outside this stream. More im-
portantly, this atypicality positively impacts a
movie’s ROI. Most interestingly, the impact exists
only when the amount of atypicality is well balanced:
too little or too much has no significant impact.

The impact of atypical combinations should go
beyond individual movies; in the longer term, it can
change the structure of the network. To examine this
dynamic effect requires a model of network forma-
tion. I develop such a model in Section 4, which
formulates both the births of candidate movies and
the studios’ decisions to accept/reject candidates
based on the performances of past similarmovies. The
model is estimated and then used for counterfactual
analysis (Sections 5 and 6). I find that a lower level of
atypicality leads to a network of less stereotypical and
more diversemovies. This diversity turns out to allow
studios to achieve higher ROIs over time. So, in the
long run and at the aggregate level, the impact of
atypical combination can be negative. I compare my
result to the relevant findings on citation networks
and social networks.
Finally, in Section 7, I discuss how the network

approach developed in this paper can be applied to
other market contexts.

2. Data
2.1. Movie Characteristics
I collect from the Internet Movie Database (IMDb.com)
information on amovie’s title, language, region, genre,
MPAA rating, production companies, release date,
production start date, production budget, writers, di-
rectors, leading actors, and domestic box-office rev-
enue. In the case in which the budget number is
missing on IMDb, I try to collect it from Wikipedia.com.
The box-office revenues are cross-checked with the
numbers on Box Office Mojo (a box-office revenue
tracking website).
I amable to collect complete data on 4,445movies that

were released in the United States from 1975 to 2014
(included) except for the production start date, which is
missing for about one third of the movies. To overcome
this problem, I use a nonparametric regression of the
production time (i.e., the interval between the start date
and release date) on production budget and impute the
start date for each movie. On average, a movie takes
slightly more than a year to produce. In addition,
I exclude movies with a budget less than $1 million (in
2014 dollars); the mechanism behind the production
anddistributionof these“microbudget”movies is often
different from that of the larger movies.
I focusmyanalyses onmovies that startedproduction

in 1995–2012 (the release dates of these movies extend
to 2014). This amounts to a sample of 3,079 movies or
an average of 171 movies per year. This sample size
per year is largely in line with previous studies (e.g.,
Einav 2007, 2010; and Goettler and Leslie 2005).6 The
data before 1995 is not discarded but used as the
initial condition in some of my analyses.
To adjust for inflation over time, all budget and

box-office numbers are normalized to be in 2014
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dollars using the consumer price index. Yearly box-
office ticket price, collected from The-Numbers.com,
is used in some of the analyses to adjust for the
fluctuation of ticket price over time.

2.2. The Similarity Network
As explained earlier, in this paper, I uncover the
similarity relations between movies not by directly
measuring their distances in the characteristic space,
but using consumer-revealed preferences. The simi-
larity network is constructed primarily from the
MovieLens data. The data set includes 20 million
movie ratings by 138,000 individuals (updated in
October 2016) and is made available by the GroupLens
laboratory at the University of Minnesota. To supple-
ment the MovieLens data, I also make use of the movie
recommendation data on IMDb and Amazon. Specifi-
cally, I anonymously scraped the recommendations
under “People Who Liked This Also Liked” (IMDb)
and “Consumers Who Watched This Also Watched”
(Amazon).

At a conceptual level, the basic idea behind using
individual ratings to construct a similarity network is
that if two movies are similar, they should be rated
similarly by the same person. This approach to mea-
sure similarity is at the core of many recommender
systems, including those of IMDb and Amazon, and
has seen much development in computer science
(Linden et al. 2003, Desrosiers and Karypis 2011).
In implementation, a similarity score between two
items is often calculated as the correlation be-
tween the ratings given by the individuals who rated
both items, that is, common raters. Two movies are

considered similar if the correlation exceeds a
predefined threshold.7 In essence, the idea echoes a
stream of works in marketing that uses consumer-
panel data to uncover product positions in charac-
teristic space (Chintagunta 1994, Elrod and Keane
1995, Goettler and Shachar 2001).8

In principle, either MovieLens or the IMDb/
Amazon data can be used to construct the similar-
ity network. The upside of the IMDb/Amazon data is
that thewebsites are able to calculate similarity scores
to high precision using their huge database. The
downside, however, is that the exact details of their
algorithms are unknown to the public. This is par-
ticularly problematic if websites have incentives to
bias recommendations toward more recent or pop-
ular products. On the contrary, with the MovieLens
data, I am able to directly calculate similarity scores,
but the smaller data size means that, for some movie
pairs, there are not enough common raters for a
precise similarity score.
Given these considerations, when I define a link in

my network, I primarily rely on the correlation in the
MovieLens data and simultaneously take into account
(i) the precision of this correlation, (ii) whether there is a
recommendation onAmazon or IMDb, and (iii) to what
extent the recommendation reflects similarity versus
other factors, such as the ages and popularities of the
movie pair. Technically, this is handled by a latent
factor model; interested readers are here referred to
the appendix. Figure 1 illustrates the links between
some example movies.
As a preliminary check on the constructed network,

Table 1 displays a logit regression across movie pairs
in which the dependent variable is a dummy in-
dicating whether the pair is linked in the constructed
network. All the coefficients have expected signs and
are statistically significant. For example, having a com-
monmember in the crew,whether it is an actor, director,
orwriter, is significantly associatedwith linkages.On top

Table 1. Logit Regression Predicting Links

Coefficient (standard error)

Intercept −3.489 (0.011)
Sharing leading actor(s) 1.770 (0.034)
Sharing director 1.535 (0.057)
Sharing writer(s) 1.608 (0.057)
Significant overlap of genres 1.173 (0.001)
Same MPAA rating 0.437 (0.001)
Same production company 0.556 (0.001)
Difference in log budget −0.797 (0.007)
Difference in release time (in year) −0.212 (0.002)
Sequel/prequel 4.479 (0.287)
Pseudo-R2 0.13
N 4.74 × 106

Notes. Each observation is a movie pair; the dependent variable is
whether the pair is linked in my constructed network. Pseudo-R2

equals oneminus the ratio between fitted deviance and null deviance.

Figure 1. Illustration of the Similarity Network

Notes. Movies are ordered from left to right by year of release. They
are Sleepless in Seattle (1993), While You Were Sleeping (1995), What
Women Want (2000), The Patriot (2000), X Men (2000), X2 (2003), The
Last Samurai (2003), Fantastic 4 (2005), Good Luck Chuck (2007), Iron
Man (2008), Valentine’s Day (2010), Iron Man 2 (2010), Captain America
(2011), and Iron Man 3 (2013).
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of this, being a sequel–prequel pair almost guarantees
a link. Notice that the R2 is fairly low. This is expected
as much of the similarity is likely attributed to the
characteristics not in the data, for example, plot,
narration, ideology, and visual and sound effects.

Several variants of the constructed network are
considered as robustness checks on themain results of
the paper. One variant is constructed by explicitly
incorporating the pair characteristics in Table 1. The
details are given in the appendix.

3. Descriptive and Regression Analysis
This section presents some model-free results. These re-
sults are not only interesting in their own right, but also
motivate some of the model specifications in Section 4.
I start with patterns at the network level, then gradually
“zoom” the analysis in toward individual movies.

3.1. Core-Peripheral Structure and Imitation
Figure 2 visualizes the similarity network. The graph is
plotted by force-directed placement, a popular method
introduced by Fruchterman and Reingold (1991). In a
nutshell, it attempts to place linked nodes close to
each other and, in doing so, helps reveal the basic
structure of the network. For example, if it were a
citation network between scientific papers, the vi-
sualization would show distinctive clusters, each
corresponding to a discipline or field. As we can see,
this is clearly not the case for Figure 2; there is a single
dense core in the center of the graph with most of the
movies connected to the core, directly or indirectly.

To help understand what the core represents, I color
the nodes bynumber of imitators; an imitator of amovie
j is any of j’s neighbors in the network that started
production after j’s release. A brighter color indicates
a larger number of imitators. It is clear that the core
consists of themovies that have been imitatedmore times.

An immediate question is why some movies have
more imitators than the others. To answer this, Table 2
groups the movies by number of imitators and dis-
plays the ROI distributionwithin each group. There is
a clear positive association between the ROI and the
number of imitators. This suggests that one reason
why a movie has had more imitators is because it was
financially successful. Although intuitive, this provides
direct empirical evidence of herding in the motion

picture industry: most movies in the industry have
been evolving around a core consisting of the higher-
ROI types.
A potential issuewith Table 2 is that themore recent

movies tend to have an artificially smaller number of
imitators because they are close to the end point of my
data. To account for this, Table 3 restricts the attention
to themovies in the earlier years. The result still holds.

3.2. Community Structure and Diversity
Movies have been historically classified into a number
of genres: drama, comedy, romance, horror, war, etc.
So it is reasonable to expect that the similarity net-
work has a clear community structure, meaning that
movies can be divided into groups, and the links are
dense within groups but sparse between groups.
However, as we have seen, Figure 2 suggests the
opposite. At some level, this is not too surprising
becausemanymovies are cross-genre and studios like

Table 2. Log ROIs by Number of Imitators, 1995–2012

Number of imitators Group count Mean First quantile Third quantile

0 881 −0.59 −1.44 0.42
1–2 721 −0.53 −1.24 0.45
3–9 726 −0.1 −0.72 0.67
≥10 751 0.08 −0.41 0.61

Notes. Included are the movies in/after 1995. The cutoffs in the first column are chosen to make the four
groups of as equal size as possible.

Figure 2. The Similarity Network and Its Core

Notes. Visualization of the network among the movies in/after 1995.
The graph is drawn by force-directed placement (Fruchterman and
Reingold 1991), which tries to place connected nodes closer to each
other. The outer ring collects the singletons and small isolated groups
of nodes. The coloring of a node indicates the number of imitators of
that node. A brighter color indicates a larger number of imitators.
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to make diverse uses of elements from a successful
movie regardless of to which genre it belongs. For
example, there is a high similarity score between the
action movie Fantastic 4 (2005) and the romantic
comedy movie Good Luck Chuck (2007), probably
thanks to Jessica Alba who starred in both movies.

To see the exact extent to which the network has
a community structure, one can use sophisticated
network algorithms. Table 4 displays the result from
modularitymaximization, awidely used algorithm to
detect communities in networks (Newman 2006,
2010). It is able to identify, for example, a group of
family-type movies that are rarely R rated and often
feature animations. It also identifies horror movies.
However, overall, the division is coarse with the three
largest communities making up more than half of the
network. In addition, the boundaries between com-
munities are verymuch blurred. This is seen in Figure 3,
which colors the nodes by community membership.

To summarize, the network depicts a market char-
acterized more by convergence toward a core of high-
return movies than diversity of distinctive movie types.

3.3. Clustering and Similarity
An important property of similarity is transitivity;
if movie j is similar to k, and k is similar to �, it should
often be the case that j is similar to �. The property
corresponds to a widely used statistic in networks
called the clustering coefficient (Newman 2010),
which measures the presence of triangles (i.e., a set
of three nodes linked to each other). Roughly speak-
ing, it is the probability of getting a triangle when we

randomly pick three nodes from the network. The
clustering coefficient of my similarity network is 0.228,
which is substantial. To compare, most random net-
work models have a clustering coefficient of zero;
Facebook has a clustering coefficient around 0.3.
Clustering is an important property to be captured later
by the model in Section 4.

3.4. Atypical Combination
Now I move the analysis from macrolevel structures of
the whole network to an important type of local net-
works. For any given movie j, there is a local network
consisting of the movies that j imitates (i.e., j’s prior
similar movies). The local network is of particular
interest because it helps answer the following ques-
tion: does combinatorial creation usually happen out
of randomness or follow a certain pattern?
Figure 4 provides some representative examples

of these local networks. One can readily see an in-
teresting pattern:many prior similarmovies are directly
or indirectly connected to each other, forming a cluster.
Intuitively, the cluster represents a stream of similar
movies on which j is based. For instance, if one looks
at the prior similar movies of Red Riding Hood (2011),
a mystery fantasy, one sees a cluster consisting of
previous mystery fantasies with similar themes, such
as Season of the Witch (2011) and The Sorcerer’s Ap-
prentice (2010).
More interestingly, in some examples in Figure 4,

we also see singletons disconnected from the clus-
ter. These singleton nodes represent the instances
in which movie j borrows elements from the movies

Table 3. Log ROIs by Number of Imitators, 1995–1999

Number of imitators Group count Mean First quantile Third quantile

0–1 192 −0.55 −1.3 0.37
1–4 122 −0.49 −1.21 0.46
5–19 141 −0.16 −0.72 0.51
≥20 152 −0.02 −0.55 0.54

Notes. Included are the movies in 1995–1999. The cutoffs in the first column are chosen to make the four
groups of as equal size as possible.

Table 4. Communities in the Network

Size Major genres Rated R, % Median budget Example

19 Drama, comedy, romance, crime 37 14.5 Good Deeds (2012)
50 Drama, comedy, romance, crime 64 21.3 Small Time Crooks (2000)
72 Drama, adventure, animation, family 14 51 The Harry Potter Series
265 Drama, action, thriller, crime 66 54.7 U.S. Marshals (1998)
274 Horror, thriller, mystery 68 26.8 The Haunting (1999)
361 Action, adventure, thriller, crime 27 78.9 X-Men/Wolverine Series
514 Drama, comedy 67 18 The Campaign (2012)
516 Comedy, drama 30 31.8 Jack (1996)
603 Comedy, drama, romance 13 35.6 27 Dresses (2008)

Notes. The communities with a size smaller than 10 are not displayed here. Budgets are normalized to be
in millions of 2014 dollars.
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that are atypical of the stream (or cluster) of movies
in which j is grounded. An analogy in scientific re-
search is when a scholar reaches outside the scholar’s
“comfort zone” to borrow from other disciplines.
Take Red Riding Hood (2011) as the example again;
although mostly a mystery fantasy, its twisted love
story with the performance of Amanda Seyfried
seems intended to copy the actress’ success in the
romance movie Chloe (2009).

Seeing each movie as a creative combination of pre-
vious movies, the cluster–singleton pattern allows us
to define a measure of atypicality in this combination.
For each movie j, let the atypicality be the number of

singletons in j’s local network divided by the size of the
local network (equal to the number of j’s prior similar
movies). For example, the first local network in Figure 4
has an atypicality of 1/7. If j has only one prior similar
movie, there is reallynocontext for atypicality, so I define
it to be zero. If j is novel, that is, having no prior similar
movie, the atypicality is defined to be zero as well.
These definitions are used in the subsequent analyses.

3.5. Returns and Risks
As the last part of the analysis in this section, I exam-
ine what determines individual movies’ box-office
performances, focusing on variables that are available
at the time of green-light decisions (e.g., production
budget, genre, casting, similaritywith previousmovies).
To this end, Table 5 displays regressions of log ROI
(the ratio between the domestic box-office revenue
and budget).9

Column (1) regresses the log ROI on the observed
movie characteristics (with detailed definitions of the
regressors given in the table notes).Notice, in particular,
that the R2 of the regression is very low, only 0.088,
which is actually not surprising given that movie suc-
cess has been known to be notoriously difficult to pre-
dict (De Vany and Walls 1996, 1999; Squire, 2005).10

Column (2) is the same as column (1) except that it
additionally controls for the performance of prequels.
As expected, the performance of a prequel(s) is highly
predictive of the performance of a sequel. The R2 does
not change much, mainly because not many movies
are sequels (only about 6% in the data).
Column (3) is the main regression in the table. It is

the same as column (2) except that it adds the in-
formation from the similarity network, which sets it
apart from the regressions in previous movie studies.
Specifically, for each movie j, I introduce a new re-
gressor equal to the average log ROI of j’s prior similar

Figure 4. Examples of Local Network Among Prior Similar Movies

Notes. Each plot takes onemovie and then draws the links between that movie’s prior similarmovies. For example, the first plot is about amovie
that has seven prior similar movies; what the plot shows is the similarity network among these seven movies.

Figure 3. The Similarity Network and Its Communities

Note. The same network visualization as Figure 2 with the exception
that the coloring tries to distinguish the different network communities
(listed in Table 4).
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movies. Moreover, I group movies by the number of
prior similar movies and allow the regressor’s coeffi-
cient to vary across groups. We see that the coefficient
in each group is positive and significant; the coeffi-
cient is higher for the group with more prior similar
movies. Importantly, the R2 is significantly higher
compared with columns (1) and (2).

The results imply that, (i) conceptually, we can
think of the ROI of each prior similarmovie as a signal
of j’s ROI; (ii) the informational value of the signal
average increases with the number of the signals; and
(iii) more importantly, aggregation of the signals is
Bayesian-like, and the marginal value of each addi-
tional signal decreases with the number of signals.
These implications are instructive for how I specify
the model later in Section 4.

As to the prequel’s ROI, its coefficient is still sig-
nificant in column (3) but much smaller than that in
column (2). This is expected because, as we have seen
in Section 2, prequel/sequel relation is captured by
the similarity network.

The coefficients for atypicality in column (3) display
an exceptionally interesting pattern: neither a very small
nor large amount of atypicality has a significant impact
on ROI. It is around a modest value (0.2 ∼ 0.3) at which

the impact is positive and significant. This modest
value represents a movie’s balance between staying
within its conventional domain and reaching out for
atypical elements. This result turns out to nicely echo the
finding in Uzzi et al. (2013) in a different context. They
find that, in citation networks, the highest impact sci-
entific papers are often grounded in a conventional
field yet simultaneously reach outside for atypical
knowledge from other fields.
Columns (4) and (5) are robust checks of the re-

gression in column (3). More specifically, column (4)
drops the control for prequel performance; the co-
efficient estimates and the R2 stay almost unchanged.
Column (5) further drops the genre dummies, MPAA
rating, and the star dummies—a total of 21 variables;
the decrease in R2 is small, and the coefficients for the
remaining variables stay roughly the same. This indicates
that the similarity network is, relatively speaking, a
powerful source for ROI prediction; once included,
the additional predictive power from the observed
movie characteristics is only marginal.
Column (6) extends the regression in column (3) by

adding a regressor equal to the log number of imi-
tators. (Recall that an imitator of j is anymovie similar
to j and started after j.) The coefficient is significantly

Table 5. Regressions of Log ROI

(1) (2) (3) (4) (5) (6)

Year dummies Yes Yes Yes Yes Yes Yes
Genre dummies Yes Yes Yes Yes Yes
Group dummies for number of prior similar movies Yes Yes Yes Yes
Log budget 0.076** 0.074** 0.014 0.014 0.036 −0.001
Seasonality 0.13** 0.12** 0.098** 0.099** 0.1** 0.1**
Rating as restricted −0.22*** −0.21*** −0.13** −0.13** −0.11**
Star actor −0.021 −0.018 0.091 0.093* 0.087
Star director −0.012 −0.026 0.007 0.012 0.005
Star writer 0.11** 0.073 0.04 0.049 0.057
Dummy for being a sequel −0.001 −0.05
Mean log ROI of the prequels 0.36*** 0.14**
Log number of subsequent similar movies 0.22***
Atypicality groups:
0.1–0.2 atypicality 0.15** 0.15** 0.11 0.11* 0.12* 0.23***
0.2–0.3 0.26*** 0.26*** 0.22*** 0.23*** 0.21** 0.32***
0.3–0.5 0.09 0.079 0.042 0.041 0.029 0.16***
0.5–0.7 −0.22* −0.21* −0.071 −0.069 −0.1 −0.003
≥0.7 −0.37*** −0.36*** −0.13 −0.13 −0.17 −0.051

Average log ROI of prior similar movies:
1 prior similar movie 0.26*** 0.26*** 0.28*** 0.26***
2–4 prior similar movies 0.65*** 0.65*** 0.67*** 0.63***
5–10 prior similar movies 0.76*** 0.77*** 0.81*** 0.74***
>10 prior similar movies 1.2*** 1.3*** 1.3*** 1.3***

R2, all observations 0.088 0.094 0.19 0.19 0.18 0.21
R2, with ≥1 prior similar movies 0.097 0.11 0.23 0.23 0.22 0.25
N 3,079 3,079 3,079 3,079 3,079 3,079

Notes. Dependent variable is the log ROI. ROI is defined as the ratio between domestic box-office revenue and budget, both of which are
normalized to be in 2014 dollars. The observations are the movies that started production in/after 1995. “Star actor” is a dummy for movies with
at least one leading actorwho had previously taken a leading role in a top 10%grossingmovie. “Star director” and “starwriter” are defined in the
same way. “Seasonality” is a dummy for releases in June, July, August, and December. There are 17 genre dummies. The variable “group
dummies for number of prior similar movies” uses the same grouping under “average log ROI of prior similar movies.”

***p< 0.01; **p< 0.05; *p< 0.10.
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positive, indicating that the number of a movie’s
imitators “predicts” the ROI of thismovie. The caveat,
of course, is that the imitators come only after the ROI
is realized, so the regression cannot really be seen as
predictive. The purpose of column (6) is to provide cor-
relational evidence for studio selection as in Tables 2
and 3 but in a regressional setting for which many
factors can be controlled.

So far, I have focused on expected ROI but have
not said anything about risks, particularly, how
risks are related to imitation. In these regressions,
risks are presented by the uncertainty in the residuals.
Table 6 groups the movies by number of prior similar
movies and shows, for each group, the distribution of
the squared residuals from column (5) of Table 5
(using other columns gives similar results). The dis-
tribution shifts quickly toward zero as wemove to the
group with more prior similar movies. The result
shows that the usually enormous risks involved
with producing a movie can be greatly reduced by
imitation.

To summarize the findings in Tables 5 and 6: (i) prior
similar movies are a powerful source for the prediction
of a movie’s ROI; (ii) atypicality positively impacts a
movie’s ROI, but not when there is too little or too
much of it; and (iii) imitation reduces the risks of movie
investments.

4. Model
The purpose of this section is to detail a model for the
formation of the similarity network. However, it is
helpful to start with a brief discussion on howmovies
are made in practice. Typically, a movie starts with an
idea by a person, usually a producer, a director, a
screenwriter, or sometimes even an actor or actress.
Whoever this person is, the writer is always the one
that translates the idea into a script. The script lays out
not only the flow of the story, but also the movement,
actions, and expressions of the actors. The actual
scriptwriting takes three to sixweeks. The cast is usually
determined after the script is finished. In the meantime,
an artist is often called upon todrawa storyboard,which
is a sequence of comic book–like sketches that help
illustrate the script. A producer typically presents the
whole package (the script, casting, and storyboard)

to a studio, which decides whether to finance the
movie (i.e., the green-light decision; more details in
Section 4.3). If the decision is yes, the actual shooting
of the movie starts. Once completed, the films are sent
to postproduction for editing, after which the movie
becomes ready for marketing and release.
With that said, movie-making is a complex process.

My goal here is not to model the details of movie
making per se, but to find a reasonable abstraction
that captures the process of combinatorial creativity
in the empirical context of motion pictures. First,
I model the arrival of movie ideas (or candidates),
together with the connections between these ideas,
with a stochastic network process. Once a movie can-
didate arrives, a studio makes a go/no-go decision.
There is learning on the studio side based on past re-
leases.11 If the decision is yes, the movie goes into
production, and later, consumers decide how much
box-office revenue it realizes. In what follows, I start
with the consumer side.

4.1. Consumer Demand
The main purpose of the demand-side model is to
provide a way to compute the distribution of box-
office revenue. This distribution gives the expected
return and risks associated with a movie candidate,
which are required later in themodel of studio go/no-
go decisions. Because the focus of the paper is not the
box-office demand per se, I keep the demand-side
model as simple as possible for the sake of tractability.
Let me start with the following specification of con-
sumer i’s utility from movie j at the time of j’s release:

uij � U
(
xj; β

)
+ ξj + εij. (1)

In this expression, vector xj collectsmovie j’s observed
characteristics. In principle, xj can include any aspect
of j that is observed in the data up to j’s release, such as
budget size, atypicality, production start date, and
the release date. The second term ξj captures the
average consumer taste over the characteristics that
are not included in xj. I call ξj the “latent quality” of j.
The last term εij is the consumer’s idiosyncratic utility.
Strictly speaking, the utility terms in (1) should

have time subscripts as consumer’s taste may change

Table 6. Residual Size from ROI Regression

Number of prior similar movies Group count Mean First quantile Third quantile

0–1 828 2.42 0.24 3.1
2–6 801 1.87 0.13 2.2
7–21 691 0.95 0.05 0.84
>21 759 0.5 0.05 0.62

Notes. The means and quantiles are calculated within each group with respect to the squared residuals
from column (5) in Table 5. The cutoffs in the first column are chosen so that the four groups are roughly
of equal size.
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over time. However, given it is understood that
uij refers specifically to the utility at the time of j’s
release, omitting time subscripts should not raise
confusion.12

Assume that individual i chooses between going to
amovie theater towatch j and an “outside option,” for
which the utility is specified as ui0 � εi0. Then, with εij
and εi0 following type I extreme value distribution,
the market share of j is given by 1/(1 + e−U(xj,β)−ξj). The
associated box-office revenue is

πj � mrj/
(
1 + e−U(xj,β)−ξj

)
, (2)

where rj is the release date of j and mt is the product
between the average theater ticket price and the
number of moviegoers in the United States at time t.
By the statistics published byMPAA, about two thirds
of the population go to the cinema at least once a year.
I regard this subpopulation as the moviegoers.13

The demand model does not take into account
several previously studied factors that could affect
box-office performance, including screening, adver-
tising, competition, and word of mouth (e.g., Elberse
and Eliashberg 2003; Ainslie et al. 2005; Hennig-
Thurau et al. 2006; Liu 2006; Einav 2007, 2010; and
Chintagunta et al. 2010; most papers have focused on
one factor at a time). Note that these factors typically
enter the picture after the production of a movie.
I abstract away from them to keep the whole model
tractable and keep the paper’s focus on the green-light
decisions, when the quality of a movie seems most
important (Hennig-Thurau et al. 2006). This is not to
say that postproduction factors are not taken into
consideration at green-light decisions (e.g., a studio
might decide not to pursue amovie to avoid competition
at release with another studio). It is, therefore, wise to
make sure that a simplemodel, such as (2), still captures
demand (at least at the level of aggregate box office for
each movie) reasonably well compared with more
complex models. As we see later with the estimation
results (Section 5.4), this is indeed the case.

4.2. Movie Candidates
Movie candidates arrive at a Poisson rate η. Fix a
candidate movie j that arrives at time t. The candidate
is characterized by (i) the observed characteristics, xj;
(ii) the latent quality, ξj; and (iii) its location in the
network, that is, what prior movies j imitates. All
three aspects are generated by a stochastic process or,
more precisely, an evolving network model.

Before getting into the modeling details, it is in-
structive to have a short discussion on evolving
network models in general and how they fit my
setting. Given the nature of networks, it is not sur-
prising that they have frequently appeared in models
of creativity, particularly as a way to keep track of the

connections between ideas. In information theory,
Price (1965, 1976) proposed a model for the formation
of citation networks in which he treats every scientific
paper as a creative combination of previous papers.
His pioneering work was rediscovered much later by
Barabasi and Albert (1999), which became one of the
most influential papers in network science. A theme
of the Barabasi–Albert model, as well as many later
models based on it, is the so-called attachment pro-
cess inwhich newnodes arrive over time and “attach”
(i.e., link) to existing nodes. The attachment process is
a general way to model network growth. As in Price
(1976), many specifications of the attachment process
were proposed to describe how ideas or projects are
created and accumulated (e.g., Kleinberg et al. 1999,
Kumar et al. 2000). My model largely follows this line
of literature. There is, however, an important differ-
ence. In almost all variants of the attachment process,
every new node becomes a part of the network. In my
setting, a new node is only a candidate, which may be
rejected by studios. What stays in the observed network
consists of only accepted candidates.
The aforementioned works are all outside eco-

nomics. A sizable collection of works on network
formation has also accumulated in the economic lit-
erature. A distinctive feature of the economic litera-
ture is that it examines strategic network formation
(using game-theoretic tools) in contrast to the more
statistical modeling in the computer science and
physics literature (Jackson 2008). Strategic modeling
is particularly relevant to social networks (as opposed
to networks of “things”). This is not to say that sta-
tistical modeling of social networks is absent in
economics; notable examples include Jackson and
Rogers (2007) and Bramoulle et al. (2012), which
explore the idea that people often form new ties by
“meeting friends of friends.” As we see, my model is
closely related to this idea.

4.2.1. Location in Network. The location of j in the
network is denoted as a binary vector yj, where yk,j � 1
indicates that j is similar to an existing movie k, and
yk,j � 0 indicates otherwise. My goal here is to specify
the distribution Pr(yj|6t) from which yj is drawn,
where6t is the state of themodel at time t. To formally
express 6t requires the introduction of several nota-
tions. For each movie k in the data, let ak denote its
arrival time. The set of existingmovies (either already
released or still in production) at time t is written as
{k : ak < t}. The similarity network among this set of
movies is denoted as Yt with Yk�,t ∈ {0, 1} indicating
whether k and � are linked. Then 6t � {xk : ak < t},{
{ξk : ak < t},Yt}.
In its simplest form, one may specify that Pr(yk,j|6t)

is independent and uniform across k. This would be in
the same spirit as the Erdos–Renyi model, the most
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basic network formation model that says links are
established in an independent and identically dis-
tributed manner. However, it is a very strong ab-
straction and does not give rise to some important
properties that we saw in the similarity network, for
example, clustering, and atypicality (see Section 3).
To this end, several papers in the network literature
become particularly relevant here. Kleinberg et al.
(1999) and Kumar et al. (2000) specify that, after a
new node arrives, it first attaches to an existing node
and then forms links with the existing node’s imme-
diate neighbors. In some sense, the new node “copies”
the neighbors of an existing node, and this behavior is
common in citation networks: a researcher often finds
additional papers through the bibliography of a paper
that the researcher reads. Holme and Kim (2002) apply
the same idea and show it gives rise to a wide range of
clustering in networks. Of course, one can imagine that

the new node can follow neighbors’ neighbors so that
it forms links in the vicinity (not just immediate
neighbors) of thefirst existingnode towhich it attaches.
This would nicely capture how “typical” (as opposed
to atypical) combinations happen in idea creation. In
addition to copying immediate neighbors, Kumar
et al. (2000) also introduced a step in which links are
formed randomly with any existing node. This echoes
the concept of atypical combinations.
Figure 5 provides a graphical description of my

specification of Pr(yj|6t) without going into technical
details. The links are formed in a sequential manner.
Intuitively, the imitation process picks one existing
movie to start with and then spreads out from that
movie. This typically determines the stream (or
cluster) ofmovies inwhich j is grounded. After this, the
imitation may pick several movies elsewhere in the
network, creating atypical combinations.

Figure 5. Illustration of the Linking Process
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Formally, let binary vectors y1j , y
2
j , . . . , y

m
j , . . . in-

dicate the nodes that have been linked to j in each step
of the sequential process. Exactly one link is formed in
each step so that

∑
k ymk,j � m for all m � 1, 2, . . . The last

binary vector in the sequence is taken as the re-
alization of yj. Before the first step, there is a proba-
bility ι that the process terminates right away. In this
case, j is completely novel. With probability 1 − ι, a
link is formed between j and one of the existing nodes,
realizing y1j . The probability that the link is with k is
specified as Pr(y1k,j � 1|6t) ∝ exp(θ|t − ak |), where pa-
rameter θ< 0 allows a higher probability of imitating
the more recent movies. In step m ≥ 2, the probability
that a link forms between j and some node k is
given by

Pr ymk,j�1|ym−1
j ,6t

( )
∝exp θ|t−ak |+ωlog

[ ∑
�

Yk�,t·ym−1
�,j

( )]
.

In this expression,
∑

� Yk�,t · ym−1
�,j equals the number of

neighbors of k that have been imitated by j in the
previous steps. In other words, if j has imitated many
movies that are similar to k, then there is a high
probability that j imitates k too.

As long as ω> 0, this process tends to find a cluster
around the first linked node in the sequence. It is
reasonable to assume that the size of this cluster is
larger if there are many movies similar to this first
linked node. Hence, I specify that the process stops
at stepm∗ � (∑k y1k,j

∑
�Yk�,t)ν. The term in the parentheses

is simply the number of the first linked node’s neighbors
in Yt. Parameter ν is to be estimated.14

So far, the process has not introduced any atypi-
cal link. To do so, I allow additional steps after m∗. In
each additional step, with probability γ, a previously
formed link is rewired to a random node k with the
probability proportional to exp(θ|t − ak |); with prob-
ability 1 − γ, the processdoes nothingbut terminate. For
example, if theprocess terminatesat stepm∗ + 1, then the
atypicality of j is zero. It should be clear that pa-
rameter γ here calibrates the amount of atypicality.

Robustness checks can be made by specifying
variants of the linking process here. One such variant
is considered in the appendix, in which atypical links
are created in parallel with the typical links instead of
being rewired in the end. The results of the paper hold
without significant changes.

4.2.2. Observed Characteristics. Given yj, next I specify
the distribution Pr(xj|yj,6t) from which xj is drawn.
Intuitively, xj should be correlated with xk if j imitates k.
For example, if j imitates a group of big-budget movies,
then it should likely have a big budget too.

In principle, one can include in xj any movie char-
acteristic observed in the data. However, as shown

by the earlier analysis, characteristics such as genre,
MPAA rating, and star power of the crew add very
little predictive power after the performance of prior
similarmovies is accounted for. In addition, aswe see,
the inclusion of these detailed characteristics is not
necessary for the intuition behind the counterfactuals
to carry through. Therefore, in an effort to keep the
model tractable, I drop these characteristics from the
supply side of the model. The remaining part of xj
includes the production budget and variables related
to the release date.
I draw the budget, denoted as bj, from a truncated

normal distribution. Because the largest budget in
the data are slightly below $350 million (in 2014
dollars) and I exclude movies with less than a $1
million budget, the truncation interval is set to be
[1, 350]. Results are not sensitive to the exact choice
of the upper bound. The mean of the normal dis-
tribution (before truncation) is set equal to the av-
erage budget of j’s prior similar movies. If j is novel,
then the mean is drawn from an exponential distri-
bution with a mean parameter μ. The variance-to-
mean ratio of the normal distribution is denoted
as χ.
The release date rj equals the current time t plus the

time needed for producing j. The production time is
specified as a function of the budget size bj, which is
estimated “off-line” using the data on movies’ pro-
duction start dates (see Section 2.1 for more details).
Admittedly, this is a simplification and abstracts away
from studios’ postproduction strategies for timing
the release (Einav 2010). However, it does provide a
reasonableway to estimate rj at the time of green-light
decisions.

4.2.3. Latent Quality. Finally, I specify the distribution
Pr(ξj|xj, yj,6t) from which the latent quality of j is
drawn. Clearly, it should allow ξj to be correlated
with ξk if j and k are similar (i.e., yk,j � 1). In addition, it
should allow the correlation to decrease with the age
of k at the time of t. Intuitively, this is because ξ
measures the consumer tastes at the time of themovie’s
release, and consumer tastes may vary over time;
what consumers chose in the longer past is probably
less indicative of what their preferences are today or
will be tomorrow.
These considerations, together with the reduced-

form results (Table 5), prompt me to specify the fol-
lowing distribution for ξj:

Pr
(
ξj|xj,yj,6t

)
∼1

λ
∑

yk,j�1φ|rk−rj |ξk
1+λ

∑
yk,j�1φ|rk−rj | ,

σ2

1+λ
∑

yk,j�1φ|rk−rj |

( )
,

(3)

The mean of the distribution equals a weighted av-
erage over j’s prior similar movies, which creates

Wei: Similarity Network of Movies
Management Science, Articles in Advance, pp. 1–25, © 2019 INFORMS 11



correlations between the latent qualities of similar
movies. Parameter λ> 0 and parameter φ< 1 calibrate
the correlations: a higher λ increases the level of
correlation between any two similarmovies; a smaller
φ decreases the correlation between movies whose
release dates are far apart from each other (which cor-
responds to a more rapid change in consumer tastes).

4.3. Investment Decision
Next, I describe the part of the model that determines
which candidates get funded for production and
which do not. This gives rise to a selectionmechanism
with which more potential movie candidates are
more likely to get produced. The selection is consis-
tent with what we saw earlier in the data (Section 3):
movies with higher ROIs have more imitators.

To conceptualize the model, it is useful to have a
brief look at how investment decisions are typically
made in practice. A senior studio executive once
described the green-light process as follows: “We
bring together all studio department heads. [The
production cost] is our most reliable estimate, and
that thus forms the basis for our launch decision. . . . In
the end . . . someone in the meeting has to put his or
her reputation on the line and say yes.”15 To say yes
(or no), it is essential to have a forecast, either in a
quantitative or qualitative way, of the box-office
revenue. The basis for this forecast often goes to the
performances of past movies. When I spoke to in-
dustry executives, I was told that “the box office is the
most important and the most difficult [to predict].
All you can use is the historical data; you look into
the historical performance of the actors and other
things. . . . You also need tomake sure that these things
mix well.” In general, not only studios but also
producers (who bring their projects to studios) fre-
quently make references to past movies. Pitching a
movie idea by comparing it to past similar releases is
quite common.

I stylize the investment decision in the following
way. Consider a candidate j arriving at t. The studio
makes a forecast of j’s box-office revenue, πj. This
forecast is a distribution Pr(πj|^t), where ^t is the
information set of the studios. Importantly, ^t includes
the box-office performance of each movie that has been
releasedup to t (but not themovies still in production).
Formally, ^t � {{xk : ak < t}, {πk : rk < t}, {xj, yj},Yt}. As
a technical note, observe that each ξk with rk < t is
known under^t because it can be backed out from πk
using (2).

Suppose for amoment that I have away to compute
the studio’s forecast Pr(πj|^t); then I can calculate a
risk-free equivalence for πj denoted by π̃j:

V
(
π̃j

)
� E V

(
δrj−tπj;α

)
|^t

[ ]
.

In this equation, V(·;α) is a utility function parame-
terized by α. Parameter α calibrates the concavity ofV
or α � −V′′/V′. It is known as the coefficient of con-
stant absolute risk aversion. Parameter δ is a dis-
counting factor. The studio puts j into production
iff π̃j > bj · e−ρζj , where bj is j’s budget and ζj is an
econometrician-unobserved independent shock. I
specify ζj to follow the standard type I extreme value
distribution. Notice that the probability of accepting j
increases with π̃j but decreases with bj.
Back to the problem of computing of Pr(πj|^t), re-

call that πj is given by (2). So the problem basically
reduces to computing Pr(ξj|^t).16 In the simplest case
in which all of j’s prior similar movies happen to have
been released by t, the distribution Pr(ξj|^t) is directly
given by (3). In the more general case in which one or
more of j’s prior similar movies are still in production
at t, computing Pr(ξj|^t) is more involved. One needs
to estimate the ξ’s of those in-production movies.
I give details in the appendix.

5. Estimation
There are two main challenges in estimating the
model. First, I do not observe the candidate movies
that were rejected. In other words, I have a selected
sample. As in most econometric models with selected
samples (e.g., truncated Tobit, Heckit), consistent
estimation relies on amodel of how selection happens
tomake up for themissing data. Second, the similarity
network is endogenous. So the estimation needs to
not only account for the correlation pattern implied
by the network but also the endogeneity of this
pattern itself. This differs from the standard spatial
econometrics, which takes the correlation pattern as
exogeneous (Bradlow et al. 2005, LeSage 2008). I give
the details on how I specifically deal with these
challenges, after which I present the estimates.

5.1. Demand Side
Taking log on both sides of the box-office Equation (2)
produces the regression equation for the demand side:

log
(
πj

)
− log

(
mrj − πj

)
� U

(
xj, β

)
+ ξj. (4)

The ordinary least squares (OLS) condition, E(ξj|xj) �
0, does not hold here. This is because the data only
includes the movies that have been accepted. As in
any estimation with selected samples, the key here
is to control for the factors underlying the selection.
In my model, each movie j is selected based on ^aj ,
studios’ information set at time aj. So E(ξj|^aj) can be
used to control the selection. Although this gives
me consistent estimates, it is not easily implementable
as E(ξj|^aj ) generally is not easy to compute (see Sec-
tion 4.3). One solution is to use an information set that
is slightly larger than ^aj : {{ξk : ak < aj, rk ≥ aj},^aj} or,
equivalently, {xj, yj,6aj}. First, because this information

Wei: Similarity Network of Movies
12 Management Science, Articles in Advance, pp. 1–25, © 2019 INFORMS



set is larger than ^aj , it also is able to control for the
selection. Second, Pr(ξj|xj, yj,6aj) has a relatively
simple expression given in (3). To constructmoments,
I define ε1,j ≡ ξj − E(ξj|xj, yj,6aj), and by the law of
iterated expectation,

E
(
ε1,j|xj, yj,6aj

)
� 0.

Moment conditions are constructed by interacting ε1,j
with functions of {xj, yj,6aj}. To identify β, I interact ε1,j
with xj. To identify λ, I interact ε1,j with the average
latent quality of j’s prior similarmovies. To identifyφ,
I interact ε1,j with the average latent quality of a subset
j’s prior similar movies whose release dates are close
to rj.

Parameter σ can be identified in a similar way but
using the second-order conditional moment of ξj:
E(ξ2j |xj, yj,6aj). Let ε2,j ≡ ξ2j − E(ξ2j |xj, yj,6aj). Two more
moment conditions are constructed by interacting ε2,j
with a constant term and the log number of j’s prior
similar movies.

As in the analysis of any dependent time series, a
part of the data should be put aside as the initial
condition for estimation. I use the data between 1975
and 1995 as this initial condition. More precisely, the
generalizedmethod ofmoments (GMM) only average
across the movies that started production in or after
1995; however, data before 1995 is always included in
6aj when computing Pr(ξj|xj, yj,6aj).

5.2. Supply Side
Now I describe the estimation of the parameters for
candidate arrivals and studio decisions. This is done
by themethod ofmoments, whichmatches themodel-
implied distribution to the observed distribution in
the data. Again, I need to account for the selection
issue. When there is selection, one can no longer view
the data as drawn from the population distribution.
Instead, one generally relies on a model that captures
the selection mechanism to derive the distribution
conditional on selection. The parameters are then es-
timated by matching this conditional distribution
with the observed distribution. In my context, this
means that the moments to be matched should be
what the model predicts for the accepted movies, not
all the candidate movies.

Specifically, I index themovies in the data by arrival
date so that j is the first movie that arrives after j − 1.
Let Hj collect some characteristics about movie j at
time aj, such as (i) the budget bj, (ii) the latent quality
ξj, and (iii) the number of movies that j imitates

∑
k yk,j.

Formally, Hj is any function of {xj, yj, ξj,6aj}. Now,
define

hj ≡ Hj − E
(
Hj|xj−1, yj−1, ξj−1,6aj−1

)
(5)

as the discrepancy between the realized Hj and the
model-predicted Hj. Notice, in particular, that the
previous conditional expectation is what the model
predicts for the next acceptedmovie after j − 1, not the
next arrival after j − 1.
By the law of iterated expectation, E(hj) � 0. In-

tuitively, what this moment condition says is that,
under the right parameters, the prediction errors of
the model should be mean-zero. Because the condi-
tional expectation in (5) does not have a closed-form
expression, E(hj) needs to be evaluated through sim-
ulation. I follow the standard procedure of the method
of simulated moments. Basically, I search for the pa-
rameter values that bring 1

n−k+1
∑n

j�k hj closest to zero,
where k is the first movie produced in 1995. Again, the
data in 1975–1994 is used as the initial condition.
One major challenge in estimation with a selected

sample lies in choosing the moments to ensure that
the parameters are identified. Here, the choices of
the moments are specified by the entries of Hj.
I give the intuitions on identification and specify Hj
accordingly.

5.3. Identification
I focus on the parameters for which the identification
is less obvious. Thefirst parameter is the arrival rate of
candidates, η. It is not directly observed in the data,
and the identification actually relies on a normali-
zation made in the model. More specifically, because
the data only contains the acceptedmovie candidates,
from an observational point of view, the effect of an
increase in the arrival rate η can be exactly offset by a
proportional decrease in the acceptance probability
for every candidate movie. So to identify η requires
fixing the acceptance probability for certain type of
candidates. This has been done in Section 4.3 for the
candidates with π̃j � bj, whose acceptance probability
is fixed at Pr(ζj > 0) � 1 − e−1. Of course, the identifi-
cation does not come for free; the value of η is ad hoc to
the normalization. In particular, the estimate for η
cannot be interpreted literally as the empirical rate at
which studios receive scripts.17

The coefficient of risk aversion, α, can be identified
from the average budget size in the data. Intuitively,
the risks associated with a movie increase with its
budget size, so a higher α should result in a lower
acceptance probability for the bigger-budget candi-
dates. In addition, α can also be identified from
the joint distribution between movie budget and
imitativeness (as measured by the number of prior
similar movies). The intuition is that a smaller budget
and a higher imitativeness are both ways to lower
risks, so the level of α affects the extent to which the
two substitute each other in studios’ decisions.
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The scale of the decision shocks, ρ, is identified from
the average level of ROI in the data. Intuitively, ρ cali-
brates the extent to which the investment decision is
based on the candidate’s expected ROI versus the
shocks. When ρ is smaller, the decisions are driven
more by the candidate’s expected ROI, meaning that
the accepted movies will have higher ROIs (or latent
qualities).

The other parameters whose identifications are not
obvious pertain to the link formation process. Thefirst
of these parameters is ω. A larger ω gives a stronger
tendency for the imitated nodes to be neighbors of
each other. So ω can be identified by the degree of
clustering in the network (see Section 3). The second
parameter is γ. A larger γ implies more atypical links,
so it can be identified by the average atypicality of the
movies in the data. Finally, parameter ι is identified
by the percentage of movies in the data that are novel.

With this said, I include the following entries in Hj:
(1) the time elapsed since last movie production,
that is, aj − aj−1; (2) a dummy indicating whether j is
novel; (3) the log number of j’s prior similar movies;
(4) average log budget of j’s prior similar movies;
(5) average age of j’s prior similar movies at time
aj; (6) log budget bj; (7) the absolute difference between
bj and the average budget of j’s prior similar movies;
(8) log budget bj times a dummy indicating whether j
is novel; (9) log number of triangles created by j in Yaj ;
and (10) the latent quality ξj.

5.4. Parameter Estimates
Table 7 displays the estimates for the demand-side
parameters. Column (1) displays the estimates from
an OLS regression of the revenue Equation (4),

column (2) displays the full GMM estimates; and
column (3) displays the GMM estimates in which
some observed characteristics are dropped from xj.
The results here conform to those in the reduced-

form analysis (Table 5), so I shorten the discussion to
focus on several important points. First, λ is signifi-
cant, which indicates a positive correlation between
the ξ’s (latent qualities) of similarmovies. Second,φ is
significantly less than one, which indicates that the
correlation between the ξ’s of twomoviesdecreaseswith
the gap between their release dates. This reflects time-
varying consumer tastes. Third, a balanced level of atyp-
icality has a significant and positive effect on box-office
demand. In view of reduced-form results, the variable
balanced atypicality here is defined as the negative of
the distance between the movie’s atypicality level
and 0.25. Forth, the main source for the prediction of
ROI is the similarity network; the added prediction
power from the observed characteristics, such as genre,
rating, and the quality of the crew, is only marginal.
The overall demand model fit can be compared

with previous works, which mostly consider post-
production factors. Einav (2007) accounts for com-
petition in theaters, and the R2 for movie demand is
0.39; Ainslie et al. (2005) additionally allows stronger
competition within the same genre, and R2 is 0.46 and
rises to 0.61 if the number of screens is also used as an
explanatory variable (R2 for ROI, unfortunately, was
almost never reported). Generally, such comparison
can be made only roughly because of differences in
data sample andmodeling choice, but it suggests that
my model captures the demand reasonably well even
when compared with more complex models that
account for postproduction factors. Table 8 displays

Table 7. Model Parameter Estimates, Demand Side

(1) (2) (3)

Genre dummies Yes Yes
Log budget 1.09 (0.03) 1.02 (0.04) 1.05 (0.03)
Trend −0.0217 (0.005) −0.0132 (0.007) −0.0085 (0.008)
Seasonality 0.142 (0.05) 0.142 (0.05) 0.166 (0.04)
Rating as restricted −0.22 (0.06) −0.122 (0.06)
Star actor −0.0153 (0.06) 0.0155 (0.06)
Star director 0.0243 (0.07) 0.0519 (0.06)
Star writer 0.138 (0.07) 0.112 (0.06)
Balanced atypicality 0.767 (0.13) 0.404 (0.14) 0.472 (0.13)
Parameters for latent quality:
Similarity weight (λ) 0.249 (0.05) 0.274 (0.06)
Discounting factor (φ) 0.914 (0.05) 0.911 (0.04)
Standard deviation (σ) 1.71 (0.04) 1.74 (0.04)

R2 (log box office) 0.528 0.572 0.564
R2 (log ROI) 0.077 0.163 0.147

Notes. Column (1) displays the OLS estimates of Equation (4). Columns (2) and (3) display the GMM
estimates. The numbers in parentheses are standard errors. The standard errors in columns (1) and
(2) are computed by asymptotic formulas; the standard errors in column (3) are bootstrapped (see
appendix). The regressor “balanced atypicality” is defined as the negative absolute difference between the
movie’s atypicality and 0.25.
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the estimates for the supply-side parameters. First
shown is the yearly arrival rate of the movie candi-
dates. As discussed, the identification of η relies on a
normalization of the acceptance probability in the
model, so η should not be literally interpreted as an
estimate of the number of proposals that studios
actually receive in a year. However, conditional on
this normalization, the estimate of η implies that
around 59% of the candidates got rejected.

Next shown in Table 8 are the parameters for the
imitation process (or the link-formation process). All
the estimates have expected signs. In particular, θ is
estimated to be significantly negative, implying that
there is a tendency to imitate the more recent movies;
parameter ω is significantly positive, consistent with
the substantial clustering observed in the network;
the estimate of parameter γ is in line with the level of
atypical combinations that we saw in the descriptive
analysis (Figure 4).

Last shown in Table 8 are the parameters for the
studio’s investment decisions. The coefficient of the
risk aversion, α, is estimated to be statistically sig-
nificant. It is also economically significant, which is
shown in Figure 6. The top graph takes the estimate
for α and plots a candidate’s risk-adjusted ROI, π̃j/bj,
as a function of the uncertainty in ξj. The bottom
graph plots the same function except that it lets
α → 0. The clear differences between the two graphs
tell us that risk aversion plays a substantial role in
studios’ investment decisions.

An interesting observation about Figure 6 is that, for
a small-budget candidate, the risk-adjusted ROI in-
creases with the level of uncertainty regardless of
whether α is at the estimated level or set toward zero.
This appears to go against the usual intuition about
risk aversion. However, one needs to remember that
there is a lower bound on howmuch amovie can lose:
the worst scenario is not earning a single penny in
the box office and losing the entire budget. So, if a

candidate requires only a small budget, there is little
to lose. In this case, the main effect of a higher level of
uncertainty is increasing the potential gain of the in-
vestment rather than increasing the risks. As a result,
interestingly, novelty actually makes small-budget can-
didates more attractive of an investment.
Finally, given all the parameter estimates, there is the

question of howwell the full model reproduces patterns
in the data. In the appendix, I test the model on several
key data distributions. The fit is exceptional considering
the level of abstraction of the model.

6. Counterfactual
The preceding analyses have shown that, at the level
of each individual movie, a balanced level of atypi-
cality has a positive effect on ROI (Tables 5 and 7).
However, this does not mean that, at the collective
level or in the longer run, the effect onROI is definitely
still positive. Over time, any small change in the
combinatorial process (e.g., an increase in atypicality)
will gradually change the similarity structure of the
market, which, in return, affects the combinatorial
process. Such dynamics have important implications
for the profitability of the industry and consumer
welfare; however, it is difficult to account for them in
amodel-free analysis. This promptsme to conduct the
counterfactuals in this section. A more comprehen-
sive understanding of the effects of atypical combi-
nation is of interest not only in the context of movies
but also for other types of creative works.

6.1. Simulation
Here I give a brief description of the technical aspects
of the counterfactual analysis. Readers not interested
in the technical details can safely skip to the results.
In my model, the average level of atypicality for

the movie candidates is set by parameter γ. Notice
that γ does not change the innovation rate (which is
set by parameter ι) or the number of movies that a

Table 8. Model Parameter Estimates, Supply Side

Parameters Estimates Standard error

Number of yearly arrivals (η) 407.4 (19.3)
Similarity structure:
Innovation probability (ι) 0.189 (0.014)
Propensity to imitate older movies (θ) −0.153 (0.004)
Propensity to imitate (ν) 0.887 (0.014)
Propensity to cluster (ω) 1.568 (0.067)
Probability of atypical combination (γ) 0.762 (0.008)

Budget distribution:
Mean budget for novel candidates (μ) 75.8 (9.8)
Dispersion parameter (χ) 6.32 (0.19)

Go/no-go decision:
Risk aversion (α) 0.0163 (0.003)
Scale parameter of shocks (ρ) 0.299 (0.034)

Note. The standard errors are bootstrapped; see the appendix for more details.
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candidate imitates (which is set by parameter ν).
Rather, it specifically calibrates the balance between
staying in a conventional zone versus reaching out-
side for atypical elements.

I simulate the model under different values of γ.
The simulation starts with an empty set ofmovies and
gradually grows the similarity network. Because the
goal here is about the long-term implications, I focus
on the steady states. For the model to have a steady
state, I set the demand trend (a coefficient in β) to zero
and fix the market condition mt constant at the 2014
level. A “burn-in” period of the simulated data is
discarded. The data after the burn-in period is used to
visualize the network structure and compute various
steady-state statistics, such as average budget size
and average ROI.

6.2. Results
Figure 7 displays the networks formed under four
different levels of γ. Recall that γ is the probability of
creating atypical links; a higher γ implies a higher

average level of atypicality. The four networks are
drawn with the force-directed method that places
linked nodes close to each other (in the exact same way
that Figure 2 visualizes the network in the real data).
The network for γ � 0.05 is given in the top left plot.

In this case, there is very little atypicality: each movie
candidate tries to stay within its own conventional
zone. Consequently, the network is divided into many
groups with very sparse connections between them.
These groups represent a diverse range of distinctive
movie types.Conceptually, ananalogy canbemadewith
citation networks: if there is little cross-disciplinary
work, science would break into many specialized fields.
As γ increases, the pattern of isolation slowly

transforms to a pattern of integration. At γ � 0.2, the
network still exhibits diverse groups of movies but
not as isolated as those under γ � 0.05. At γ � 0.5, the
network approaches the one observed in the real data,
in which a core is visually present (Figure 2). In this
case of γ � 0.9, imitation is really not specifically fo-
cused on any stream of movies but becomes rather
general. As a result, there develops a great deal of
commonality among movies, which manifests itself
as a larger and tighter core.
Figure 7 indicates an interesting disparity in the

meaning of diversity between the individual and
collective levels. For any individual movie, atypical
combination sets it apart from its conventional realm,
which implies individual diversity. However, for the
movie population in the long run, atypical combi-
nation actually leads to commonality.
Given that different values of γ lead to different

similarity structures of the market, the next question
is how these different structures affect the ROI. This
is answered by Table 9. The first column displays,
under different values of γ, the average risk-adjusted
ROI of the movies that are accepted. It is seen that
the average ROI is downright decreasing in γ. Note
that Table 9 assumes the parameter values when
atypicality has an individual-level demand effect
(i.e., the variable balanced atypicality in Table 7). To see
whether the individual-level effect is driving the
result, Table 10 recomputes the counterfactuals with
this effect removed. The negative relation between
the ROI and γ still holds. Notice that compared
with Table 9, the ROI is slightly lower at moderate γ
but higher at large γ; this is consistent with the op-
timal point of atypicality at the individual level
(around 0.25).
The result points out another disparity between the

individual and collective level. For any individual
movie, atypicality can have a positive effect on its box
office. However, for the whole industry in the long
run, profitability is actually negatively related to any
degree of atypical combination. The reason for this

Figure 6. Risk-adjusted ROI as a Function of Movie
Uncertainty and Budget Size

Notes. Both plots display the risk-adjusted ROI, π̃j/bj, of a hypothetical
movie j as a function of the budget size bj and variance in ξj. The top
plot uses the estimatedparameter values, and the bottomplot setsα →
0 so that firms are risk neutral.
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negative relation lies in the similarity structure: as
shown in Figure 7, the movie population is more
diverse under a smaller γ. As a result, the movie
candidates are more diverse too; in particular, the
distribution of the risk-adjusted ROIs in the candi-
date pool ismore dispersed (as evidenced by the third
columns of Tables 9 and 10, which display the stan-
dard deviation of the risk-adjusted ROIs among all

the candidates). The more dispersed candidate
distribution is an advantage in the presence of
studio selection because the better end of that dis-
tribution enjoys higher acceptance rates. The wider
the candidate distribution is, the better the ac-
ceptedmovies are on average. In addition, better movie
releases also foster better future candidates, resulting in
a virtuous circle.

Figure 7. Network Structures Under Different γ’s

Notes. Each network is taken from the model simulation at its steady state for a period of 18 years (the same length as the data sample). The
networks are drawn by force-directed placement (Fruchterman and Reingold 1991). Parameter γ calibrates the average level of atypicality of
movie candidates.

Table 9. Risk-Adjusted ROI Under Different γ’s

Probability of atypical
combination (γ)

Average of the
accepted (%)

Average of the
rejected (%)

Standard deviation
of all (%)

Average budget of
accepted

Yearly
productions

0 8.78 (0.10) −25.6 (0.03) 31.8 (0.07) 33.2 (0.1) 202 (0.4)
0.05 7.82 (0.09) −25.8 (0.05) 31.3 (0.06) 33.4 (0.1) 199 (0.3)
0.2 6.09 (0.10) −26.1 (0.05) 30.3 (0.06) 35 (0.1) 194 (0.4)
0.5 3.12 (0.07) −27.1 (0.04) 28.9 (0.04) 36.5 (0.1) 184 (0.3)
0.9 −2.92 (0.08) −30.3 (0.06) 26.3 (0.04) 37.2 (0.1) 160 (0.4)

Notes. The statistics in the first three columns are with respect to the risk-adjusted ROIs (expressed in percentage return). Parameter γ varies
across rows; the other parameters are set at their estimates.
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6.3. Discussions
The counterfactuals reveal a mechanism through
which atypical combination exerts a negative effect
over time. In the context of motion pictures, this
negative force overcomes the positive effect of atypi-
cality on individual movies. Whether this is also the
case in the contexts of other creativeworks depends on
the relative sizes of the two effects. On citation net-
works, Uzzi et al. (2013) found a very large posi-
tive effect of atypicality on the scientific impact of
individual papers. Given this, some level of atypi-
cal combination (which leads to cross-disciplinary
research) is likely beneficial overall. However, an
over-emphasis on a cross-disciplinary approach has
double drawbacks: it raises little impact for indi-
vidual papers and introduces a lot of commonality
across papers, suppressing the development of spe-
cialized fields.

The counterfactuals also produce a seemingly
contradictory result on the diversity at the individual
versus collective level. The result actually can be
related to social networks. Scholars have been fa-
miliar with opposing views on the cultural impact of
globalization. The process of globalization brings
together individuals with very different backgrounds
and lifestyles. Although some people see it creating
new cultural mixes, some people see it causing a
homogenized society that mostly evolves around one
dominating culture (Kraidy 2005). This bears quite a
resemblance, at least at a conceptual level, with the
counterfactual finding.

7. Concluding Remarks
Although the analyses in this paper have been tailored
toward the motion picture industry, the modeling
approach and most concepts (e.g., the core-peripheral
structure, clustering, communities, atypicality) can be
applied to other complex market structures. For ex-
ample, there are millions of mobile apps listed on
Google Play or Apple’s App Store, many of which
have similar functions. Do apps follow a common
trend or diverge into distinctive groups? Is atypicality
rewarded by a higher chance of success? To what
extent should apps differentiate versus imitate each
other? Is it more important for developers to innovate

or refine an existing idea?What are some appropriate
policies for the platforms to promote app quality as
well as diversity? Similar questions can be asked
about the hundreds of thousands of venture projects
on crowdfunding platforms. An appealing aspect
of crowdfunding platforms is that the similarity be-
tween two projects can be directly measured using
text-mining techniques. More generally, because net-
work tools are designed to tackle complex relational
patterns across a large number of individual objects, in
the era of big data and the long tail (Anderson 2006), it
seems more appropriate than ever to deploy these
tools in the study of markets.

Appendix
A.1. Construction of the Similarity Network
This part of the appendix details the construction of
the similarity network, an outline of which was given
in Section 2.2. The network is constructed using two
data sets: the primary data set is the individual ratings
provided by MovieLens (www.grouplens.org), and
the other data set includes the movie suggestions on
IMDb and Amazon Instant Video (scraped anony-
mously by me in October 2015).
The similarity score between two items is com-

monly calculated as the correlation or a correlation-
like measure between the individual ratings for the
two items (Desrosiers and Karypis 2011). Table A.1
provides summary statistics on the number of com-
mon raters (i.e., the individuals who rated both
movies in a pair) in the MovieLens data. Given that
my sample contains n � 4, 445 movies, there are
n(n − 1)/2 � 9.88 million movie pairs. About one third
of the pairs have more than 100 common raters. For
these pairs, a fairly precise similarity measure can be
calculated directly from the MovieLens data. About
one fourth of the pairs have fewer than 10 common
raters. This is when the IMDb/Amazon data are most
helpful.
To integrate the information in the two data sets,

I treat the similarity as a latent factor; both the
MovieLens ratings and the IMDb/Amazon recom-
mendations are manifests of the latent similarities.
This latent factor model also allows me to correct the
potential biases in IMDb/Amazon recommendations

Table 10. Risk-Adjusted ROI Under Different γ’s, Demand Effect of Atypicality Removed

Probability of atypical
combination (γ)

Average of the
accepted (%)

Average of the
rejected (%)

Standard deviation
of all (%)

Average budget
of accepted

Yearly
productions

0 8.78 (0.10) −25.6 (0.03) 31.8 (0.07) 33.2 (0.1) 202 (0.4)
0.05 7.66 (0.08) −25.8 (0.05) 31.2 (0.04) 33.8 (0.1) 199 (0.4)
0.2 5.93 (0.08) −26.2 (0.05) 30.2 (0.05) 34.7 (0.1) 193 (0.4)
0.5 3.42 (0.07) −27 (0.05) 29 (0.04) 35.6 (0.1) 185 (0.3)
0.9 −0.15 (0.07) −27.8 (0.05) 26.9 (0.04) 36.3 (0.1) 174 (0.4)

Note. This table is the same as Table 9 except that the atypicality of a movie no longer enters consumer utility.
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introduced by factors such as the popularities and
ages of the movies. I lay out the technical details as
follows. However, it is important to note thatmy goal
here is to provide a sensible way to integrate the two
data sets, not a statistical model in the strict sense.

Fix a pair of movies. Let ĉ denote the correlation be-
tween the ratings for the two movies in the MovieLens
data. This correlation is calculated based on a sample of k
common raters. Let the population correlation be c.
For inferences, it is usually easier to work with the
transformations ŝ ≡ atanh(ĉ) and s ≡ atanh(c) (the
atanh function is a strictly increasing mapping from
(−1, 1) to R). I regard s as the measure of similarity
between the two movies. By Fisher approximation,

ŝ ∼ 1 s,
1

k − 3

( )
. (A.1)

Intuitively, the larger k is, the more precisely ŝ mea-
sures s. Without further information, ŝ would be the
best estimate of s. However, ŝ is not the only in-
formation I have about s: the recommendations on
IMDb and Amazon also depend on s. Let g ∈ {0, 1}
denote whether there is a recommendation between
the twomovies in the pair on either IMDb or Amazon.
It is reasonable to expect that the chance for g � 1
increases with s, so I assume a probit model:

Pr g � 1|s( ) � Φ τs + ψ′w
( )

, (A.2)

where ψ and τ are parameters to be estimated and w
is a vector of additional observed factors that may
affect g, such as the ages and popularities of the
two movies. Here, the most straightforward way to
estimate the parameters is the maximum likelihood
(MLE). The likelihood of jointly observing ŝ and g is
given by

Pr(ŝ, g) �
∫ +∞

−∞
Pr g|s( ) · Pr ŝ|s( ) · Pr s( )ds,

where Pr g|s( )
is given by (A.2) and Pr ŝ|s( ) is given

by (A.1). Pr s( ) is a prior, which I specify to be a
normal distribution whose mean and standard de-
viation are to be estimated as parameters. The ob-
jective function for the MLE sums the log of Pr(ŝ, g)
over the n(n−1)

2 movie pairs. It is useful to mention that

the preceding integral has a closed-form expression,
which helps speed up the computation of MLE.
However, the expression is quite lengthy, so I omit
it here.
After the parameter values are estimated, I can

compute my best estimate of s given both ŝ and g:

E s|ŝ, g( ) � ∫ +∞

−∞
sPr s|ŝ, g( )

ds

� 1
Pr(ŝ, g)

∫ +∞

−∞
sPr ŝ, g|s( ) · Pr s( )ds

� 1
Pr(ŝ, g)

∫ +∞

−∞
sPr g|s( ) · Pr ŝ|s( ) · Pr s( )ds.

It can be shown that E s|ŝ, g( )
is increasing with both ŝ

and g, which is intuitive.
Table A.2 displays the parameter estimates from

MLE. Coefficient τ is significant and large, indicating
that similarity is a driving force behind the movie rec-
ommendations made on IMDb/Amazon. The coefficient
for thepair’s average age is negative; the coefficient for
the pair’s popularity is positive. The signs are ex-
pected because the websites can increase traffic/sales
by directing consumers to the more recent and pop-
ular items.
Given the parameter values, I compute the value of

E(s|ŝ, g) for each movie pair. I define that a pair is
similar if E(s|ŝ, g)> 0.45, which is approximately the
3% right-tail cutoff of the prior, Pr(s). This also gives
me a similarity network whose density is roughly at
the same level as the network in which the link is

Table A.1. Common Raters in MovieLens Data

All pairs Pairs in/after 1995

k ≥ 100 32.7% 31.1%
k ≥ 10 75.4% 76.6%
k ≥ 10 or both appear on Amazon 92.4% 94.7%
k ≥ 10 or both appear on IMDb 100% 100%
Total count 9.877e6 4.739e6

Notes. k is the number of the individuals in the MovieLens data who have rated both movies in the pair.
“Pairs in/after 1995” refer to the pairs in which the starting dates of both movies are in or after 1995.

Table A.2. Parameter Estimates for Construction of the
Similarity Network

Point estimate Standard error

Prior mean 0.2405 (5.87e-5)
Prior standard deviation 0.1140 (5.13e-5)
τ 5.414 (0.027)
ψ, constant −5.429 (0.015)
ψ, pair’s average age −0.06444 (0.0015)
ψ, pair’s average popularity 0.2513 (0.0012)
N 9.88×106

Notes. The pair’s average popularity is proxied by the log number of
common raters. An alternative proxy is the log number of raters for
onemovie plus the log number of raters for the other movie; this does
not change the coefficient estimates significantly.
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defined directly by whether there is an IMDb or
Amazon recommendation between the two movies.
The main results of the paper are not sensitive to the
cutoff choice (see Section A.5).

A.2. Studio’s Belief
The goal of this part of the appendix is to derive the
general expression for Pr(ξj|^t), the studio’s belief of
the latent quality of a candidate movie. Because the
exercises in the paper require repeated computation
of this belief, I also discuss ways to speed up the
computation.

Fix a time point t. Use R � {k : rk < t} to denote the
set of released movies and Q � {k : ak ≤ t, rk ≥ t} to
denote the set of the yet-to-be-released movies
(i.e., still in production). Notice that if there is a
candidate movie j that arrives at t, then Q also in-
cludes that candidate at t. Use ξR to denote {ξk, k ∈ R}
and similarly for ξQ. Recall that ^t includes ξR but
not ξQ. Also notice that (^t, ξQ) contains 6t. The
probability of reaching a particular (^t, ξQ) can be
written as

Pr ^t, ξQ
( ) � Ψ(^t) · ∏

k∈Q∪R
Pr ξk |xk, yk,6ak

( )
.

In this expression, Pr(ξk |xk, yk,6ak ) is the generating
probability of ξk as specified in (3). The first term, Ψ,
represents the probability of every element other than
the latent qualities (e.g., the candidate arrival, link
formation, generation of the budget size, and in-
vestment decisions). Because none of these elements
depends on ξQ, I can writeΨ as a function of ^t only.
However, Ψ does depend on ξR.

By the definition of conditional density, I have

Pr ξQ|^t
( ) � Pr ^t, ξQ

( ) · ∫
Pr ^t, ξQ

( )
dξQ

[ ]−1
� ∏

k∈Q∪R
Pr ξk |xk, yk,6ak

( )[ ]

·
∫

∏
k∈Q∪R

Pr ξk |xk, yk,6ak

( )
dξQ

[ ]−1
.

Notice that, as specified in (3), each Pr(ξk |xk, yk,6ak ) is a
normal distribution that depends on some other
earlier entries in ξQ∪R. As a result, when seen as a
function of ξQ∪R, the product term ∏k∈Q∪R Pr(ξk |xk,
yk, Sak ) coincides with the probability density of a
multivariate normal distribution (Ben-Gal 2007).
Let me denote this density by p(ξQ∪R), so I have
Pr(ξQ|^t) � p(ξQ|ξR).

One representation of the density p(ξQ∪R) can be
derived as follows. Index movies in Q ∪ R by arrival
time so that a1 ≤ . . . ≤ ak−1 ≤ ak ≤ . . . Let V be a

diagonal matrix and W be a lower triangular matrix,
in which, for all �, k ∈ Q ∪ R and �< k,

Vkk � 1 + λ
∑

�∈Q∪R
Y�,kφ

|r�−rk |
( )−1

,

Wk� � λY�,kφ
|r�−rk |Vkk.

Then, for all k ∈ Q ∪ R,

ξk �
∑

�∈Q∪R
Wk�ξ� + vk, vk ∼ 1(0, σ2Vkk).

In matrix form, we can write ξ � Wξ + v, which im-
plies that

p(ξQ∪R) ∼ 1 0, σ2(I −W)−1V(I −W′)−1[ ]
.

Both p(ξQ|ξR) and p(ξj|ξR) can be readily computed
from p(ξQ∪R) using the standard formula for condi-
tional normal distribution.
For the computationofp(ξj|ξR), the inversionof (I −W)

can be a very time-consuming step, especially when
the size of Q ∪ R is large. There is a way to signifi-
cantly simplify the computation. The idea is to re-
strict attention to a subset ofQ ∪ R such that the nodes
outside this subset provide no further information
toward ξj.
The idea can be illustrated with the example in

Figure A.1. The nodes are placed from left to right by
arrival date. A hollow node indicates that the movie
has not been released yet; a solid node indicates
otherwise. Only the blue-colored nodes are needed to
compute p(ξj|ξR). For example, the value of ξ10 is not
needed because the only way that the realization of
ξ10 can affect ξj is through ξ1, whose value is already
known by t. On the other hand, ξ2 is needed because it
is informative about the unknown value of ξ3, which
is informative about the unknown ξ6, which is then
informative about ξj. Instead of working with the
original definitions of R and Q, I can redefine R as the
set of blue solid nodes andQ as the set of blue hollow
nodes. It can be shown that p(ξj|ξR) remains the same
after the redefinitions.

A.3. Monte Carlo and Bootstrap
I use a Monte Carlo experiment to check whether my
estimation algorithm (Section 5) is able to recover the
model parameters. First, I set the “true” parameter
values at their point estimates in Tables 7 and 8. Next,
I simulate the model from 1995 to 2012 under these
parameter values, conditional on the real data before
1995. Finally, I apply the estimation algorithm in
Section 5 to this simulated data set. The experiment is
repeated 25 times to evaluate the distribution of the
estimator. The biases (i.e., the difference between the
estimator’s mean and the true parameter value) are
found to be small; the ratios between the biases and

Wei: Similarity Network of Movies
20 Management Science, Articles in Advance, pp. 1–25, © 2019 INFORMS



the parameter values all fall between−5%and 5%. The
standard deviations of the estimator are reported as
the bootstrapped standard errors in Tables 7 and 8.

A.4. Model Fit
I examine how well the estimated model reproduces
four key data distributions: (i) the budget distribu-
tion, (ii) the distribution of ROI, (iii) the distribution of
the number of prior similar movies, and (iv) the joint
distribution between the budget and the number of
prior similar movies. Specifically, for eachmovie j in/
after 1995 in the data, I simulate a model-predicted
counterpart of j conditional on the data up to time aj−1.
The simulation starts at aj−1 and takes the first ac-
cepted candidate as the model-predicted counterpart
of j. In Figure A.2, the plots on the left side show
the distributions in the real data, and the plots on the
right side show the distributions of the simulated
counterparts.

The fit is exceptional considering the simplicity of
the model. Admittedly, there are patterns in the data
that the model fails to perfectly reproduce. For ex-
ample, the model seems to under-produce the very
big-budget as well as the very small-budget movies.
This is probably because the model assumes a single
coefficient of risk aversion although, in reality, there

is an array of production companies that are het-
erogeneous in terms of financial and risk capacities.
Keep inmind that the data set contains a diverse set of
movies over a long period of time aswell as a complex
network structure among these movies. Thus, it is not

Table A.3. Demand-side Parameter Estimates with Data/Model Variations

Benchmark Ex ante network Sampled network Sparser network Denser network Alternative imitation

Log budget 1.05 (0.03) 1.04 1.06 1.06 1.05 1.05
Trend −0.0085 (0.008) −0.0090 −0.0111 −0.0108 −0.0062 −0.0085
Seasonality 0.166 (0.04) 0.149 0.152 0.179 0.163 0.166
Balanced atypicality 0.472 (0.13) 0.509 0.473 0.448 0.442 0.472
Parameters for ξ:
Similarity weight (λ) 0.274 (0.06) 0.295 0.261 0.268 0.271 0.274
Discounting (φ) 0.911 (0.04) 0.920 0.929 0.919 0.904 0.911
Standard deviation (σ) 1.74 (0.04) 1.75 1.73 1.72 1.75 1.74

R2 (log box office) 0.564 0.57 0.556 0.562 0.565 0.564
R2 (log ROI) 0.147 0.158 0.138 0.143 0.149 0.147

Notes. The benchmark estimates are copied from column (3) of Table 7. Numbers in parentheses are standard errors.

Figure A.1. (Color online) Which Nodes Are (Not) Needed
to Compute p(ξj|ξR)?

Notes. Solid nodes represent released movies; hollow nodes represent
movies that are currently in production. The horizontal position of a
node indicates its arrival time.

Figure A.2. Model Fit

Notes. The four plots on the left side are based on the data, and the
four plots on the right side are based on the simulation. From top
to bottom, each plot shows, respectively, (i) the distribution of the
log budget, (ii) the distribution of log ROI, (iii) the distribution of the
log number of prior similar movies, and (iv) the scatter plot of the log
number of prior similar movies against the log budget.
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surprising, given the level of model abstraction, that
there are some details in the data that the model does
not capture. Enriching the model is left for future
research.

A.5. Robustness Checks
I estimate several variations of the data/model and
recompute the counterfactual exercises accordingly.
The goal is to see how sensitive the paper’s conclu-
sions are with respect to these variations. The results
are displayed in Tables A.3–A.5. In each table, the first
column reproduces the benchmark results, and each
subsequent column displays one of the data/model
variations. In summary, in all the variations consid-
ered, there are no qualitative changes in the model es-
timates or counterfactual results compared with the
benchmark. I give the details of each variation.

The first variation (“ex ante network”) is motivated
by a concern over the revealed-preference approach
to construct the network. Recall that the main reason
for me to adopt this approach is that it captures simi-
larities comprehensively, particularly with regards to
the unobserved (or difficult-to-quantify) movie char-
acteristics. However, to the extent that the consumer
ratings are generated after movie releases, the revealed
similarities may be shaped by postrelease shocks and,
thus, different from the ex ante similarities that studios
could perceive at the time of green-lighting decisions.

In this sense, the revealed similarities may be “too
comprehensive.” Given this, a natural robustness
check is to modify the network so that it relies less on
the revealed similarities but more on the observed
characteristic similarities. This makes the network less
prone to postrelease shocks if there are any. (At the
same time, it adds a bias toward observed characteristic
similarities over unobserved characteristic similarities,
so there is a trade-off.)
More specifically, the modified network is con-

structed as follows. First, I regress the similarity es-
timate E(s|ŝ, g) (as defined in Section A.1) on the
observed characteristics of movie pairs, such as
whether the pair share leading actors andwhether the
pair’s genres overlap (as in Table 1). I use the re-
gression to compute an adjusted value for E(s|ŝ, g)
by scaling up the coefficients for the regressors by
50%. Rather than assigning the top percentiles of
the original values of E(s|ŝ, g) as network links, I as-
sign the top percentiles of the adjusted values as
the links. The difference between this network and the
benchmark network is nontrivial (Jaccard index 0.85).
The motivation for the second variation (“sampled

network”) is to see how data incompleteness would
affect the conclusions of the paper. It reestimates the
model with a large 90% random sample of the 4,445
movies used in the benchmark estimation. Intuitively,
the network becomes more fragmented (some paths

Table A.4. Supply-side Parameter Estimates with Data/Model Variations

Parameters Benchmark Ex ante network Sampled network Sparser network Denser network Alternative imitation

Yearly arrivals (η) 407.4 (19.3) 423.8 366.1 403.1 406.6 407.9
Similarity:
Innovation prob. (ι) 0.189 (0.014) 0.168 0.192 0.206 0.168 0.191
Older movies (θ) −0.153 (0.004) −0.150 −0.158 −0.158 −0.144 −0.153
Degree (ν) 0.887 (0.014) 0.861 0.892 0.896 0.882 0.889
Cluster (ω) 1.568 (0.067) 1.617 1.520 1.610 1.528 1.493
Atypicality (γ) 0.762 (0.008) 0.742 0.756 0.755 0.762 0.765

Budget distribution:
Mean for novel (μ) 75.8 (9.8) 78.6 67.3 67.3 75.4 75.4
Dispersion (χ) 6.32 (0.19) 5.86 6.54 6.30 6.37 6.34

Go/no-go decision:
Risk aversion (α) 0.0163 (0.003) 0.0174 0.0167 0.0156 0.0165 0.0161
Scale of shocks (ρ) 0.299 (0.034) 0.295 0.292 0.284 0.293 0.301

Note. The benchmark estimates are copied from Table 8.

Table A.5. Counterfactual Risk-adjusted ROI with Data/Model Variations

Probability of atypical
combination (γ) Benchmark (%) Ex ante network Sampled network Sparser network Denser network Alternative imitation

0 8.78 (0.10) 8.13 8.32 9.64 9.38 8.74
0.05 7.82 (0.09) 7.54 7.37 8.89 8.4 7.81
0.2 6.09 (0.10) 5.81 5.66 7.23 6.64 6.28
0.5 3.12 (0.07) 2.95 2.64 2.02 1.4 3.32
0.9 −2.92 (0.08) −2.87 −3.08 −1.12 −1.78 −2.38

Notes. The table displays the average risk-adjusted ROI (expressed in percentage return) of the accepted movies in the counterfactual. The
numbers in the benchmark column are copied from the first column in Table 9.
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connecting nodes in the full-sample network are
broken), and the average atypicality will increase.
This is indeed reflected in the model estimates. For an
average movie candidate, the ratio between the
number of atypical imitations (calibrated by γ) and
the total number of imitations (given by η and ν) is
increased compared with the benchmark. However,
the main conclusions of the paper are robust: (i) the
demand effect of balanced atypicality is still signifi-
cant (Table A.3), and (ii) in the long run, the risk-
adjusted ROI is still decreasing in γ (Table A.5).

The purpose of the third and fourth variations is to see
whether the results are sensitive to the cutoff choice in the
construction of the network. This cutoff applies to the
similarity estimate E(s|ŝ, g) and defines which level of
similarity warrants a link between a movie pair. The
“sparser network” uses a higher cutoff so that its
density is 10% lower than the benchmark network.
The “denser network” uses a lower cutoff so that its
density is 10% higher than the benchmark.

The last variation tests the robustness with respect
to how atypical combination is modeled. Recall that, in
the benchmark case, the atypical imitations are modeled
as rewiring of links after the typical imitations. As an
alternative, here I specify that atypical and typical
imitations happen in parallel and independently of
each other. Specifically, atypical links are formed by
randomly selecting a set of existing nodes with the
probability of selecting a particular node k propor-
tional to exp(θ|t − ak |). The cardinality of the set is
drawn from the geometric distribution (the discrete
analog of exponential distribution) with parameter
1 − γ. Typical links are formed in the same way as
before. The number of typical links equals the dif-
ference between m∗ and the number of atypical links.
This robustness check shows that the conclusions
of the paper are not restricted to the specific way
of modeling atypical combinations in the bench-
mark model.
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Endnotes
1 See, for example, Mednick (1962), Price (1976), Becker (1982), Finke
et al. (1992), Weitzman (1998), Uzzi et al. (2013), Toubia and Netzer
(2016), and Strang (2016).
2 In marketing, studies on product networks (in contrast to social
networks) include Dellarocas et al. (2010), Goldenberg and
Reuchman (2012), Oestreicher-Singer and Sundararajan (2012),
and Wei (2018). Outside marketing, a notable study on product
networks is Hidalgo et al. (2007). Generally speaking, much less
attention has been given to the networks of products comparedwith
social networks.
3There have beenmany discussions onmovie imitation. For example,
see Squire (2005). In media, see “Hollywood Learns Originality Does
Not Pay” in Financial Times (May 29, 2015) and “Are Blockbusters
Destroying the Movies?” in the New York Times ( January 6, 2015). On
movie uncertainty, see De Vany and Walls (1996, 1999).
4There is a large literature in marketing on the movie industry, but
the vast majority of studies focus on the postproduction phase; few
focus on modeling the earlier investment decisions (Delre et al.
2017).
5 See Eliashberg et al. (2007) for an application of text analysis to
quantify a movie’s synopsis.
6Goettler and Leslie (2005) include microbudget movies, which re-
sults in a somewhat larger sample size per year.
7There might be the question of how time-varying consumer
preferences factor into the construction of the similarity network. In
terms of the characteristic space, the time-varying feature of con-
sumer preferences corresponds to the drifting of the distribution of
the consumers’ ideal points. The locations of movies, however, do
not change over time. So it holds true that if two movies are close
(i.e., similar), a consumer who likes one of them will tend to like
the other even though the aggregate consumer distribution may
change.
8Outside marketing, see Hidalgo et al. (2007), which also applies
the idea of using outcome data to uncover relations between
products.
9 It is common in the literature to rely on domestic box-office revenues
and production budgets to measure ROI althoughmovies also collect
revenues from subsequent markets (e.g., international and home
video). One reason is that the revenues in subsequent markets are
highly correlated with domestic box-office numbers (Goettler and
Leslie 2005, Einav 2007). The other reason is that the data coverage on
subsequent markets is relatively poor.
10 If the log box-office revenue is used as the dependent variable in
Table 5, all the coefficients stay the same except for the one in front of
log budget, which increases by exactly one. The values of R2 will rise
above 0.5. However, I choose to focus on the ROI because it is a closer
measure for the success of a movie; a moviemaking a large revenue is
still considered unsuccessful if the costs are even larger (often known
as “box-office bombs”).
11For a survey on studies of firm learning in marketing, see Ching
et al. (2017).
12Here I treat a movie’s release as a point in time. In reality, a movie
typically stays in theaters for six to eight weeks with the first two
weeks being most important, collecting about 60% of the movie’s
lifetime domestic box-office revenue. Given that my data spans a
period of decades, treating a few weeks as a time point seems
reasonable.
13 I treatmt as an exogenous time series. It is a known fact (as well as a
puzzle) that ticket price hardly varies across seasons and movies; see
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Orbach and Einav (2007) for more discussions. In addition, results are
not sensitive to the choice of the moviegoer population size.
14A technical issue here is that unless ν � 1, m∗ is generally not an
integer. In this case, I pick one of the two integers closest to m∗; the
probability of picking the larger integer is proportional to the distance
between m∗ and the smaller integer.
15Taken from Eliashberg et al. (2006).
16 Strictly speaking, the studio is uncertain of mrj . However, this is
a very small source of uncertainty compared with ξj. So I assume
that the studio can perfectly foresee mrj at the time of aj. Alterna-
tively, I may assume that the studio uses maj as the prediction of mrj ,
which turns out to make little difference in the estimates or
counterfactuals.
17 See Luo (2014) for a study on the market of movie scripts (which,
unfortunately, also lacks data on rejected scripts).
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