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Abstract—Darknet markets are e-commerce websites operating
on the darknet and have grown rapidly in recent years. Darknet
only allow cryptocurrencies as the payment methods, making
it hard for law enforcement to trace those illicit transactions.
In this paper, we present a method to identify vendors’ bitcoin
addresses by matching vendors’ feedback reviews with bitcoin
transactions in the public ledger. The problem is decomposed
into two steps in formulation. In Step 1, we solve a bounding
box matching between the set of feedback reviews and bitcoin
transactions. In Step 2, we find the bitcoin addresses with a
maximum coverage of the reviews. Baseline algorithm for Step 1
runs in quadratic time thus we develop a K-D tree to accelerate
the computing. Problem in Step 2 is NP-hard thus we develop
a greedy algorithm with an approximation ratio of (1 − 1/e)
based on the submodular property of the objective function.
We further propose a cost-effective algorithm to accelerate
both steps effectively. Comprehensive experimental results have
demonstrated the effectiveness and efficiency of the proposed
method.

Index Terms—bitcoin, darknet, submodular

I. INTRODUCTION

Illegal online sales have grown exponentially [1]. The

privacy of participants in illicit online transactions is protected

through both the darknet and cryptocurrency. The darknet

utilizes The Onion Router (Tor) network to hide users’ IP

addresses from the internet service provider. A darknet market

is a commercial website operating on the darknet. Users

can surf those web pages through the Tor browser without

worrying about the leakage of their IP addresses. Even users

are anonymous, darknet markets publish vendors’ feedback re-

views so that buyers can evaluate vendors’ reputation. Darknet

markets choose cryptocurrencies as payment currency mainly

because they are also anonymous. Both buyers and vendors

can trade anonymously through cryptocurrencies [2]. Unlike

traditional currencies, cryptocurrencies like Bitcoin [3] are

decentralized: there is no central authority responsible for the

issuance of cryptocurrencies and there is no need to involve a

trusted third-party like banks when making online transfers [4],

[5].

We focus on Bitcoin in this paper because Bitcoin is

the most popular cryptocurrency which is accepted by all

darknet markets [6]. Using blockchain and distributed ledger

technology, the Bitcoin system promises great transparency

and improved trust across transaction value chains [7], [8].

Without a third-party to ensure transaction, the Bitcoin system

publishes all of its history transaction data. The Bitcoin ledger

stores all transaction records in history which is public to

any Bitcoin users. A user wallet can own multiple bitcoin

addresses, which are the “pseudonymous identity” of this user

in the public ledger.

This paper aims at finding vendors’ Bitcoin addresses used

in the darknet markets by matching feedback reviews with

bitcoin transactions. To narrow down the scope of the problem,

we choose Bitcoin and Wall Street Market as a study example.

Each feedback review is matched to a bitcoin transaction

based on timestamp and value transferred in this transaction.

Therefore a Bitcoin address whose history transactions can

match more reviews of a vendor have a higher possibility to

belong to this vendor. Specifically, we decompose our problem

formulation into two sub-problems: Bounding Box Matching

Problem and Maximum Review Coverage Problem. In the

Bounding Box Matching Problem, we construct a bounding

box for each review and find matched Bitcoin transactions.

We build a K-D tree from massive Bitcoin transaction data

to achieve quick range searching in a bounding box. In

the Maximum Review Coverage Problem, we prove the NP-

Hardness of the problem. We exploit the submodular property

of the objective function and design a greedy algorithm with

an approximation ratio of (1− 1/e) to find a set of addresses

that can cover near-optimal product reviews received by one

vendor. Our method can discover the number of addresses

used by one vendor, realizing one-to-many mapping. We

further develop an algorithm that can effectively accelerate
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the matching and greedy algorithm.

Our contributions are as follows:

• We propose the problem of identifying the vendors’ Bit-

coin addresses by matching public Bitcoin transactions to

vendor’s feedback reviews in darknet markets. This prob-

lem is important because of two potential applications.

First, it helps law enforcement to trace illicit transactions.

Second, it reveals a privacy concern of cryptocurrencies

so helps better design new cryptocurrencies.

• We decompose the complicated problem into two sub-

problems and provide efficient computing algorithms

for the sub-problems. We further propose Cost-Effective

Addresses Searching(CEAS) algorithm to accelerate the

whole process, which can reduce about 60% matching

calculations in experiments.

• We extensively evaluate our methods in both real and

synthetic data and demonstrate the effectiveness and

accuracy of our method.

The remainder of this paper is organized as follows. Section

2 introduces details about Bitcoin transactions behind different

markets and reviews related work, followed by the formulation

of the problem in Section 3. Section 4 proposes our algorithm

and related computational complexity analysis. Section 5 de-

tails our experiments and section 6 concludes the paper.

II. BACKGROUND

In this section, we will introduce Bitcoin transaction mech-

anisms behind different darknet sites and related works.

A. Bitcoin Transactions Behind Darknet Markets

Here we describe our experiments of purchases in Wall-

Street market, one of the most popular darknet markets in the

last few years. Since we know the start point (buyer address)

of the transaction, we can track Bitcoin flows from the start

point during our purchase.

In darknet markets, buyers do not send Bitcoin to vendors

directly. All darknet markets provide escrow services to avoid

scams and protect both buyers and vendors. In each market,

two operations are performed by the buyer: order and confirm

the order. Like normal online shopping, buyers need to order

products first and they can confirm this order once they receive

the product. Research shows whether we can observe related

Bitcoin transactions in public ledger for these two operations

in some biggest darknet markets [9]. In the Wall Street Market,

when we order a product or confirm this order, a related bitcoin

transaction occurs .

Figure 1 shows the resulting Bitcoin flow during these

two operations by a buyer. A consumer needs to send Bit-

coin to a newly generated escrow address after he places

an order. Bitcoin will stay in this escrow address until the

buyer confirms the order when they received the product. The

confirmation will trigger the Bitcoin transfer from the escrow

address to the vendor’s address through a mixed transaction.

Mixed transactions are utilized to break the direct connection

between the sender and receiver address by combining several

transactions into one transaction with multiple senders and

Fig. 1. Bitcoin flow of one purchase in Wall Street Market

multiple receivers [10], [11].However, we still can get the

amount of Bitcoin received by each receiver address in mixed

transaction. In Wall Street Market, 94.5% of Bitcoin in escrow

address is sent to the vendor’s address, and the remaining

5.5% is transferred to the Wall Street market address as a

commission fee during a mixed transaction.

When the buyer confirms that they have received the illicit

product, they need to write feedback that appears in the review

list of products with time and amount of dollar spent during

this transaction. If we could find the related Bitcoin transaction

in the public ledger, the receiver of this transaction is the

Bitcoin address from the vendor.

Now we know that in the Wall Street market a confirmation

of a purchase will result in a Bitcoin transaction from the

escrow address to the vendor’s address. Experiments we have

show this transaction occurs within an hour after confirmation

from the buyer. The darknet market will take some time to

mixed this transaction to other Bitcoin transactions from out-

side the darknet. Therefore we can tell the time review posted

is close to the time when a mixed transaction happened.

A review of the product is required immediately from

buyer after the confirmation. In each review, we can gather

information including money spent and time when this review

post. Experiments we have in Wall Street Market show the

time when the review posted is close to the time when a mixed

transaction happened and the price of a product should be close

to the bitcoin value received by the vendor’s address.

B. Related Work

1) Bitcoin De-anonymization: The rise of Bitcoin has in-

creased researchers’ interest in privacy provided in crytocur-

rency [12]–[16], also the usage of Bitcoin in darknet [17]–

[19]. To attack the privacy of Bitcoin, the most common way

is to study the Bitcoin transaction graph after clustering the

Bitcoin address from one wallet. A wallet represents an entity.

A user stores all addresses in a wallet. Researchers have widely

clustered Bitcoin addresses heuristically. Androulaki tested the

effectiveness of the Bitcoin address clustering methods with

stimulation [14]. Spagnuolo link the clustered addresses to

the Silk Road escrow address exposed by FBI and analyze

the Bitcoin flow related to this escrow address [12]. Fleder

not only linked the clustered addresses to Silk Road escrow

but also link Bitcoin addresses to some public entities [13].

PageRank is then applied on the transaction graph to find

addresses that are close to the Silk Road escrow address.
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TABLE I
MAIN SYMBOLS

symbols definitions

b(t, u, r)
a bitcoin transaction with timestamp t, money value u,
and receiving address r

B a set of bitcoin transactions, B = {bi(ti, ui, ri)}

R a set of receiving bitcoin addresses, R = {ri}

f(τ, v) a feedback review with timestamp t and money value v

F a set of feedback reviews, F = {fj(τj , vj)}, from one vendor

θ, φ bounding box thresholds of timestamp and money value

S(R)
a set function, input R: a set of receiving bitcoin addresses,
output: the set of feedback reviews matched with R

s(R)
a set function, input R: a set of receiving bitcoin addresses,
output: the number of feedback reviews matched with R, i.e.,
s(R) = |S(R)|, where | · | represents the cardinality of a set

In the transaction graph, each node represents an entity that

contains all addresses owned by this entity. However, current

clustering methods don’t work for mixed transactions that

combine several transactions into one transaction with multiple

senders and multiple receivers. Mix is quite common in

Bitcoin transactions, especially illegal transactions in recent

years. In this paper, our method is the first one to explore

relationships between feedback of vendors and receiver parts

of Bitcoin transactions which won’t be affected by mixed

transactions.

2) Matching: If we treat each review as one type of node

and Bitcoin transaction as another type of node, reviews of a

vendor and transactions from an address can form a bipartite

graph after we link the review to the matched transaction.

Portnoff matches specific ads to publicly available Bitcoin

transactions based on the cost of ads and timestamp at which

the ad was placed [20]. Hungarian algorithm and Hopcroft-

Karp algorithm are two greedy algorithm can successfully find

the maximum matching in bipartite graph [21]–[23]. We can

use these algorithms to find the maximum matching between

a vendor and a Bitcoin address. However, this method is not

effective enough to match multiple addresses. A vendor in the

darknet normally owns a lot of bitcoin addresses.

3) Submodular Function: Submodular optimization algo-

rithm has been exploited in other areas before [24]–[27].

Kempe using a greedy algorithm based on submodular

function to maximize the influence in social network [28].

Leskovec exploits the submodularity of outbreak detection

to develop an efficient approximation algorithm for water

distribution and the blogosphere monitoring problem [29].

III. PROBLEM FORMULATION

In this section, we formulate the problem of matching

bitcoin transactions with feedback reviews. Table I shows the

main symbols used in this paper and their definitions.

Let B = (b1(t1, u1, r1), b2(t2, u2, r2), · · ·, bn(tn, un, rn))
represents the set of all bitcoin transactions, where bi(ti, ui, ri)
represents a bitcoin transaction with three attributes: times-

tamp ti, money value ui, and receiving address ri. Here we

only need receiver part of these bitcoin transactions. Let R
represent a set of all unique receiving addresses in B. Let

F = (f1(τ1, v1), f2(τ2, v2), · · ·, fm(τm, vm)) represents a list

TABLE II
AN EXAMPLE TO ILLUSTRATE THE VENDOR RECEIVING ADDRESS SET

PROBLEM

Input After matching

all bitcoin feedback feedback bitcoin receiving
transactions B reviews F reviews F transactions addresses
b1(t1, u1, r2) f1(τ1, v1)

f1(τ1, v1)

b1(t1, u1, r2) r2
b2(t2, u2, r3) f2(τ2, v2) b2(t2, u2, r3) r3
b3(t3, u3, r4) f3(τ3, v3) b3(t3, u3, r4) r4
b4(t4, u4, r5) f4(τ4, v4) b4(t4, u4, r5) r5
b5(t5, u5, r6) f5(τ5, v5) b5(t5, u5, r6) r6
b6(t6, u6, r1) f6(τ6, v6) f2(τ2, v2)

b6(t6, u6, r1) r1
b7(t7, u7, r7) f7(τ7, v7) b7(t7, u7, r7) r7
b8(t8, u8, r1) f3(τ3, v3)

b8(t8, u8, r1) r1
b9(t9, u9, r8) b9(t9, u9, r8) r8

b10(t10, u10, r1)

f4(τ4, v4)

b10(t10, u10, r1) r1
b11(t11, u11, r2) b11(t11, u11, r2) r2
b12(t12, u12, r3) b12(t12, u12, r3) r3
b13(t13, u13, r4) b13(t13, u13, r4) r4
b14(t14, u14, r9) b14(t14, u14, r9) r9
b15(t15, u15, r1)

f5(τ5, v5)
b15(t15, u15, r1) r1

b16(t16, u16, r3) b16(t16, u16, r3) r3
b17(t17, u17, r5) b17(t17, u17, r5) r5
b18(t18, u18, r1) f6(τ6, v6)

b18(t18, u18, r1) r1
b19(t19, u19, r3) b19(t19, u19, r3) r3
b20(t20, u20, r2) f7(τ7, v7)

b20(t20, u20, r2) r2
b21(t21, u21, r10) b21(t21, u21, r10) r10

· · ·

of feedback reviews received by one vendor, where fj(τj , vj)
is a feedback review with two attributes: timestamp τj and

money value vj .

Problem 1: Vendor Receiving Address Set Prob-

lem:Finding a set of receiving addresses Rk ⊂ R which are

likely the bitcoin addresses in the vendor’s wallet, according

to the matching between the vendor’s feedback reviews in set

F and bitcoin transactions in set B.

Based on practical observations, the timestamp τj and

money value vj in fj(τj , vj) are approximately equal to the

timestamp ti and money value ui in a bitcoin transaction

bi(ti, ui, ri) respectively, i.e., τj ≈ ti and uj ≈ vi, if

bi(ti, ui, ri) is the corresponding bitcoin transaction of the

feedback review fj(τj , vj). By comparing the timestamp and

money value attributes, we can match feedback reviews to

bitcoin transactions thus find the receiving addresses. In case

the vendor does not change the receiving addresses frequently,

many of their feedback reviews will be matched with bitcoin

transactions with the same receiving addresses. Problem 1

aims at finding a set of receiving addresses Rk ⊂ R whose

involved bitcoin transactions match the maximum number of

feedback reviews in F .

We use a bounding box to find candidate bitcoin transactions

for a feedback review. For each review, we search the bitcoin

transactions B with a bounding box. We set thresholds θ and φ
to constrict the ranges of timestamp and money value respec-

tively. Currently, there are thousands of bitcoin transactions

every second. We compare a feedback review with a bitcoin

transaction and we are able to match a review to thousands of

candidate transactions in real data with the range we provided.

According to research [9], a bitcoin transaction happens within
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Fig. 2. Bounding boxes of timestamp and money value for matching a
feedback review with a bitcoin transaction

an hour after a buyer posts the review with a high possibility.

Therefore, we use τj ≤ ti ≤ τj + θ as the bounding box

for timestamp and set θ = 1 hour. The market takes 5.5%
commission fee and the exchange rate also fluctuates in a

day. Therefore, we use φ1vj ≤ ui ≤ φ2vj as the bounding

box for money value. If the fluctuation range is 10%, the

setting will be φ1 = (1 − 5.5%)(1 − 10%) = 0.8505 and

φ2 = (1− 5.5%)(1 + 10%) = 1.0395. Figure 2 illustrates the

bounding boxes. If a bitcoin transaction bi(ti, ui, ri) falls in

the bounding boxes of a feedback review fj(τj , vj), we say

bi and fj are a match, which is formally defined in Definition

1.

Definition 1: fj is matched with bi : A feedback review

fj(τj , vj) is matched with a bitcoin transaction bi(ti, ui, ri) if

τj ≤ ti ≤ τj + θ and φ1vj ≤ ui ≤ φ2vj .

Definition 2: fj is matched with ri : A receiving bitcoin

address ri is matched with a feedback review fj(τj , vj) if

fj(τj , vj) is matched with a bitcoin transaction bi(ti, ui, ri)
where ri is the receiving address.

Table II shows an example. The left part of Table II shows

the input set B of bitcoin transaction and the input set F
of feedback reviews received by a vendor. Because of the

limited space, only 21 bitcoin transactions are shown here but

B should contain hundreds of millions of transactions. In the

example, the vendor has 7 feedback reviews. The right part of

Table II shows the matches between the 7 feedback reviews

and the 21 bitcoin transactions. To save space, we ignore the

concrete values of timestamps and money values in B and

F in the left part. Whenever there is a match, it means that

the feedback review and bitcoin transaction satisfy Definition

1. From the right part of II, we can see that there could be

multiple bitcoin transactions that are matches of one feedback

review. In real cases, a feedback review could match hundreds

of bitcoin transactions. And the receiving addresses in those

matched bitcoin transactions are the candidate addresses of the

vendor.

In order to accelerate the computation in the later stages, we

transfer the matching results to the vertical and binary formats

in Table III. To solve Problem 1, we aim at finding a minimum

set of bitcoin addresses covering all feedback reviews. The

intuition is that a bitcoin address that can cover many feedback

reviews is very likely to belong to the vendor wallet. This is

especially true when the careless vendor infrequently or barely

changes their bitcoin address.

Let S(R) represents a set function which returns the set

TABLE III
VERTICAL AND BINARY FORMAT

receiving bitcoin feedback reviews support binary format
address ri S({ri}) matched with ri s({ri}) representation

r1 f2, f3, f4, f5, f6 5 0, 1, 1, 1, 1, 1, 0

r2 f1, f4, f7 3 1, 0, 0, 1, 0, 0, 1

r3 f1, f4, f5, f6 4 1, 0, 0, 1, 1, 1, 0

r4 f1, f4 2 1, 0, 0, 1, 0, 0, 0

r5 f1, f5 1 1, 0, 0, 0, 1, 0, 0

r6 f1 1 1, 0, 0, 0, 0, 0, 0

r7 f2 1 0, 1, 0, 0, 0, 0, 0

r8 f3 1 0, 0, 1, 0, 0, 0, 0

r9 f4 1 0, 0, 0, 1, 0, 0, 0

r10 f7 1 0, 0, 0, 0, 0, 0, 1

of feedback reviews that are matched with the input set R
of bitcoin addresses. Let s(R) represent a set function which

returns the number of feedback reviews matched with the input

set R, i.e., s(R) = |S(R)|. Theorem 1 shows that s(R) is a

submodular set function [28].

Theorem 1: Given three bitcoin address sets A, B, C with

A ⊆ B ⊆ C and a bitcoin address r ∈ C \B, we have

s(A ∪ {r})− s(A) ≥ s(B ∪ {r})− s(B)

The left equation s(A ∪ {r}) − s(A) represents the number

of feedback reviews that are newly matched after adding the

bitcoin address r to the set A. Thus, we have s(A ∪ {r}) −
s(A) = s({r}) − |S(A) ∩ S({r})|. Similarly, s(B ∪ {r}) −
s(B) = s({r}) − |S(B) ∩ S({r})|. Since A ⊆ B, A are

matched with less or equal feedback reviews than B, i.e.,

S(A) ⊆ S(B), we have S(A) ∩ S({r}) ⊆ S(B) ∩ S({r})
thus |S(A)∩S({r})| ≤ |S(B)∩S({r})|. Therefore, s({r})−
|S(A)∩S({r})| ≥ s({r})−|S(B)∩S({r})|. This completes

the proof.

Theorem 1 exhibits the diminishing returns property, which

is the equivalent condition of a submodular set function. The

property can be explained as that the marginal gain from

adding a bitcoin address to the set R is at least as high as the

marginal gain from adding the bitcoin address to a superset

of R. We aim at finding a receiving address set R with size

k, i.e., |R| = k, which can maximize s(R).
We decompose Problem 1 into two steps, which are formu-

lated as Problem 2 and Problem 3. Problem 2 aims at matching

bitcoin transactions with feedback reviews. Problem 3 aims at

searching the optimal set of bitcoin addresses for a vendor.

The output of Problem 2 is the input of Problem 3.

Problem 2: Bounding Box Matching Problem: Given the

set of bitcoin transactions B, the set of feedback reviews F ,

and the bounding box parameters θ for timestamp, φ1 and φ2

for money values, the problem aims at finding a family of sets

{Si}, where Si represents the set of feedback reviews covered

by candidate receiving address ri.
Problem 3: Maximum Review Coverage Problem: Given

a family of sets {Si} with Si representing the set of feedback

reviews matched with each ri in bi(ti, ui, ri) ∈ B and a

positive integer k as the budget for the number of receiving

addresses, the problem is finding an address set R with size
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Algorithm 1: BasicBoundingBoxSearch(B, F , θ, φ1,

φ2)

Input: bitcoin transaction set B, feedback review set F ,
bounding box parameter θ for timestamp, bounding
box parameters φ1 and φ2 for money value

Output: a family of sets {Si}, where Si represents the set
of feedback reviews matched with ri in
bi(ti, ui, ri) ∈ B

for each unique ri in bi(ti, ui, ri) ∈ B do Si ← ∅; //
initialization

fj(τj , vj) ∈ F : bi(ti, ui, ri) ∈ B : if τj ≤ ti ≤ τj + θ and
φ1vj ≤ ui ≤ φ2vj then

Si ← Si ∪ {fj};

k, i.e., |R| = k, that are matched with the maximum number

of feedback reviews. That is, finding the optimal solution R
of the following optimization problem:

max s(R)

s.t. |R| = k

Problem 2 can be solved in polynomial time.

Theorem 2: Problem 3 is NP-hard.

Problem 3 can be reduced from the famous Set Cover problem

[30]. Let X = {X1, · · · , Xq} be a family of sets with

Y = {y1, · · · , yp} =
⋃q

i=1
Xi being the elements. The NP-

complete Set Cover problem aims at finding whether there

exist k of the subsets in {Xi} whose union is equal to Y .

Given an arbitrary instance of the Set Cover problem, we

define a corresponding instance of Problem 3. For each subset

Xi ∈ X , we create a bitcoin address ri and a set Si. Therefore,

we get a family of sets {Si} and Rall = {r1, · · · , rq}, where

all ri’s are unique. For each element yj , we create a feedback

review fj . Therefore, we get F = {f1, · · · , fp}. We add fj to

Si, i.e., ri is matched with fj , if and only if Xi contains yj .

The Set Cover problem is equivalent to deciding if there is a

set R ⊆ Rall of k bitcoin addresses with s(R) = p.

IV. COMPUTING ALGORITHMS

In this section, we discuss how to efficiently compute the

problems. We first study the bounding box and KD tree

techniques for matching the bitcoin transactions with feedback

reviews. We then exploit a greedy algorithm that can obtain

an address set that is provably cover (1−1/e) ratio reviews of

optimal. Here e is Euler’s number. Finally, we propose our fast

method which can accelerate the whole process by effectively

reducing the times of matching.

A. Bounding Box and K-D tree

For each pair of feedback review f ∈ F and bitcoin

transaction b ∈ B, we need to check the inequalities of

timestamp and bitcoin value. Let n = |B| be the number of

bitcoin transactions in B and m = |F | be the number of

feedback reviews in F . It runs in O(mn) to compare reviews

with all bitcoin transactions.

To speed up the search process, we build a 2-D tree for

the bitcoin transaction set B where the 2 dimensions are

Algorithm 2: BuildKDTree(B, η, d) [31] //

recursive function
Input: Bitcoin transaction set B, max depth η, current depth

d
Output: a KD-tree T

if d < η then // d < η, a non-leaf node of the

KD-tree

create a KD-tree T with a root node π;
if d is odd then // d is odd, split by the

timestamp
π.t← the median value of all timestamps in B;
split B into B1(t < π.t) and B2(t ≥ π.t) by time;

else // d is even, split by the money

value
π.u← the median value of all money values in B;
split B into B1(u < π.u) and B2(u ≥ π.u) by

value;

Tleft ← BuildKDTree(B1, η, d+ 1); // build the
left KD-tree

Tright ← BuildKDTree(B2, η, d+ 1); // build the
right KD-tree

add a left child sub-tree Tleft and a right child sub-tree
Tright to π;

else // d = η, a leaf node of the KD-tree
create a KD-tree T with a single node π containing set
B;

(a) coordinate system representation (b) tree representation

Fig. 3. K-D tree and range searching

timestamp and money value. The reason that we build a

KD-tree for B, not for F is that the number n of bitcoin

transactions is generally much larger than the number m of

feedback reviews of a vendor. Algorithm 2 shows a recursive

method for building a KD-tree with a fixed height η from set

B. In the even depth nodes of the KD-tree, timestamp is used

for partitioning the bitcoin transactions. In the odd depth nodes

of the KD-tree, money value is used. To build the entire KD-

tree, we call “BuildKDTree(B, η, d = 1)” in algorithm 2 and

pass the entire set B, the maximum depth η of the KD-tree,

and the initial depth d = 1 to the function. Figure 3(a) shows

an example of building a KD-tree and Figure 3(b) shows the

resulting KD-tree. In each depth d, Algorithm 2 needs a linear

time O(n) to find the median and split the set into left and

right subsets. Algorithm 2 runs in O(ηn).

Algorithm 3 shows the improved bounding box search

algorithm using the KD-tree. For each feedback review f ,

Algorithm 3 will find the leaf nodes in the KD-tree that may

contain bitcoin transactions matched with f . Searching a KD

tree runs in O(2η) in the worst case. W represents all leaf

nodes of the KD-tree are returned. In general, the number of

returned leaf nodes is small. Suppose on average, the number
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Algorithm 3: BoundingBoxSearchWithKDTree(B, T ,

F , η, θ, φ1, φ2)

Input: bitcoin transaction set B, KD-tree T built from B,
feedback review set F , max depth η, bounding box
parameter θ for timestamp, φ1 and φ2 for money
value

Output: a family of sets {Si}, where Si represents the set
of feedback reviews matched with ri in
bi(ti, ui, ri) ∈ B

for each unique ri in bi(ti, ui, ri) ∈ B do Si ← ∅; //
initialization

fj(τj , vj) ∈ F : W = KDTreeSearch(root node of KD-tree
T , f(τ, v), η, θ, φ1, φ2);
bi(ti, ui, ri) ∈W : if τj ≤ ti ≤ τj + θ and
φ1vj ≤ ui ≤ φ2vj then

Si ← Si ∪ {fj};

Algorithm 4: GreedySetCoverAlgorithm({Si}, λ)

Input: a family of sets {Si}, where Si represents the set of
feedback reviews matched with ri in
bi(ti, ui, ri) ∈ B, a threshold λ ∈ (0, 1)

Output: optimal number k

r1 ← argmaxr∈R s(r); R1 ← {r1}; i← 1; // extract the
best matching

(s(Ri)− s(Ri−1))/(s(Ri−1)− s(Ri−2)) < λ
ri+1 ← argmaxr∈R\Ri

(s(Ri ∪ {r})− s(Ri));
Ri+1 ← Ri ∪ {ri+1}, i++;
return Ri−1;

of returned leaf nodes is γ. Since there are 2η leaf nodes, there

are O(n/2η) bitcoin transactions in each leaf node. Therefore,

Algorithm 3 runs in O((γ+η)mn/2η) on average. It is much

faster than O(mn). γ is small in our experiments on real data.

B. Greedy Set Cover Algorithm

Algorithm 4 shows a greedy algorithm with a ratio (1−1/e)
of optimal for solving Problem 3. In Algorithm 4, we start with

an empty address set R0 = ∅, and add a bitcoin address ri in

each iteration which maximally increases the review coverage

s(Ri).

Theorem 3: Algorithm 4 has an approximation ratio of (1−
1/e). That is, s(Rk) ≥ (1 − 1/e)s(A∗) where A∗ represents

the k-size address set which matches maximum reviews and

k is the size of returned address set.

The proof can be found in [32]. The key observation is that

s(R) is non-decreasing submodular set function according to

Theorem 1.

Algorithm 4 can decide the number of addresses to return

with a threshold λ. Intuitively a vendor’s bitcoin addresses

should match many more of their feedback reviews compared

with noise bitcoin addresses that do not belong to them. This

phenomenon is also proved in our experiments on real-life

data. We calculate the ratio of increments in review coverage in

two consecutive iterations. If the ratio is less than a threshold

λ ∈ (0, 1), the greedy algorithm will terminate and output

address set.

Algorithm 5: Cost-Effective Addresses Searching(B,

F , θ, φ1, φ2, λ)

Input: bitcoin transaction set B, feedback review set F ,
bounding box parameter θ for timestamp, φ1 and φ2

for money value, a threshold λ ∈ (0, 1)
Output: a set Rk of bitcoin addresses belonging to a vendor

R′ ← ∅; F ′ ← ∅; α′ ← None; // Stage 1: an address
with max coverage

s(α′) < |F \ F ′| Fα′ ← all feedback reviews matched with
bitcoin address α′;
f ← select a feedback review from F \ (F ′ ∪ Fα′) at

random;
R′ ← R′ ∪ { bitcoin addresses matched with f};
F ′ ← F ′ ∪ {f};

α′ ← argmaxr∈R′ s(r); // extract the best matching
address

R1 ← {α
′}; i← 1; // Stage 2: searching for a

set of addresses
(s(Ri)− s(Ri−1))/(s(Ri−1)− s(Ri−2)) > λ Fα′ ← all
feedback reviews matched with bitcoin address α′;
F ← F \ Fα′ ;F ′ ← F ′ \ (F ′ ∩ Fα′);
α′ ← argmaxr∈R′ s(r); // best matching address based
on new F

Ri+1 ← Ri ∪ {α
′}; i++;

return Ri−1;

C. Cost-Effective Addresses Searching

Algorithm 3 will find matched bitcoin transactions for all

feedback reviews in F . And the following greedy algorithm

4 will find an optimal address which cover most reviews

iteratively. The whole process is time consuming. In this sec-

tion, we propose a Cost-Effective Addresses Searching(CEAS)

algorithm which will find the optimal address with much less

matching calculations between reviews and bitcoin transac-

tions. The steps are shown in algorithm 5. In CEAS, we

only needs to apply range searching for (|F | − s(rmax) + 1)
reviews, where rmax is the address that covers maximum re-

views. Therefore s(rmax) is the maximum number of reviews

matched by a single address. Experiments show that CEAS can

prunes about 60% comparisons between reviews and bitcoin

transactions.

Let F represents full feedback reviews and F ′ represents

feedback reviews set which we have already applied range

searching for. R is the address set containing all addresses

and R′ represents address set containing addresses matched

by any reviews in F ′. We have following theorem.

Theorem 4: Let α = argmaxr∈R s(r) and α′ =
argmaxr∈R′ s(r). If s(α′) ≥ |F \ F ′|, we have α′ = α.

α is the address in R that matches the maximum number of

reviews and α′ is the address in R′ that matches the maximum

number of reviews. For any bitcoin address r ∈ R \ R′, it

doesn’t match any reviews in F ′. Therefore, the maximum

number of reviews that r can match is |F \ F ′|. If s(α′) >

|F \ F ′|, address α′ matches more reviews than any address

r ∈R \R′, which makes α′ the address that matches largest

number of reviews in set R. This completes the proof.

According to Theorem 4, we can find the optimal address
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in R′ which is also the optimal address we could find in R
when the condition s(α′) ≥ |F \ F ′| is satisfied. Therefore we

don’t need to apply range searching in KD-tree for all reviews

in R to get this optimal address.

Theorem 5: In all addresses R, to find the optimal address

which matches maximum number of reviews in F , The num-

ber of feedback reviews |F ′| we need to apply range searching

for is bounded as |F | − s(rmax) ≤ |F ′| ≤ |F | − s(rmax) + 1.

rmax represents the address in R that matches maximum re-

views. s(rmax) represents the number of feedback reviews that

are matched with the address rmax. To satisfy the condition

s(α′) > |F \ F ′| in theorem 4, we have |F ′| ≥ |F | − s(α′) ≥
|F | − s(α) = |F | − s(rmax). At the same time, α need

to match at least one review in F ′, which requires at most

(|F | − s(rmax) + 1) times of range searching.

Now we know we need at most (|F | − s(rmax) + 1) times

of range searching to get the optimal address. In greedy

algorithm, we need to repeat this step for k times to obtain

the optimal k-size address set. We can prove that finding the

optimal address set still need at most (|F |−s(rmax)+1) times

range searching.

Theorem 6: To find optimal address set in greedy Algorithm

5, the total number of feedback reviews |F ′| we need to apply

range searching is still bounded as |F | − s(rmax) ≤ |F ′| ≤
|F | − s(rmax) + 1.

After we apply |F | − s(rmax) or |F | − s(rmax) + 1 times

of range searching to get the first address. The next address

should be the one which matches maximum reviews in the

remaining reviews based on greedy algorithm. We can remove

reviews covered by the first address and use the same method

to find the second address which matches maximum reviews

in the remaining reviews. When we select feedback review

to apply range searching in step 4 of algorithm 5, we avoid

the reviews which are matched with address α′. As a result,

in all |F | − s(rmax) feedback reviews where we apply range

searching on, only one feedback review match with the address

rmax. After we remove reviews covered by the address rmax.

In the remaining F − s(rmax) reviews, there should be |F | −
s(rmax) − 1 reviews that have already gone through range

searching. Now we can update F = (F−s(rmax)) and update

F ′ = (|F | − s(rmax) − 1). Then the new |F \ F ′| = ((F −
s(rmax)) − (|F | − s(rmax) − 1) = 1, which means s(α′) ≥
|F \ F ′| in theorem 4 is always satisfied. Therefore we don’t

need to apply range searching to any more reviews to find

remaining addresses of vendor.

Figure 4 explains CEAS Algorithm using the example in

Table II. In Figure 4, we use a bipartite graph to represent

the matches between feedback reviews and receiver addresses.

Each node on the left represents a feedback review and each

node on the right represents a receiver address. An edge

represents that a feedback review is covered by this address.

A dotted edge represents a non-computed match and a solid

edge represents a computed match. We re-order the nodes on

both sides to reduce the visual clutter.

In Stage 1, Algorithm 5 randomly selects f1 in line 4

and finds its matched bitcoin addresses {r2, r3, r4, r5, r6} in

(a) after line 4, 5 (b) after line 6, 3 (c) after line 4, 5

(d) after line 6 (e) after line 10 (f) after line 11

Fig. 4. An example for the heuristic search in Algorithm 5 (F : nodes on
the left; F ′: black nodes on the left; R′: black nodes on the right; the “line”
refers to the lines in Algorithm 5)

line 5. Now F ′ = {f1} and R′ = {r2, r3, r4, r5, r6}. We

use black nodes to represent them in Figure 4(a). Algorithm

5 extracts the bitcoin address r3 from R′ since it has the

largest number of matched feedback reviews. In Figure 4(b),

we use “∗” to represent the bitcoin address in R′ with the

maximum coverage. Now Fα′ = {f1, f4, f5, f6}. Algorithm 5

then randomly selects f2 from the review set F \(F ′∪Fα′) =
{f2, f3, f7} in line 4 and finds its matched bitcoin addresses

{r1, r7} in line 5. Now R′= {r1, r2, r3, r4, r5, r6, r7} and

F ′ = {f1, f2}. Figure 4(c) shows the status. Algorithm 5

extracts the bitcoin address r1 from R′ since it has the largest

number of matched feedback reviews, which is shown in

Figure 4(d). Since s(rmax) = s({r1}) = 5 ≥ |F \ F ′| = 5,

Stage 1 is done.

In Stage 2, Algorithm 5 first adds the best bitcoin address r1
into the resulting set thus rmax = r1. Since r1 is matched with

Fr1 = {f2, f3, f4, f5, f6}, Algorithm 5 deletes the reviews

covered by r1 from the left part and the associated edges.

Figure 4(e) shows the remaining graph. Now F = {f1, f7}
and F ′ = {f1}. Algorithm 5 then selects the best matching

address from R′ based on the new F = {f1, f7}. Since r2 has

the largest number of matches thus is optimal. Algorithm 5

will terminate in the next iteration since all feedback reviews

have been covered and the drop is larger than λ.

Here we only need to search matched bitcoin transactions

for f1 and f2. This is one possible solution for this example.

In algorithm 5, we randomly select review to apply range

searching. No matter how we select reviews, it always needs to

apply range searching for 2 or 3 reviews in this example, which
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is the range of |F ′|. In this example,2 ≤ |F ′| ≤ 3 because

s(rmax) = 5 and |F | = 7. In contrast, Algorithm 3 need

apply range searching for all 7 feedback reviews. According

to Theorem 4, Algorithm 5 always finds the same best bitcoin

address that Algorithm 4 finds.

Time Complexity: Line 5 in Algorithm 5 performs the

bounding box search and is the most time consuming step and

dominates the time complexity. This is because the number of

bitcoin transactions n is much larger than other parameters

like m. Based on Theorem 5, the times of running line 5 is

upper bounded by |F ′| ≤ m − s(rmax) + 1. Thus Algorithm

5 runs in O((γ + η)(m− s(rmax) + 1)n/2η). Please refer to

last paragraph in Section IV-A for more details.

V. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate

the efficiency and effectiveness of our method by using both

real and synthetic datasets. All algorithms are implemented in

Python. All the experiments are conducted on a Linux Server

with Intel Xeon 3.2GHz CPU and 32 GB main memory.

Datasets. For the real dataset, we crawled feedback from

Wall Street Market. Wall Street Market sells a variety of

content, including drugs, stolen data, and counterfeit consumer

goods, all using cryptocurrency. In the Wall Street market, each

vendor has a list of reviews. Each feedback contains the time

when the buyer leaves this feedback as well as the amount of

Bitcoin used in this transaction. Here we crawled the feedback

of different vendors and sum the transactions to a file, one

transaction was represented by a 2-dimensional data (τ, v),
where τ is the timestamp when this review was posted and v
is money cost in this purchase. Here, we collect transactions

of different vendors in Dec 2018. There are in total 17,155,754

bitcoin transactions during this time. The synthetic dataset is

produced by the Bitcoin transaction data.

Next, we first evaluate the efficiency of K-D tree and greedy

algorithm by real dataset and then the accuracy by synthetic

dataset.

A. Efficiency Evaluation in Range Searching

Each review we have can generate a 2-dimensional range

based on the Bitcoin value and timestamp. With this range,

we search the Bitcoin public ledger to find a lot of candidate

transactions matched to this review. Figure 5 demonstrates

that the K-D tree we build can effectively save time during

range searching. We build a K-D tree with the real dataset,

separating transactions into 16,384 buckets with a 14-depth

binary tree. Each bucket contains more than one thousand

transactions. We sample reviews from Wall Street Market.

Bitcoin transactions are divided through Bitcoin value and

timestamp alternately. Figure 5(a) shows the comparison of

time-consuming in K-D tree and traversal in full ledger. It only

takes less than 5.5 seconds to find the matched transactions

for 1000 reviews in the K-D tree, nearly 5.5 milliseconds for

one review. We also build another K-D Tree with a smaller

data size, including only mixed transactions in Bitcoin public

ledger. Users in cryptomarkets prefer mixed transactions to

(a) range searching in full ledger (b) range searching in filtered
ledger

Fig. 5. Compare running time of K-D Tree searching and traversal searching
in full ledger and filter ledger with only mix transactions

protect their privacy in Bitcoin transactions. We conduct the

same experiment in this filter ledger which contains 1,395,694

bitcoin transactions. Figure 5(b) shows the result with K-D

tree structure, it only takes around 2 milliseconds to find the

matched transactions for a review.

B. Effectiveness Evaluation of Greedy Algorithm

Our greedy algorithm guarantees that we can achieve at least

(1− 1/e) of maximum coverage theoretically. Here we speed

up our greedy algorithm by removing low degree addresses

found in range searching and evaluate the performance of the

greedy algorithm on the real dataset.

We select feedback of 100 vendors with 3721 reviews.

Matched bitcoin transactions of reviews from a vendor can

be found through the K-D tree, which helps us get matched

addresses of each review. By changing these data format to

vertical format like Table III, we get the reviews covered

by each matched address for a vendor. Now we are looking

for a receiver address set whose transactions can match the

maximum reviews. Based on the range we set, a review

can normally be matched to thousands of transactions in the

Bitcoin ledger. Only one of these matched addresses can be

the vendor’s address, which means the remaining addresses

are noises in our algorithm. In the experiments, 94.23% of the

addresses we found only match one review. 5.26% of addresses

match 2 reviews and only 0.51% addresses match more than 2

reviews on average. Heuristically we are looking for addresses

that can match the maximum reviews. Therefore, removing

addresses with a low degree will not affect the accuracy of our

algorithm. We conduct the simple greedy algorithm without

setting a threshold λ. We set k from 1 to 10 as the number

of output addresses. The greedy algorithm needs to output an

address set that covers as many reviews as possible. Result

demonstrates that we can save 93% time if we ignore address

matching only 1 review during the greedy algorithm and 99%

time if we remove addresses with a degree less than 3.

To evaluate the performance in the maximum coverage

of the greedy algorithm. We compare the greedy algorithm

with a heuristic high degree method and the random selection

method. The high degree method will select addresses with

the maximum review coverage. We average the percentages

of reviews covered, From Figure 6, we can notice that the

performance of high degree method is similar to the greedy
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Fig. 6. Greedy algorithm outperform high degree and random method

Fig. 7. Maximum reviews covered by one address in ratio for different vendors

algorithm when k is small. As k increases, the gap between

these two methods increases.

The number of times in range searching is at most |F | −
s(R1) + 1 in our proposed algorithm. We can reduce at least

s(R1) − 1 times. s(R1) is the number of reviews covered

by the first address we get in the greedy algorithm, which

also is the address rmax that covers maximum reviews in F .

The more reviews covered by this address, the fewer times

of range searching are required. Figure 7 shows the ratio

s(R1)/F of 100 vendors we find in Wall Street Market. Each

node in Figure 7 represents a vendor. We can see that the

address which covers the maximum reviews can cover between

35% to 90% of all reviews from a vendor and 60.217% on

average, which means we can reduce times of range searching

by 60.217%. We find 66% of these vendors whose reviews can

be matched to an address that covers more than half of the

reviews. The result shows the effectiveness of our algorithm

in the real dataset and unveils that the vendors in Wall Street

Market do not change their receiving addresses frequently.

C. Accuracy Evaluation on Synthetic Data

In this section, we conduct experiments to evaluate the

accuracy of our algorithm on synthetic reviews. We select 2000

Fig. 8. Accuracy comparison between vendors with different number of
addresses

Fig. 9. F1 Measure accuracy of synthetic data generated from different
number of addresses

Bitcoin addresses and collect their history transactions. Each

transaction contains timestamp and Bitcoin value received,

which can be treated as a review after a slight change. We

apply normal distribution on the amount of change in both Bit-

coin value and timestamp. The number of hours we advance on

timestamp follows the normal distribution with 0.5 mean and

0.6 std. In probability, the newly generated review’s bounding

box in timestamp will cover the transaction at 59% feasibility.

The same strategy is applied to the Bitcoin value. After

combining the restrict of timestamp and Bitcoin value, the

newly generated review can match to the original transaction

with a 35.4% possibility. Every address we randomly select

from the Bitcoin ledger can generate a synthetic review list.

Considering vendors may use multiple Bitcoin addresses, we

also combine some synthetic reviews generated by different

addresses.

Figure 8 shows the accuracy of the greedy algorithm with

reviews generated by 1 address, 2 addresses, and 3 addresses.

Accuracy is the number of correct addresses over the number

of addresses that generate these synthetic reviews. From Figure

8, we can see that longer review lists contribute to better

accuracy, while more receiver addresses can reduce accuracy,

which matches the real situation. It is hard to find the vendor’s

address set if the vendor updates their receiver address in

the darknet market very frequently. For vendors who do not

change their receiver address frequently, our algorithm can

achieve great performance even with very few reviews.

We set a threshold λ for the ratio of new reviews covered in

the current step to new reviews covered in the last step. We use

synthetic data generated by different numbers of addresses to

evaluate the effect of different λ. For reviews generated from

one address, Figure 9 shows larger λ has better performance

because we do not want to select another address besides

the one with the highest degree. Reviews derived from 2 or

more addresses share a similar pattern. Large λ can decrease

the accuracy because a high threshold will stop the greedy

algorithm too early and output fewer addresses than the vendor

have. The more addresses a feedback related, the fast the drop

of accuracy after λ pass 0.7. Through the experiments, we can

see λ around 0.7 is the best option for all these data.

VI. CONCLUSION

In this paper, we study the problem of identifying the

bitcoin addresses of a vendor by matching their feedback
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reviews with bitcoin transactions. We firstly construct a K-

D tree to efficiently match Bitcoin transactions to feedback

reviews. After we obtain the matching relationship between

bitcoin transactions and feedback reviews, we get the address

set by applying a greedy algorithm that can achieve near-

optimal with theoretical guarantee. We further develop a Cost-

Effective Address Searching(CEAS) algorithm that can speed

up the process by pruning the search space effectively. Com-

prehensive experiments on both real and synthetic datasets

demonstrate the effectiveness and efficiency of our methods.
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