

Curriculum Vitae

Name: Sudip Mittal

Permanent Address: 931 Palladi Drive, Halethorpe, MD, 21227

Degree and date to be conferred: Ph.D. in Computer Science, May 2019.

Date of Birth: 24 October, 1991

Place of Birth: New Delhi, India

Secondary Education: MY-HIGH-SCHOOL, MY-HIGH-SCHOOLS-CITY,

MY-HIGH-SCHOOLS-STATE.

Collegiate institutions attended:

• University of Maryland Baltimore County, PhD Computer Science, 2019.

• IIIT Delhi, M.TECH Computer Science, 2014.

• IIIT Delhi, B.TECH Computer Science, 2013.

Professional publications:

• Ketki Joshi, Karuna Joshi, Sudip Mittal. “A Semantic Approach for

Automating Knowledge in Policies of Cyber Insurance Services”. (14th IEEE

International Conference on Web Services (ICWS), 2019)

• Sowmya Ramapatruni, Sandeep Nair, Sudip Mittal, Anupam Joshi,

Karuna Joshi. “Anomaly Detection Models for Smart Home Security”.

(IEEE BigDataSecurity 2019)

• Sudip Mittal, Anupam Joshi, and Tim Finin. “Cyber-All-Intel: An

Artificial Intelligence for Security Threat Intelligence”. (Submitted under

review.)

• Priyanka Ranade, Sudip Mittal, Anupam Joshi, and Karuna Joshi. “Using

Deep Neural Networks to Translate Multi-lingual Threat Intelligence”.

(IEEE Intelligence and Security Informatics (ISI) 2018)

• Lorenzo Niel, Sudip Mittal, Anupam Joshi. “Mining Threat Intelligence

about Open-Source Projects and Libraries from Repository Issues and Bug

Reports”. (IEEE Intelligence and Security Informatics (ISI) 2018)

• Vishal Rathod, Sandeep Nair Narayanan, Sudip Mittal, and Anupam

Joshi. “Semantically Rich, Context Aware Access Control for Openstack”.

(IEEE International Workshop on Internet-scale Clouds and Big Data

(ISCBD) 2018)

• Nitika Khurana, Sudip Mittal, and Anupam Joshi. “Preventing Poisoning

Attacks on Artificial Intelligence based Threat Intelligence Systems”. (2018)

(Technical Report)

• Sudip Mittal, Anupam Joshi, and Tim Finin. “Thinking Fast and Slow!

Combining Knowledge Graphs and Vector Spaces.”. (2017) (Technical

Report)

• Maithilee Joshi, Sudip Mittal, Karuna Pande Joshi, and Tim

Finin.“Semantically Rich Oblivious Access Control for Cloud Storage”

(IEEE International Conference on Edge Computing (EDGE) 2017)

• Sudip Mittal, Aditi Gupta, Karuna Pande Joshi, Claudia Pearce, and

Anupam Joshi.“A Question Answering System for Management of Cloud

Service Level Agreements” (IEEE International Conference on Cloud

Computing (CLOUD) 2017).

• Agniva Banerjee, Raka Dalal, Sudip Mittal, Karuna Pande Joshi.

“Generating Digital Twin models using Knowledge Graphs for Industrial

Production Lines” (Workshop on Industrial Knowledge Graphs, co-located

with the 9th International ACM Web Science Conference (2017))

• Karuna P Joshi, Aditi Gupta, Sudip Mittal, Anupam Joshi, Tim Finin and

Claudia Pearce. “Semantic Approach to Automating Management of Data

Privacy Policies for Cloud Consumers” (IEEE Big Data 2016)

• Karuna P. Joshi, Aditi Gupta, Sudip Mittal, Claudia Pearce, Anupam

Joshi and Tim Finin. “ALDA : Cognitive Assistant for Legal Document

Analytics” (AAAI Fall Symposium (2016))

• Sandeep Nair, Sudip Mittal, Anupam Joshi. “Using Semantic Technologies

to Mine Vehicular Context for Security”. (37th IEEE Sarnoff Symposium

(2016))

• Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi, and Tim

Finin. “CyberTwitter: Using Twitter to generate alerts for Cybersecurity

Threats and Vulnerabilities”. (International Symposium on Foundations of

Open Source Intelligence and Security Informatics (FOSINT-SI 2016))

• Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. “OBD

SecureAlert: An Anomaly Detection System for Vehicles”. (IEEE SmartSYS

2016).

• Aditi Gupta, Sudip Mittal, Karuna Pande Joshi, Claudia Pearce, and

Anupam Joshi. “Streamlining Management of Multiple Cloud Services”.

(IEEE International Conference on Cloud Computing (CLOUD) 2016).

• Sudip Mittal, Aditi Gupta, Karuna Pande Joshi, Claudia Pearce, and

Anupam Joshi. “A Semantic Framework for Automated Analysis of Cloud

Service Level Agreements”. (Technical Report).

• Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. “Using Data

Analytics to Detect Anomalous States in Vehicles”. (2016) (Technical

Report).

• Sudip Mittal, Karuna Pande Joshi, Claudia Pearce, and Anupam Joshi.

“Automatic Extraction of Metrics from SLAs for Cloud Service

Management”. In IEEE International Conference on Cloud Engineering

(IC2E), 2016.

• Sudip Mittal, Karuna Pande Joshi, Claudia Pearce, and Anupam Joshi.

“Parallelizing Natural Language Techniques for Knowledge Extraction from

Cloud Service Level Agreements.” In 2015 IEEE International Conference on

Big Data, 2015.

• Sudip Mittal. “Broker Bots: Analyzing automated activity during High

Impact Events on Twitter.” (2014) (M.Tech Thesis, Advisor: Dr.

Ponnurangam Kumaraguru, IIIT-Delhi.)

• Sudip Mittal, Neha Gupta, Prateek Dewan, and Ponnurangam

Kumaraguru. “Pinned it! A Large Scale Study of the Pinterest Network.” In

Proceedings of the IKDD Conference on Data Sciences, pp. 1-10. ACM,

2014.

• Sudip Mittal, Neha Gupta, Prateek Dewan, and Ponnurangam

Kumaraguru. “The pin-bang theory: Discovering the pinterest world.”

(2013) (Technical Report).

• Sudip Mittal, Neha Gupta, and Ponnurangam Kumaraguru. “A

Pinteresting World”, Security and Privacy Symposium - 2013 (IIT - Kanpur).

Professional positions held:

• Visiting Lecturer, Computer Science Department, University of Maryland

Baltimore County (2018-2019)

ABSTRACT

Title of dissertation: Knowledge for Cyber Threat Intelligence

Sudip Mittal, Doctor of Philosophy, 2019

Dissertation directed by: Professor Anupam Joshi
Department of Computer Science and Electrical
Engineering

Keeping up with threat intelligence is a must for a security analyst today.

There is a volume of information present in ‘the wild’ that affects an organization.

We need to develop an artificial intelligence system that scours the intelligence

sources, to keep the analyst updated about various threats that pose a risk to her

organization. A security analyst who is better ‘tapped in’ can be more effective.

In this thesis, we present, Cyber-All-Intel an artificial intelligence system to

aid a security analyst. It is a system for knowledge extraction, representation and

analytics in an end-to-end pipeline grounded in the cybersecurity informatics do-

main. It uses multiple knowledge representations like, vector spaces and knowledge

graphs in a ‘VKG structure’ to store incoming intelligence. The system also uses

neural network models to pro-actively improve its knowledge. We have also created

a query engine and an alert system that can be used by an analyst to find actionable

cybersecurity insights.

Knowledge for Cyber Threat Intelligence

by

Sudip Mittal

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Anupam Joshi, Chair/Advisor
Professor Tim Finin
Professor Yelena Yesha
Dr. Claudia Pearce
Dr. Karuna Joshi

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

13865340

13865340

2019

c© Copyright by
Sudip Mittal

2019

Dedication

To my parents.

ii

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor Anupam Joshi for

giving me an invaluable opportunity to work on challenging and extremely interest-

ing projects over the past four years. He has always made himself available for help

and advice and there has never been an occasion when I’ve knocked on his door and

he hasn’t given me time. It has been a pleasure to work with and learn from such

an extraordinary individual.

I would also like to thank Prof. Tim Finin. Thanks are due to Professor Yelena

Yesha, Dr. Karuna Joshi and Dr. Claudia Pearce for agreeing to serve on my thesis

committee and for sparing their invaluable time reviewing the manuscript.

My colleagues at the Accelerated Cognitive Cybersecurity Lab & Ebiquity

Lab have enriched my graduate life in many ways and deserve a special mention.

My interaction with Varish Mulwad, Prajit Kumar Das, Sandeep Nair Narayanan,

Nisha Pillai, Nilavra Pathak, Priyanka Ranade have been very fruitful.

I owe my deepest thanks to my family - my mother, father and sister who have

always stood by me and guided me through my career, and have pulled me through

against impossible odds at times. Words cannot express the gratitude I owe them.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Thesis Statement . 3

1.1.0.1 The current state of art: 3
1.2 Problem Definition . 4
1.3 Cybersecurity Informatics Systems 5

1.3.1 CyberTwitter . 6
1.3.2 Cyber-All-Intel . 6

1.4 Contributions . 10
1.5 Document Structure . 11

2 Background & Related Work 12
2.1 Knowledge Representation for Cybersecurity 12
2.2 Open Source Intelligence (OSINT) sources 13
2.3 Text Extraction for Cybersecurity . 15
2.4 Vector Space Models & Knowledge Graphs 16

2.4.1 Open Source Software Security 19
2.4.2 Cybersecurity understanding across multiple languages 20

3 CyberTwitter 21
3.1 CyberTwitter Framework . 21

3.1.1 User System Profile . 22
3.1.2 Tweet Collection . 23
3.1.3 Security Vulnerability Concept Extractor 23
3.1.4 Filtering and Cleaning Data 24
3.1.5 Cybersecurity Ontologies and Knowledge Graphs 26
3.1.6 Alerts in CyberTwitter . 30

4 VKG Structure 34
4.1 Populating the VKG Structure . 39
4.2 Advantages . 40

5 Cyber-All-Intel 44
5.1 Cybersecurity Sources . 44

5.1.1 Multilingual Sources . 45
5.1.2 Code Repositories as a Threat Intelligence Source 47
5.1.3 Covert Sources . 50

5.2 System Pipeline & Architecture . 52
5.3 Cybersecurity Knowledge Improvement 53

5.3.1 Improving the Knowledge Graph using Vector Embeddings . . 55

iv

5.3.2 Improving Vector Embeddings using the Knowledge Graph . . 57
5.4 Applications . 58

5.4.1 A Query Processing System 59
5.4.1.1 Processing Engine 64
5.4.1.2 Example query . 65

5.4.2 Knowledge Augmentation and Alerts 67
5.4.2.1 Knowledge Augmentation 68

5.4.3 Generating Alerts . 69
5.4.4 Programming Environment Augmentation System 71

5.4.4.1 Alert Generation System 73

6 Experimental Setup 77
6.1 Cyber-All-Intel System . 77
6.2 Programming Environment Augmentation System 79

7 Results & Discussion 81
7.1 Evaluations . 81

7.1.1 Evaluating core capabilities 82
7.1.2 Evaluating knowledge improvement 83
7.1.3 Evaluating the query processing engine 84

7.1.3.1 Evaluating the search query 84
7.1.3.2 Evaluating the list query 87

7.1.4 Evaluating the alert system 88
7.1.5 Evaluating the Programming Environment Augmentation Sys-

tem . 88

8 Conclusion & Future Work 91

Bibliography 93

v

List of Tables

3.1 User System Profile. 23

7.1 Best Mean Average Precision for knowledge graphs, vector space
models, and VKG structure. 86

vi

List of Figures

2.1 Both users and organizations use Twitter to report potential threats. 15
2.2 Sample tweet from an individual user about a recent security vulner-

ability . 16

3.1 CyberTwitter: A framework for monitoring and analyzing tweets re-
lated to cyber attacks. 22

3.2 Data collection keywords. 24
3.3 Labelled output generated by the Security Vulnerability Concept Ex-

tractor (SVCE). 25
3.4 Graphical representation of RDF for example tweet shown in Figure

3.3. 29

4.1 An example of a VKG structure. 35
4.2 VKG structure for a cybersecurity example. 38

5.1 Using the intelligence translation system with an AI based cyber de-
fense system. 47

5.2 RDF generated for English translation of multilingual threat intelli-
gence. 48

5.3 Threat intelligence from code repositories. 49
5.4 Sample issue showing security buffer overflow in a popular Unix FTP

client. 50
5.5 RDF example generated using threat intelligence mined from code

repositories. 51
5.6 Cyber-All-Intel System Architecture. 54
5.7 Neural network structure to improve knowledge graph using embed-

dings. 56
5.8 Improving the vector embeddings. 58
5.9 RDF for a threat intelligence in the Cyber-All-Intel System. 63
5.10 Output of a subquery on the VKG structure. 66

7.1 Mean Average Precision . 86
7.2 Mean Average Precision for different components 87

vii

Chapter 1

Introduction

In the broad domain of security, analysts and policy makers need knowledge

about the state of the world to make critical operational/tactical as well as strategic

decisions. One such source of knowledge is threat intelligence. It plays a vital role

in helping a security analyst mount a defense and is nearly always dependent on

global events; for example, consider the following timeline:

• Microsoft publishes exploit details and issues patches on March 14, 2017 for a

critical vulnerability which allows remote code execution if an attacker sends

specially crafted messages to a Microsoft Server Message Block 1.0 (SMBv1)

server [41].

• An exploit named ETERNALBLUE is leaked by the ‘Shadow Brokers’ hacker

group on April 14, 2017 affecting various versions of the Microsoft Windows

operating system [11]. It uses the same vulnerability mentioned above.

• ETERNALBLUE was used during the WannaCry ransomware attack on May

12, 2017 [81].

• It was also exploited to carry out the NotPetya cyberattack on June 27, 2017

[51].

When we consider this example from the security analyst point of view, she

1

may not be aware of recent ‘intelligence’ available in ‘the wild’ and/or may be

lazy/slow in updating her security configurations. What we need is an artificial

intelligence based system that aids the security analyst. Such an AI should strive

to keep the analyst updated and also issue timely alerts. The work in this paper,

aims to prototype a system that can scour OSINT sources for such information and

make them accessible to an analyst. The better “tapped in” the analyst is to the

potential threat landscape, the better they are able to detect attacks.

In modern enterprises, security analysts monitor threats in a security oper-

ations center (SoC) by watchstanding, akin to a lookout on a ship watching the

environs for danger. Screens typically show warnings and alerts from individual

products and detectors that the enterprise has installed. Watchstanding permits a

highly trained security analyst to look at all the disparate pieces of information, and

see if they ‘click together’ to form some pattern which might indicate an attack.

The detection efficacy of a security analyst depends on her operational and

strategic knowledge about current security landscape and the associated intelligence.

This enables her to better interpret the data from the Security Information and

Event Management (SIEM) systems in the SoC. Specifically, the analyst is aided

by her background knowledge regarding the context of the system (e.g., what kinds

of applications are installed on their system, what the systems normal behavior

pattern is, what potential vulnerabilities might exist, what information might an

adversary be after?), and the external world (e.g., “intelligence” about what new

attacks that exist in the wild or are being discussed as possibilities, hacktivists

discussing attacking a particular country or organization, etc.). Unfortunately, the

2

knowledge about these security vulnerabilities and planned attacks is scattered on

the dark web vulnerability markets, user/product forums, social media services,

blogs, etc. However, even the best of SIEM systems today do not effectively reason

on “intelligence” about the state of the cyberworld, such as an analyst might obtain

by talking to peers or by looking, for instance, at dark web updates, security blogs,

etc.

1.1 Thesis Statement

It is possible to automate threat intelligence acquisition by designing au-

tonomous systems that scour disparate open sources, extract information, and rep-

resent it in way that can provide actionable information to security professionals.

1.1.0.1 The current state of art:

Consider a modern enterprise that has cyber infrastructure – either informa-

tional or cyber-physical – that it must protect. Today such a system has a host

of point systems that act independently from one another, e.g., an intrusion de-

tection/protection system that scans network traffic at the gateways, firewalls that

regulate connections, application specific gateways that do deep packet inspection

hard-coded with the semantics of the application being protected, host-based mon-

itors like tripwire, malware scanners, identity management and authentication sys-

tems (sometimes with biometrics), and so on. Each of these systems defends against

a particular vulnerability, and is often very effective against attacks that are known,

3

or attacks that seek to cause a sudden and significant harm to the system.

In more sophisticated systems, the alerts and warnings from such individual

components are aggregated and dashboarded in a security operations center, and

perhaps even correlated in some simple manner. Network security analysts monitor

these by watchstanding, akin to a lookout on a ship watching the environs for dan-

ger. Watch-standing permits a highly trained network security analyst to look at

all the disparate pieces of information, and see if they “click together” to form some

pattern which might indicate an attack. The analyst is aided by her background

knowledge regarding the context of the system (e.g., what kinds of applications are

installed on their system, what the systems normal behavior pattern is, what po-

tential vulnerabilities might exist, what information might an adversary be after?)

and and the external world (e.g., “intelligence” about what new attacks that exist

in the wild or are being discussed as possibilities, hacktivists discussing attacking

a particular country or organization, etc.). However, even the best of security in-

formation and event management (SIEM) systems do not bring in “intelligence”

about the state of the cyber world, such as an analyst might obtain by looking, for

instance, at security blogs, NVD/CVE updates, and parts of the dark web.

1.2 Problem Definition

Given an initial set of software and hardware, we will look for various threat

and vulnerability intelligence, using textual sources like dark web vulnerability mar-

kets, social networks, blogs, etc. we will then convert this intelligence to a knowledge

4

graph and augment this knowledge with entity vector embeddings in an accelerated

environment. We will also then create various semantic agents that utilize this vec-

torized knowledge to provide intelligence alerts, improve the underling knowledge,

identify similar attacks, etc.

There are three major parts to the problem that we are trying to solve. The

first part entails finding relevant intelligence about various cybersecurity threats

and vulnerabilities. The second one includes augmenting the existing knowledge

infrastructure with vector embeddings. In the third one, we create various semantic

agents that use the knowledge graph and vector embeddings to solve various research

tasks.

1.3 Cybersecurity Informatics Systems

In this thesis we present, a cyber security informatics system - ‘Cyber-All-Intel’.

We also discuss a precursor to the Cyber-All-Intel system, called CyberTwitter.

Both these systems aim to augment a security analyst’s work flow by gathering

open source intelligence (OSINT), representing it in a format ideal for agents and

applications to understand.

We will first introduce the CyberTwitter system followed by the Cyber-All-

Intel. More details are available in Chapter 3 and 5.

5

1.3.1 CyberTwitter

In this system, we begin by collecting Twitter data. In the collected tweets we

identify, tag and extract various real world conceptual entities related to cybersecu-

rity vulnerabilities such as means of an attack, consequences of an attack, affected

software, hardware, vendors, etc. using a Security Vulnerability Concept Extractor

(SVCE) [35]. Concepts and entities extracted by SVCE are then linked to exist-

ing concepts and entities present in external, publicly available semantic knowledge

bases, to further enrich our extracted data. In our system, this information is repre-

sented as a set of RDF triples in a semantic knowledge graph. We allow analysts to

describe a system profile which captures information about installed software and

/ or hardware. We develop an intelligence ontology and use it along with SWRL

rules to address time sensitive nature of cybersecurity events. CyberTwitter per-

forms reasoning using this system profile, data in the knowledge base and varying

time slices to generate the most relevant and important alerts for human review.

Given, the sometimes, unreliable nature of information on Twitter [24] along with

the possibility of different local security and organizational policies, we believe that

it’s best for a human analyst to be ‘in loop’ with the system.

1.3.2 Cyber-All-Intel

The system takes as input cybersecurity related text data from various unstruc-

tured sources like Dark Web, blogs, social media, National Vulnerability Databases

(NVDs), newspaper articles, etc. and represent the extracted knowledge in the ‘VKG

6

structure’. We extract, represent and integrate the knowledge present in a variety

of Open Source Intelligence (OSINT) web fora as entities, then use the resulting

knowledge graph and embeddings to obtain actionable cybersecurity information

for the analyst.

In order to better protect the product in development, it is necessary to create

a repository of known vulnerabilities in these open source libraries and projects.

Threat intelligence about some of these projects can be mined using traditional

sources like NIST’s National Vulnerability Database (NVD)1, United States Com-

puter Emergency Readiness Team (US-CERT)2, etc. Other sources which are more

non-traditional are, Twitter, Reddit, blogs, and news. Non-traditional sources are

faster than the traditional ones. There is a significant gap between initial vulnerabil-

ity announcement and NVD release [58]. Vulnerability threat intelligence appears

first on non-traditional sources [57]. Mining non-traditional sources is becoming

really important.

The Cyber-All-Intel system will also inform a developer about potential threats

and vulnerabilities that the product in development might inherit as a result of link-

ing to a vulnerable open source project or library. We mine threat intelligence from

issues and bugs raised on web-based hosting service for version control like, GitHub

[2], GitLab [3], bitbucket [1], etc. These platforms have been used by developers

to host and collaborate on source code development [8]. We extract vulnerabili-

ties raised on these platforms and represent them in a security knowledge graph.

1https://nvd.nist.gov/

2https://www.us-cert.gov/

7

The knowledge graph then becomes a store for various vulnerabilities and exposures

present in various open source projects, products and libraries (see Chapter 5). This

knowledge can then be queried by various developers helping them create products

that are secure from the ground up. Pervasive software security entails cyber sup-

ply chain risk management, where the developers are made aware of various threats

present in libraries they link with the development of their products. We also create

another application that can track installed software on a client machine, and then

use the above mentioned knowledge graph to reason alerts for the security analyst.

These alerts warn the analyst if an installed software is linked to a vulnerable open

source library or project. We built a proof of concept for this application that runs

on a linux installation.

The multilingual nature of these non-traditional sources is a potential hin-

drance for cyber-defense professionals, as they might be limited by their knowledge

of different languages. Despite this significant issue, the role of language in address-

ing cyber threats has been under explored. Multilingual understanding, adds to the

many challenges security analysts continue to encounter. The security industry is

heavily dependent upon the security analyst’s ability in using specialized experi-

ence to reason over the disparate pieces of intelligence data available on the web,

in order to discover potential threats and attacks. In Cyber-All-Intel, we use the

cyber threat translation system developed by Ranade et al. [55], to gather relevant

non-English threat intelligence data from sources such as Twitter. The data is then

fed into the system, which converts the English representation of threats into a

machine understandable format defined using our UCO Ontology [71] in OWL. We

8

have developed a proof of concept for this system that takes in Russian threat intel-

ligence and asserts them in Cyber-All-Intel. This helps cyber-defense systems gain

intelligence about threats mentioned in the Russian text. The acquired intelligence

is then fed into an AI-based cyber defense system that generates conclusions from

a cumulation of aggregated threat intelligence data.

The system is built using the VKG structure – a hybrid structure that com-

bines knowledge graph and embeddings in a vector space. The structure creates a

new representation for relations and entities of interest. In the VKG structure, the

knowledge graph includes explicit information about various entities and their rela-

tions to each other grounded in an ontology3. The vector embeddings, on the other

hand, include implicit information found in context where these entities occur in a

corpus. The base ontology is enhanced to have relations that describe the vector

embeddings associated with terms in the ontology.

The Cyber-All-Intel system also pro-actively tries to improve the underlying

cybersecurity knowledge. The vector part of the VKG structure is used to improve

the knowledge graph part and vice versa. We utilize powerful deep neural networks

to automatically update the underlying knowledge. Such an ability allows the system

to be more accurate and best assist the security analyst in her tasks.

We have also included two applications in the Cyber-All-Intel system, namely,

an alert recommender and a query processing engine that leverage the advantages

provided by the VKG structure. The security analyst can ask the Cyber-All-Intel

system to issue alerts based on an organization’s ‘system profile’. She can dig deeper

3https://www.w3.org/standards/semanticweb/ontology

9

into an alert by asking complex queries like, ‘Raise an alert if, a vulnerability similar

to denial of service is listed in MySQL’ and get an answer from the system.

1.4 Contributions

Major contributions presented in this thesis include:

• Creating a knowledge graph based preliminary system called ‘CyberTwitter’

(Chapter 3). The system takes in cyber threat intelligence shared on Twitter

and creates a cybersecurity knowledge graph for the same.

• Populating unstructured cybersecurity knowledge in Vectorized Knowledge

Graphs (VKG) (Chapter 4) and creating the Cyber-All-Intel system (Chapter

5).

• Cybersecurity Knowledge Representation Improvement: We aim to use the

vector space to improve the knowledge graph representation and the knowledge

graph to improve the vector space representation (See Chapter 5).

• Actionable Cybersecurity Insights from Vectorized Knowledge Graphs: we

create agents that fully utilize the advantages provided by VKGs (Chapter 4)

for query processing (Chapter 5), generating alerts for threats (Chapter 5),

and finding similar attacks.

10

1.5 Document Structure

The rest of the thesis is as follows – In Chapter 2, we discuss the related work

and some background on knowledge representation. We discuss the CyberTwitter

system in Chapter 3. The VKG Structure has been discussed in Chapter 4. We

describe the Cyber-All-Intel system architecture and pipeline in Chapter 5. We

discuss cybersecurity knowledge improvement in Chapter 5. The query processing

and alert generation applications have been discussed in Chapter 5. We present our

experimental setup and evaluation in Chapter 6 and 7, we conclude in Chapter 8.

11

Chapter 2

Background & Related Work

In this chapter we present some background and related work in the field of

knowledge graphs, vector space models, text extraction, and knowledge representa-

tion in cybersecurity.

2.1 Knowledge Representation for Cybersecurity

Knowledge graphs have been used in cybersecurity to combine data and infor-

mation from multiple sources. Undercofer et al. created an ontology by combining

various taxonomies for intrusion detection [77]. Kandefer et al. [32] created a data

repository of system vulnerabilities and with the help of a systems analyst, trained

a system to identify and prevent system intrusion. Takahashi et al. [73, 72] built

an ontology for cybersecurity information based on actual cybersecurity operations

focused on cloud computing-based services. Rutkowski et al. [60] created a cy-

bersecurity information exchange framework, known as CYBEX. The framework

describes how cybersecurity information is exchanged between cybersecurity enti-

ties on a global scale and how implementation of this framework will eventually

minimize the disparate availability of cybersecurity information. Another insightful

work by Xie et al. [82] discusses uncertainty modeling for cyber security centered

around near real-time security analysis such as intrusion response. In this paper the

12

authors use Bayesian networks to model uncertainty in enhanced security analysis.

Syed et al. [71] created the Unified Cybersecurity Ontology (UCO) that sup-

ports information integration and cyber situational awareness in cybersecurity sys-

tems. The ontology incorporates and integrates heterogeneous data and knowledge

schema from different cybersecurity systems and most commonly-used cybersecu-

rity standards for information sharing and exchange such as STIX [10] and CYBEX

[60]. The UCO ontology has also been mapped to a number of existing cybersecurity

ontologies as well as concepts in the Linked Open Data cloud.

2.2 Open Source Intelligence (OSINT) sources

OSINT is intelligence gathered from publicly-available overt sources such as

newspapers, magazines, social-networking sites, video sharing sites, wikis, blogs, etc.

In cybersecurity domain, information available through OSINT can compliment data

obtained through traditional security systems and monitoring tools like Intrusion

Detection and Prevention Systems (IDPS) [46]. Cybersecurity information sources

can be divided into two abstract groups, formal sources such as NIST’s National Vul-

nerability Database (NVD), United States Computer Emergency Readiness Team

(US-CERT), etc. and various informal sources such as blogs, developer forums, chat

rooms and social media platforms like Twitter1, Reddit2 and Stackoverflow, these

provide information related to security vulnerabilities, threats and attacks. A lot of

information is published on these sources on a daily basis making it nearly impossible

1https://twitter.com/hashtag/cybersecurity?lang=en

2https://www.reddit.com/r/cybersecurity/

13

for a human analyst to manually comb through, extract relevant information, and

then understand various contextual scenarios in which an attack might take place.

A manual approach even with a large number of human analysts would neither be

efficient nor scalable. Automatically extracting relevant information from OSINT

sources thus has received attention from the research community [48, 54, 38].

Over the past decade, Twitter has become a vital source for open source in-

telligence. The social media site’s data has been used by researchers to gather

intelligence about the impact of natural disasters [61] [19], terrorists attacks [52],

government elections[74], predicting stock markets[14], etc. In our work, we are

interested in using Twitter as a source of information to study various cybersecurity

events. Twitter users as in when new vulnerabilities are made public, tweet about

these vulnerabilities (Figure 2.1 and 2.2) to spread information on the network so

that others can use that particular information to secure their systems. Individuals

or reputed security experts like Brian Krebs (an investigative journalist who writes

about cybercrime) can be valuable resources for cybersecurity incidents. Estab-

lished companies like @web security or @intersecww or disseminate news, tips and

latest information on web security, web application protection, hacker incidents, data

breaches, penetration testing results, etc. Other organization specific accounts like

@githubstatus, @FirebaseStatus, @herokustatus, @stripestatus, @DOStatus (Digi-

talOcean), @redditstatus, @twitchstatus, @AdobeSecurity, @JuniperSIRT etc. re-

port on security incidents with respect to their platforms and products. For obvious

reasons such organizational accounts mentioned above are valuable sources of infor-

mation with respect to cybersecurity events. We wish to use these Twitter updates

14

Figure 2.1: Both users and organizations use Twitter to report potential threats.

to mine intelligence about various cybersecurity threats and vulnerabilities, Chapter

3 gives details about our system.

2.3 Text Extraction for Cybersecurity

In our various preliminary systems [31, 45] we demonstrate the feasibility of

automatically generating RDF linked data from vulnerability descriptions collected

from the National Vulnerability Database [50], Twitter [76], etc. Joshi et al. [31]

extract information on cybersecurity-related entities, concepts and relations which is

then represented using custom ontologies for the cybersecurity domain and mapped

to objects in the DBpedia knowledge base [9] using DBpedia Spotlight [40]. Cyber-

Twitter [45], a framework to automatically issue cybersecurity vulnerability alerts to

users. CyberTwitter converts vulnerability intelligence from tweets to RDF. It uses

15

Figure 2.2: Sample tweet from an individual user about a recent security vulnera-

bility

the UCO ontology (Unified Cybersecurity Ontology) [71] to provide their system

with cybersecurity domain information.

2.4 Vector Space Models & Knowledge Graphs

Extracting data from unstructured text (web) data sources, representing it,

and reasoning over the representation to extract knowledge and information is one

of the central challenges in the field of Artificial Intelligence. In addition to infor-

mation extraction, it involves designing representations that capture the extracted

information and that can be used to analyze it. There is an inherent information

loss while representing knowledge through different methods. Consider two repre-

sentations that are heavily used in literature – Knowledge Graphs and Vector Space

16

Embeddings. By representing knowledge as vector embeddings, we lose the explicit

declarative character of the information. Knowledge graphs on the other hand are

adept at asserting declarative information, but miss important contextual informa-

tion around the entity or are restricted by the expressibility of the baseline ontology

used to represent the knowledge [18].

It is important to highlight that both of the knowledge representation tech-

niques provide applications built on these technologies certain advantages. Embed-

dings provide an easy way to search their neighborhood for similar concepts and can

be used to create powerful deep learning systems for specific complex tasks. Knowl-

edge graphs provide access to versatile reasoning techniques. Knowledge graphs also

excel at creating rule-based systems where domain expertise can be leveraged. To

overcome limitations of both and take advantage of their complementary strengths,

we propose the VKG structure that is part knowledge graph and part vector embed-

dings (Chapter 4). VKG is more than the sum of these parts and can be used to

develop powerful inference methods and a better semantic search.

Word embeddings are used to represent words in a continuous vector space.

Two popular methods to generate these embeddings based on ‘Relational Concur-

rence Assumption’ are word2vec [42, 43] and GloVe [53]. The main idea behind

generating embeddings for words is to say that vectors close together are semanti-

cally related. Word embeddings have been used in various applications like machine

translation [69], improving local and global context [28], etc.

Modern knowledge graphs assert facts in the form of (Subject, Predicate,

Object) triples, where Subject and Object are modeled as graph nodes and the edge

17

between them (Predicate) model the relation between the two. DBpedia [9], YAGO

(Yet Another Great Ontology) [68], YAGO2 [26], Google Knowledge Graph [64], etc.

are some of the examples of popular knowledge graphs.

An important task on both vector space models and knowledge graphs is

searching for similar entities, given an input entity. In vector spaces, embeddings

close together are semantically related and various neighborhood search algorithms

[23, 34] have been suggested. On the other hand semantic similarity on knowledge

graphs using ontology matching, ontology alignment, schema matching, instance

matching, similarity search, etc. remains a challenge [63, 20, 84]. In this paper

we use the VKG structure, in which we link the knowledge graph nodes to their

embeddings in a vector space (see Chapter 5).

Yang et al. [83] argued that a fast top-k search in knowledge graphs is chal-

lenging as both graph traversal and similarity search are expensive. The problem

will get compounded as knowledge graphs increase in size. Their work proposes

STAR, a top-k knowledge graph search framework to find top matches to a given

input. Damljanovic et al. [17] have suggested using Random Indexing (RI) to gen-

erate a semantic index to an RDF graph [6]. These factors combined have led to an

increased interest in semantic search, so as to access RDF data using Information

Retrieval methods. We argue that vector embeddings can be used to search, as well

as index entities in a knowledge graph. We have built a query engine on top of the

VKG structure that removes the need to search on the knowledge graph and uses

entity vector embeddings instead (see Chapter 4 and 7). However, queries that in-

volve listing declarative knowledge and reasoning are done on the knowledge graph

18

part of the VKG structure.

Vectorized knowledge graphs have also been created, systems like HOLE (holo-

graphic embeddings) [49] and TransE [80] learn compositional vector space repre-

sentations of entire knowledge graphs by translating them to different hyperplanes.

Our work is different from these models as we keep the knowledge graph part of

the VKG structure as a traditional knowledge graph so as to fully utilize mature

reasoning capabilities and incorporate the dynamic nature of the underlining corpus

for our cybersecurity use-case. Vectorizing the entire knowledge graph part for a

system like Cyber-All-Intel will have significant computational overhead because of

the ever-changing nature of vulnerability relations and velocity of new input threat

intelligence.

In another work thread different from ours, vector models have also been used

for knowledge graph completion. Various authors have come up with models and

intelligent systems to predict if certain nodes in the knowledge graphs should have

a relation between them. The research task here is to complete a knowledge graph

by finding out missing facts and using them to answer path queries [37, 47, 66, 25].

2.4.1 Open Source Software Security

Open source development has created a variety of new software security chal-

lenges. Closed source proponents claim that the availability of open source software’s

code allows hackers to easily find a way to compromise the security. They believe

that “hackers finding the source code and placing back doors for unauthorized ac-

19

cess to their systems is one of the biggest limiting factors for open source software”

[36]. Closed source systems based on the principle of security through obscurity,

may have theoretical or actual security vulnerabilities, but its owners or designers

believe that they are more secure if the flaws are not known.

Security of open source systems stems from the Kerckhoffs’s Law (sometimes

refereed to as Shannon’s maxim), which states that ”A cryptosystem should be

designed to be secure if everything is known about it except the key information.”

[62]. The strength behind open source software stems from it’s wide audience looking

at the code and collectively finding problems. In our work, we are interested in

gathering threat intelligence about issue and vulnerability reports in open source

repositories from project contributors.

2.4.2 Cybersecurity understanding across multiple languages

Cybersecurity terminology definitions differ across cultures and languages.

The Department of Homeland Security started developing multilingual resources, to

help link cybersecurity understanding across international governments [21]. Klavens

et al. [33] outlines the importance of linguistics in the domain of security and claims

language analysis propels understanding of communication between cyber-crime ac-

tivist groups, filtering relevant data collection, and understanding the intention

behind the words.

20

Chapter 3

CyberTwitter

3.1 CyberTwitter Framework

We develop CyberTwitter, a framework to automatically issue cybersecurity

vulnerability alerts to users (Figure 3.1). CyberTwitter begins by collecting relevant

tweets by querying the Twitter API. The tweet Collection module collects, cleans

and stores tweets returned by the API. Every tweet is further processed by the

Security Vulnerability Concept Extractor (SVCE) [35] which extracts various terms

and concepts related to security vulnerabilities. Intelligence from these terms and

concepts is then converted to RDF statements using our intelligence ontology. We

use UCO ontology (Unified Cybersecurity Ontology) [71] to provide our system

with cybersecurity domain information. RDF Linked Data representation is stored

in our “Cybersecurity Knowledge Graph” allowing our alert system to reason over

the data. Finally we issue alerts to the end user based on a “User System Profile”.

We will further explain various details and sub-modules present in our system in

the next few subsections.

Our system can be divided into two major parts. The first is a dynamically

populated “Cybersecurity Knowledge Graph” that contains information about cy-

bersecurity threats and vulnerabilities. The second is an alert system that issues

alerts to the end user based on their “User System Profile” using the “Cybersecurity

21

��������	�
��
�
�������

����

���	�
����	�
����
�
��
��
��������������
���������������

��������	
�

�

�����������	�
��
!
������
���!�

"����������# $

����������#�%��
��
�&	����

Figure 3.1: CyberTwitter: A framework for monitoring and analyzing tweets related

to cyber attacks.

Knowledge Graph”.

3.1.1 User System Profile

We obtain information about the user’s system and store it in the “User System

Profile” file. The profile contains information about the operating system, various

installed softwares and their version information. We use the profile information as

part of our rules. The system information is converted into SWRL rules [27] (see

Section 3.1.6), that allows us to reason over them and generate cybersecurity alerts.

A sample profile “User System Profile” is shown in Table 3.1.

22

Software Type Version

Ubuntu Operating System 14.04

Adobe Flash Software 11.2.202.616

Java Software 7.0

Chromium Browser / Google Chrome Browser 49.0.2623.112

Firefox Browser 45.0.2

Adobe Flash Player (Chromium) Extention 21.0.0.216-r1

Table 3.1: User System Profile.

3.1.2 Tweet Collection

CyberTwitter collects data through the Twitter Stream API1 based on a set

of keywords. These keywords are derived from the “User System Profile” and a list

of cybersecurity terms (see Figure 3.2). For our system we limit ourselves to tweets

in English language2. After collecting a good number of tweets we clean the data

using WordNet, which is a large lexical database for English[44].

3.1.3 Security Vulnerability Concept Extractor

The Security Vulnerability Concept Extractor (SVCE) consists of a custom

Named Entity Recognizer (NER) [35] which extracts terms related to security vul-

nerabilities. The NER was trained using text from security blogs, Common Vul-

1https://dev.twitter.com/docs/streaming-api

2https://dev.twitter.com/streaming/overview/request-parameters#language

23

Figure 3.2: Data collection keywords.

nerabilities and Exposures (CVE) descriptions and official security bulletins from

Microsoft and Adobe. It tags every sentence with the following concepts: Means

of an attack, Consequence of an attack, affected software, hardware and operat-

ing system, version numbers, network related terms, file names and other technical

terms.

The use of the custom NER provides us multiple advantages. SVCE discards

all tweets for which the NER fails to identify even a single concept, thus further

cleaning up the data. The extracted concepts are also used to generate an RDF

Linked Data representation for every tweet that maybe queried by security systems

to protect against potential attacks.

3.1.4 Filtering and Cleaning Data

In our “Cybersecurity Knowledge Graph” we wanted to store highly relevant

tweets only. We filter tweets out based on the output of our Security Vulnerability

Concept Extractor (SVCE). In our system we only keep those tweets which contain

24

Example tweet :

ASUS w i r e l e s s r ou t e r updates are vu lne rab l e

to a MITM attack http ://www. i n t e l l i g e n t

e xp l o i t . com/view−d e t a i l s . html? id=20071

SVCE Output :

[[(u ’ASUS’ , u ’PRODUCT, ’) ,

(u ’ w i r e l e s s ’ , u ’OTHER, ’) ,

(u ’ router ’ , u ’OTHER, ’) ,

(u ’ updates ’ , u ’O’) ,

(u ’ are ’ , u ’O’) ,

(u ’ vu lnerab le ’ , u ’O’) ,

(u ’ to ’ , u ’O’) ,

(u ’ a ’ , u ’O’) ,

(u ’MITM’ , u ’ATTACK, ’) ,

(u ’ attack ’ , u ’ATTACK, ’) ,

(u ’ http :www. i n t e l l i g e n t

e xp l o i t . comview−d e t a i l s . html? id =20071 ’ ,

u ’O’)]]

Figure 3.3: Labelled output generated by the Security Vulnerability Concept Ex-

tractor (SVCE). 25

two or more tags as generated by our SVCE. Such a threshold helps us realize the

goal of including only highly relevant tweets in our knowledge graph.

3.1.5 Cybersecurity Ontologies and Knowledge Graphs

A data feed sent through the Twitter Stream API essentially consists of a

stream of strings that computers can process. However, in the real world, strings

represent terms and concepts that may sometimes be ambiguous and computers are

not programmed to handle ambiguity. Computer systems can be aided in this task

by various Semantic Web technologies that represent real world as concepts. These

concepts are then associated with Uniform Resource Identifiers (URIs) [12]. For

example, the string “Apple” can be associated with the company Apple Inc. or the

fruit apple. Also, these concepts can have various attributes and relations to other

concepts. An entity ‘Apple’ can have an attribute ‘type’ with a value ‘organization’

or ‘plant’. These attributes are vital so as to differentiate between two completely

different concepts having same spellings.

For an intelligent system like CyberTwitter, it is vital to understand the dif-

ference between various real world concepts and also to posses a comprehensive

knowledge about the cybersecurity domain. In this paper we use various publicly

available cybersecurity ontologies and knowledge graphs to support information in-

tegration and cyber-situational awareness:

1. UCO: Unified Cybersecurity Ontology [71]: The ontology integrates heteroge-

neous data and knowledge schemas from different cybersecurity systems and

26

standards.

2. DBpedia[9]: DBpedia is a project to extract structured content from the in-

formation created as part of the Wikipedia project3.

3. YAGO (Yet Another Great Ontology) [68]: It is a knowledge graph automat-

ically extracted from Wikipedia and other sources.

We have used UCO to provide our system with knowledge about the cyber-

security domain. We use DBpedia and YAGO to link the output generated by our

Security Vulnerability Concept Extractor (SVCE) to real world concepts. Entity

matching process is performed by using DBpedia4 [9] and YAGO5 APIs with the

MaxHits parameter set as 1. For example we can use DBpedia to map the string

“Adobe Flash” to dbr:Adobe Flash 6. Both these external knowledge graphs help us

map string entities to real world conceptual instances. The output from the SVCE

module enlists various cybersecurity related entities in textual tweets like, Means of

an attack, Consequence of an attack, affected software, etc. We use UCO, DBpedia

and YAGO to link these entities to real world concepts. After entity linking we store

the linked data as RDF triples [6] in our “Cybersecurity Knowledge Graph”.

In our CyberTwitter system we need information of cybersecurity events.

Events are temporal in nature. UCO though gives us a domain overview of cy-

bersecurity it cannot handle temporal nature of events. So as to handle time in

3https://wikimediafoundation.org/wiki/Our_projects

4https://github.com/dbpedia-spotlight/dbpedia-spotlight

5https://github.com/yago-naga/aida

6http://dbpedia.org/page/Adobe_Flash

27

events we create an Intelligence ontology.

In our system we define ‘Intelligence’ as an actionable information for the

human analyst which makes them aware about a new threat or vulnerability in

a software / hardware that they list in their user system profile. The nature of

intelligence in any security system is that it has a temporal dimension. A piece

of information can be considered as vital information at a given time and useless

at some other instance of time. So to incorporate time we included the following

properties in the ontology:

1. hasCounter(int:Intelligence, X): The number of tweets collected (X) with the

given intelligence. This data property helps us attach a counter to the intelli-

gence so as to map and group tweets with the intelligence they provide.

2. hasBeginTime(int:Intelligence,, Y): This data property helps us mark the time

when we got the first tweet (Y) that gives the system various details about a

new vulnerability intelligence.

3. hasLastIntelTime(int:Intelligence, Z): This data property helps us include the

time stamp of the last tweet received (Z) with a particular intelligence.

4. hasVulnerability(int:Intelligence, uco:Vulnerability): This object property holds

an instance of the extracted vulnerability.

5. productInUSP(int:Intelligence, L): This data property holds a boolean variable

L which is set to ‘True’ if the vulnerability exists in one of the products listed

in the ‘user system profile’.

28

�������	
����

�
�
�������

������� ������������������������

�����������������
�

������
���
������������ ���
!������

� ��
�������
�����������!��������"����#$����%���������#$����

�'�

��'	��'(((

)���

��
�������

��

*

�"
��)

�#
�

��

+

�

�,�

���
)�

#
� ��
�������������$���

���,�
-.! ,���������/�� ����,������"�����

��'	��
	((

Figure 3.4: Graphical representation of RDF for example tweet shown in Figure 3.3.

6. isCurrentlyValid(int:Intelligence, M): This runtime inferred data property holds

a boolean value M which is set to ‘True’ if the intelligence entity is ‘valid and

current’. A valid and current intelligence is a one that gives details about an

open, temporally significant vulnerability or threat in an affected software /

hardware. This property is updated by various SWRL rules listed in Section

3.1.6.

To give an example Figure 3.4 shows a graphical representation of an intelli-

gence, ‘Int1242611341’. The particular intelligence instance is about a vulnerability

‘Vul1426796181’ that has a consequence of a ‘man in the middle attack’ that affects

‘Asus wireless router’. The intelligence is supported by 251 number of tweets and

the first tweet with this intelligence was received by the system at time 1457685000

and the latest tweet was received at time 1457669700. If the product is listed in the

user system profile the boolean productInUSP data property is set to True.

Creating a comprehensive ‘Cybersecurity Knowledge Graph’ is vital for our

29

system as it provides us with a set of rules and information in form of triples on

which we can reason so as to issue vulnerability and threat alerts to the user. The

end user can also be given access to the Knowledge Graph which they can query

using a SPARQL interface [7] which is quite similar to SQL.

3.1.6 Alerts in CyberTwitter

In the final module of CyberTwitter we generate and issue alerts using the cy-

bersecurity knowledge graph and the user system profile. After creating the knowl-

edge graph we need an intelligent system to reason over various RDF statements

and evaluate if the system should raise an alert to inform the user about a potential

threat or vulnerability that may exist.

After creating the cybersecurity knowledge graph we include various SWRL

rules [27] to our system. SWRL rules contain two parts, antecedent part (body),

and a consequent (head). The body and head consist of conjunctions of a set of

‘atoms ’ [27]. Informally, a rule may be read as meaning that if the antecedent holds

(is “true”), then the consequent must also hold.

We have logically divided this module in 2 different parts. In the first part

we compute if an intelligence is ‘valid and current’ and in the second part we use a

valid intelligence to raise an alert. When a tweet with actionable intelligence that

already exists in the knowledge graph arrives in the system the intelligence entity

corresponding to that vulnerability gets updated (For a tweet with new intelligence

a new entity is created). When the alert system is triggered value of an ‘inferred

30

property’ isCurrentlyValid(int:Intelligence, M) is computed through SWRL rules.

The first rule is used to compute the inferred property isCurrentlyValid(int:Intelligence,

M) which depend on the value of last tweet time, if the product is in the user sys-

tem profile and how ‘old’ is the intelligence. The variable T is a system parameter

provided by the user so as to specify a time window. This time window determines

if an intelligence entity is ‘new’ enough to issue an alert. For example, if the user

sets T as 24 hours, then an intelligence entity which was last updated in the last 24

hour time period will be considered valid and current by the system.

hasLastInte lTime () ˆ

productInUSP () ˆ

withinRange (, CurrentSysTime − T , CurrentSysTime)

=>

i sCur r en t l yVa l i d ()

The SWRL rules used to raise alerts use the inferred property isCurrently-

Valid(int:Intelligence, M), number of tweets associated with that intelligence entity.

N is a system parameter specified by the user. This parameter can be used by the

user to tweak the system so as to give alerts only if the number of tweets associated

with an intelligence is substantial or if the system must inform the user about in-

telligence which are supported by a few tweets. For example, if the value of N set

by the user is 10, then all intelligence entities with at-least 10 tweets supporting it

are used to generate an alert.

Rule us ing consequences :

31

i sCur r en t l yVa l i d () ˆ

hasConsequence () ˆ

hasCounter () ˆ

swrlb : greaterThanOrEqual (N,)

=>

Rai seAle r t ()

Rule us ing means :

i sCur r en t l yVa l i d () ˆ

hasMeans () ˆ

hasCounter () ˆ

swrlb : greaterThanOrEqual (N,)

=>

Rai seAle r t ()

Using the above two rules we determine if various RDF statements have ac-

tionable intelligence that may be of interest to the user. and we issue alerts. In

our system we have purposefully separated the two rules to generate the value for

hasIntelligence. One for hasConsequence and another one for hasMeans. This can

create multiple repeated alerts in our system. We can combine the two rules to

produce a more concrete rule where both consequences and means are present in

the RDF statement. However to ensure a better throughput and performance we

use two different rules in our system.

32

After generating the alerts we display them to the human analyst along with

a link to the list tweets and SVCE tags through which the particular alert was

generated. These alerts can then be used by human analysts and policy makers to

make vital decisions to secure their organizational / personal systems.

33

Chapter 4

VKG Structure

In this chapter, we describe our VKG structure, which leverages both vector

spaces and knowledge graphs to create a new representation for relations and entities

of interest present in text. In the VKG structure, an entity is represented as a node

in a knowledge graph and is linked to its representation in a vector space. Figure

4.1 gives an example of the VKG structure where entity nodes are linked to each

other using explicit relations as in a knowledge graph and are also linked to their

word embeddings in a vector space. The VKG structure enables an application to

reason over the knowledge graph portion of the structure and also run computations

on the vector space part.

The VKG structure enables us to specifically assert information present in the

vector representation of concepts and entities using semantic relations, for exam-

ple, in Figure 4.1; using the VKG structure we can explicitly assert that the vector

representation of ‘Milo’ and ‘Cat’ are related like, < Milo, isA,Cat >. ‘Tom’ and

‘Milo’ are related with the relation, < Tom, hasPet,Milo >. The vector represen-

tation of ‘Milo’ can be used to find other pets that are similar to it, but the explicit

information that ‘Milo’ is a ‘Cat’ and it’s ‘Tom’ that has a pet named ‘Milo’ can be

accurately derived explicitly from the knowledge graph part.

The VKG structure helps us unify knowledge graphs and vector representation

34

���

����

�	

������

��	

����
�������
��
�������������������

����
�������
��
��������������������

����
�������
��
�������������������

���
����

���
����

���
����

Figure 4.1: An example of a VKG structure representing “Tom has a pet Milo and

Milo is a cat”.

of entities, and allows us to develop powerful inference methods that combine their

complementary strengths.

The vector representation we use is based on the ‘Relational Concurrence

Assumption’ highlighted in [42, 43, 16]. Word embeddings are able to capture

different degrees of similarity between words. Mikolov et al. [42, 43] argue that

embeddings can reproduce semantic and syntactic patterns using vector arithmetic.

Patterns such as “Man is to Woman as King is to Queen” can be generated through

algebraic operations on the vector representations of these words such that the vector

representation of “King” - “Man” + “Woman” produces a result which is closest

to the vector representation of “Queen” in the model. Such relationships can be

generated for a range of semantic relations as well as syntactic relations. However, in

spite of the fact that vector space models excel at determining similarity between two

35

vectors they are severely constrained while creating complex dependency relations

and other logic based operations that are a forte of various semantic web based

applications [18, 13].

Knowledge graphs, on the other hand, are able to use powerful reasoning

techniques to infer and materialize facts as explicit knowledge. Those based on

description logic representation frameworks like OWL, for example, can exploit ax-

ioms implicit in the graphs to compute logical relations like consistency, concept

satisfiability, disjointness, and subsumption. As a result, they are generally much

slower while handling operations like, ontology alignment, instance matching, and

semantic search [63, 29].

The intuition behind our approach is that an entity’s context from its im-

mediate neighborhood, present as word embeddings, adds more information along

with various relations present explicitly in a knowledge graph. Entity representation

in vector space gives us information present in the immediate context of the place

where they occur in the text and knowledge graphs give us explicit information that

may or may not be present in the specific piece of text. Embeddings can help find

similar nodes or words faster using neighborhood search algorithms and search space

reductions. They also support partial matching techniques. Knowledge graphs pro-

vide many reasoning tools including query languages like SPARQL1, rule languages

like SWRL2, and description logic reasoners.

Potential applications that will work on our VKG structure, need to be de-

1https://www.w3.org/TR/rdf-sparql-query/

2https://www.w3.org/Submission/SWRL/

36

signed to take advantages provided by integrating vector space models with a knowl-

edge graph. In a general efficient use-case for our VKG structure, ‘fast’ top-k search

should be done on the vector space part aided by the knowledge graph, and the

‘slow’ reasoning based computations should be performed on just the knowledge

graph part. An input query can be decomposed into sub-queries which run on re-

spective parts of the VKG structure (see 5.4.1.1). We analogize this to thinking

‘fast’ in vector space along with thinking ‘deeply’ and ‘slowly’ by using the knowl-

edge graph.

By using the VKG structure, we link entity vector embeddings with their

knowledge graph nodes. Domain specific knowledge graphs are built using a schema

that is generally curated by domain experts. When we link the nodes and em-

beddings we can use the explicit information present in these ontologies to provide

domain understanding to embeddings in vector space. Adding domain knowledge

to vector embeddings can further improve various applications built upon the struc-

ture. The vector embeddings can be used to train machine learning models for

various tasks. These machine learning models can use explicit assertions present in

the knowledge graph part. This will also help in improving the quality of the results

generated for various input queries discussed in Chapter 5.

In the example, (Figure 4.1) we can use the VKG structure to state that

the vector embedding of ‘Milo’ belongs to the class ‘Cat’, which is a subclass of

‘Mammals’ and so on. In a cybersecurity example (Figure 4.2) from our Cyber-

All-Intel system discussed in Chapter 5, we explicitly state that ‘denial of service’

is a vulnerability. Using the VKG structure we connect the fact that the vector

37

����
 ��������

��	

��������	

��������������

�����	�
���

���

������������������

�������������������� ��

 �������!�"��#����

�����"�!�������������$������

��%���������&��"�
���!�� �
���"����

����	�� ���

���������&��
��������"

����'�"�����&��

����
������������

�����	�
���

���

�����	�
���

���

�����	�
���

���

�����	�
���

���

Figure 4.2: In the VKG structure for “Microsoft Internet Explorer allows remote at-

tackers to execute arbitrary code or cause a denial of service (memory corruption) via

a crafted web site, aka “Internet Explorer Memory Corruption Vulnerability.” the

knowledge graph part asserted using UCO includes the information that a product

‘Microsoft Internet Explorer’ has vulnerabilities ‘execute arbitrary code’ and ‘denial

of service’ that can be exploited by ‘remote attackers’ using the means ‘crafted web

site’. The knowledge graph entities are linked to their vector embeddings using the

relation ‘hasVector’.

38

embedding of ‘denial of service’ is a vulnerability.

Knowledge graph nodes in the VKG structure can be used to add information

from other sources like DBpedia, YAGO, and Freebase. This helps integrate infor-

mation that is not present in the input corpus. For example, in Figure 4.2 we can

link using the ‘owl : sameAs’ property ‘Microsoft Internet Explorer’ to its DBpedia

equivalent ‘dbp:Internet Explorer’. Asserting this relation adds information like In-

ternet Explorer is a product from Microsoft. This information may not have been

present in the input cybersecurity corpus but is present in DBpedia.

4.1 Populating the VKG Structure

In order to create the VKG structure, the structure population system requires

as input, a text corpus. The aim of the system is to create the VKG structure for

the concepts and entities present in the input corpus which requires us to create the

knowledge graph and the vector parts separately and then linking the two.

Various steps and technologies required are enumerated below. The Cyber-All-

Intel system that uses the VKG structure to represent a textual corpus is described

in Chapter ??.

1. Training vectors : For the vector part of the VKG structure, we can generate

entity embeddings using any of a number of vectorization algorithms. For text,

many of these are based on the ‘Relational Concurrence Assumption’ principle

[42, 43, 53, 28].

2. Creating semantic triples : An information extraction pipeline extracts a knowl-

39

edge graph from a collection of text documents. The first step applies com-

ponents from Stanford CoreNLP components [39] trained to recognize entities

and relations in the cybersecurity domain to produce a knowledge graph for

each document. The second step uses components from Kelvin [22] to inte-

grate the document-level graphs by performing cross-document co-reference,

linking entities to reference knowledge bases like DBpedia, and drawing ad-

ditional inferences. The resulting knowledge graph is then materialized as an

RDF graph.

3. Creating links between entity vectors and nodes : We link knowledge graph

nodes to their corresponding words in the vector space vocabulary using the

hasV ector relationship as shown in Figure 4.1. Keeping the lexical tokens in

the knowledge graph allows us to update vector embeddings as the underlining

corpus changes and renders the vector model stale. This symbolic linking of

the knowledge graph part and the vector part via the hasV ector relation is

initiated after the RDF triples are generated.

4.2 Advantages

The VKG structure helps us unify knowledge graphs and vector representation

of entities, and allows us to develop powerful inference methods that combine their

complementary strengths.

The vector representation we use, enable us to encode ‘local contextual knowl-

edge’. These are based on the ‘Relational Concurrence Assumption’ highlighted

40

in [42, 43, 16]. Word embeddings are able to capture different degrees of similar-

ity between words. However, they are severely constrained while creating complex

dependency relations and other logic based operations that are a forte of various

semantic web based applications [18, 13].

Knowledge graphs, on the other hand, are able to use powerful reasoning

techniques to infer and materialize facts as explicit ‘global knowledge’. Those based

on description logic representation frameworks like OWL, for example, can exploit

axioms implicit in the graphs to compute logical relations like consistency, concept

satisfiability, disjointness, and subsumption. As a result, they are generally much

slower while handling operations like, ontology alignment, instance matching, and

semantic search [63, 29]. Knowledge graphs provide many reasoning tools including

query languages like SPARQL [7], rule languages like SWRL [27], and description

logic reasoners.

Potential applications that will work on our VKG structure, need to be de-

signed to take advantages provided by integrating vector space models with a knowl-

edge graph. In a general efficient use-case for our VKG structure, ‘fast’ top-k search

should be done on the vector space part aided by the knowledge graph, and the

‘slow’ reasoning based computations should be performed on just the knowledge

graph part. An input query can be decomposed into sub-queries which run on

respective parts of the VKG structure (see 5.4.1.1).

Domain specific knowledge graphs are built using a schema that is generally

curated by domain experts. When we link the nodes and embeddings we can use

the explicit information present in these ontologies to provide domain understand-

41

ing to embeddings in vector space. Adding domain knowledge to vector embeddings

can further improve various applications built upon the structure. The vector em-

beddings can be used to train machine learning models for various tasks. These

machine learning models can use explicit assertions present in the knowledge graph

part. This will also help in improving the quality of the results generated for various

input queries discussed in Chapter 5.

Knowledge graph nodes in the VKG structure can be used to add information

from other sources like, DBpedia, YAGO, and Freebase. This helps integrate infor-

mation that is not present in the input corpus. For example, in Figure 4.2 we can

link using the ‘owl : sameAs’ property, ‘Microsoft Internet Explorer’ to its DBpedia

equivalent ‘dbp:Internet Explorer’ [5]. Asserting this relation adds information like

Internet Explorer is a product from Microsoft. This information may not have been

present in the input cybersecurity corpus but is present in DBpedia.

Another advantage provided by integrating vector spaces and knowledge graphs

is that we can use both of them to improve the results provided by either of the parts

alone. For example (in Figure 4.2), we can use the explicit information provided in

the knowledge graph to aid the similarity search in vector space. If we are searching

the vector space for entities similar to ‘denial of service’, we can further improve

our results by ensuring the entities returned belong to class ‘Vulnerability’. This

information is available from the knowledge graph. This technique of knowledge

graph aided vector space similarity search (VKG Search, See Chapter 5) is used in

our query engine. We execute similarity search on the embeddings and then filter

out entities using the knowledge graph.

42

In Chapter 5, we discuss applications we have created for the Cyber-All-Intel

in detail.

43

Chapter 5

Cyber-All-Intel

In this chapter we discuss the overarching design and system architecture

for Cyber-All-Intel (Figure 5.6). We first discuss various intelligence sources that

serve as input to Cyber-All-Intel; then we go through the architecture and the

rationale behind our design decisions. Later we explain the knowledge representation

techniques (VKG structure) used in our system along with its advantages. We also

discuss a few agents that can leverage these representation techniques to provide

value to a security analyst.

5.1 Cybersecurity Sources

OSINT is intelligence gathered from publicly-available overt sources such as

newspapers, magazines, social-networking sites, video sharing sites, wikis, blogs, etc.

In cybersecurity domain, information available through OSINT can compliment data

obtained through traditional security systems and monitoring tools like Intrusion

Detection and Prevention Systems (IDPS) [46]. Cybersecurity information sources

can be divided into two abstract groups, formal sources such as NIST’s National Vul-

nerability Database (NVD), United States Computer Emergency Readiness Team

(US-CERT), etc. and various informal sources such as blogs, developer forums, chat

rooms and social media platforms like Twitter, Reddit [56] and Stackoverflow [67],

44

these provide information related to security vulnerabilities, threats and attacks. A

lot of information is published on these sources on a daily basis making it nearly

impossible for a human analyst to manually comb through, extract relevant infor-

mation, and then understand various contextual scenarios in which an attack might

take place. A manual approach even with a large number of human analysts would

neither be efficient nor scalable. Automatically extracting relevant information from

OSINT sources thus has received attention from the research community [48, 54, 38].

5.1.1 Multilingual Sources

In Cyber-All-Intel, we also include multilingual open source intelligence sources.

As a proof of concept, we include Russian threat intelligence data from Twitter. The

data is then assimilated into a vector representation in order to bring semantically

similar terms together [43]. The data is then fed into Cyber-All-Intel, which converts

the English representation of the Russian data into a machine understandable for-

mat defined using our UCO Ontology [71] in OWL. This helps cyber-defense systems

gain intelligence about threats mentioned in the Russian text. The acquired intelli-

gence is then fed into an AI-based cyber defense system that generates conclusions

from a cumulation of aggregated threat intelligence data.

The intelligence translation system that we discuss by Ranade et al. [55] helps

us automate this process by taking data from a variety of multilingual sources,

extracting, representing and integrating the knowledge present in it as embeddings

and knowledge graphs, and then use the resulting artificial intelligence systems to

45

provide actionable insights to SoC professionals. Figure 5.1 showcases our pipeline,

which takes in Russian threat intelligence and stores it in as a VKG structure.

This data can augment both CyberTwitter and Cyber-All-Intel. The systems

store threat intelligence in a knowledge representation that can be used by AI based

cyber-defense systems (See Figure 5.1). Such systems generally have a knowledge

representation engine, a reasoning engine, and few applications like an alert gener-

ation system, recommender system, query processing system, etc.

The knowledge representation system, converts input threat intelligence (usu-

ally in a textual format) into a machine readable format. In our system we represent

it in RDF1, with cybersecurity domain knowledge provided by the Unified Cyber-

security Ontology (UCO) [71]. The intelligence ontology [45] provides information

about the intelligence domain. We also include specific conceptual embeddings for

security concepts in our threat representation format. The knowledge reasoning part

of the system provides domain specific reasoning capability generally encoded as log-

ical rules by a domain expert. The applications and the reasoning engine generally

use the machine readable representation to provide specific functionality. Figure 5.1

also provides the graph structure for the translated English intelligence: “URL Com-

mand Injection Remote Code Execution Vulnerability in Microsoft Skype”. Figure

5.2 provides the RDF representation for the same intelligence.

1https://www.w3.org/RDF/

46

Figure 5.1: Using the intelligence translation system with an AI based cyber defense

system.

5.1.2 Code Repositories as a Threat Intelligence Source

We mine threat intelligence from issues and bugs raised on web-based hosting

service for version control like, GitHub [2], GitLab [3], bitbucket [1], etc. These

platforms have been used by developers to host and collaborate on source code

development [8]. We extract vulnerabilities raised on these platforms and represent

them in a security knowledge graph. The knowledge graph then becomes a store

for various vulnerabilities and exposures present in various open source projects,

products and libraries (see Figure 5.3). This knowledge can then be queried by

various developers helping them create products that are secure from the ground

up. Pervasive software security entails cyber supply chain risk management, where

the developers are made aware of various threats present in libraries they link with

the development of their products.

47

@prefix uco: <http://accl.umbc.edu/ns/ontology/uco#> .

@prefix intel: <http://accl.umbc.edu/ns/ontology/intelligence#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dbp: <http://dbpedia.org/resource#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<Int534962883> a intel:Intelligence ;

intel:hasVulnerability <remote code execution> ;

<command injection> a uco:Means .

<Microsoft Skype> a uco:Product ;

uco:hasVulnerability <remote code execution> ;

owl:sameAs dbp:Skype .

<remote code execution> a uco:Vulnerability ;

uco:affectsProduct <Microsoft Skype> ;

uco:hasMeans <command injection> ;

owl:sameAs dbp:remote code execution .

Figure 5.2: RDF for textual input “URL Command Injection Remote Code Execu-

tion Vulnerability in Microsoft Skype”. Also, owl : sameAs property has been used

to augment the data using an external source ‘DBpedia’ [9].48

Figure 5.3: Mining threat intelligence from bug and issue reports. Intelligence is

stored in a Security Knowledge Graph. The graph represents threat intelligence:

“I’ve noticed a buffer overflow in the Unix version of LightFTP v1.1”

Once the SVCE [35] identifies security concepts and entities. We then associ-

ated them with Uniform Resource Identifiers (URIs). These URIs are then converted

to nodes in our security knowledge graph. We used the Unified Cybersecurity Ontol-

ogy [71] which integrates heterogeneous data and knowledge schemas from different

cybersecurity systems and standards.

We used DBpedia to link various knowledge graph nodes to real world con-

cepts. Entity matching process is performed by using DBpedia [9] and DBpedia

spotlight [40]. For example we can use DBpedia to map the string “Adobe Flash”

to dbr:Adobe Flash. This external knowledge graph help us map our entities to real

world conceptual instances.

After entity linking, we stored the linked data as RDF triples in our security

knowledge graph. In our system we need information of cybersecurity intelligence.

49

Figure 5.4: Sample issue showing security buffer overflow in a popular Unix FTP

client.

Threat intelligence is temporal in nature and may contain other meta-data like,

origin, credibility, provenance, etc. UCO though gives us a domain overview of

cybersecurity it cannot handle temporal nature of events. So as to handle time in

events we use the intelligence ontology [45].

To give an example, Figure 5.5 shows the RDF statements created for the

intelligence “I’ve noticed a buffer overflow in the Unix version of LightFTP v1.1”

(Figure 5.4). A graphical representation of the same intelligence, ‘Int2362704296’

has been shown in Figure 5.3. Once we obtain the intelligence in the RDF format,

we use it to create the alert and the query system.

5.1.3 Covert Sources

An organization may also have access to various forms of propriety or covert

data sources. These data sources can also be added as modules, to our Cyber-All-

50

@prefix uco: <http://accl.umbc.edu/ns/ontology/uco#> .

@prefix intel: <http://accl.umbc.edu/ns/ontology/intelligence#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dbp: <http://dbpedia.org/resource#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<Int2362704296> a intel:Intelligence ;

intel:hasVulnerability <buffer overflow> .

<LightFTP> a uco:Product ;

uco:hasVulnerability <buffer overflow> ;

owl:sameAs dbp:FTP-server .

<buffer overflow> a uco:Vulnerability ;

uco:affectsProduct <LightFTP> ;

owl:sameAs dbp:buffer overflow .

Figure 5.5: RDF for textual input “I’ve noticed a buffer overflow in the Unix version

of LightFTP v1.1”. Also, owl : sameAs property has been used to augment the data

using an external source ‘DBpedia’ [9].

51

Intel system. However, in this paper we only describe open data sources.

5.2 System Pipeline & Architecture

Our system pipeline includes a data collection engine that pushes new data

into the system from a multitude of data sources. The Cyber-All-Intel system

(Figure 5.6) automatically accesses data from some of these sources like NIST’s

National Vulnerability Database, Twitter, Reddit, Security blogs, dark web markets

[15], etc. The system begins by collecting data in a modular fashion from these

sources. Followed by a data pre-processing stage where we remove stop words,

perform stemming, noun chunking, etc. The data is then stored in a cybersecurity

corpus.

After creating a cybersecurity corpus we use a Security Vulnerability Concept

Extractor (SVCE) which extracts security related entities and understands their

relationships. Our current SVCE [35, 30], trained using various natural language

processing techniques, enables us to extract cybersecurity related terms from text,

which can then be stored in our knowledge graph. The data is then tagged and

vectorized. The tagged entities are then converted to their vector embeddings.

These embeddings are then included in the knowledge graph. For more details on

the VKG structure see Chapter 4.

The data is asserted in RDF using the Unified Cybersecurity Ontology (UCO)

[71]. Ontologies like UCO, Intelligence [45], DBpedia [9], YAGO [68] have been used

to provide cybersecurity domain knowledge. The vector part on the other hand was

52

created using a vector generation algorithm (Chapter 5.3.2). An example is shown

in Figure 4.2, where we create the VKG structure for the textual input:

Microsoft Internet Explorer allows remote attackers to execute arbitrary code

or cause a denial of service (memory corruption) via a crafted web site, aka “Internet

Explorer Memory Corruption Vulnerability.”

Triples generated for the above mentioned input text are shown in the Figure

5.9.

The knowledge part of the VKG structure is completed once the triples are

added to the system. We used Apache Jena [4] to store our knowledge graph. For

example, in Figure 4.2, once added the nodes are linked to the vector embeddings

for ‘Microsoft Internet Explorer’, ‘remote attackers’, ‘execute arbitrary code’, ‘de-

nial of service’, and ‘crafted web site’. For our system, we retrain the vector model

every two weeks to incorporate the changes in the corpus. We give various details

about system execution and evaluation in Chapter 6 and Chapter 7 respectively.

5.3 Cybersecurity Knowledge Improvement

An added benefit of using multiple knowledge representation in the VKG struc-

ture is that we can use one representation to improve the other. Improving repre-

sentation in turn improves the quality of applications that depend on them. In this

section we will discuss how we can leverage the vector part of the VKG structure to

improve the knowledge graph part and vice versa.

53

Figure 5.6: Cyber-All-Intel System Architecture.

54

5.3.1 Improving the Knowledge Graph using Vector Embeddings

The vector representation of different entities can be used by a learning system

to enhance the knowledge graph by predicting new relationships between entities.

We have created a neural network that takes as input the vector representation of

two entities and outputs the relation between them.

This task will help in improving the knowledge graph as in when new data

is added. An example task for this agent will be to predict the relation between

the entities ‘android’ and ‘buffer overflow’, given data from a corpus that have both

words. The triple can then be added to the knowledge graph along with their

embeddings.

Neural networks can be used to model nonlinear relations between inputs and

outputs. We show the different layers of the neural network in Figure 5.7. The

figure shows an input layer, multiple hidden layers and an output layer. The neural

network has an input layer for embeddings followed by a convolutional layer. After

this an activation function (ReLU layer) is added to introduce non-linearity, then

a max-pooling layer for down-sampling, followed by a fully connected layer with

dropout and softmax output.

Training this network is a supervised learning task. The training set (TS)

includes:

TS = {(v1,1, v1,2, R1), (v2,1, v2,3, R2), ..., (vn,k, vn,l, Rm)}

where,

R1, R2, ..., Rm ∈ R

55

����

��������	��
��
�
���

�
� ����	�
�
�
���

����������������
�
����!	���

���"����
���
�����
� ���"��#

���"���
���
�	��

��$�

��$�

Figure 5.7: Neural network structure to improve knowledge graph using embeddings.

k, l ∈ E

vn,k, vn,l ∈ V & k �= l

Here R is the set of relations from the UCO ontology [70] from which the

output is predicted. R = [hasProduct, hasAttacker, hasMeans, hasConsequences,

hasWeakness, isUnderAttack, hasVulnerability, ...]. V is the set of vector embed-

dings. E is the set of entity classes. We ensure that input vectors are from different

entity classes, i.e. k, l are not same.

Training this network involves minimizing the mean squared error function

between the predicted value and the actual relation value.

The triple generated using the two entities and the predicted relation is then

added to the knowledge graph part of Cyber-All-Intel. We discuss the performance

evaluations for this neural network in Chapter 7.

56

5.3.2 Improving Vector Embeddings using the Knowledge Graph

In this section we will discuss how we use the knowledge graph part of the

VKG structure to improve the vector embeddings. The motivation for this task

stems from the need to encode global context present as assertions in the knowledge

graph, along with local co-occurring context in vector embeddings. Including the

fact that ‘Samsung’ and ‘Apple’ are both mobile phone manufacturers in their vector

embeddings will help bring these entities closer in the vector space. This will help

improve various applications built upon the structure. The vector embeddings can

be used to train machine learning models which will leverage the explicit assertions

present in the knowledge graph part.

Current vector generation techniques proposed in [43, 53] provide a method to

encode the relational concurrence in a vector space. However, these representations

fail to include a global context. Ristoski et al. [59] created RDF2Vec, where they

adapt neural language models for RDF graph embeddings. They transform the RDF

graph data into sequences of entities, which are then considered as sentences. Using

these sentences, they train the neural language models to represent each entity in

the RDF graph as a vectors.

In our approach, we created a feedforward neural network which takes as input

the relational context of an entity, along with the RDF2Vec vector for that entity

created using the knowledge graph part of the VKG structure. All the contextual

words and the RDF2Vec vector get projected into the same position (as a result of

vectors getting averaged). The training criterion is to correctly classify the current

57

����

����� ��

��������

��������

����� ��

�	
��
����

����
������
���
���
�� �������

������

Figure 5.8: Architecture for creating embeddings for W (t) (Here, t is the position of

the word). Local context is provided by using co-occurring words W (t−n),...W (t−

1), W (t+1),...W (t+n); n is a hyper-parameter used for context window size. Global

context is provided by the RDF2V ec(W) vector created using the knowledge graph

part.

entity (i.e. the middle word). The output generated serves as the vector encoding

for the entity. Figure 5.8 shows the architecture of the neural network. We evaluate

these vectors in Chapter 7.

5.4 Applications

In this section we present applications built using the VKG structure.

58

5.4.1 A Query Processing System

An application running on the VKG structure described in, Section 4 and

populated via steps mentioned in Section 5, can handle some specific type of queries.

The application can ask a backend query processing engine to list declared entities

or relations, search for semantically similar concepts, and compute an output by

reasoning over the stored data. This gives us three types of queries, search, list,

and infer. These three are some of the basic tasks that an application running on

the VKG structure will require, using which we derive our set of query commands

(C):

C = {search, list, infer}

A complex query posed by the application can be a union of some of these

basic commands. An example query, to the Cyber-All-Intel security informatics

system built on our VKG structure can be ‘list vulnerabilities in products similar

to Google Chrome’; In this query we first have to search for similar products to

Google Chrome and then list vulnerabilities found in these products. In a more

general setting, an input query can be ‘Find similar sites to Taj Mahal, infer their

distance from New York’; this includes a search to find similar sites and to infer

their distance from New York.

In the VKG structure, knowledge is represented in two parts, in a knowledge

graph and in vector space. We argue that a query processing engine developed

over the VKG structure should combine the complimentary strengths of knowledge

graphs and vector space models. Sub-queries involving similarity search-based tasks

59

will give better and faster results, when carried out on the entire structure. Sub-

queries that require declarative information retrieval, inference or reasoning should

be carried out on the knowledge graph part.

In the query mentioned above, search queries, for the top-k nearest neighbor-

hood search should be performed using the embeddings, and the list, infer queries

on the knowledge graph part. Domain experts can incorporate various reasoning

and inference based techniques in the ontology for the knowledge graph part of the

VKG structure. Mittal et al. in their system, CyberTwitter [45] have showcased

the use of an inference system to create threat alerts for cybersecurity using Twitter

data. Such inference and reasoning tasks can be run on the knowledge graph part

of the VKG structure.

Queries most suited for the vector part are those measuring semantic similar-

ity of entities present in the corpus. One of the most simple similarity measures

to compute entity similarity is by using the cosine of the angle between entity em-

beddings. Other query types include scoring, indexing, entity weighting, analogical

mapping, nearest / neighborhood search, etc. Turney et al. provide a good survey

of various applications and queries that can be built on vector space models [75].

Some form of queries that can’t be handled by the vector part are the ones

that involve robust reasoning, these include any query that needs to infer logical

consequences from a set of asserted triples using inference rules. Such queries need

knowledge graph and rule engine support. An argument can be made that in many

applications it is enough to come up with a top-K plausible answer set using vector

embeddings, however in expert systems like Cyber-All-Intel coming up with more

60

concrete and well reasoned solutions is necessary.

For the Cyber-All-Intel system described in Section 5, some other example

queries to the vector part can be, ‘Find products similar to Google Chrome.’, ‘List

vulnerabilities similar to buffer overflow’, etc. We evaluate the performance of these

queries on different parts in Section 7.

Another advantage provided by integrating vector spaces and knowledge graphs

is that we can use both of them to improve the results provided by either of the parts

alone. For example (in Figure 4.2), we can use the explicit information provided in

the knowledge graph to aid the similarity search in vector space. If we are searching

the vector space for entities similar to ‘denial of service’, we can further improve

our results by ensuring the entities returned belong to class ‘Vulnerability’. This

information is available from the knowledge graph. This technique of knowledge

graph aided vector space similarity search (VKG Search,

Type of queries that are well suited for knowledge graphs include querying

the asserted facts for exact values of a triple’s subject, predicate, or object. This

information is not present in the vector part explicitly. Knowledge graphs also

support an important class of queries that involve semantic reasoning or inference

tasks based on rules that can be written in languages like SWRL.

Domain experts can incorporate various reasoning and inference based tech-

niques in the ontology for the knowledge graph part of the VKG structure. Mittal

et al. in their system, CyberTwitter [45] have showcased the use of an inference

system to create threat alerts for cybersecurity using Twitter data. Such inference

and reasoning tasks can be run on the knowledge graph part of the VKG structure.

61

Knowledge graphs have been used to create various reasoning system where

the reasoning logic is provided by the system creator. Hence, we created the infer

query which can be used to run application specific reasoning logic as in when

required by the input query.

Knowledge graphs also provide the ability to integrate multiple sources of

information. We can use the ‘owl : sameAs’ relation to integrate other knowledge

graphs. Once added these triples and reasoning techniques can be included in our

list and infer queries.

In the Cyber-All-Intel system the knowledge graph can handle queries like

‘What vulnerabilities are present in Internet Explorer?’, ‘What products have the

vulnerability buffer overflow?’, etc. Quality of the output can be improved by run-

ning the similarity search on the vector spaces and using the knowledge graph to

filter out entities not related to the input entity.

Adding to SPARQL: Our query processing engine aims at extending SPARQL.

In SPARQL, users are able to write ‘key-value’ queries to a database that is a set

of ‘subject-predicate-object’ triples. Possible set of queries to SPARQL are, Select,

Construct, Ask, Describe, and various forms of Update queries. We create a layer

above SPARQL to help integrate vector embeddings using our VKG structure. Our

query processing engine sends search queries to the vector part of the structure, the

list query to the SPARQL engine for the knowledge graph, and the infer query to

the Apache Jena inference engine. Next, we go into the details of our backend query

processing system.

62

Figure 5.9: RDF for textual input “Microsoft Internet Explorer allows remote at-

tackers to execute arbitrary code or cause a denial of service (memory corruption)

via a crafted web site, aka Internet Explorer Memory Corruption Vulnerability”.

Also, owl : sameAs property has been used to augment the data using an external

source ‘DBpedia’.

63

5.4.1.1 Processing Engine

Let a query proposed by an application to the backend system on the VKG

structure be represented by QV KG. The task of the query processing engine is to run

the input query, QV KG, as efficiently as possible. We evaluate this claim of efficiency

in Section 7.1. We do not discuss a query execution plan as multiple expert plans

can be generated by domain experts depending on the needs of the application.

As per our need, in the backend system, a query that runs only on the knowl-

edge graph part and only the vector part of the structure are represented as Qkg and

Qv respectively. An input query QV KG can be decomposed to multiple components

that can run on different parts namely the knowledge graph and the vector part:

QV KG → Qkg ∩Qv

An input application query QV KG can have multiple components that can run

on the same part, for example, an input query can have three components, two of

which run on the knowledge graph part and the remaining one runs on the vector

part. Such a query can be represented as:

QV KG → Qv ∩Qkg
1 ∩Qkg

2 (1)

Where, Qkg
1 and Qkg

2 are the two components that run on the knowledge graph

part and Qv component which runs on the vector part.

It is the responsibility of the query processing system to execute these sub-

queries on different parts and combine their output to compute the answer to the

original input query QV KG. We describe the query execution process using an ex-

ample.

64

5.4.1.2 Example query

For the Cyber-All-Intel system an example query issued by the application:

‘Raise an alert if, a vulnerability similar to denial of service is listed in MySQL’,

can be considered as three sub-queries which need to be executed on different parts

of the VKG structure.

The input query can be considered to be of the type (1), Where the subqueries

are:

1. Finding similar vulnerabilities (set - V) to denial of service that will run on

the vector embeddings (Qv).

2. Listing known existing vulnerabilities (set - K) in MySQL (Qkg
1).

3. Inferring if an alert should be raised if a vulnerability (from set V) is found

in the product MySQL. This sub-query will run on the knowledge graph part

(Qkg
2).

The query can be represented as:

QV KG = {{search, ‘denial of service′, V } ∩

{list, vulnerability, ‘MySQL′, K} ∩

{infer, V,K, ‘MySQL′, alert}} (Query 1)

The query execution plan for (Query 1) is to first run Qv and Qkg
1 simulta-

neously and compute the sets V and K. After computing the sets the engine is

supposed to run Qkg
2 .

65

The first part of the input query (Query 1), is of the form Qv and will run on

the vector part of the VKG structure. Its representation is:

Qv = {search, ‘denial of service′, V }

The output generated is a set V (Figure 5.10) and contains vulnerabilities

similar to ‘denial of service’. We used the VKG search to compute this set and

filter out all non vulnerabilities. The set V will be utilized by other subqueries

(Qkg
2) to generate it’s output.

The second part of the input query (Query 1) is the first sub-query to run on

the knowledge graph part of the VKG structure.

Qkg
1 = {list, vulnerability, ‘MySQL′, K}

The goal of this query is to list all vulnerabilities (Figure 5.10) present in

‘MySQL’ that are explicitly mentioned in the knowledge graph (set - K).

���������������
�

���������������
�

� 	
����
������
� ����������	������
� ��������������	
� ��������

� ��	
� ����������������������
� ���	
� 	
����
������

Figure 5.10: The output of the sub-queries Qv and Qkg
1 when run on the Cyber-All-

Intel System. As there is some overlap between the sets V and K the output for

the subquery Qkg
2 will be ‘Alert = Yes’

66

The third part of the input query (Query 1) is the second subquery to run on

the knowledge graph part of the VKG structure.

Qkg
2 = {infer, V,K, ‘MySQL′, alert}

Here, the output is to reason whether to raise an ‘alert’ if some overlap is found

between the sets V & K. Query Qkg
2 requires an inference engine to output an alert

based on some logic provided by domain experts or system security administrators.

In Figure 5.10 as there is overlap between the sets V and K an alert will be raised.

5.4.2 Knowledge Augmentation and Alerts

In the field of cybersecurity a security analysts need to be aware of all possible

threats and vulnerabilities to their cyber-infrastructure. We have created an intel-

ligence alert system on top of the VKG structure, which briefs an analyst about

various threats relevant to the software and hardware components present in an

enterprise, when intelligence from multiple sources is analyzed and aggregated.

In the past we created, CyberTwitter [45] to issue alerts about vulnerabilities

found in various products used by an organization. The CyberTwitter system uses

a knowledge graph where reasoning was done by adding SWRL rules. In the Cyber-

All-Intel system, the SWRL rules have been extended and we also investigate similar

products using the vector space to issue alerts based on an organization’s ‘system

profile’.

In this section we discuss two things, firstly, how we augment the knowledge

graph with other sources of information and secondly, how we generate alerts.

67

5.4.2.1 Knowledge Augmentation

Many a times a query can come in that requires more knowledge for the answer

to be computed than what is present in the text corpus used for training the VKG

structure. An example query like “What products similar to Internet Explorer are

produced by Google Inc.?” Such a query needs to first compute the set of possible

products similar to ‘Internet Explorer’ and then filter out the ones that are not

produced by the entity ‘Google Inc.’.

Knowledge graph nodes in the VKG structure can be used to add information

from other sources like DBpedia [9], YAGO [68], etc. This helps integrate informa-

tion that is not present in the input corpus. Along with these sources we can add

more information gathered from local organizational structure like network activity,

shared library dependencies of a program executable, etc. This knowledge helps in

adding local organizational knowledge to the system.

For our system to handle these type of queries we used the information present

in existing knowledge graphs that were populated using other textual sources and

techniques. As a proof of concept we integrated our Cyber-All-Intel VKG structure’s

knowledge graph part with DBpedia [9]. During this process of integration we

asserted various products and vulnerabilities with their counterparts in the DBpedia

knowledge graph. Figure 5.9 shows an example where the property owl : sameAs

is used to assert counterparts for VKG instances of ‘Microsoft Internet Explorer’,

‘Arbitrary code execution’, and ‘Denial-of- service attack’.

To include some local knowledge from the system that needs to be protected,

68

we add shared library dependencies of programs installed. This information was

collected using an Ubuntu system using the ‘objdump’ tool2 and filtering out library

dependencies using the ‘NEEDED’ flag. The dependencies for installed software

were then asserted in a knowledge graph.

Adding both global and local information to the knowledge graph helps us in

improving the quality of alerts and recommendations.

5.4.3 Generating Alerts

For our alert system we create vector embeddings (for the VKG structure)

using the augmented knowledge graph (with DBpedia and library dependencies of

programs installed) discussed in Section 5.4.2.1, and the generation method men-

tioned in Section 5.3.2. We extend the SWRL rules included in the CyberTwitter

[45] system.

We also ask the security analyst to provide the recommender system a ‘sys-

tem profile’. The profile contains information about the operating system, various

installed softwares and their version information. We use the profile information as

part of our rules to generate alerts.

We created a VKG based alert system that has two logical parts:

1. Vulnerability Alerts using factual data: We created a rule based system to

issue alerts using the knowledge graph part of the VKG structure which in-

cludes factual data like, collected intelligence, DBpedia, library dependencies

2https://sourceware.org/binutils/docs/binutils/objdump.html

69

of installed programs, etc.

We utilized SWRL rules to include a reasoning engine analogous to a deductive

based approach that a security analyst might take to figure out threats to

her system. SWRL rules contain two parts, antecedent part (body), and a

consequent (head). Informally, a rule may be read as meaning that if the

antecedent holds (is “true”), then the consequent must also hold.

We have modified and generalized CyberTwitter’s SWRL based recommenda-

tion engine [45] (See Chapter 3), where we first compute if an intelligence is

‘valid and current’ and in the second part we use a valid intelligence to raise

an alert if its in the analyst’s system profile.

2. Vulnerability Alerts for similar products: It is also necessary for the system to

look for similar products that might also be at risk (The analyst can choose

whether she wants these alerts). To keep a security analyst updated we also

have to consider possible vulnerabilities that may exist in products that share

library dependencies and/or developed by similar companies. For example, in

case of products like Mozilla Firefox and Thunderbird, which are developed

by the same company and have a considerable overlap in library dependencies;

an alert generated for one, warrants an investigation into the other.

So as to create such alerts we leverage the vector part of the VKG structure.

When we get an alert about a vulnerability in a product from the factual data

using the SWRL rules mentioned above, we look into possible intelligence

obtained for products in the neighborhood of the vulnerable product and re-

70

reason the SWRL rules with added information. We factor in the number of

shared library dependencies, developing companies, etc in the SWRL rules.

This vector neighborhood was created using the augmented knowledge graph

mentioned in Section 5.4.2.1.

After looking at the alerts generated using the factual data and by investi-

gating similar products, we then push these alerts to the analyst depending on the

organization’s ‘system profile’. We evaluate our recommender and alert system in

Section 7.

Once we populated our security knowledge graph with the information about

installed software and linked dependencies (see Section 5.4.4) and also add, threat

intelligence mined from issues and bug reports, we utilized it to create an alert

generation system and a query system.

5.4.4 Programming Environment Augmentation System

We create a system that will inform a developer about potential threats and

vulnerabilities that the product in development might inherit as a result of linking to

a vulnerable open source project or library. We mine threat intelligence from issues

and bugs raised on web-based hosting service for version control like, GitHub [2],

GitLab [3], bitbucket [1], etc. These platforms have been used by developers to host

and collaborate on source code development [8]. We extract vulnerabilities raised on

these platforms and represent them in a security knowledge graph. The knowledge

graph then becomes a store for various vulnerabilities and exposures present in

71

various open source projects, products and libraries (see Figure 5.3). This knowledge

can then be queried by various developers helping them create products that are

secure from the ground up. Pervasive software security entails cyber supply chain

risk management, where the developers are made aware of various threats present

in libraries they link with the development of their products.

We also create another application that can track installed software on a client

machine, and then use the above mentioned knowledge graph to reason alerts for

the security analyst. These alerts warn the analyst if an installed software is linked

to a vulnerable open source library or project. We built a proof of concept for this

application that runs on a linux installation.

The developer before linking to an open source library or using a project should

be able to query the security knowledge graph to check for known vulnerabilities.

We have created a SPARQL3 endpoint that can accept queries which run on our

knowledge graph. An example query to list all vulnerabilities in LightFTP :

SELECT ?y WHERE {

?LightFTP <hasVu lne rab i l i t y> ?y .

}

An example query to look up vulnerabilities in linked libraries to the installed

application firefox :

3https://www.w3.org/TR/rdf-sparql-query/

72

SELECT ?x WHERE {

? f i r e f o x <I s L inked to> ? z

? z <hasVu lne rab i l i t y> ?x .

}

5.4.4.1 Alert Generation System

The system will reason on our security knowledge graph and generate alerts.

In our system we include SWRL rules4 so as to generate alerts. SWRL rules contain

two parts, antecedent part (body), and a consequent (head). The body and head

consist of conjunctions of a set of ‘atoms’. Informally, a rule may be read as meaning

that if the antecedent holds (is “true”), then the consequent must also hold. For

our system we see two potential alert scenarios:

1. A developer is linking to a library or a project with known vulnerabilities and

threats: The system will take in all the libraries that a developer wants to use

and then trigger an alert if it finds a vulnerability or threat in any one of these

libraries. We see this as a developer initiated scenario.

Our alert system also checks other linked libraries that link to the ones men-

tioned by the developer. Some example rules included in our system:

Rule f o r vu lne rab l e p r o j e c t u t i l i z a t i o n :

4https://www.w3.org/Submission/SWRL/

73

Product (? x)ˆ U t i l i z e s (?x , ?y)ˆ

ha sVu ln e r ab i l i t y (?y , ? z)

==>

Rai seAle r t (?x , ” Yes ”)

Rule f o r l i nked l i b r a r y v u l n e r a b i l i t y check :

Product (? x)ˆ

Is Linked To (?x , ?y)ˆ

ha sVu ln e r ab i l i t y (?y , ? z)

==>

Rai seAle r t (?x , ” Yes ”)

Rule f o r secondary l i nked l i b r a r y v u l n e r a b i l i t y

check :

Product (? x)ˆ

74

I s L inked To (?x , ?y)ˆ

s Linked To (?y , ? z)ˆ

ha sVu ln e r ab i l i t y (? z , ?u)

==>

Rai seAle r t (?x , ” Yes ”)

The rules raise an alert if any vulnerability or threat is found in linked libraries

and projects. For the first rule above ‘Rule for vulnerable project utilization’,

given a product node ?x, the rules check for edge: Utilizes(?x, ?y), to hop to

the graph node ?y. Once at ?y it checks for the edge: hasV ulnerability(?y, ?z)

to hop to node ?z. If the above node exists an alert is generated. A similar

technique is used to evaluate other rules mentioned above.

2. An installed application on a client machine is linked to compromised depen-

dencies: This is an information triggered alert, where influx of new threat

intelligence warrants a lookup for vulnerable installed software. The system

should automatically inform a security analyst that an installed application

on a client machine is vulnerable. An example rule for this alert:

Rule f o r vu lne rab l e l i b r a r i e s :

L ibrary (? x)ˆ

75

ha sVu ln e r ab i l i t y (?x , ?y)ˆ

Is Linked To (? z , ?x)

==>

Rai seAle r t (? z , ” Yes ”)

Rule f o r vu lne rab l e p r o j e c t s :

Pro j e c t (? x)ˆ

ha sVu ln e r ab i l i t y (?x , ?y)ˆ

U t i l i z e s (? z , ?x)

==>

Rai seAle r t (? z , ” Yes ”)

76

Chapter 6

Experimental Setup

6.1 Cyber-All-Intel System

For Cyber-All-Intel system, we created a Cybersecurity corpus as discussed

in Chapter 5 and shown in Figure 5.6. Data for the corpus is collected from many

sources, including chat rooms, dark web, blogs, RSS feeds, social media, and vul-

nerability databases. The current corpus has 85,190 common vulnerabilities and

exposures from the NVD dataset maintained by the MITRE corporation, 351,004

cleaned Tweets collected through the Twitter API, 25,146 Reddit and blog posts

from sub-reddits like, r/cybersecurity/, r/netsec/, etc. and a few dark web posts

[15].

For the vector space models, we created embeddings by setting vector dimen-

sions as: 500, 1000, 1500, 1800, 2500 and term frequency as: 1, 2, 5, 8, 10 for each

of the dimensions. The context window was set at 7. The knowledge graph part

was created using the the steps mentioned in Chapter 5 and the VKG structure was

generated by linking the knowledge graph nodes with their equivalents in the vector

model vocabulary (see Chapter 4).

In order to conduct various evaluations, we first created an annotated test

set. We selected some data from the cybersecurity corpus and had it annotated

by a group of five graduate students familiar with cybersecurity concepts. The

77

annotators were asked to go through the corpus and mark the following entity

classes: Address, Attack / Incident, Attacker, Campaign, Attacker, CVE, Exploit,

ExploitTarget, File, Hardware, Malware, Means, Consequence, NetworkState, Ob-

servable, Process, Product, Software, Source, System, Vulnerability, Weakness, and

VersionNumber. They were also asked to annotate various relations including hasAf-

fectedSoftware, hasAttacker, hasMeans, hasWeakness, isUnderAttack, hasSoftware,

has CVE ID, and hasVulnerability. These classes and relations correspond to var-

ious classes and properties listed in the Unified Cybersecurity Ontology and the

Intelligence Ontology [45]. For the annotation experiment, we computed the inter-

annotator agreement score using the Cohen’s Kappa [65]. Only the annotations

above the agreement score of 0.7 were kept.

The annotators were also tasked to create sets of similar products and vul-

nerabilities so as to test various aspects of the Cyber-All-Intel system. The most

difficult task while designing various experiments and annotation tasks was to define

the meaning of the word ‘similar’. Should similar products have the same vulnera-

bilities, or same use? In case of our cybersecurity corpus we found that the two sets,

same vulnerabilities and same use were co-related. For example, if two products

have SQL injection vulnerability we can say with certain confidence that they use

some form of a database technology and may have similar features and use. If they

have Cross-Site Request Forgery (CSRF) vulnerability they may generally belong

to the product class of browsers.

Annotators manually created certain groups of products like, operating sys-

78

tems, browsers, databases, etc. OWASP1 maintains groups of similar vulnerabilities2

and attacks3. We created 14 groups of similar vulnerabilities, 11 groups of similar

attacks, 31 groups of similar products. A point to note here is that, in many cases

certain entities are sometimes popularly referred by their abbreviations, we manu-

ally included abbreviations in these 56 groups. For example, we included DOS and

CSRF which are popular abbreviations for Denial Of Service and Cross-Site Request

Forgery respectively in various groups.

6.2 Programming Environment Augmentation System

In order to evaluate the system and collect empirical data we ran our system

under experimental conditions. The system was run on a Ubuntu4 Linux installation

with 81 installed programs, some of these were pre-installed. We extracted the

library and project dependencies for these 81 installed programs and represent this

information in our security knowledge graph (see Chapter 5).

We collected 110,800 issues posted on GitHub [2], using the GitHub Rest API.

For our experiments and to create a valid proof of concept, we limit issue collection

to the GitHub repositories for the 81 installed projects. We also use only the issues

posted after January 2018 in our analysis. Out of the 110,800 issues collected our

SVCE (see Chapter ??) filtered 9,194 security issues. We then assert these security

vulnerabilities in our knowledge graph (see Chapter 5). Figure 5.5, lists triples

1https://www.owasp.org/index.php/Main_Page

2https://www.owasp.org/index.php/Category:Vulnerability

3https://www.owasp.org/index.php/Category:Attack

4https://www.ubuntu.com/

79

generated for a popular FTP client.

We performed an initial evaluation of our prototype system using the bug-

reports collected. We evaluate the quality of the tags generated by the SVCE

module, and how often our system missed intelligence because it discarded relevant

details. We did not evaluate our entity matching process as it was done through

DBpedia APIs. Human assessments and annotation was done by students familiar

with the cybersecurity domain.

For our first evaluation measure we check the quality of tags generated by our

SVCE module. We tagged 150 randomly selected security issues and then manually

checked the tags. The annotators had to evaluate if the SVCE output was correct,

partially correct or wrong. Our annotators agreed on the fact that 98 issues were

marked correctly by the SVCE module and out of the remaining 52 issues, 18 were

tagged completely wrong and the remaining were tagged partially correct. The an-

notators were then asked to look into the alerts generated for the 98 issues correctly

identified, the system raised appropriate alerts for each.

We evaluated the loss of intelligence because of discarded issues, i.e., those

not included in the dataset of 9,194 security issues. A random sample of 200 issues

was generated from the discarded issues. In these, our annotators found 9 issues

with actionable security related information. We believe that these were wrongfully

tagged by our SVCE module because of spelling mistakes, unidentifiable characters,

informal slang expressions, non-English words, etc.

80

Chapter 7

Results & Discussion

7.1 Evaluations

Cyber-All-Intel is a threat intelligence system which aims to provide tactical

and operational support to the security analyst. The goal of the system is to add

value to the analyst’s work flow and enable her to make efficient security policy

decisions. The system aims to reduce the ‘cognitive load’ on the security analyst.

To ensure that Cyber-All-Intel is able to sufficiently aid the analyst, we first evaluate

the system by questioning it’s core utilities. What is the quality of the information

that is being provided by the system? Such an information can be about an attack

or a vulnerability.

The second method to evaluate our system is to measure how it can help

a security analyst keep an updated policy for her organization. The system can

provide the analyst with various similarities and differences between various variants

of attacks. For example, the system can provide the analyst with the differences

between ‘WannaCry’ and ‘notPetya’. This information can then allow an analyst to

create specific policy updates that help protect the organization.

We also evaluate the knowledge improvement, query processing engine, alert

generation capabilities of Cyber-All-Intel.

81

7.1.1 Evaluating core capabilities

So as to evaluate the core capabilities of the system we focus on two features,

first, the quality of new intelligence obtained or updates made to existing intelli-

gences. Second, to evaluate if the system is able to highlight the similarities and

differences between various attacks and vulnerabilities.

For the first one, we leverage the annotators mentioned in Chapter 6. We

provided them with the VKG structure generated along with the text that was

used to generate it. For example, we provide an annotator with the VKG structure

of ‘WannaCry’ along with the text from our cybersecurity corpus that relates to

WannaCry. The annotators were then asked to check if the VKG structure created

was correct. We gave the annotators 60 such attacks, 49 of these were marked

correct. Each attack was annotated by at least 2 annotators.

In the second one, we provided the annotators with pairs of attacks and vul-

nerabilities which are similar, as measured by comparing their VKG embeddings.

We also gave them a policy to prevent one of the attacks. Their task was to mod-

ify the given policy so that it is able to protect an organization from both. For

example, we provided our annotators with the VKG structure for ‘WannaCry’ and

‘notPetya’, along with a policy to prevent WannaCry. The annotators were then

tasked to change the policy so that it can prevent both WannaCry and notPetya.

We ran this experiment for 22 such pairs, along with the policies to prevent one of

the attacks present in the pair. Each pair was annotated by at least 2 annotators.

Of the given 22 pairs, the annotators were able to correctly modify 18 policies.

82

Such capabilities add value to the analyst workflow. Providing this information

can help the analyst make informed policy level changes. We would also like to bring

to notice a possible feature, where an AI system will automatically suggest policy

level changes to the security analyst. Research on this feature is ongoing but such

a capability will be built using the core capabilities of the Cyber-All-Intel system.

What is missing in existing proprietary SIEMs like LogRhythm, Splunk, IBM

QRadar, and AlienVault, etc. is the integration of threat intelligence from disparate

sources followed by efficient interpretation and reasoning on data using known in-

telligence [78, 79]. This can reduce false positives and improve the current state of

the art in this domain. Also, it reduces the cognitive load on the analyst, because

the system can fuse threat intelligence with observed data to detect attacks early,

ideally left of exploit.

7.1.2 Evaluating knowledge improvement

In Cyber-All-Intel we leverage different knowledge representations in our VKG

structure. The knowledge graph part is designed to hold more global context. The

vector space embeddings on the other hand have been created using the local context

around the entity. In Chapter 5.3, we discuss our methodology to leverage the

different parts of the VKG to improve each other.

In the knowledge graph improvement task discussed in Chapter 5.3.1 we clas-

sify the relation between two entities using a deep learning model. The model was

trained on the true positive relations explicitly declared in 60,000 CVEs1. 30,000

1There were about 95,000 CVEs when this article was published.

83

were used as test set. Our model has an accuracy of 81.5%.

To evaluate the quality vector embeddings generated in Chapter 5.3.2 we use

the sets of ‘similar’ products and vulnerabilities discussed in Chapter 6. The task

was to evaluate if similar real-word products and vulnerabilities are present in the

same neighborhood in the vector space. For the task, we query the embeddings on

one of the elements in the similar annotated sets and then compare the entities of

the set returned (We compare products only to products, vulnerability only to vul-

nerability,...). For the vector space with dimensionality of 1500 and term frequency

2, we get a precision of 0.84 and recall of 0.24.

7.1.3 Evaluating the query processing engine

Using the data and annotation test sets mentioned in Chapter 6, we evaluate

our query processing engine. In Chapter 5.4.1.1, we describe our query processing

engine and its three query commands: search, list, and infer. Here we evaluate

search and list query but not the infer queries as they depend on the reasoning

logic provided in the ontology and can vary with application.

7.1.3.1 Evaluating the search query

An input query to the VKG structure to find similar concepts can either run on

the vector space using various neighborhood search algorithms [23, 34] or the knowl-

edge graph using ontology matching, ontology alignment, schema matching, instance

matching, similarity search, etc. [63, 20, 84]. To evaluate the vector embeddings

84

part of the VKG structure we used the ‘similar’ sets created by the annotators. We

trained various vector space models with vector dimension, 500, 1000, 1500, 1800,

2500 and term frequency, 1, 2, 5, 8, 10. Increasing the value of dimensionality and

decreasing the term frequency almost exponentially increases the time to generate

the vector space models. We first find the combination of parameters for which the

Mean Average Precision (MAP) is highest, so as to use it in comparing the perfor-

mance of vector space models with knowledge graphs and graph aided vectors in

the VKG structure, in finding similar vulnerabilities, attacks, and products. For the

56 similar groups the vector model with dimensionality of 1500 and term frequency

2, had the highest MAP of 0.69 (Figure 7.1). Models with higher dimensions and

word frequency performed better.

To compare the performance of the search query over vector space and its

counterpart from the knowledge graph side we used the vector embedding model

with dimensionality of 1500 and term frequency 2. To compute instance matching

on knowledge graphs, we used an implementation of ASMOV (Automated Semantic

Matching of Ontologies with Verification) [29].

On computing the MAP for both vector embeddings and the knowledge graphs

we found that embeddings constantly outperformed the knowledge graphs. Figure

7.2, shows that the MAP value for vector embeddings was higher 47 times out

of 56 similarity groups considered. The knowledge graph performed significantly

bad for vulnerabilities and attacks as the structural schema for both attacks and

vulnerabilities was quite dense with high number of edges to different entities. This

significantly affected the performance of schema matching.

85

To test the advantages of our VKG structure we evaluate the VKG search

(see Chapter 5.4.1.1) against the vector space model. The VKG search on vector

space achieved a MAP of 0.8, which was significantly better than the MAP score

(0.69) achieved by using just the vector model. The reason for higher quality results

obtained by using the VKG search is due to the fact that we can filter out entities

by using class type declarations present in the knowledge graph.

Model Graphs Vectors VKG Search

MAP 0.43 0.69 0.80

Table 7.1: Best Mean Average Precision for knowledge graphs, vector space models,

and VKG structure.

Figure 7.1: Mean Average Precision for different dimensions and word frequency.

Models with higher dimensions and word frequency performed better.

86

Figure 7.2: The number of times the MAP score was higher for the two knowledge

representation techniques for the 56 similar groups. Vector embeddings performed

better than knowledge graphs. Embeddings performed better in 8 attacks, 26 prod-

ucts, and 13 vulnerabilities.

7.1.3.2 Evaluating the list query

Since the declarative assertions are made in the VKG’s knowledge graph, to

evaluate the list query we evaluate the quality of the knowledge graph part. The list

query can not be executed on the vector space as there is no declarative information

in embeddings.

To check the quality of the knowledge graph triples generated from the raw

text we asked the same set of annotators to manually evaluate the triples created

and compare them with the original text. The annotators were given three options,

correct, partially correct, and wrong. From 250 randomly selected text samples from

87

the cybersecurity data, the annotators agreed that 83% were marked correct, 9%

were partially correct, and 8% were marked wrong.

7.1.4 Evaluating the alert system

In Chapter 5.4.2 we discussed our alert system. In our system we first gen-

erate alerts using the factual data obtained by augmenting incoming intelligence

with shared library dependencies and DBpedia linkages. This data is then used by

a rule based system to generate alerts. Once we get an alert about a product, we

also investigate other products in it’s vector neighborhood created using the aug-

mented knowledge graph. Alerts are then pushed to the analyst depending on the

organization’s ‘system profile’.

To evaluate the quality of these alerts we conducted a small user study where

we asked five assessors to judge the usefulness of alerts (options: useful, maybe,

useless) given the set of sources responsible for the alert. Out of 55 alerts generated

43 were marked as useful, 3 were marked useless, and the remaining 9 were marked

as maybe.

7.1.5 Evaluating the Programming Environment Augmentation Sys-

tem

In order to evaluate the system and collect empirical data we ran our system

under experimental conditions. The system was run on a Ubuntu2 Linux installation

2https://www.ubuntu.com/

88

with 81 installed programs, some of these were pre-installed. We extracted the

library and project dependencies for these 81 installed programs and represent this

information in our security knowledge graph (see Chapter 5). Figure ??, shows the

triples generated for a popular installed software.

We collected 110,800 issues posted on GitHub [2], using the GitHub Rest API.

For our experiments and to create a valid proof of concept, we limit issue collection

to the GitHub repositories for the 81 installed projects. We also use only the issues

posted after January 2018 in our analysis. Out of the 110,800 issues collected our

SVCE filtered 9,194 security issues. We then assert these security vulnerabilities

in our knowledge graph (see Chapter 5). Figure 5.5, lists triples generated for a

popular FTP client.

We performed an initial evaluation of our prototype system using the bug-

reports collected. We evaluate the quality of the tags generated by the SVCE

module, and how often our system missed intelligence because it discarded relevant

details. We did not evaluate our entity matching process as it was done through

DBpedia APIs. Human assessments and annotation was done by students familiar

with the cybersecurity domain.

For our first evaluation measure we check the quality of tags generated by our

SVCE module. We tagged 150 randomly selected security issues and then manually

checked the tags. The annotators had to evaluate if the SVCE output was correct,

partially correct or wrong. Our annotators agreed on the fact that 98 issues were

marked correctly by the SVCE module and out of the remaining 52 issues, 18 were

tagged completely wrong and the remaining were tagged partially correct. The an-

89

notators were then asked to look into the alerts generated for the 98 issues correctly

identified, the system raised appropriate alerts for each.

We evaluated the loss of intelligence because of discarded issues, i.e., those

not included in the dataset of 9,194 security issues. A random sample of 200 issues

was generated from the discarded issues. In these, our annotators found 9 issues

with actionable security related information. We believe that these were wrongfully

tagged by our SVCE module because of spelling mistakes, unidentifiable characters,

informal slang expressions, non-English words, etc.

90

Chapter 8

Conclusion & Future Work

This thesis presents CyberTwitter & Cyber-All-Intel systems. Both these sys-

tems try to represent cyber threat intelligence in various representation techniques.

Cyber-All-Intel is a system for knowledge extraction, representation and analytics

in an end-to-end pipeline grounded in the cybersecurity informatics domain. The

system creates a cybersecurity corpus by collecting threat and vulnerability intelli-

gence from various textual sources like, national vulnerability databases, dark web

vulnerability markets, social networks, blogs, etc. which are then represented as

instances of our VKG structure.

The Cyber-All-Intel system also pro-actively tries to improve the underlying

cybersecurity knowledge. We have created neural network models, that take the

vector part of the VKG structure and improves the knowledge graph. The knowledge

graph part serves as the input to the vector generating part, adding more global

knowledge to these embeddings.

We use the system to answer complex cybersecurity informatics queries and

issue alerts to the system analyst. Some other applications that can be added in

the future are: suggestions for policy updates, linking an organization’s in-network

and endpoint sensors to create a robust Intrusion Detection and Prevention System

(IDPS), etc.

91

These extensions and planned future work, brings us closer to our main aim -

creating an artificial intelligence system to aid the security analyst.

92

Bibliography

[1] Bitbucket. https://bitbucket.org.

[2] Github. https://github.com.

[3] Gitlab. https://about.gitlab.com/.

[4] Jena apache fuseki: serving rdf data over http,. http://jena.apache.org/

documentation/serving_data/index.html.

[5] Owl web ontology language. http://www.w3.org/TR/owl-features/.

[6] Resource description framework (rdf). http://www.w3.org/RDF/.

[7] Sparql protocol and rdf query language 1.1 overview. http://www.w3.org/TR/
sparql11-overview/.

[8] Github predicts hottest 2018 open source trends, Feb 2018.

[9] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. Springer,
2007.

[10] Sean Barnum. Standardizing cyber threat intelligence information with the
structured threat information expression (stixTM). MITRE Corporation, July,
2012.

[11] BBC. ’NSA malware’ released by Shadow Brokers hacker group. http://www.
bbc.com/news/technology-39553241, 2017. [Online; accessed 2-March-2018].

[12] Tim Berners-Lee, Tim Bray, Dan Connolly, Paul Cotton, Roy Fielding, Mario
Jeckle, Chris Lilley, Noah Mendelsohn, David Orchard, Norman Walsh, and
Stuart Williams. Uniform resource identifier, December 2004.

[13] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. The
Scientific American, 2001.

[14] Johan Bollen, Huina Mao, and Xiao-Jun Zeng. Twitter mood predicts the stock
market. CoRR, abs/1010.3003, 2011.

[15] Gwern Branwen, Nicolas Christin, David Décary-Hétu, Rasmus Munksgaard
Andersen, StExo, El Presidente, Anonymous, Daryl Lau, Sohhlz, Delyan
Kratunov, Vince Cakic, Van Buskirk, and Whom. Dark net market archives,
2011-2015. https://www.gwern.net/DNM%20archives, July 2015.

[16] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.

93

[17] Danica Damljanovic, Johann Petrak, Mihai Lupu, Hamish Cunningham, Mats
Carlsson, Gunnar Engstrom, and Bo Andersson. Random indexing for finding
similar nodes within large rdf graphs. In Extended Semantic Web Conference,
pages 156–171. Springer, 2011.

[18] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge
representation? AI magazine, 14(1):17, 1993.

[19] Bertrand De Longueville, Robin S Smith, and Gianluca Luraschi. Omg, from
here, i can see the flames!: a use case of mining location based social networks
to acquire spatio-temporal data on forest fires. In Proceedings of the 2009
international workshop on location based social networks, pages 73–80. ACM,
2009.

[20] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. A similarity
measure for approximate querying over rdf data. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops, EDBT ’13, pages 205–213, New York, NY,
USA, 2013. ACM.

[21] dhs. Stop.think.connect. multilingual resources. https://www.dhs.gov/

stopthinkconnect-multilingual-resources/, 2015.

[22] Timothy W. Finin, Dawn J. Lawrie, James Mayfield, and Paul McNamee.
Hltcoe participation in tac kbp 2016: Cold start and edl. 2016.

[23] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[24] Aditi Gupta, Hemank Lamba, Ponnurangam Kumaraguru, and Anupam Joshi.
Faking sandy: characterizing and identifying fake images on twitter during
hurricane sandy. In Proceedings of the 22nd international conference on World
Wide Web companion, pages 729–736. International World Wide Web Confer-
ences Steering Committee, 2013.

[25] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in
vector space. arXiv preprint arXiv:1506.01094, 2015.

[26] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.
Yago2: A spatially and temporally enhanced knowledge base from wikipedia.
Artificial Intelligence, 194:28–61, 2013.

[27] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. Swrl: A semantic web rule language combining owl
and ruleml, May 2004.

[28] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng.
Improving word representations via global context and multiple word proto-
types. In Proceedings of the 50th Annual Meeting of the Association for Com-

94

putational Linguistics: Long Papers-Volume 1, pages 873–882. Association for
Computational Linguistics, 2012.

[29] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology
matching with semantic verification. Web semantics, 7 3:235–251, 2009.

[30] Arnav Joshi. A linked data resource for software security concepts and vulnera-
bility descriptions. Master’s thesis, University of Maryland, Baltimore County,
August 2013.

[31] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. Extracting cyber-
security related linked data from text. In Proceedings of the 7th IEEE Inter-
national Conference on Semantic Computing. IEEE Computer Society Press,
September 2013.

[32] Michael Kandefer, S Shapiro, Adam Stotz, and Moises Sudit. Symbolic reason-
ing in the cyber security domain. 2007.

[33] Judith L. Klavans. Cybersecurity - what’s language got to do with it? 2015.

[34] Saar Kuzi, Anna Shtok, and Oren Kurland. Query expansion using word em-
beddings. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM ’16, pages 1929–1932, New
York, NY, USA, 2016. ACM.

[35] Ravendar Lal. Information Extraction of Security related entities and concepts
from unstructured text. Master’s thesis, University of Maryland, Baltimore
County, May 2013.

[36] G. Lawton. Open source security: opportunity or oxymoron? Computer,
35(3):18–21, Mar 2002.

[37] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In AAAI,
pages 2181–2187, 2015.

[38] Przemyslaw Maciolek and Grzegorz Dobrowolski. Cluo: Web-scale text mining
system for open source intelligence purposes. Computer Science (AGH), 14:45–
62, 2013.

[39] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven
Bethard, and David McClosky. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, pages 55–60, 2014.

[40] Pablo N. Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer. DB-
pedia spotlight: shedding light on the web of documents. In 7th Int. Conf. on
Semantic Systems, pages 1–8. ACM, 2011.

95

[41] Microsoft. Microsoft Security Bulletin MS17-010 - Critical-Security Update for
Microsoft Windows SMB Server (4013389). https://docs.microsoft.com/

en-us/security-updates/securitybulletins/2017/ms17-010, 2017. [On-
line; accessed 2-March-2018].

[42] T Mikolov and J Dean. Distributed representations of words and phrases
and their compositionality. Advances in neural information processing systems,
2013.

[43] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[44] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J Miller. Introduction to wordnet: An on-line lexical database*.
International journal of lexicography, 3(4):235–244, 1990.

[45] Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi, and Tim
Finin. Cybertwitter: Using twitter to generate alerts for cybersecurity threats
and vulnerabilities. In Advances in Social Networks Analysis and Mining
(ASONAM), 2016 IEEE/ACM International Conference on, pages 860–867.
IEEE, 2016.

[46] Sagar More, Mark Matthews, Akanksha Joshi, and Tim Finin. A knowledge-
based approach to intrusion detection modeling. In Security and Privacy Work-
shops (SPW), 2012 IEEE Symposium on, pages 75–81. IEEE, 2012.

[47] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Composi-
tional vector space models for knowledge base completion. arXiv preprint
arXiv:1504.06662, 2015.

[48] Federico Neri and Paolo Geraci. Mining textual data to boost information access
in osint. In Information Visualisation, 2009 13th International Conference,
pages 427–432. IEEE, 2009.

[49] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic em-
beddings of knowledge graphs. CoRR, abs/1510.04935, 2015.

[50] National vulnerability database. http://nvd.nist.gov.

[51] NYTimes. Cyberattack Hits Ukraine Then Spreads Internationally . https:

//www.nytimes.com/2017/06/27/technology/ransomware-hackers.html,
2017. [Online; accessed 2-March-2018].

[52] Onook Oh, Manish Agrawal, and H Raghav Rao. Information control and
terrorism: Tracking the mumbai terrorist attack through twitter. Information
Systems Frontiers, 13(1):33–43, 2011.

96

[53] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, volume 14, pages 1532–43,
2014.

[54] Line C. Pouchard, Jonathan D. Dobson, and Joseph P. Trien. A framework for
the systematic collection of open source intelligence. In AAAISS, 2009.

[55] Priyanka Ranade, Sudip Mittal, Anupam Joshi, and Karuna Joshi. Using deep
neural networks to translate multi-lingual threat intelligence. In 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI), pages
238–243. IEEE, 2018.

[56] Reddit. https://www.reddit.com/r/cybersecurity/.

[57] The Register. Most vulnerabilities first blabbed about online or on the dark
web. https://www.theregister.co.uk/2017/06/08/vuln_disclosure_

lag/, Jun 2017.

[58] The Register. Make america late again: Us ’lags’ china in it security bug
reporting. https://www.theregister.co.uk/2017/10/20/us_china_vuln_

reporting/, Oct 2017.

[59] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data
mining. In International Semantic Web Conference, pages 498–514. Springer,
2016.

[60] Anthony Rutkowski, Youki Kadobayashi, Inette Furey, Damir Rajnovic, Robert
Martin, Takeshi Takahashi, Craig Schultz, Gavin Reid, Gregg Schudel, Mike
Hird, et al. Cybex: the cybersecurity information exchange framework (x.
1500). ACM SIGCOMM Computer Communication Review, 40(5):59–64, 2010.

[61] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twit-
ter users: real-time event detection by social sensors. In Proceedings of the 19th
international conference on World wide web, pages 851–860. ACM, 2010.

[62] Claude E Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28(4):656–715, 1949.

[63] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art
and future challenges. IEEE Transactions on knowledge and data engineer-
ing, 25(1):158–176, 2013.

[64] Amit Singhal. Introducing the knowledge graph: things, not strings, May 2012.

[65] Nigel C. Smeeton. Early history of the kappa statistic. Biometrics, 41(3):795–
795, 1985.

[66] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Rea-
soning with neural tensor networks for knowledge base completion. In Advances
in Neural Information Processing Systems, pages 926–934, 2013.

97

[67] Stackoverflow. http://stackoverflow.com/.

[68] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on
World Wide Web, pages 697–706. ACM, 2007.

[69] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[70] Zareen Syed, Tim Finin, Ankur Padia, and M. Lisa Mathews. Supporting
Situationally Aware Cybersecurity Systems. Technical report, University of
Maryland Baltimore County, September 2015.

[71] Zareen Syed, Ankur Padia, M. Lisa Mathews, Tim Finin, and Anupam Joshi.
UCO: A unified cybersecurity ontology. In Proceedings of the AAAI Workshop
on Artificial Intelligence for Cyber Security, pages 14–21. AAAI Press, 2015.

[72] Takeshi Takahashi, Hiroyuki Fujiwara, and Youki Kadobayashi. Building on-
tology of cybersecurity operational information. In Proceedings of the Sixth
Annual Workshop on Cyber Security and Information Intelligence Research,
page 79. ACM, 2010.

[73] Takeshi Takahashi, Youki Kadobayashi, and Hiroyuki Fujiwara. Ontological
approach toward cybersecurity in cloud computing. In Proceedings of the 3rd
international conference on Security of information and networks, pages 100–
109. ACM, 2010.

[74] Andranik Tumasjan, Timm Oliver Sprenger, Philipp G. Sandner, and Isabell M.
Welpe. Predicting elections with twitter: What 140 characters reveal about
political sentiment. In ICWSM, 2010.

[75] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37:141–188,
2010.

[76] Twitter. https://twitter.com/hashtag/cybersecurity?lang=en.

[77] Jeffrey Undercofer, Anupam Joshi, and John Pinkston. Modeling Computer
Attacks: An Ontology for Intrusion Detection. In Proc. 6th Int. Symposium on
Recent Advances in Intrusion Detection. Springer, September 2003.

[78] Alex Vovk. How to Overcome SIEM Limitations. https://blog.netwrix.com/
2016/03/21/how-to-overcome-siem-limitations/, 2016. [Online; accessed
2-March-2018].

[79] Alex Vovk. Infographics: Common Drawbacks of SIEM Solutions.
https://blog.netwrix.com/2016/03/15/infographics-common-\

-drawbacks-of-siem-solutions/, 2016. [Online; accessed 2-March-2018].

98

[80] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In AAAI, pages 1112–1119. Citeseer,
2014.

[81] Wired. The ransomware meltdown experts warned about is here. https:

//www.wired.com/2017/05/ransomware-meltdown-experts-warned/, 2017.
[Online; accessed 2-March-2018].

[82] Peng Xie, Jason H Li, Xinming Ou, Peng Liu, and Renato Levy. Using bayesian
networks for cyber security analysis. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on, pages 211–220. IEEE,
2010.

[83] Shengqi Yang, Fangqiu Han, Yinghui Wu, and Xifeng Yan. Fast top-k search in
knowledge graphs. In Data Engineering (ICDE), 2016 IEEE 32nd International
Conference on, pages 990–1001. IEEE, 2016.

[84] Weiguo Zheng, Lei Zou, Wei Peng, Xifeng Yan, Shaoxu Song, and Dongyan
Zhao. Semantic sparql similarity search over rdf knowledge graphs. Proceedings
of the VLDB Endowment, 9(11):840–851, 2016.

99

