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The Letter S 

Donald E. Knuth 

S 
EVERAL YEARS AGO when I began to look at 

the problem of designing suitable alphabets for use 

with modern printing equipment, I found that  25 of 

the letters were comparatively easy to deal with. The 

other letter was 'S'. For three days and nights I had 

a terrible time trying to understand how a proper 'S' 

could really be defined. The solution I finally came 

up with turned out to involve some interesting math-  

ematics, and I believe tha t  students of calculus and 

analytic geometry may enjoy looking into the question 

as I did. The purpose of this paper  is to explain what  I 

now consider to be the ' r ight '  mathematics  underlying 

printed S's, and also to give an example of the META- 

FONT language I have recently been developing. (A 

complete description of M~'TAFONT, which is a com- 

puter  system and language intended to aid in the design 

of letter shapes, appears in [3, part  3]. 

Before getting into a technical discussion, I should 

probably mention why I started worrying about  such 

things in the first place. The central reason is tha t  

today 's  printing technology is essentially based on 

discrete mathematics  and computer  science, not on 

properties of metals or of movable type. The task of 

making a plate for a printed page is now essentially 

tha t  of constructing a gigantic matr ix  of O's and l 's ,  

where the O's specify white space and the l ' s  specify 

ink. I wanted the second edition of one of my books 

to look like the first edition, although the first edition 

had been typeset with the old hot-lead technology; and 

when I realized that  this problem could be solved by 

using appropriate techniques of discrete mathemat ics  

and computer  science, I couldn' t  resist trying to find 

my own solution. 

Reference [2] explains more of the background of 

my work, and it also discusses the early history of math-  

ematical approaches to type design. In particular, it 

illustrates how several people proposed to construct S's 

geometrically with ruler and compass during the six- 

teenth and seventeenth centuries. 

Francesco Torniello published a geometric alpha- 

bet in 1517 that  is typical of these early approaches. 

Let ' s  look at his construction of a n ' S '  (cf. Fig. 1), 
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.I., con quello rondo quale ha lo suo puncto de mezo fora del 

quadro, longe da la inferiorc linen dcl quadro puncto mezo. 

Poi largo Io circino puncti .z., ponendo una puncta dove fi- 

nisti la inferiore parte del .S. qual fu facta a drita linea, cioh 

longe da la linea del spacio da parte drita puncti .z., e altri 

puncti .4. da la [linea] inferiore del quadro. L'altra puncta 

longe da quella del spacio da parte sinistra puncti.z, descen- 

derai in tondo verso man drita tanto che giongi sopra la me- 

dia linen. Poi con dicta largheza de circino ponendo l 'una 

puncta dove al prescnte finisti, l 'altra puncta longe da la li- 

nea del spacio da parte sinistra puncti .z., venendo dal dicto 

ultimo loco del .S. tanto che sin lontano da la inferiore linea 

del quadro puncti .z. Poi da questa ultima parte in tondo 

vengasi a drita linen a congiungere con 1o inferiore rondo 

longe da la linen da parte sinistra del quadro puncti . i .e s e t t e  

octavi; ~ sara finita la littera .S., come apertamente si vede. 

Fig. 1. Franeesco Torniello's method of "squaring the S" in 

1517. (This is page 45 of [41, reproduced by kind permission 
of Officina Bodoni in Verona, Italy.) 

in order to get some feeling for the problems involved. 

Paraphrasing his words into modern mathematical  ter- 

minology, we can state the method as follows: 

A n ' S '  is drawn in a 9 X 9 square tha t  we can 

represent by Cartesian coordinates (x, y) for 

0 ~ x ~ 9 a n d 0 _ <  y ~ 9. We shall define 

fourteen points on the boundary of the letter, 

calling them (Xl, Yl), (X2, Y2), . . . ,  (X14, Y14). 

Point 1 is (4.5, 9), and a circular arc is drawn 

from this point with center at (4.5, 5.5) and 

radius 3.5 ending at point 2 where x2 z 6. 
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[Hence Y2 = 5.5 ~- x/10 ~ 8.66.1 A small 

arc is drawn with center  (6.5, 9) and radius .5 

from point  3 = (6.5, 8.5) to (7, 9). A s traight  

line is drawn from point  4 = (6, 7) to where 

it is t angen t  to this small arc; let us call this 

point  5. [We shall see below tha t  point 5 has 

the coordinates  (61~ x3 . , 8 ~ ) ,  it is interesting 

to speculate  abou t  whether  Torniello would 

have been happy  to know this.[ Now an arc 

is drawn with center  (4, 7) and radius 2, f rom 

point  6 = (4, 9) down to point  7 where x7 = 3 

and Y7 < 7 [hence Y7 : 7 - -  x/~ ~ 5.27]. A 

s t ra ight  line is drawn from point  7 to point  

8 = (5, 4). An arc centered a t  (4.5, 7~) is 

now drawn from point  4 to point  9 = (3.5, 6), 

and a s t ra ight  line continues f rom there to 

point  10 : -  (6, 4.5). A half-circle runs from 

this point  to point  11 = (3, 0.5), with center 

(4.5, 2.5) and radius 2.5. Ano the r  small cir- 

cular arc is now drawn with center  at  (2.5, y) 

and radius  1, f rom point  11 to point  12 where 

x ,2  = 17 [hence y = (1 - -  vP3)/2 ~ - - .37  

and Y12 = ( v / ~  ~- 4 - -  4x /~ ) /8  ~ 0.41]. Cir- 

cular arcs of radius 2 are drawn from point  8 

to point  13 with the center  z -coord ina te  

equal to 4 and with  z13 = 4.5 [hence the 

center  is (4, 4 - -  v/3 ~ 2.27) and Y 1 3  

4 - -  x/~ - -  3~3.75.75 ~ 0.33], and f rom point  13 

to point  14 with the center  z -coord ina te  equal 

to 4.5 and with Y14 = 2 ]hence the cen- 

ter  is (4.5, 6 - -  x / 3 -  3x/3.~.75 ~ 2.33) and 

X14 : 4.5 - -  V / 4 - - ( 4 - - x / ~ - -  3x/T.~.75) 2 ~ 2.53.] 

Final ly  a s t ra ight  line runs f rom point  14 

to point  12. 

The  reader  will find it interest ing to take a piece of 

graph paper  and carry  out  this v in tage  construct ion 

before proceeding further.  Torniello 's  descript ion was 

actual ly  not  so precise as this, and I have tried to make  

as much  sense out  of his words as possible; it seems 

t h a t  he had as much t rouble  wi th  S's as I did, because 

his o ther  let ters  are much  more  clearly defined. The  

main  editorial  revision I have made  is to change the 

center of the arc between points 4 and 9 f rom Torniello 's  

(4.5, 7~) to the  nearby  point  (4.5, 7~), and to leave its 

radius uns ta ted  [he said the radius would be 1.5, bu t  

actual ly  it is lv /~5/8 ,  a trifle higher], since (4.5, 7~) is 

not  equidis tant  f rom points  4 and 9. 

Note  t h a t  the circular arc between points 10 and 11 

is t angen t  to the baseline a t  (4.5, 0) and it has a vertical  

t angen t  a t  point  (7, 2.5); this works  out  nicely because 

32 @ 42 = 52, and I believe Torniello did know enough 

m a t h e m a t i c s  to make  use of this p leasant  coincidence in 

his design. He never s ta ted exac t ly  w h a t  curves should 

be used between points 1 and 6 or between 2 and 3; 

appa ren t ly  a s t ra ight  line segment  should join 1 and 6, 

while the o ther  curve is to be filled in wi th  wha tever  

looks right.  

( - - r ,  h) 

( - - r ,  0) 

(z, y) 

Fig. 2. A problem that  arises in Torniello's construction: 

Find x and y, given r and h. 

The  calculat ion of point  5 suggests an e lementary  

bu t  instruct ive exercise in analyt ic  geometry :  Given 

pos i t ive  n u m b e r s  h and  r, f ind the  p o i n t  (x, y) in the 

upper  r ight  por t ion  o f  a circle o f  radius  r, cen tered  

a t  the origin, such t ha t  the s t ra ight  l ine f rom ( - - r ,  h) 

to (x, y) is t angen t  to the circle at  (x, y). (See Fig. 

2.) We h a v e x  2 @ y 2 = r  2 a n d y / x = t a n 0 =  

(x @ r ) / ( h  - -  y), hence z 2 -F- r x  ~- y2 _ y h  = 0 and 

r z  = hy  - -  r 2. This leads to the equat ion 0 = 

(by  - -  r2)hy  @ r2y(y  - -  h) = r x ( r x  @ r 2) -}- r2y(y  - -  h), 

hence y(h2y  - -  hr  2 @ r2y - -  hr  2) = 0 and we soon obta in  

the desired solution 

h2r _ r 3 2hr  2 

x - -  h 2 ~ _ r 2  , y h 2 _ ~ r 2 .  

The  solution is a ra t ional  funct ion of h and r (i.e., 

no square roots  are needed) because the  o ther  t angent  

point  is ( - - r ,  0); this o ther  point  also satisfies the  s ta ted 

equations.  Ren~ Descar tes  would surely have liked this 

demons t ra t ion  of the power of his coordinate  system. 

Torniello's cons t ruc t ion  can be expressed wi thou t  

difficulty in the M E T A F O N T  language, a language 

t h a t  I have recently developed for s ta t ing  definitions 

of charac te r  shapes in a form tha t  is convenient  

for compute r  processing. Al though  ru le r -and-compass  

me thods  do not  really use very m a n y  of MI:T IC lFONT's  

abilities, we can learn something  abou t  M E T A I = O N T  by 

looking a t  this as a first example .  

The  key points  of a par t icular  design are specified 

in META~ONTese by  wri t ing equat ions for their  x and 

y coordinates;  then  you can say "draw i . .  j "  to draw a 

s t ra ight  line f rom point  i to point  j .  You can also say 

"draw i {a ,  f l} . .  j {q ,  5}" to draw a curve f rom point  i 

s tar t ing  in the direction of the vector  (a, fl) and ending 

a t  point  j in direction (% 6). This  curve will be a cir- 

cular  arc if there  is a circle passing th rough  i and j in 

the s ta ted  directions, provided t h a t  the circular arc is 

a t  mos t  a half-circle. Thus,  Torniello's cons t ruc t ion  can 

be expressed with  comple te  precision by  the  following 

M E T A F O N T  program:  
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X l  = 4.5u; yl ---- 9u; 

x2- - - -6u;  y 2 - - 5 . 5 u - - - -  

aqrt((3.5u)(3.5u) - -  (x2 - -  4.5u)(x2 - -  4.5u)); 

draw l {y l  - -  5.5u, 4.5u - -  x l}  .. 

2{y2 - -  5.5u, 4.5U - -  X2}; 

X3 = 6.5U; Y3---- 8.5U; 

X 4 = 6 U ;  y 4 = 7 U ;  

3;~ = (6 + ~ ) ~ ;  y~ = (8 + ~)~; 
draw 3{9u - -  Y3, x3 - -  6 . 5 u } . .  

5{9u - -  ys, x5 - -  6.5u}; 

draw 4 . .  5; 

3;6 = 4u; Y6 = 9u; 

x7 = 3 u ;  7 u - - y 7  = 

sqr t ( (2u)(2u)  - -  (x7 - -  4u)(3;7 - -  4u)); 

d raw 6{7u - -  Y6, 3;6 - -  4 u } . .  7 { 7 u  - -  PT, 3;7 4u}; 

3;s~---5u; P s = 4 u ;  d raw 7 . .  8; 

3;9 = 3.5u; y9 = 6u; 

3;15 ---- 4.5u; Y15 - :  7.125u = 

sqn((3;9 - 4.5~)(3;9 - 4 .5~ )  + 

(y9 - -  7.125u)(y9 - -  7.125u)); 

draw 4{7.125u - -  y4, 3;4 - -  4 . 5u} . .  15 . .  

9{7.125u - -  yg, 3;9 - -  4.5u}; 

3;lo = 6u; ylo---- 4.5u; d raw 9 . .  10; 

x l l  : 3u; y l l  : .5U; 

draw 10{ylo - -  2.5u, 4 .5u - -  3;lO}.. 

l l { y l t  - -  2.5u, 4 . S u - -  xH};  

x16 ---- 2.5u; Yll - -  y16 ---- 

s q r t ( u . u  - -  (3 ;11  - -  x 1 6 ) ( 3 ; 1 1  - -  3 : 1 6 ) ) ;  

3;12 : 1.875u; y 1 2 - - y 1 6  = 

s q r t ( u . u  - -  (3;12 - -  x16)(x12 - -  3;16)); 

draw 1 1 { y 1 6  - -  y l l ,  X l l  - -  : E l 6 }  . . 

12{y16 - -  Y12, X 1 2  - -  X l B } ;  

3;13 : 4.5u; 3;17 = 4u; ys - -  y17 : 

sqrt((2u)(2u) - -  (xs - -  x17)(3;s - -  3;17)); 

y17 - -  y13 

sqr t ( (2u)(2u)  - -  ( x 1 3  - -  x 1 7 ) ( i E 1 3  - -  3 ; 1 7 ) ) ;  

draw 8{ys  - -  y17, X 1 7  - -  3 ; 8 }  - �9 

13{y13 - -  y17, X 1 7  - -  3 ; 1 3 } ;  

X18 : 4.5u; Y~s - -  y13 ~--- 

Y 1 4  = 2 U ;  X 1 8  - -  3 ;14  = 

draw 13{yt3 - -  yls,  x l s  - -  x13} .. 

1 4 { y 1 4  - -  y 1 8 ,  3 ;18  - -  3 ; 1 4 } ;  

draw 14. .  12. 

H e r e  "u"  is a n  a r b i t r a r y  u n i t  of  m e a s u r e  t h a t  c a n  b e  

u s e d  as  a scale  f a c t o r  t o  c o n t r o l  t h e  overa l l  size of  t h e  

d r a w i n g .  T h i s  p r o g r a m  l o o k s  s o m e w h a t  f o r m i d a b l e  a t  

f i r s t  g l ance ,  b u t  i t  r e a l l y  is n o t  h a r d  to  u n d e r s t a n d  

o n c e  y o u  c o m p a r e  i t  t o  t h e  i n f o r m a l  E n g l i s h  d e s c r i p t i o n  

g i v e n  ea r l i e r .  A few m o r e  p o i n t s ,  l a b e l e d  15, 16, 17, a n d  

18, h a v e  b e e n  i n t r o d u c e d ;  p o i n t  15 c o a x e s  M E T A F O N T  

t o  d r a w  a c i r c u l a r  a rc  b i g g e r  t h a n  a semic i rc l e ,  a n d  t h e  

o t h e r  t h r e e  p o i n t s  a re  c e n t e r s  of  a rcs  in  t h e  c o n s t r u c -  

t i o n .  T h e  m a i n  f a c t  u s e d  t h r o u g h o u t  is t h a t  a c i r c u l a r  

a r c  w i t h  c e n t e r  (Xk ,  Yk )  t h a t  p a s s e s  c lockwise  t h r o u g h  

p o i n t  ( x i ,  Y i )  is g o i n g  in  d i r e c t i o n  { Y i  - -  Yk ,  Xk  - -  x i } ,  

w h i l e  i f  t h e  a rc  is g o i n g  c o u n t e r c l o c k w i s e  i t s  d i r e c t i o n  

is { Y k  - -  Yi ,  x i  - -  x k } .  

Fig .  3 shows  w h a t  M E T A ~ O N T  d r a w s  f r o m  t h e  

a b o v e  spec i f i ca t ions .  METAFON'Y wil l  a lso  c o m p l e t e  

Fig. 3. T h e  M E T A ~ O N T  program in the  t e x t  will produce  

th is  r end i t ion  of Torniel lo 's  S. 

t h e  d r a w i n g  w i t h  a p p r o p r i a t e  n o n - c i r c u l a r  c u r v e s  i f  we 

a d d  t h e  c o m m a n d s  

draw 1 . .  6; 

draw 2{y2  - -  5.5% 4.5u - -  z 2 } . .  3{9u - -  Y3, x3 - -  6.5u}. 

T h e s e  t a n g e n t  d i r e c t i o n s  m a t c h  t h e  t a n g e n t s  a t  w h i c h  

t h e  n e w  c u r v e s  t o u c h  t h e  old.  f f  we a s k  METAF{:)NT 

to  fill in  t h e  s p a c e  b e t w e e n  t h e s e  b o u n d a r y  cu rves ,  we 

o b t a i n  F ig .  4. 

W h e n  t h e  c i r c u l a r  a rc  c o m e s  to  p o i n t  7 f r o m  p o i n t  

6 i t  is t r a v e l l i n g  in  d i r e c t i o n  {7u  - -  YT, x7 - -  4u}  ---- 

{ v ~ u , - - u } ,  b u t  w h e n  i t  p r o c e e d s  f r o m  p o i n t  7 in  a 

s t r a i g h t  l ine  to  p o i n t  8 i t  a b r u p t l y  s h i f t s  t o  d i r e c t i o n  

Fig. 4. The  curve of Fig. 3, comple ted  an d  filled in. 
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Fig. 5. A slight modification of Fig. 4 makes the curves 

smoother at the junction points. 

Fig. 6. When Fig. 5 is stretched 20% in the horizontal 

direction, we obtain this figure; the circles have become 

ellipses. 

{xs - -  xT, Ys - -  YT} ---- {2u, (xf3 - -  3)u}. This discon- 

tinuity is only slightly noticeable in Fig. 4, but it is un- 

satisfactory from a mathematical  standpoint. Similar 

discontinuities occur at points 8, 9, 10, and 13, the 

problems at  points 9 and 13 being especially prominent; 

the illustration in Torniello's book had to be fudged 

slightly to hide these defects (which Torniello did not 

mention). Contemporary standards of accuracy were 

presumably not very stringent in the sixteenth century, 

but  nowadays we do not want our computers to draw 

such crooked lines. 

Since METAFONT has no special commitment  to 

circular arcs, it will automatically make adjustments 

like Torniello's illustrator did if we just  specify consis- 

tent directions at all of the key points. Fig. 5 shows the 

result if the tangents at  points 7, 8, 9 and 10 are taken 

as the directions of the straight line segments and if the 

direction at point 13 is horizontal. Furthermore point 

6 has been moved over to coincide with point 1, so that  

the unfortunate  fiat spot at  the top is avoided. The 

curves touching these points are not circles any longer, 

but  they are close enough to fool most  people, and it 

seems unlikely that  Torniello would have been offended 

by this approximation.  

A Renaissance 'S'  looks somewhat skinny to 

modern eyes. We can ask METAFONT to flesh it out by 

increasing all the x coordinates by 20% while leaving 

the y coordinates fixed; Fig. 6 shows the result. Note 

that  this stretching turns circles into ellipses. Torniello 

would have had considerable difficulty trying to specify 

such a shape in terms of strictly circular arcs; we are 

reminded of the early astronomers who found it very 

cumbersome to use circles instead of ellipses as models 

of planetary orbits. 

By studying this example we can get some idea of 

the problems involved in specifying a proper S shape. 

However, I was actually seeking the solution to a more 

general problem than the one Torniello faced: Instead 

of specifying only one particular 'S', I needed many 

different variations, including bold face versions that  

are much darker than the normal text. I discussed 

this recently with Alan Perlis, who pointed out that  

a central issue arising whenever we try to automate  

something properly is what  he calls "the art  of making 

constant things variable." In the case of letter design, 

we don' t  merely want to take a particular drawing and 

come up with some mathematics  to describe it; we 

really want to find the principles underlying the draw- 

ing, so that  we can generate infinitely many drawings 

(including the given one) as a function of appropriate 

parameters.  My goal was to create entire alphabets that  

would depend on a dozen or two parameters  in such 

a way that  all the letters would vary in a compatible 

manner as the parameters  would change. 

After looking a t  these Renaissance constructions 

and a lot of modern S shapes, I came to the conclusion 

that  the main stroke of the general S curve I sought 

would be analogous to the curve in Fig. 6: each bound- 

ary curve was to be an ellipse followed by a straight line 

followed by another  ellipse. This led me to pose the 

following problem: What ellipse has its topmost point 

at  (xt, yt) and its leftmost point at (xz, Yz) for some Yz, 

and is tangent to the straight line of slope ~ that passes 

through (xc, Yc), given the values of xt, Yt, xz, o, xc, 

and Yc? (The ellipse in question is supposed to have the 

coordinate axes as its major and minor axes; in other 

words, it should have left-right symmetry.)  The reason 

for my posing this problem should be fairly clear from 
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our previous discussion: We know a point tha t  is sup- 

posed to be the top of the S curve, and we also know 

how far the curve should extend to the left; further-  

more  we have a straight line in mind tha t  will form the 

middle link of the stroke. 

The  problem stated in the preceding paragraph  is 

interesting to me for several reasons. In the first place, 

it has a nice answer (as we will see). In the second place, 

the answer does in fact  lead to satisfactory S curves. 

In the third place, the answer isn ' t  completely trivial; 

during a period of two years or so I came across this 

problem four different t imes and each time I was unable 

to find my notes about  how to solve it, so I spent several 

hours deriving and rederiving the formulas whenever I 

needed them. Finally I decided to write this paper  so 

tha t  I wouldn ' t  have to derive the answer again. 

(zt, yt) 

(Xl, Yl) �9 (zt, Yt) 

r  Y) 

Fig. 7. Problem: Find x, y, and yz when xt, Yt, xz, o, x~, 

and y~ are given. 

The point (xt, yz) is the center of the ellipse we 

seek. Le t  (x, y) be the point  where the desired ellipse is 

t angent  to the line of slope o through (z~, y~), as shown 

in Fig. 7. Our problem boils down to solving three 

equations in the three unknowns  x, y, and Yl: 

X - -  Xt 2 -~2 

yc - -  y 
- - O ;  

Xc  - -  X 

( Y t - - Y l  z - - x t  _ _ o .  

x z - - x t /  y - - y z  

( , )  

The first of these is the s tandard  equation for an ellipse, 

and the second is the s tandard  equation for a line; the 

third  is obtained by differentiating the first, 

x - -  z t  Y - -  Y ~  - -  O, 
2 dx  (xz - -  xt)  2 zr- 2 dy  (Yt - -  Yl) 2 

and sett ing d y / d x  equal to o. 

Before a t t empt ing  to solve equat ions (,), I would 

like to introduce a nota t ion tha t  has turned  out  to 

be extremely useful in my work on mathemat ica l  font 

design: Let  a[x, y] be an abbreviat ion for 

x -F a(y  - -  x),  

which may  be unders tood as "the fract ion a of the way 

from x to y". Thus  O[x,y] = x; l [x,y]  = y; �89 

is the midpoint  between z and y; ~ [x, y] is halfway be- 

tween y and this midpoint;  and 2Ix, y] lies on the op- 

posite side of y f rom x, at  the same distance as y is f rom 

x. Identities like a[x, x] = x and a[x, y] = (1 - -  a)[y, z] 

are easily derived. When  making some geometric con- 

struction it is common  to refer to things like the point 

one third of the way from A to B; the nota t ion  1 [A, B] 

means jus t  that .  

One of the uses of this bracket  no ta t ion  is to find 

the intersection (z, y) of two given lines, where the lines 

go respectively f rom r  Yl) to (x2, Y2) and from r  Y3) 

to r  Y4). We can solve the intersection problem by 

not ing tha t  there is some number  a such tha t  

= a [ X l ,  Z2], y = a [ y l ,  Y2] 

and some number  3 such tha t  

x = 3[x3, x4], y = 3[y3, Y41. 

These four simultaneous linear equations in x, y, a, /3 

are easily solved; and in fact METAgONT will automat i -  

cally solve simultaneous linear equations, so it is easy to 

compute  the intersection of lines in METAI:=ONT pro- 

grams. 

The bracket  nota t ion also applies to ellipses in an 

interesting way. We can write x = a[xo, Xmax] and 

Y = ~[Yo, Ymax] in the general equation 

1, 
X m a x -  Xo.] Y - v o  / 

reducing it to the much simpler equation 

a 2 -[- 3 2 = 1. 

Re tu rn ing  to  our problem of the ellipse, let us set 

x = a c t ,  ~t], y = 3[yz, yt], 

X = x - -  xt, Y ~ Yl - -  Yt, 

a = xl - -  xt, b = (Yc - -  axe)  - -  (Yt - -  OXt). 

The three equations (,) car, now be rewri t ten as follows: 

a 2 @ 3 2 = 1; 

b z r- o X  -~ (1 - -  fi)Y; (**) 

a Y  ~ aofl; 

X = - a a .  

This gives us four equations in the four unknowns  

(a, 3, X ,  Y), so it may  seem tha t  we have taken a step 



backwards; bu t  the equations are much simpler in form. 

We can el iminate a to reduce back to three unknowns: 

X 2 -~- a2~ 2 = a2; (1) 

b @ o X  = (1 - - /3)Y;  (2) 

X Y  = a 2 o 5 .  (3) 

Multiplying (3) by (1 - -  fl) and applying (2) now leads 

to 
X ( b  Jr- o X )  = a2ofl(1 - - /3) ,  

and this miraculously combines with (1) to yield 

5 x  = a 2 o ( 9  - 1). (4) 

It follows tha t  (a2o(fl  - -  1)) 2 -4- a2b2/32 = a2b2, i.e., 

a2(fl - -  i)(a2o2(fl - -  1) + b2(~ + 1)) = 0. (5) 

If a = 0, our  equations become degenerate,  with 

infinitely many  solutions (X,  Y) = (0, b/(1 - -  fl)) for 

- -1  _< fl < 1. If b = 0, ano ther  degenerate  situa- 

t ion occurs, with no solution possible unless ao = 0, in 

which case there  are infinitely many  solutions with Y 

arb i t ra ry  and (X,  a, fl) = (0, 0, 1). Otherwise it is not  

difficult to see tha t  fl ~ 1, so (5) determines the value 

of fl uniquely, and we can use this with (4) to determine 

the full solution: 

a = - - 2 a 5 o / ( 1 2 o  2 -[- 52); 

/3 ~ (a2o 2 - -  52)/(1202 @ 52); (6) 

X ~- - - 2 a 2 b 0 / ( a 2 0 2  @ b2); 

Y = (b 2 - -  a2o2)/2b.  

I was surprised to find tha t  the simultaneous quadrat ic  

equations (**) have purely rat ional  expressions as their  

roots. There  is a curious similarity between this solu- 

t ion and the answer to the problem in Fig. 2. 

Translat ing (6) back into the no ta t ion  of the 

original problem s ta tement  (Fig. 7), let (xt,  y ~ )  be on 

the line of slope o through (xc, Yc), so tha t  Y m 

Yc + o ( z t  - -  zc).  Then the unique solution is 

X -~- Xt At- 2 0 ( Z l -  Zt)2(yt - -  Ym) 
o2(zz  - -  z t )  2 + (yt  - -  y . j 2 '  

2 o 2 ( x t -  Zt)2(yt - -  Ym) 

Y = Ym + o2(x  z _ xt)2 + (Yt - -  y~)2 '  (7) 

(y~ - ym)  ~ - o 2 ( z l  - z~) 2 

Yl = Yt - -  2(yt - -  Ym) ' 

except  in the degenerate  cases xz = z t  or Ym = Yr. 

Incidentally,  I tried the au tomat ic  equation- 

solving feature  of the MACSYMA computer  algebra 

system [5,7] on this problem, in order  to get some 

idea of how long it will be before mathemat ic ians  

will be replaced by computers  when such calculations 

are required. MACSYMA correct ly found the solution 

(X,  Y,/3) for equations (1), (2), (3) in about  17 seconds, 

except  t ha t  it  said nothing about  the degenerate  solu- 

t ions tha t  occur when ab = O. The  t ime required for 

119 

MACSYMA tO solve the system of four equations (**) 

was essentially the same as to deal with (1), (2), (3). 

But  when I asked MACSYMA to solve the three original 

equations ( .)  for z, y, and Yt, the computer ' s  memory  

capacity was exceeded after  about  a minute  and twenty 

seconds, even when I simplified (,)  by replacing (xc, yc) 

by (xt ,  y,~). Thus, I was reassured to find tha t  the equa- 

tions (,)  a ren ' t  completely trivial and tha t  the conver- 

sion to (**) was an impor tan t  step. 

The above solution to the ellipse problem leads 

immediate ly  to the desired S curves, since we can fill in 

the space between an ellipse-and-straight-line are tha t  

runs from (xt,  Yt) to (xl 1), yl 1)) to (x (1), y(1)) to (Zc, y~')) 
and another  tha t  runs from (xt ,  Yt) to (xl 2), yl 2)) to 

(z(2), y(2)) to (xc, y~2!), where the distance between 2;I 1) 

and xl 2) is governed by the desired thickness of the 

stroke at  the left and the distance between//!1) and y~2) 

is governed by the desired thickness of the stroke at  the 

center. (See Fig. 8. The  actual  S curve is drawn with 

a circular pen of small but  positive radius whose cen ter  

t races the curves shown, so the actual  boundary  is not  

a perfect  ellipse.) The  bo t tom right pa r t  of the S is, of 

course, handled in the same way as the upper  left part.  

(xt, yt) 

( z ( ~ ) ,  

Fig. 8. A good S is obtained by drawing two partial ellipses 

according to the method of Fig. 7, then filling in the space 
between them, using a pen whose diameter is the width of 

the "hairlines" of the desired letters. 

SSSSSSS 
Fig. 9. Different possibilities can be explored by varying the 

parameters. Here the slope is changing, but other charac- 

teristics are held fixed; the respective slopes are 5 ~, �89 3 ~, 1, 
2 a, 2, and ~ times the "correct" slope in the middle. 



120 

Fig. 9 shows various S curves drawn by this 

method when the slope o varies but the other specifi- 

cations stay the same. Fig. 10 shows an S that  has the 

same slope as the middle one of Fig. 9, but the curve 

is wider when it is travelling vertically at the upper 

left and the lower right. One of the chief advantages 

of a mathematical, parameterized approach is that  it 

is easy to make lots of experiments until you find the 

setting of parameters that  you like best. A METAFONT 

program that would draw the S's in Figs. 9 and 10, 

depending on appropriate parameters, appears in the 

appendix below. 

Fig. 10. The main stroke of this S is wider at the upper 
left and lower right, but otherwise it was drawn to the 

specifications of the middle S in Fig. 9. 

I happily made S's with this method for more than 

two years, but  one day I decided to ask METAI=ONT 

to draw a great big letter S and the resulting shape 

was unexpectedly ugly. Looking back at some of the 

other supposedly nice S's drawn previously, I started 

to notice an occasional defect that  was comparatively 

innocuous at the small scales I had been working with. 

This defect became painfully apparent when everything 

was enlarged, so I realized that  I still hadn' t  gotten to 

the end of the story. 

Fig. 11 illustrates this new difficulty in a some- 

what extreme form. In terms of the notation of Fig. 8, 

I had not placed x z sufficiently far to the right of z z , 

so the two ellipses through (x?), yl 1)) and (x?), y ?  )) 

actually crossed each other. This made the supposed 

inner boundary switch over and become the outer 

boundary and vice versa, a distinctly unpleasant result 

since I was not intending to have such a calligraphic 

effect in this case. 

The problem of Fig. 11 goes away if x ?  ) is 

sufficiently large, but  of course it is desirable to know 

what the permissible values are. We are led to a 

third (and final) problem concerning ellipses: W h a t  is a 

necessary  and  sufficient condi t ion tha t  the  elliptical arc 

f rom (x?) ,  y ? ) )  to (xt, Yt) stays above  the  elliptical arc 

from (x?), y?))  to (xt, Yt)? (We are assuming that  

X? ) < X? ) < Z t and y?) < y?) < Yt, and that both 

ellipses have left/right symmetry as before.) It turns 

out that  the answer to this problem can be expressed 

quite simply: the curves fail to cross if and only if 

Yt - -  y}l) Yt - -  Y?)  
> (s) % -  xll)) 2 - ( x t -  x?))2 

My first a t tempt  to find the right condition got 

bogged down in a notational mess, but finally I hit on 

the following fairly simple solution to this problem: Let  

a = X t - -  X? ), b = Y t -  Y?)' A = z t - -  x ?  ), and 

B = Yt - -  Y?)' By turning the curves upside down, we 

want the function b - -  bv/1 - -  (x - -  a) 2 (which describes 

the bottom right quarter of an elliptical are from (0, 0) 

to (a, b)) to be less than or equal to the analogous 

function B - -  BV/1 - -  (x - -  A) 2, whenever Izl < a. 

Expanding in power series we have 

- -  b x / 1 - -  ( x / a )  2 = b 
y 

Z X 4 @ {'1/2"~( l)k_(1z2k ) 
b k k ) -  ' 

where 

(1s = ( 2 k - -  2), 

2 2k-1 k! (k - -  1)! 

Fig. 11. Disastrous effects can occur if there isn't enough 
width at the upper left and lower right. 

is positive for all k > 0, and the power series converges 

for Ixl < a. I f  b /a  2 < B / A  2, the analogous power 



Fig. 12. Varying thicknesses of the middle stroke lead to 

these S's, where the width at upper left and lower right 

has been chosen to be as small as possible without the 

"crossover" problem of Fig. 11. 

series 

B - B y ~ 1  - = 

x x 4 /1/2"~ 1 k+ l  x2k ) 
B ) ' 

will grow faster for small x and the two curves will cross. 

But if b/a 2 > B / A  2, we will have b/a 2k >_ B / a  2k for all 

k > 0, so every term of the first power series dominates 

every term of the second. Q.E.D. 

According to the theory worked out earlier, we 

have 

Yt - -Yz  Y t - - Y m  (7 2 

2(z -zz)  2(yt-y )" 
(9) 

Thus we can ensure that (Yt - -  Yll))/(xt - -  xll)) 2 is ac- 

tually equal to (Yt - -  Yl2))/(xt - -  x12)) 2 by starting with 

desired values of xt, Yt, xl 2), Y~), and y~): first yl 2) is 

determined, then xl 1), and finally yl 1). 

1 2 1  

After learning how to draw an S with mathemat i -  

cal precision, I found tha t  the same ideas apply to many 

other symbols needed in a complete system of fonts for 

mathematics.  In fact, all of the characters in Fig. 13 

use the same METAFONT subroutine tha t  I first devel- 

oped for the letter S (or the dual subroutine obtained 

by interchanging x and y coordinates). Without  the 

theory developed in this paper, I would either have had 

to abandon my goal of defining books in a mathemat i -  

cal way or I would have had to stop using all of these 

characters. 

Of course, this is only a first step; the letters I have 

designed are far from optimal, and dozens of future 

experiments suggest themselves. My current dream 

is that  the next  several years will see mathematicians 

teaming up with experienced type designers to create 

truly beautiful new fonts. This will surely be one of the 

most  visible applications of mathematics!  

Let  me close by asking a question of the reader. 

Ellipses have been studied for thousands of years, so 

it is reasonable to assume that  all of their interesting 

properties were discovered long ago. Yet my experience 

is that  when mathemat ics  is applied to a new field, 

new 'purely mathemat ica l '  questions are often raised 

that  enrich mathemat ics  itself. So I am most  curious 

to know: Have the questions tha t  I encountered while 

trying to draw S-like ellipses been studied before, per- 

haps in some other disguise? Or did the new application 

of mathematics  to typography lead to fresh insights 

about  even such a well-studied object as a rectilinear 

ellipse? 

Fig. 13. The method used to draw an S stroke also is used 

as a subroutine that draws parts of many other characters, 
including those shown here. 

Fig. 14. The labeled points in this S correspond to the num- 

bers specified by the MI=TAFONT routine in the appendix. 
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Appendix 

The METAFONT code below will draw the S shown in 

Fig. 14 (and infinitely m a n y  others) when the following 

parameters  have been specified: 

h, height of the character;  

o, "overshoot" of  curved lines at  top and bot tom;  

u, one tenth of the character  width; 

Wo, size of circular pen used in drawing lines; 

w4, width  of t r iangular  serifs before erasing; 

Ws, thickness of S stroke in the middle; 

Wg, thickness at  the upper  left and lower right. 

The vertical lines in Fig. 14 are u steps apart .  The 

p rogram uses "lpen#" and "rpen#" to erase unwanted  

ink tha t  lies to the left and right of a specified path;  

the effect of such erasure is visible in the illustration, 

since portions of the guidelines have been erased. 

subroutine scomp(index i) % starting point 

(indexp) % turning point (yv to be defined) 

(index j) % transition point (to be defined) 

(index k) % ending point 

(vars): % ending slope 

% This subroutine computes yp, x j, and Y3 so that 

% yk - -  Yj -= s.(xk - -  x j) and so that the following curve 

% is consistent with an ellipse: 

% i { z v  - -  z~, 0 } . .  p{0, yp - -  y~} . .  j { z k  - -  z~, s.(x~ - -  xp)}. 

Yk - -  Yj ~- s(xk - -  xj); 
newa, b; a : s ( x  v - xi); b ---- yk - -  y~ - -  s(xk - -  xi); 

Xj - -  X~ ----- --2a.b(xp - -  x i ) / (a .a  Jr- b.b); 

yp - -  y~ : .5(b.b - -  a.a)/b. 

subroutine sdraw(index i) % starting point 

(indexp) % upper turning point (yp to be defined) 

(index k) % middle point 

(index q) % lower turning point (yq to be defined) 

(index j) % ending point 

(index a) % effective pen width at turning points 

(index b) % effective pen height at middle point 

(vars): ~o slope at middle point 

epen; toP6Y~ ~ topbyk; bot6y6 ~ botbyk; 

Z 5  ~ Z 6  ~ Z k ;  

r t a X p  ~-- rtoxl; l f t a X p  ~ lftoX2; 

r t a X q  ~ rtox9; l f t a X q  ~-- lft0Xlo; 
y2~-yv;  yg ---- yq; 

call scomp(i ,  1, 3, 5, s); % compute yl and point 3 

call scomp(i ,  2, 4, 6, s); % compute y2 and point 4 

call scomp( j ,  9, 7, 5, s); % compute y9 and point 7 

call scomp( j ,  10, 8, 6, s); % compute ylo and point 8 

hpen; w0 ddraw i { x t  - -  x~, 0}..  1{0, yt - -  yi}. .  

3 { X q - -  Xp, S(Xq--  xp)}. .7{Xq--  Xp, S(Xq--  x v ) } . .  

9{0 ,  y~ - y g } . .  j { x ~  - xg, 0} ,  

i { x 2 - -  xi, O} . .2{0 ,  y 2 - -  y~}.. 

4{xq - z~, s ( z q  - z , ) } . .  8{z~ - x~, s(x~ - z ~ ) } . .  

10{0, Y3 - -  yl0} �9 �9 j { x j  - -  Xl0, 0}. ~O the s-curve 

"The letter S"; 

hpen; topoYl ~ round(h q- o); botoy5 -~ --o;  

x3----5u; y 3 ~ . 5 2 h ;  

lftsx2 --~ round u; rtsx4 ---- round 9u; 

xl : 4.5u; xs ~ 5.5u; 

lftox6 ~- round u; rtox7 ---- round 8.5u; 

y 6 ~ g o o d o � 8 9  Y T ~ g o o d o ~ h J r l ;  

botoys z 0; y9 ~ y6; xs ~--- x6; rt4x6 ~ rtoxg; 

t oPoYlo~h ;  Ylt----YT; xto----x% 
w 0 d d r a w 6 . . 8 , 9 . . 8 ;  

ddraw 7. .  10, 11.. 10; 

rpen#; w4 draw 6{0,- -1}. .5{1,0};  

lpen#; w4 draw 7{0,1) . .1{- -1 ,0} ;  

hpen; Wo draw 6{0,- -1}. .5{1,0};  

draw 7{0, 1}.. 1{--1,0}; 

call "a sdraw(1, 2, 3, 4, 5, 8, 9, --h/(5Ou)).  

lft4X7 ---- lft0Xll; 

~o lower serif 

% upper serif 

~o erase excess 

% ditto 

% lower left stroke 

% upper right stroke 

% middle stroke 
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