
HYPERTEXT ‘87
KEYNOTE ADDRESS
ANDRIES VAN DAM

I’m a Johnny-come-lately to hypertext: I didn’t get
started until 1967, and what is especially fun about
being here is that I can pay public tribute to the two
real trailblazers who have inspired me and hordes of
my students who have gone off to do their own inde-
pendent hypertext projects. The first is the incompara-
ble, one and only Doug Engelbart, who has been work-
ing at this since the late 1950s. Many people don’t
know that. Some of them may go back in ancient his-
tory and remember his mind-blowing demonstration at
the 1968 Fall Joint Computer Conference, but at that
point he had already been working in this area for a
decade. And he invented just about everything the rest
of us have been doing since then. I will just mention
two of his major contributions.

The first is office automation: he was doing office
automation, in particular word processing, before the
terms had even been coined. IBM invented the phrase,
in connection with the MCST, the magnetic card selec-
tric typewriter. Word processing was the right term,
since words were all you could process. However, you
were lucky if you could replace a small word with a
larger word and not have it flow off the edges of the
card. At that time Doug Engelbart was really working
on idea processing. He was, of course, the inventor of
outline processing, as it is known today. He had links,
he had text searches with a variety of wild-card op-
tions. How many of today’s commercial hypertext sys-

Photos courtesy of Steven Feiner. assistant professor. Dept. of Computer Sci
ence. Columbia University. New York, N.Y.

0 1988 ACM OOOl-0782/88/0700-0887 $1.50

terns let you perform text searches with wild cards and
all kinds of other conditions? Not very many, I believe.
He spent a great deal of time on the user interface. He
had a variety of interesting command language shells
that were at once the singular strength of his NLS sys-
tem and, to those who were not willing to invest the
time to learn them, also a weakness. He invented the
mouse and the five-key chord input device and lots of
other things.

So there is this whole catalog of stuff that Doug’s
group at SRI implemented in the middle to late 1960s
on a little timesharing system on the SDS 940, the kind
of CPU that today would fit in your wristwatch. All
that functionality ran on a computer of that power!

The second major contribution, and the one that
most people don’t know at all, even if they know some-
thing about Doug’s efforts toward the augmentation of
human intellect, is that he is the father of software
engineering in the modern sense. Long before scientists
such as Dijkstra and Bauer started writing about formal
software engineering, Doug and his crew had been liv-
ing it. This really was a bootstrap community of tool
builders and tool users. So on that little timesharing
system on the 940, they had meta-assemblers and com-
piler-compilers and ways of generating special-purpose
problem-oriented languages. They had any number of
tools and understood the value of building tools. To me
that was a revelation. In my group at Brown University
we were assembly-language hackers, and what was im-
portant to us was efficiency and writing the tightest
possible code so that we could get sophisticated pro-
grams to run in real time. The whole idea of spending a
lot of time and energy on first building tools was really
novel.

July 1988 Volume 31 Number 7 Communications of the ACM 887

.’ ; SPEClAl
1 1 ISSUE

Pa

So much for my paean of praise to Doug Engelbart. I
think we are all here because of him and also because
of Ted Nelson, the second trailblazer, who coined the
word “hypertext” and dozens of other words-being
wordsmith and master showman par excellence and
also a polemicist of the first rank. Ted is a self-pro-
claimed visionary who deserves the title, and he turned
on generations of people with Computer Lib/Dream Ma-
chines, a landmark work that still today-I reread a lot
of it just a few days ago to prepare myself for this
talk--is good reading. Ted coined that wonderful
phrase, “If computers are the wave of the future, dis-
plays are the surfboards.” Well, I’ve used that bon mot
ever since, and I think he is absolutely right: displays
are the way to go. But one of the neat things is that we
are discovering lots of other media that fit in: it’s not
just display technology, it’s not just text and graphics
any more. Video, high-quality sound and other media
are also available now.

Another thing we should thank Ted for is that he did
not j.ust say, “branch, link, make arbitrary associations.”
He tried very early to impose some discipline on link-
ing, and introduced us to such wonderful artifices as
stretch text, text that elastically expands and contracts
in place. In other words, you don’t select something
and t.hen it blows up to an alternate statement or adds a
level of indentation; no, the text should expand and
contract smoothly, and you might use a lever to make
things get more or less terse. I have not yet seen an
example of this, and it’s really tough to write for, but
it’s a very interesting idea.

Ted also talked about performing hypergrams: a pic-
ture annotated with text whose components you can
poini. to and they will perform-animate themselves,
for example. This was a decade before the MIT Media
Lab did this sort of thing. Also I really think Ted de-
serves the credit for thinking multimedia so early. He
also talked about zippered lists, collateral text and all
kinds of other weird and wacky ideas, some of which
are workable, perhaps, some of which are not, but all of
them are sure stimulating!

One of the most important things he taught me was
that .this is a new medium and you really can’t be
constrained to thinking about it in the old ways. Don’t
copy old bad habits; think about new organizations,
new ways of doing things, and take advantage of this
new medium.

The other important thing he really led me to focus
on is that there is a great application for hypertext and
hypermedia, not just for research, not just for maintain-
ing your own personal database, but in teaching. And
that :is one of my major themes here: how we have
used hypertext and hypermedia in teaching at Brown
University.

Well, here we are at the first hypertext workshop
and we have to ask, perhaps rhetorically, has hypertext
arrived? has the millennium arrived? And of course
there are several answers to those questions. The state
of the art is reviewed in Jeff Conklin’s excellent article
in IEEE Computer of September 1987. There are also

articles in the press hyping hypertext, and about the
hype in hypertext. Conversely, some of the recent ma-
jor books on computing in the humanities don’t men-
tion hypertext, don’t mention hypermedia, don’t really
deal with the issue of branching texts. They are more
concerned with typography, telecommunications and
other issues that are very important. Even this 1986
book by Eugene Provenzo, Beyond the Gutenberg Galaxy,
which is delightful reading, does not mention it. And
the forthcoming book by Christopher Turk about hu-
manities computing, The Computer and the Scholar, does
not devote a chapter to this phenomenon, although
electronic communication is certainly memioned a lot,
as are tools for processing text.

One of the most important things Nelson)
taught me was that this is a new medium
and you really can’t be constraine,d to
thinking about it in the old ways. Don‘t
copy old, bad habits; think about new
organizations, new ways of doing things,
and take advantage of this new medium.

When you look at the publicity and at systems such
as Xerox’s NoteCards, Owl’s Guide, and especially Ap-
ple’s HyperCard, you get the impression that we are
about to go over the knee of the exponential curve. I
really believe we are. HyperCard in particular, despite
all its limitations, is beautifully engineered, and has a
wonderful user interface, especially for hypertext-style
linking. It will really acculturate our computer user
community. It is simple enough, despite its complexity,
that a lot of people can get access to it at a relatively
simple level. There is a lot of traffic on networks
already about it and people are exchanging stackware.
I think it will be a mass-media cult phenomenon,
rather like MacPaint and MacDraw. I think Apple has
done a really brilliant job of getting it out there, and
although it’s a fraction of what Doug and Ted and
others of us believe to be the potential of hypertext or
hypermedia, I think it’s very strong and will do a lot to
get people interested in our field. Presumably, it will be
improved in future generations.

The success of this workshop also says we are about
to go over the knee of the exponential curve. There is a
staggering amount of information in the participant
statements and in the papers, and many good and inter-
esting papers. I learned a lot from just browsing
through them and reading a few carefully. IFrank
Halasz’s paper is especially recommended, in terms of
stating problem areas and an agenda for future prob-
lems we ought to be tackling (See “Reflections on
NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems” on page 836.)

So, while hypertext is not in the humanities comput-

008 Communications of the ACM july 1988 Volume 31 Number 7

ing books yet, which means that humanities scholars
by and large do not yet know it exists, it will come
through the HyperCard phenomenon, through the pro-
ceedings of this workshop, and the networking that this
workshop will engender. So my summary is that no,
the millennium has not arrived yet, but we are about to
go over the knee.

Next, let’s ask what is different about hypertext? Is
there really anything new to it? You can trivialize it
and say, “Nothing new, we’ve had network databases
all our lives, what’s the big deal?” Or you can hype it
and say that it is an intellectual breakthrough. Or you
can simply say there are lots of interesting ideas, but
there is also a lot of hard work to do to make it really
happen on a broad scale. Hypertext is basically clay,
and we have to mold it; that is what this workshop is
all about: starting to mold that clay.

Why did it take so long to have this workshop, to
have HyperCard, when the technology certainly has
been out there and there have been a lot of proof-of-
concept demonstrations? Well, the first reason is the
classical inertia problem. Why did it take twenty years
for Doug Engelbart’s mouse to be commercialized? One
reason is there is tremendous inertia in this so-called
progressive field. New ideas take forever to be popular-
ized. The second reason is, of course, that there are
technology problems. It takes a long time to develop
something as cheap and as user-friendly as the Macin-
tosh, for example, and to displace the idiosyncratic in-
terfaces we have all created and been forced to live
with. Now the technology is definitely here, and there
is certainly no excuse for waiting any longer.

Next I’m going to give you my own personal view of
some hypertext chronology at Brown University and
then do some wrapping up. I ran into Ted Nelson com-
pletely by accident at the 1967 Spring Joint Computer
Conference, and gossiped with him about what we had
both been doing since we left Swarthmore College. He
told me about his ideas on hypertext, and one thing led
to another and Ted started coming to Providence, using,
as he is proud to say in Computer Lib, his own money.
We started working on the Hypertext Editing System,
which was essentially dual-purpose. One purpose was
to produce printed documents nicely and efficiently,
since at that time the technology on IBM/360 systems
was batch cards for editing (mag card selectrics were
not yet common). But the main purpose was to explore
this hypertext concept.

I want to mention a couple of numbers, just so that
you can size the system. We ran our 2250 graphics
display application in a 128K partition of a multipro-
grammed operating system, on an IBM/360 Model 50
with 512K of memory, our mainframe at that time. An
IBM/360 Model 50 is slower than a vanilla Mac and
has less memory. Yet in that one partition we ran the
Hypertext Editing System, and there was a complete
timesharing system in another partition. There was no
virtual memory, everything was done with software
paging.

The undergraduates programming the Hypertext Ed-

iting System as a bootleg graphics project were paid by
my IBM graphics contract. When our project monitor,
Sam Matsa, saw it, he liked it, so we came out of the
closet and started showing it around at a variety of sites
where IBM had large customers. It was also ported to a
number of university sites. Even after the project was
frozen and we went on to the next-generation system,
it was sold by IBM (unbeknownst to me and Ted and
others who had worked on it) to the Apollo mission
team at the Houston Manned Spacecraft Center and
used to produce documentation that went up with
Apollo, I’m proud to say.

Here are some technical features of that early system.
It had arbitrary-length strings rather than fixed-length
lines or statements, and edits with arbitrary-length
scope, for example for insert, delete, move and copy. It
had unidirectional branches automatically arranged in
menus. It had splices that were branches invisible to
on-line users that allowed the printer to go through a
branching text. It had text instances. Some of the pa-
pers here discuss the differences between inclusion and
reference. Instances are references, so that if you
changed, for example, a piece of legal boilerplate that
was referenced in multiple places, the change would
show up in all the places that referenced it. Instances
are a standard idea from computer graphics-no big
deal.

Our data structure was a pointer-rich data structure
on arbitrary-length pages. Edits were done by pointer
manipulation, not, in general, by character manipula-
tion. This technique was, in effect, a precursor of the
piece-table technique, where you work with pointers to
text rather than the raw text itself. We did software
paging of arbitrary-length pages in this 128K partition,
and that turned out to be too complex. Page-replace-
ment algorithms when the slots have variable size are
just not very manageable. We used Text/360, which
was a batch formatter rather like MIT’s Runoff, to pro-
duce hard copy. And so we could fulfill both of our
objectives, producing hard-copy documents and fooling
around with hypertext.

Let me tell you a little bit about the fooling around
with hypertext. Ted’s schematic of his hypertext
of patents had a kind of hierarchical structure and
then cross-references. These implemented the cross-
references in the patents, and we also had various
forms of indices: the real diagram was about the size of a
large blueprint, as I remember, and hard to navigate on
paper and on-line. We had already come to the point
where Ted, who designed it, was able to go through the
hypertext pretty well, but some of the rest of us had
difficulty following it-it was not exactly obvious
where you were. This, of course, is the classical lost-in-
hyperspace problem, which has been mentioned by one
and all; I won’t elaborate on it here because it is amply
discussed in the Proceedings. We already started getting
the notion that the richer the hypertext, the greater the
navigational problem. But we arranged careful demos
in which we knew exactly where we had to go, and
people were impressed.

]uly 1988 Volume 31 Number 7 Communications of the ACM 009

i SPECIAL F 1 ISSUE

.ti
In early 1968 we made the rounds of a number of

large customers for IBM equipment, for example, The
New York Times and Time/Life. And we found that our
system was essentially too complex for them to under-
stand. Remember that these people were producing
magazines and newspapers and other forms of printed
material. At most they had typographic programs that
set type and maybe some software that did display ad
management. But the idea of sitting on-line behind a
tube and actually authoring and editing and rearrang-
ing and cross-referencing really was more than they
were willing to believe you needed to do or should do.
It was “very interesting.” It was futury and researchy,
and I remember this particular demo we did at
Time/Life when our audience said, “That’s great, but it
will take us at least 10 years before people will be
willing to sit down behind tubes and do anything
on-line.”

In 1968, I finally met Doug Engelbart and
experienced his landmark demonstration.
He was doing multiperson collaborations
usirzg all of his tools on-line
interactively-it was a tour de force.

Fortunately, they were wrong, and by the mid 1970s
such places as Newsday on Long Island had bought
precursors of the ATEX text-editing systems, and,
much sooner than anyone would have predicted, this
very c:onservative field of newspaper and magazine
publishing switched over to editing on-line. All those
people who sat down and typed with two fingers did in
fact learn to organize their thoughts on-line on a VDT,
despite dire predictions that they never would.

The other thing I learned was something about the
art of giving demos: use progressive disclosure, don’t
show it to them all at once. We used a standard 32-key
IBM function keyboard, used in every computer-aided
design installation in the world, and all the engineers
were perfectly used to it, loved it, had no problems
with it. But when we gave demos to people whose busi-
ness was words, not engineering designs, they would
freak out-they couldn’t handle all those editing but-
tons, one of which brought in another overlay of 32
formatting functions. So I learned very early to make a
plastic: overlay which I essentially used to cover up all
but five of the editing buttons: insert, delete, move,
copy and jump. Then we would do an entire demo for
half an hour or so with that, let people play, and then
we would say, “But wait, there’s more . . . “. And then
we would play peek-a-boo, strip off the first overlay
and, lo and behold, there was another row of function
keys. ,4nd so by doing progressive disclosure with a
sequence of increasingly revealing overlays we man-
aged not to swamp and panic people.

The last lesson learned during that period: real es-

tate, screen real estate. We saw that people would sit
behind a 2250 Mod 4 display with software character
generation, where they could put up teeny tiny 8- or
lo-point text with the screen flickering wildly-three,
four frames a second, sometimes two. And they would
prefer that to a smaller screen or larger, steadier char-
acters, simply because context is so extremely impor-
tant. It drives me wild to sit behind a small-screen Mac
and be restricted to this little 3” x 5” card image, not
even able to scroll around on a drawing to get more of a
view. We have to deal with this problem of getting
more screen real estate so that it feels like something
we normally work with, even something as limited as
8%” X 11”. We have to get bigger displays, and we
must have easier ways of moving around on the dis-
plays we do have, because these little tiny windows
just drive you crazy. I’m going to come back to that.

In 1968, I finally met Doug Engelbart and experi-
enced his landmark demonstration at the Fall Joint
Computer Conference, about as gutsy and risky a demo
as I have ever seen. He was doing multiperson collabo-
ration, using all of his tools on-line interactively-it
was a tour de force. He did outline processing, browsing
and jumping around through multiple files with text
and graphics, using key words and other view specs to
act as viewing filters over his data, using text-searching
capabilities, and so on.

Later that year I went on with my students to design
FRESS, a File Retrieval and Editing System. .Lly design
goal was to steal or improve on the best ideas from
Doug’s NLS and put in some things we really liked from
the Hypertext Editing System-a more freeform editing
style, no limits to statement size, for example. But the
intellectual debt is clearly to Doug’s NLS.

One of the things I worked very hard on was output-
input device independence and the idea of a logical
device. We wanted to get this system to run ‘on any-
thing from teletypewriters, which were very common
at that time, up to and including minicomputers with
multiple windows on vector displays. We had a
16Kbyte IMLAC mini with a vector display that was
used very extensively-a single one, because that was
all we could afford.

So we developed the notion of virtual output and
input devices, along the lines of Fortran logical I/O
units. Virtual input devices were an important part of a
graphics subroutine package called GPGS that we de-
signed in 1971 in the Netherlands as part of a three-
university consortium. And that idea went into the
CORE, GKS, and PHIGS standard graphics packages and
now into PHIGS+, the latest graphics package specified
by an ad hoc standards group in 1987, almost two dec-
ades later.

FRESS was of course multiterminal, it supported out-
line processing, arbitrary-length strings, edits, etc.; it
had no size limitations. I really believe in that--I think
it is important not to feel yourself constrained. One of
the really important ways in which unconstrained size
and scope ought to work is that it should not interfere
with performance. In FRESS, to a first approximation,

890 Commtmications of the ACM luly 1988 Volume 31 Number 7

you could not tell the difference between working with
a two-page printed file and a zoo-page printed file be-
cause of the software paging scheme we used. And yes,
of course, some tables grow with file size, but in gen-
eral the system was just as peppy with large files as with
small files, and I think that is really important for users.
While keeping a lot of small files may be a feature for
some people, it’s a bug for many others, and the system
should not force you into an unnatural usage pattern.

We also went from unidirectional links in Hypertext
Editing System to bidirectional links with explainers in
FRESS. I think bidirectionality is important: the ‘come
from’ is as important as the ‘go to.’ Key words were
possible on every element, both for on-line and off-line
trails. Links could be “typed” with these key words. We
also experimented with protection down to the charac-
ter level, and every single one of a hundred-odd func-
tions could have a bit in a mask that said whether you
could perform that function on this block of text or not.
It was overkill, and we haven’t done it since, but it
certainly was interesting.

We had an ability to see the structure space, a visual-
ization of all the structure in the text, the outline struc-
ture and the cross-reference structure. You could do struc-
tural rearrangements in that structure space in a quick
overview mode and you would thereby induce those
same edits in the text itself. And of course edits made
in the text would also appear in the structure space.
That duality was a very useful and popular feature.

The most popular feature, however, was undo. I will
claim that, to the best of my knowledge, FRESS was the
first system to have an undo. We saved every edit in a
shadow version of the data structure, and that allowed
us to do both an autosave and an undo. I think the most
important feature in any system built today has to be
indefinite undo and redo. One level is better than zero,
but not enough, and wholly inadequate for serious
work. It doesn’t matter how it’s done, whether it’s jour-
naling, transcripting done with inverses, whatever, but
you’ve got to have it.

We had escapes to the command shell, so that you
could do some useful work outside the system. That is
another theme I want to return to: whether you should
have a self-contained, self-sufficient hyperuniverse or
should be able to go outside and do things you need to
do that it does not (and should not) provide.

I want to tell you a little about the sociopolitical
climate then, because these really are the barefoot-in-
the-snow stories that most of you, fortunately, have
never been exposed to. When we were doing this work
at Brown University, nobody said “Hey, it’s great you’re
building tools for humanists, that’s wonderful, when
can we have it?” In fact, quite the reverse. Those were
the days of accounting on mainframes. You got a cer-
tain amount of ‘funny money’ allocated every year and
you had to make it last, and if you ran out, tough.
Maybe you could argue for a little more and maybe you
couldn’t. So it was extremely important to make our
system efficient so that people could afford to use it on
their funny-money budget. I had serious warfare with

the vice president in charge of computing about
whether the software should even be allowed on the
system, because if it were on the system, then people
would use it. And that would subvert the true purpose
of computers, which was to produce numbers for engi-
neers and scientists. He said, literally, “If you want to
screw around with text, use a typewriter.” I essentially
had to blackmail him by saying there would be a revo-
lution by the humanists on campus if they found out
how much the engineers and scientists were spending
on computing when they couldn’t have any.

These were the best of times, these were the worst of
times. They were the best of times in that there were a
lot of technology and “proof of concept” systems out
there. They were the worst of times because we really
had to fight to get these ideas recognized as legitimate
fields of inquiry and to get real users. In about 1972 I
watched Doug do his standard go-minute pitch with
video and live demos to a group of DARPA contractors
who were the best and the brightest in the country at
that time. And one of the very best people said, basi-
cally, “Doug, I don’t see what you’re doing there that I
can’t do on my glass teletype with a good line editor.”
But Doug, fortunately, kept going, we kept going, other
people did. And by the mid 1970s we finally got around
to doing what I had always wanted to do since Ted first
tuned me in to the idea, which was try out this on-line
stuff in education. So, very briefly, I’ll describe two
experiments. In one, funded by the Exxon Education
Foundation, a physicist and I did a course called Man,
Energy and Environment. Students did a lot of reading
of hypertext on-line about the subject, but no writing.
Then we did a much more ambitious experiment in the
following two years, funded by the National Endow-
ment for the Humanities. For this English poetry course
we used a very large hypertext with well over a thou-
sand links. Three times a week students had to sign up
for an hour each on our one and only Imlac graphics
workstation and do their reading and their commenting
on-line, following trails, making trails. We used a kind
of progressive disclosure: the first time through they
saw the poem they were supposed to critique and ana-
lyze, with no references. The second time they saw it
with a few links to other poems on the same subject or
by the same poet. There would also be some word
glosses, some professional analyses, but still not very
much context. And they would be reviewing what
other students had written on the first pass, and the
teacher’s and TAs’ comments as well, and then they
would form a new opinion of what they had read. And
then they would do that a third time, when they had
yet more access to what people had written commun-
ally and what had previously been put in the database.
It was very interesting. People loved it, despite the fact
the system went down a lot, that it was hard to get at it,
that you had to schedule time. And this “communal
text,” as it was called by the poetry people who wrote
about it later, became very rich in additional annota-
tions. Electronic graffiti, as I thought of them.

The reason I encouraged such annotations was that I

July 1988 Volume 31 Number 7 Communications of the ACM 991

remembered that when I was in college with Ted, I
would always grab the dirtiest copy of a book in the
library, rather than the cleanest one, because the dirti-
est ones had the most marginalia, which I found very
helpful. It really worked here: on average, students
wrote three times as much for both analyses and infor-
mal discourse as they did in the control group, and that
pleased the faculty who were very much concerned
with encouraging oral and written expression. One of
the things we found is that people express themselves
differently. Some people who were very articulate in a
classroom setting were pretty silent once they got be-
hind the tube. And vice versa, so a lot of shy violets
really became vocal once they got behind the tube.

What we discovered from that experiment is that
people could follow trails and enjoyed it. But what we
did not see was a lot of people blazing trails. There
wasn’t enough time, the interface wasn’t good enough,
response wasn’t fast enough-a variety of reasons. So
we never really proved a central hypothesis, that peo-
ple can and will blaze trails, not just follow them. I will
make a statement that says, despite the experience
with Xerox’s NoteCards system, despite whatever other
experiences there are out there with programming en-
vironment browsers and so on, by and large the hy-
pothesis remains unproven that, with little guidance,
people can construct really good trails, really good webs
that help them and help other readers. I think we still
need to test that hypothesis in a major way.

The next thing we did after FRESS was put to bed in
the late 1970s was to make a rather different hypertext
system, our third by that time. What we were inter-
ested in then was power tools for producing primarily
graphical documents. I want to describe to you very
quickly some of the things we did in our electronic
document project.

There were three components to the system. One
was a viewer’s component in which prepared screen
pages could be viewed. Figure 1 shows four iconic but-
tons, each one a composite of individual images drawn
by han.d and then, with the help of the authoring com-
ponent, put together on a screen page and buttonized.
This is typical of what a maintenance and repair tech-
nician would see as a typical page in the little mainte-
nance and repair Dynabook icon. The other two
components were for the author. The first was for
making graphics for individual pages or their parts,
a MacDraw-MacPaint combination. The component
most interesting for this audience, shown in Figure 2,
was the hypertext creation component for constructing
pages, chapters and links. It was multiwindow, so that a
page u:nder construction could occupy either the entire
screen or a portion of it. This allowed multiple pages or
even chapters to be visible simultaneously so that you
could create links from one to another. The whole in-
terface is manipulated directly: there’s almost no typing
and lots of pointing at objects and manipulating them.
This was back in 1979 when that was not so common.

We spent a lot of time figuring out how to elide, that
is, hide, information graphically. We had a ‘detail but-

FIGURE 1. Document Presentation System Page

ton’ that let us view things at varying levels of detail.
So the author could move these windows around, look
at pages and chapters at arbitrary levels of detail, iconi-
tally create various kinds of buttons and specify actions
to take place when the reader invoked a button. Such
actions could include animation and taking a link to
another page. The model for this hypertext is more a
finite-state automaton in which transitions take you
from one mode to the other rather than of a static

FIGURE 2. Document Layout System Interface

892 Communications of the ACM luly 1988 Volume 31 Number 7

hypertext with static links, In particular, using a key-
wording facility, you could cause different parts to ap-
pear on the same page as a function of the keywords
encountered during traversal. So on two successive ac-
cesses a page might look quite different through hiding
information or showing new buttons.

FIGURE 3. DPS Timeline

The system had three automatically created naviga-
tion aids. First, it had a time line, as shown in Figure 3,
that you could use to travel back in time, consisting of
buttons of miniature page icons stamped with time and
date, with color coding keying you to chapters. This is a
little bit like the ‘recent page’ in HyperCard, but here
we are time traveling: we are not just going back to an
image, we are going back to the state that accompanied
our view of that image, because a page, as you remem-
ber, can change over time. Another was the ‘neighbors’
display: the current page is displayed in context with
(on the left) a filmstrip of all the places you could have
come from, and (on the right) all the places you could
go to, and again you can pick any of these miniatures
and go there directly. In general, this could be an arbi-
trarily complicated display with dozens of sources and
destinations; then you use iconic scroll bars to move
over these filmstrips. The third navigation aid was a
visual index of buttons of page miniatures arranged by
key words, color-coded by chapter.

We learned some new lessons from this third system.
It had great power tools for the author, but it still in-
volved a tremendous amount of hand work. What you
really would like in making fairly regular documents,
like maintenance and repair manuals, is to drive the
creation of the pictorial or textual, audio, video, etc.,
explanations directly from deep knowledge about the
problem domain, the particular problem to be solved,

5 sFwMl

u
ISSUE

the design rules for creating explanations in the various
media, and the user of the manual. You want, in effect,
to produce an automated authoring capability in which
most of these things can be driven from these knowl-
edge bases. Steve Feiner’s Ph.D. dissertation and his
work since then describes such automated authoring.

The next system I would like to mention briefly is
not a hypertext system, but it formed our thinking
about ingredients at the nodes of a hypertext. This is
the BALSA (Brown ALgorithm Simulator and Anima-
tor) environment, created in 1983 by Bob Sedgewick,
who is now chairman of computer science at Princeton
University, and Marc Brown, who last year received an
ACM distinguished dissertation award for this work. In
the course of a lecture we use BALSA on a network of
workstations in the classroom to look at dynamic vis-
ualizations of programs implementing algorithms and
data structures. If a picture is worth a thousand words,
a dynamic picture of time-varying objects is worth a
thousand static ones. We need dynamics at the nodes,
not just static pictures and text. Something one learns
quickly about user-controlled real-time animation is
that hardware power is really essential. If it takes
10 seconds to put up the next picture because that’s
how long the hardware needs, you do not have kines-
thetic feedback, you do not have smoothness and visual
continuity, it is not responsive. It makes a great demo,
but it drives you crazy in real life.

We have been using electronically assisted teaching
now for five years and our new building contains two
workstation auditoriums. BALSA has been integrated
into a variety of courses in computer science and math,
as well as in neural science and even political science.
These experiences led to Brown’s wholesale commit-
ment to workstations and in fact to the creation in 1983
of IRIS, our Institute for Research on Information and
Scholarship. IRIS not only creates scholars’ workstation
software but also has a completely symmetrical pro-
gram evaluation branch where social scientists with an
interest in this area study needs, requirements and im-
pact of this technology on scholarly work. And by the
way, ‘scholarly work’ to us is not just the work of fac-
ulty members but also that of students-we’re all
scholars on this bus.

We set up IRIS at a time when there was a lot of
enthusiasm in front-running universities for buying
into the workstation revolution, looking at the Xerox
PARC model of distributed computation and saying,
“We want to deliver tools that really take advantage of
the expressive power of such workstations.” So IRIS
and other organizations on other campuses were cre-
ated to develop scholarly tools. I think, though, that
there is still a paucity of such scholarly tools and we
are at the very beginning of understanding what they
might be.

I’m going to sum up what I think are some key areas
we all ought to be looking at. Here are nine quick
items. My first concern is that systems may develop
great infrastructure, great hypertext glue, but what’s at
the nodes? As with the 2D animation in BALSA, I think

]uly 1988 Volume 31 Number 7 Communications of the ACM 993

we should be aiming at user-controlled 3D animation,
where the interactive user has control over what is
being shown, the level of detail, the visualizations em-
ployed, and so on. This is just a wide-open area that
needs a lot of study, not to mention vast hardware
power.

Second, Ted talks a lot about the docuverse, a mythi-
cal entity out there that is all-inclusive and contains
everything. But instead, right now we are building
docu-islands; none of our systems talk to each other,
they {are wholly incompatible. So we are all working
the same agenda, more or less, but we can’t exchange
stuff; there is no exchange format, there is no univer-
sality, and furthermore, our systems are closed systems.
In a sense, they are making the same mistake as the all-
in-arm environments in personal computing. Yes, they
give you a word processor and a spreadsheet editor and
a business graphics package, etc., but none of them are
really satisfactory. And our experience with FRESS,
where we had to escape to command language, showed
that it is really important to be able to go outside. So it’s
not enough to bundle the HyperCard package with
every Mac you buy. It really ought to be migrated
down, become part of the toolbox, so that application
programmers can take their applications and take ad-
vantage of a standard linking protocol that works
within and between applications.

Zf a picture is worth a thousand words, a
dynamic picture of time-va ying objects is
worth a thousand static ones. We need
dynamics at the nodes, not just static
pictures and text.

So I’m going to raise a red-flag word: standards. I’m a
firm believer in standards. And everybody will say it is
absolutely premature to standardize when we don’t
even know what the hell we’re talking about. We are
still in. the experimental phase. I believe that. But if we
don’t start thinking about standards, five years from
now we are going to have a wealth of these little docu-
islands which are totally incompatible, and that’s crazy.

Point number three is size. We are still in the toy
problem stage. There has not been a decent-sized hy-
pertext built yet. And we won’t know what it is like
until we deal with the kinds of documentation prob-
lems that people in the real world deal with. People
have graphed the number of pages of technical manuals
for fighter aircraft against time. In World War II, we
had 0: page documentation per fighter aircraft; in Ko-
rea, IOK; in Vietnam, 100K. It’s an exponential curve.
The F-16 has 600K pages, and the advanced tactical
fighter will probably have somewhere around a million
and a half pages of technical documentation. It is, in
effect, a giant hypertext that should be linked, and
done with change control.

And that is my fourth point. We have to do some-
thing about versioning and change control in the large.
But we won’t have a fighting chance to kill paper and
become an on-line community until we tackle the
kinds of problems that paper solves for us today. Paper
is convenient, you can carry it around and versions are
easily created and maintained. Hypertext is not as ac-
cessible as paper, and it certainly isn’t prepared to deal
with the size problems as paper does.

Remember how crazy eve ybody went
when they got the ability to print multiple
fonts? We got ‘fontitis.’ Then people
discovered color screens and we got
‘coloritis,’ without any rules, without any
design discipline. Now we’ve got ‘linkitis,’
and people with no graphic design
experience or talent are going to throw
stuff together and it will look terrible.

The fifth problem is navigation, lost in hyperspace.
Some people say we need content and structure query,
we need virtual structures, composites; others say we
need pruning. All of this is true. I find the notion of
dynamically constructing a hypertext very intriguing,
but very difficult to do in general. My point of view is
that in a sense hypertext gives us a goto, and a goto, as
we all know, produces spaghetti. At most we have in-
vented the if-then-else-if, with hierarchy. That’s our
one structured flow-of-control concept, where you have
some sense of what you are looking at in your hyper-
document. Well, we need to discover what the equiva-
lents of other constructs are. As Ted did at the start, we
have to invent other document forms that somehow
become standard so that people have pattern recogni-
tion and say, “Ah, yes, I know how that one .works.” So
we need new forms, new flow of control kinds of con-
structs besides just unbridled goto-ness of directed
graph structures.

The other navigation aid we need is a tell-me-what-
you’ve-got, which probably entails AI. Instead of just
syntax, we need some notion of semantics at the nodes.
We need to be able to derive new knowledge from old,
using inference engines. Just storing billions and bil-
lions of facts that are tied together is not going to do it
for us; that will just drown us in associations.

The sixth point is that we need hypermedia design-
ers. Remember how crazy everybody went when we
got the ability to print multiple fonts? We got ‘fontitis.’
Then people discovered color screens and we got ‘color-
itis,’ without any rules, without any design discipline.
Now we’ve got ‘linkitis,’ and people with no :graphic
design experience or talent are going to throw stuff
together and it will look terrible. You all know that one
of the interesting things that happened after (Gutenberg

994 Communications of the ACM July 1988 Volume 31 Number 7

ment. Take The Wall Street Journal and move around a
little cutout the size of a Mac screen and see how
happy you are with The Wall Street Journal, versus look-
ing at a page of it in its entirety and immediately pick-
ing up what you might be interested in reading. A very
persuasive point.

And finally, point number nine: we must think about
the sociopolitico-economic problems. We have not
come to grips with issues of intellectual property rights
and compensation. Congress and the U.S. Patent Office
and copyright lawyers and so on do not understand
what is involved here and need to be educated. If we
shrink away from those issues and leave it to them,
there is going to be absolute chaos. Ted, again, has
written extensively on this issue and has postulated
some interesting mechanisms for coping with the
problems.

So there are essentially three classes of people. There
are the visionary hypers who say, not only is the glass
not half empty, it’s overflowing with opportunities and
possibilities and technology push of CD ROMs, 100
megabytes and 100 MIPS on your personal computer in
just a few years, and so on. They are saying everything
is great’and we have a wonderful universe to explore.

Then there are the skeptics who say, not only is the
glass not half full, but there was probably never any
water in it to begin with. And I’m a third type sitting on
the fence somewhere in between these two extremes,
saying, I’ve used a lot of hypertext systems and I think
they are neat and show a lot of potential. I think we are
just at the very beginning and it’s too early to rush to
judgment, but it’s clear that collectively we have a lot
of hard but exciting work to do to make this technology
work and to create what has been called the electronic
Alexandria.

Author’s Present Address: Andries van Dam. Brown University. Dept. of
Computer Science, 115 Waterman St., Providence. RI 02912.

was typography. For a while after Gutenberg, type de-
signers were using manuscript letterforms. And they
were using erasers and paintbrushes to doctor the stuff
the typesetting machine had set so it would look more
like an old-fashioned manuscript and people would be
familiar with it. It took a long while for people to un-
derstand that this new medium demanded a new style,
a new typography. So typography is an invention, and it
is nearly as important as the printing press in the first
place. We don’t want to mimic the old manuscript form
in our hypertexts.

Aldus Manutius discovered modern pages. And pages
gave us a new way to cross-reference, to talk about
content, to index, and that technology took a while, but
it made information a great deal more accessible. So we
need people who are concerned about layout and de-
sign and typography of hypermedia and can think
about classification and indexing and how we put
things together.

But we don’t want to put things together in such a
way that there is one point of view, because if we’ve
learned one thing from interactive tools up to now is
that multiview is the way people work. You can not
have it just one way. We need an update to Larry Tes-
ler’s “Don’t mode me in.” Jim Foley and I recently came
up with “Don’t metaphor me in.” Don’t give me a little
card image and say, “That’s all you’ve got, because
that’s what I thought you should want for your virtual
shoebox.” There have got to be multiple modalities and
the designers have to be able to deal with that. So that
was issue number seven: don’t metaphor me in, don’t
give me only one way of looking at things.

Point eight: accessibility, portability-I want a laptop
Dynabook. And I also want wallscreen-size displays. I
want my whiteboard-sized hypertext display, and not
until it’s that big do I think we can really start working
with hypertext. Hoker performs the following experi-

:OMPUTING TRENDS IN THE 1990’S

1989 ACM Computer Science
Conference,

Conference Highlights:

l Quality Program Focused on Emerging
Computing Trends

l Exhibitor Presentations
l CSC Employment Register
l National Scholastic Programming

Contest
l History of Computing Presentations/

Exhibits
l Theme Day Tutorials
l National Computer Science Departmer

Chair’s Program

February 21-23, 1989
Commonwealth Convention Center

Louisville, Kentucky

acm.

Attendmwe InformatIon Exhibits InformatIon
ACM CSc’69 Barbara corben
11 Wesl42nd Sbeel Aoben T. Kenworthy Inc.
New York. NY 10036 666 United Nations Plaza
(2 12) 8647440 New York. NY 10017
Meehgs@AChWM 01tnef (212) 752-0911

]uly 1988 Volume 31 Number 7 Communications of the ACM 995

